
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



A MENU-DRIVEN GRAPHICAL USER ENVIRONMENT FOR CAD

by

Thomas B. Slack & Stephen W. Director

DRC-18-«W-82

April, 1982



A MENU-DRIVEN GRAPHICAL USER ENVIRONMENT FOR CAD1

T.B. SLACK AND S. W. DIRECTOR

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PENNSYLVANIA

ABSTRACT

For the most part, ptpers which have been published in
the CAD area introduce new algorithms and or programs
but. in general do not concern themselves with the user-
machine environment in which they are to be used. The
result is that the circuit designer is often expected to employ
a number of different programs, each having a different
input language and assuming a different design methodology.
This paper describes an approach aimed at creating a more
uniform environment for computer-aided design programs.

1. INTRODUCTION
We are interested in developing a uniform means of

communication between a circuit designer (called the user)
and a set of design programs (called application programs).
In general application programs require some form of input
and generate some form of output We define a user
interface as the program which controls the formal aspects
of input and output between an application program and
the user. Thus, the interface acts as a buffer between the
user and the application program. The portion of the
interface which decodes the input from the user and passes
it to the application program is called the parser and the
portion of the interface which actually communicates with
the user is called the terminal driver.

Note that in some instances, there is frequent
communication between the application program and the
interface (such as during interactive post processing) while in
other instances there is infrequent communication between
the application program and the interface (such as during a
simulation).

After considering some general attributes of a user-
machine interface, we describe a general purpose interface
called DEULAH : which we nave developed.

Z USER-MACHINE INTERACTION: GENERAL
CONSIDERATIONS

We begin our discussion by considering two different
schemes for user-machine interaction: tutorial questioning,
sometimes called dialog*, and command language.

In the tutorial questioning method, the interface prompts

'Tkt* worl h»* km
II Army ftc*eare» ON

te part *> tkc Hc*l«fr»ckM« Oemm*m>

•. tt*~c tki- aamc beans, ii p.«« aiccl> with i»c acroay* ftAMSON wku
•» • aiixcJ cwcait-tofic level ummltxm alw< «»^tap^ M CML .

~%\ cfcoic tfc

the user for an instruction, then checks for any errors in
the user's response. If an acceptable response has been
made, control is passed to the application program for the
appropriate action. While this approach allows for a wide
degree or flexibility for the application programmer, there is
an inht-ent lack of standardization amongst different
application programs. A major disadvantage of tutorial
questioning is that the application program controls the
interaction sequence. Furthermore, the parsing operation is
distributed between the interface and the application
program. Most users, especially expert users would prefer to
have more control over the action sequence1.

In the command language method, information is processed
by the interface in whole commands. After reading an
acceptable command, the interface relinquishes control to the
application program. Most operating systems use a pure
command language control structure to interface with the
user. For this scheme to be effective, a separate
documentation facility must be provided to inform the user
of the correct command syntax. An advantage of the
command language approach is that the parsing operation can
be completely separate from the application program.
However, control during parsing is no longer in the hands of
the application program.

From the application programmer's point of view, there
are advantages to being able to employ both of these
methods of interfacing with the user.

Let us now consider the types of responses which might
be expected from a user. In general, user responses can be
separated into three types: responses which are selected from
a small, well-defined set: responses which set values for. or
limits on. a variable; and responses which are arbitrary
strings.

When the expected response comes from a small well-
defined list, the user can be shown the entire set and asked
to choose one of them. The majority of user interaction
falls into this category. We will refer to this type of
response as a menu response.

When the expected response is a value, or set of values,
the user needs to know the range from which to choose a
response. A reasonable default value may also be provided.
We will refer to this type of response as. a range response.

The third type of response is called a string response.
As mill be seen, this type of response can usually be handled
as either a menu response or range response.

3. THE DELILAH INTERFACE SYSTEM
We now turn to the specifics of the DELILAH user-

machine interface. Recall that one of our primary goals is
to create an interface which can be employed by a variety

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY

PITTSBURGH; PENNSYLVANIA 1521$



of application programs, but which interacts in a consistent
manner with the user. In order to nave a uniform means
of interaction we have chosen a menu based scheme. More
specifically, we have assumed that the principle type response
expected from the user is a menu response. (We will discuss
range responses in Section 4.) In order to allow the same
basic menu scheme to be usabk by a number of different
applications programs, we drive the parser by a menu file.
This menu file is specific to a given application program and
contains a description of the type of user input, and
interactive control expected by a given application program.
Note that each application program is accompanied by its
own menu file.

