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One of the main goals in chenmical process design is to produce
plant designs that are optinal wth respect to a given economc
performance i ndex. Efforts to reach that goal have led to the
devel opnent of conputer-aided design techniques which allow the opti-
m zation of process flowsheets (Berna et al.; 1980; Biegler and
Hughes, 1982). Wile these techniques are often useful in practice,
they have the inportant drawback that they nmay not produce flexible
designs since they optimze the flowsheet for only a single noninal
operating condition. That is, these techniques do not take explicitly
into account the fact that once a design is inplemented the plant
will normally experience substantial variations in the operation. For
exanple, 1in practice it is very likely that the plant will have to
operate at various levels of capacity or to process different types
of feedstocks. Therefore, by optimzing a flowsheet at a single

nom nal condition there is no guarantee that the plant will perform
economi cally for other conditions, or even worse, that the plant will
still be feasible to operate or able to neet desired specifications.

It is the purpose of this paper to describe a conputer package
for handling an inportant class of problems for the optiml design of
flexible chemical plants. The problem that is addressed here is the
one where a chemical plant nust be designed optimally so as to
operate in a specificed sequence of N tine periods, where in each
time period design paraneters and specifications of the flowsheet may
change. A general discussion on this design problem and its exten-
sions to the problem of design under uncertainty can be found in
Grossnann et al. (1982). '
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Mul ti peri od Design Problem

It will be assumed that a sequence of N tine periods of fixed
| ength ti i=l,N is specified for the operation of a chenmical plant*
At each ‘time period the plant operates at a different steady-state
and dynamc effects of switching from one state to the other are ne-
glected. The optinal design problem is then given by the follow ng
mul ti period nonlinear program

N
ndn C - C(d) + y ci(d,zi,xi‘,ti)
d, 2zt ... 2"
1 1 i 1
8. 1. h*<d,z! =",t7) - 0 (1)
i 0 i 4 i-I,N
g (d, x»t?)* 0
r(d)*o
wher e
C is th%) cost function that involves the investnent
cost C and operating cost C~ for each period i
d is the wvector of design variables representing
equi pnent si zes :
zi is the vector of control variables in period i
x is the vector of state variables in period
R ! are equality and inequality constraints that apply
in each period i
r is the wvector of inequalities that involve the

design vari abl es

It should be noted that the vector of design variables d
remai ns fixed throughout the periods of operation, whereas the con-
trol variables z represent the degrees of freedom in the plant
operation. Since both types of variables, d and z', i=I,N, are
decision variables to be optimzed in problem (1), the difficulty
that arises is that the conputational A burden in this problem can

becone excessive as the nunber of tinme periods increases.

Recently, G ossmann and Hal emane (1982) have proposed a very
efficient deconposition schene that exploits tw basic properties of
problem (1). The first one is the bl ock-diagonal structure in the con-
straints, which for fixed design variables d, allows the control vari-

ables z to be optinized independently for each tine period. The
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second property is the fact that one can expect a |arge nunber of
inequalities to be active or tight at the optimal solution. The
proposed deconposition technique relies on a projection-restriction
strategy in which the basic steps are as foll ows:

Step 1. Find a design d that is feasible to operate for the N tine
peri ods. .
Step 2. (Projecti on)l._ For the fixed design d, optinmze the control
vari ables z in each time period i, so as to inprove the
: . . . S 1
cost function and to identify inequalities & -0 that be-
come active. "

Step 3. (Restriction)
o . i . .
a) Elimnate coptrol variables z, from the active in-
equalities ga=0 which are treated as equalities

b) Solve problem (1) in the restricted form

N
v N t i 1.1
m n Ce C(d) + C(d,z,x ,t")
1 N 2% e
d,ZR,...ZR {=1
i 11 1, _
s.t. hR(d,:i,xx,ti) 0 . (2)
ge(d,23,xz,tY) =0
r(d) ~ 0
i i i i s B | i i 1
where z~ = <4-4><, X = (x . 2), h‘R =(h",8), 8 = (SA‘BR)'
Step 4. Return to Step 2 and iterate until there is no change in

the design variables d.

As can be seen, the basic idea in this strategy is to conjec-
ture in the projection step which inequalities are active at the
solution, so that in the restriction step the original problemcan be
solved with a smaller nunber of control variables which are elim-
nated with the active inequalities. A detailed description of the
projection-restriction strategy is given in G ossmann and Hal emane
(1982).

