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One of the main goals in chemical process design is to produce
plant designs that are optimal with respect to a given economic
performance index. Efforts to reach that goal have led to the
development of computer-aided design techniques which allow the opti-
mization of process flowsheets (Berna et al.f 1980; Biegler and
Hughes, 1982). While these techniques are often useful in practice,
they have the important drawback that they may not produce flexible
designs since they optimize the flowsheet for only a single nominal
operating condition. That is, these techniques do not take explicitly
into account the fact that once a design is implemented the plant
will normally experience substantial variations in the operation. For
example, in practice it is very likely that the plant will have to
operate at various levels of capacity or to process different types
of feedstocks. Therefore, by optimizing a flowsheet at a single
nominal condition there is no guarantee that the plant will perform
economically for other conditions, or even worse, that the plant will
still be feasible to operate or able to meet desired specifications.

It is the purpose of this paper to describe a computer package
for handling an important class of problems for the optimal design of
flexible chemical plants. The problem that is addressed here is the
one where a chemical plant must be designed optimally so as to
operate in a specificed sequence of N time periods, where in each
time period design parameters and specifications of the flowsheet may
change. A general discussion on this design problem and its exten-
sions to the problem of design under uncertainty can be found in
Grossmann et al. (1982).



It will be assumed that a sequence of N time periods of fixed
length t. i=l,N, is specified for the operation of a chemical plant*
At each time period the plant operates at a different steady-state
and dynamic effects of switching from one state to the other are ne-
glected. The optimal design problem is then given by the following
multiperiod nonlinear program
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is the cost function that involves the investment
cost C and operating cost C for each period i

is the vector of design variables representing
equipment sizes

is the vector of control variables in period i

is the vector of state variables in period i

are equality and inequality constraints that apply
in each period i

r is the vector of inequalities that involve the
design variables

It should be noted that the vector of design variables d
remains fixed throughout the periods of operation, whereas the con-
trol variables z represent the degrees of freedom. in the plant
operation. Since both types of variables, d and z1, i=l,N, are
decision variables to be optimized in problem (1), the difficulty
that arises is that the computational burden in this problem can
become excessive as the number of time periods increases.

Recently, Grossmann and Halemane (1982) have proposed a very
efficient decomposition scheme that exploits two basic properties of
problem (1). The first one is the block-diagonal structure in the con-
straints, which for fixed design variables d, allows the control vari-
ables z to be optimized independently for each time period. The



second property is the fact that one can expect a large number of
inequalities to be active or tight at the optimal solution. The
proposed decomposition technique relies on a projection-restriction
strategy in which the basic steps are as follows:

Step 1. Find a design d that is feasible to operate for the N time
periods.

Step 2. (Projection). For the fixed design d, optimize the control
variables z in each time period i, so as to improve the
cost function and to identify inequalities & -0 that be-
come active.

Step 3. (Restriction)
the active in-a) Eliminate control variables z from

equalities gA=0 which are treated as equalities

b) Solve problem (1) in the restricted form
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r(d) ^ 0

where z <4-4>< (x ,

Step 4. Return to Step 2 and iterate until there is no change in
the design variables d.

As can be seen, the basic idea in this strategy is to conjec-
ture in the projection step which inequalities are active at the
solution, so that in the restriction step the original problem can be
solved with a smaller number of control variables which are elimi-
nated with the active inequalities. A detailed description of the
projection-restriction strategy is given in Grossmann and Halemane
(1982).

FLEXPACK

The projection-restriction strategy has been implemented in the
computer package FLEXPACK (Avidan, 1982) which uses an equation
oriented approach. The user specifies the multiperiod design problem
as a nonlinear program with its corresponding objective function and
constraint set. The constraints need not be written for each time
period since in FLEXPACK they can be expressed in terms of parameters



which take different values in each time period. Also, no gradient
information has to be supplied since FLEXPACK uses numerical
perturbations.

The system of equations in problem (1) is solved by using a
tearing procedure which is also used to select the control variables
z1. This tearing procedure is a modification to Christensen1s (1970)
method in which a weighting scheme is used to specify preferred
decision variables. In addition, this procedure incorporates the
analysis of the reduced Jacobian matrix to ensure nonsingularity in
the system of equations (see Halemane and Grossmann, 1981) which
often becomes a critical issue when adding active inequalities to the
restricted problem. For the numerical solution the single variable
equations are solved with the inverse interpolation method by Shacham
and Kehat (1972), whereas the torn variables are converged with
Broyden's (1965) Quasi-Newton method. The variable-metric projection
method of Sargent and Murtagh (1973) is used for solving the differ-
ent optimization subproblems in the projection-restriction strategy.
Specifically, this method is used for finding the initial feasible
design in Step 1, for solving the optimization subproblems in the
projection Step 2, and for solving the restricted problem in Step 3.

An important feature in FLEXPACK is that the user has the
option to partition the design variables d into two sets: (a) the
fixed variables df, (b) the capacity variables d . An example of the
former are areas of heat exchangers, and an example of the latter are
reactor volumes. Since the capacity variables are involved in inequal-
ities of the form d >̂  d , i=l,N, they are equivalent to d =max
{d , i=l,N}. Although it is well known that this max constraint is
nondifferentiable, numerical experience with multiperiod problems
that involve fixed time lengths t , has shown that the time period
which defines the bottleneck for each capacity variable remains often
unchanged throughout the iterations. Therefore, there are usually no
numerical difficulties in using explicitly the max constraint which
can be used to eliminate the capacity variables in the restricted
problem so as to reduce further the size of this problem.

Numerical Example

The flowsheet shown in Fig. 1 has been optimized by considering
N=l,2,...5, time periods of operation. In each period eight param-
eters such as temperatures of feedstream and of cooling water,
product purity specifications, and efficiences are assigned different
values. The details of the model and parameter values for this
problem are given in Avidan (1982). This problem involves 8 design
variables (7 of capacity type), 3N control variables, 31N equalities
and state variables, and 6N inequalities. In all cases infeasible
starting values were used. It is interesting to note that in the five
cases studied there were always three inequalities that became active
in the projection step so that all the control variables could be
eliminated for the restriction step. In addition, by using max
constraints for the seven capacity variables only one design variable



Fig. 1. Flowsheet of
example problem
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(area of exchanger) had to be optimized in the restriction step.

The computer time requirements for the five problems solved are
shown in Fig. 2. As can be seen the encouraging feature is that the
total CPU-time increases only linearly in the number of periods,
which is in agreement with the prediction of the computational model
developed by Grossmann and Halemane (1982). Note that actually the
projection step requires the largest time whereas the overhead for
the equation ordering algorithm requires the smallest time. Also, as
shown in Table 1, most of the computer time was spent in solving the
systems of equations involved in the various steps of the decomposi-
tion strategy. These equations involve 4 or 5 tear variables.

Table 1. Computational Results

No. Periods

Total time* (sec)
Time for eqtn. solving* (sec)
No. eqtn. solutions

46.2 102.1 148.4
42.1 94.9 138.6
152 334 488

193.9 233.9
181.1 218.3
634 771

Conclusions

The projection-restriction strategy for optimal multiperiod de-
sign has been successfully implemented in the computer package FLEX-
PACK. As shown in the numerical example, the important feature is
that the computer-time requirements only increase linearly in the
number of periods. Thus, it is clear that this computer package
provides the possibility of designing optimal flexible chemical pro-
Cesses with modest computational effort.
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