• We hasten to point out here that while we have assumed a
basic menu format, the DELILAH system allows the user to
enter command lines (a cominand line usually consists of a
sequence of items found in one or more menus) via the
keyboard. Thus, an expert user can skip menu interaction
entirely, if he wishes.

3.1. THE MENU FILE
The menu file contains a description of the type of

input and interactive control expected by the application
program. This information is characterized in terms of
menu fists, prompts, help messages, and menu nodes
where:

• a menu fist is a fast of acceptable user responses
and is displayed along the right band side of the
screen;

• A prompt is a short message, or question, sent to
the user when input is desired and displayed at
the beginning of the command line:

• a help messsge n the information presented to
the user when an incoherent response is returned,
or upon his request.

• a menu node is the association of a menu Hsu a
prompt and a help message; a menu node must be
defined for every point in the application program
where user input is expected.

A menu definition language has been developed to
formalize this information. We briefly describe this language
below. An example of a menu file using this language is
shown in Fig, 3-1.

Definition of a menu list consists of:

will be used by the

• The keyword MENU

• A unique identifier which
menu mode declaration

• A list of menu items

• The keyword END

* Each menu item is an acceptable response for the user to
type on the command line or to select from the menu which
h displayed on the right-hand side of the screen. If the
symbol "•" is included at the end of a list of menu hems,
then an arbitrary string typed by the user, which is not
cootained in the list, will be passed directly to the

application program. (Thus we are able to handle a string
response). This string is then assumed to be parsed by the
application program. Examples of a menu list declaration
can be seen in Fig. 3-1. Observe in this example the menu
list identified as "linem." has the menu items "Solid."
"Dotdash." "Broken." "Dashes." and "Dots."

Sometimes it is necessary to allow the selection of one
menu item to cause a new menu list to be displayed. This
can be done by associating a menu node identifier with a
menu item. We discuss this case after the menu node
declaration is defined below.

Definition of a prompt consists of:

• The keyword PROMPT

• Individual prompt declarations, separated by
semicolons. Each declaration consists of a unique
identifier which will be used by the menu node
declaration and the actual string to be presented to
the user on the command line, surrounded by
single quotes

• The keyword END

Observe the prompt declarations in Fig. 3-1 Actual]} three
prompt declarations are made. In the first declaration, the
identifier is "changep" and the string sent to the terminal is
"Action>".

Definition of a help message consists of:

• The keyword HELP

• An identifier which will be used by the menu
node declaration

• The help message, surrounded by single quotes

• The keyword END

Examples of belp messages can abo be found in Fig. 3-1.
The menu node declaration consists of:

• The keyword NODE

• An identifier which can be used in a menu list as
discussed below

• A menu list identifier, a prompt identifier and a
help message identifier, all separated by semicolons

• The keyword END.

Observe the menu node identified as linen in Fig. 3-1.
This decknikm identifies linem. haep. and linen as the
menulist, prompt and help message, respectively. Note that
menu lists, prompts, and help messages may be used by more
than one menu node, if appropriate.

As mentioned above, it is sometimes necessary to have a
menu hierarchy. In other words, one or more of the
choices in a menu list would need to call forth additional
menus. In order to handle such a hierarchy, we allow
individual items in a menu list to be associated with a menu
node. The appropriate syntax would be:

<menuitem. menunode-ktentifier. n>

where menuitem is a string which is presented as an item
in the menu list to the user, menunode identifier indicates



tbc menu node selected if the user makes this choice, and n
is used to control the sequence of events after a menu item
from the new menu is selected. For purposes of explanation
suppose menu node A has an item in its menu hst which
calls forth menu node B. If n is omitted or set to 1, after
an item from the new list associated with menu node B has
been selected, and appropriate action taken by the
application program, menu node A regains control, and
menulist A is displayed. If n is set to •, once selected,
menu node B maintains control until an explicit "reject"
string in the menu list associated with menu node B is
selected by the user. If n is set to any integer other than
1. menu node B maintains control for the specified number
of calls from the application program.

3.X USE OF DELILAH
In order to employ the user interface supported by

DELILAH' . the application programmer needs to employ
two procedures. Re»d Menu and ReedCommend. The
procedure Reid Menu designates the menu file to be used by
the particular application program. Normally each
application program would need only one menu file. The
procedure ReedCommend returns the string from the menu
list being displayed which is pointed to by the user. If the
application programmer requires a range type of responses he
would employ a form node. This type of node is discussed
further in Section 4.