{FLEXPACK

The projection-restriction strategy has been inplenmented in the
computer package FLEXPACK (Avidan, 1982) which uses an equation
ori ented approach. The user specifies the multiperiod design problem
as a nonlinear program with its corresponding objective function and
constraint set. The constraints need not be witten for each tine

period since in FLEXPACK they can be expressed in terns of paranmeters




which take different values in each time period. Also, no gradient
information has to be supplied since FLEXPACK wuses numerical
perturbations.

The system of equations in problem (1) is solved by using a
tearing procedure which is also used to select the control variables
z . This tearing procedure is a modification to Christensen's (1970)
method in which a weighting scheme is used to specify preferred
decision variables. In addition, this procedure incorporates the
analysis of the reduced Jacobian matrix to ensure nonsingularity in
the system of equations (see Halemane and Grossmann, 1981) which
often becomes a critical issue when adding active inequalities to the
restricted problem. For the numerical solution the single variable
equations are solved with the -inverse interpolation method by Shacham
and Kehat (1972), whereas the torn variables are converged with |
Broyden's (1965) Quasi-Newton method. The variable-metriec projection
method of Sargent and Murtagh (1973) is used for solving the differ-
ent optimization subproblems in the projection-restriction strategy.
Specifically, this method is used for finding the initial feasible
design in Step 1, for solving the optimization subproblems in the
projection Step 2, and for solving the restricted problem in Step 3.

An important feature in FLEXPACK is that the user has the
option to partition the design variables d into two sets: (a) the
fixed variables d_, (b) the capacity variables d . An example of the
former are areas of heat exchangers, and an examﬁie of the latter are
reactor volumes. Since the capacity variables are involved in inequal-
ities of the form d_ > dl, i=1,N, they are equivalent to d =max
{dz, i=1,N}. Althoug§ it §s well known that this max constriint is
nondifferentiable, numerical experience with multiperiod problems
that involve fixed time lengths t', has shown that the time period
which defines the bottleneck for each capacity variable remains often
unchanged throughout the iterations. Therefore, there are usually no
numerical difficulties in using explicitly the max constraint which
can be used to eliminate the capacity variables in the restricted
problem so as to reduce further the size of this problem.

Numerical Example

The flowsheet shown in Fig. 1 has been optimized by considering
N=1,2,...5, time periods of operation. In each period eight param-
eters such as temperatures of feedstream and of cooling water,
product purity specifications, and efficiences are assigned different
values. The details of the model and parameter values for this
problem are given in Avidan (1982). This problem involves 8 design
variables (7 of capacity type), 3N control variables, 31N equalities
and state variables, and 6N inequalities. In all cases infeasible
starting values were used. It is interesting to note that in the five
cases studied there were always three inequalities that became active
in the projection step so that all the control variables could be
eliminated for the restriction step. In addition, by using max
constraints for the seven capacity variables only one design variable




Fig. 1. Flowsheet  of
exanpl e problem
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(area of exchanger) had to be optimized in the restriction step.

The conputer tine requirements for the five problems solved are
shown in Fig. 2. As can be seen the encouraging feature is that the
total CPU-time increases only linearly in the nunber of periods, -
which is in agreenment with the prediction of the conputational nodel
devel oped by Grossmann and Hal emane (1982). Note that actually the
projection step requires the largest time whereas the overhead for
the equation ordering algorithm requires the snmallest tinme. Also, as
shown in Table 1, nobst of the conputer tine was spent in solving the
systems of equations involved in the various steps of the deconposi-
tion strategy. These equations involve 4 or 5 tear variables.

Table 1. Conputational Results

No. Peri ods 1 2 3 4 5
Total time* (sec) 46. 2 102. 1 148. 4 193.9 233.9
Time for eqtn. solving* (sec) 42.1 94.9 138.6 181.1 218.3
No. eqtn. solutions 152 334 488 634 771

Concl usi ons

The projection-restriction strategy for optimal multiperiod de-
sign has been successfully inplenented in the conputer package FLEX-
PACK. As shown in the nunerical exanple, the inportant feature is
that the computer-tine requirenents only increase linearly in the
nunmber of periods. Thus, it 1is clear that this conputer package
provides the possibility of designing optimal flexible chemcal pro-
Cesses with nodest computational effort.
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Fig. 2. CPU-time for different nunber of periods