As can be seen from the above discussion, the menu file
is closely coupled to the application program. As an
example, consider the program segment in Fig. 3-2 and the
menu file in Fig. 3-1. In particular, note the relationship
betwen the case statements and the menu lists. Furthermore,
observe the need for the • in item "modify" for the menu
bst identified as topm. Thus, once the modify option is
chosen, the modify menu, identified by modifym, is
displayed and remains displayed until an explicit reject is
chosen.

4. ENHANCMENTS
To this juncture, all that has been discussed above has

been implemented. One item which is missing is the form
construct If the application program needs a range
response, the menu construct as described above is
inappropriate. A better construct is that of a form which
would consist of i bst of prompts, and possibly help

Specifically we define the form by:

• The keyword FORM

• A unique identifier to be used in a menu Bst to
invoke the form

• A form list

• The keyword END.

' Each Hem m the form list consists of a prompt
mrrounded by quotes, the tetter I F. or S (indicating
whether the expected response is an integer constant, floating

point number, or a string) an optional default value
contained in square brackets, an optional range oif allowable
values separated by a colon and contained in angle brackets,
an terminated by a semicolon. When a form is invoked, all
the prompts and defaults, if any, m the prompt list are
displayed on the graphics screen. The cursor is positioned at
the end of the first item on the KSL The user can then
input the requested item followed by a carriage return. The
cursor then will move to the end of the second item in the
list This process is repeated until all items are entered. If
the displayed default response is desired by the user, he
merely has to enter a carriage return.

One case where a form is more suitable than a menu is to
enter execution controls for a circuit simulator. For this
case, the form might be defined as follows:

FORM
•No. of Newton intentions' I[1001<l:1000>:
'Absolute Integration truncation error* Ft.001].
Relative Integration truncation error' Fl.011:
'Minimum Step Size in nsec* F[.O1)

END

At present, the form construct as indicated above is being
implemented.

Acknowledgement

The authors would like to thank Michael Bushnell for his
review rod constructive criticism of this paper.

REFERENCES

Sakailah. Karem A.. Mixed Simulation of Electronic
Integrmed Circuits, PhD dissertation. Department of
Electrical Engineering. Carnegie-Mellon University.
November 1981.

Mehlmann, Marilyn, When People Use Computers,
Prentice-Hall New Jersey. 1981.

Shneiderman. Ben. -Human Factors Experiments in
Designing Interactive Sysems." Computer, VoL 12, No.
12PAGES"9-18". December 1979. .

DELILAH



PROMPT

END

MENU

END;

cbangep 'ActionV;
topp •Command)';
linetyped l i n e TypeV;
vtsiblep *visible'>;

Graph;
<modifyu, modifyn. •>

MENU modif ym
<line. tinetypen>;
Visible, Vi«bkn>

END;

MENU Unetypem Solid; dotdash; broken; dasher dots; END

MENU visible Yes; No END

HELP topfa
•You are at top level:;

Graph plots graph;
Modify allows modification of Curves,;

-Modifications are not immediately apparent but will
be seen the next time Graph is called..

-Those curves which are not visible are listed
• the legend.,

END

HELP changeh
*I need to know which attribute you wish to change.';

linetype.;
Visible-change (on or off).';

END.

HELP Knetypeh

PROGRAM

VAR
continue: BOOLEAN;

BEGIN
ReadMenu (choke);
CASE choke OF

graph: (can routines to make plot);
modify: (modify existing plot)

BEGIN
ReadMenu (choke);
continue * TRUE;
WHILE continue DO

CASE choke OF
line:

BEGIN
ReadMenu (choke);
CASE choke OF
solid: linetype :« 1;
dotdash: linetype :« 2;
broken: linetype :« 3;
dashes: linetype :* 4;
dots: linetype :* 5;

END. (CASE)
END. (tine)

visible:
BEGIN
ReadMenu (choke);
CASE choice OF

yer show ^ l;
no: show :« fr.

END; (CASE)
END; (visible)

reject continue := FALSE;
END; (CASE)

END. {MODIFY)
END; (CASE)

END.

Type one of the line types or list them with a list
command.*

END;

NODE topn
lopm; topp; topfa

END
NODE modif yn

chaugem; changep; chanfch
END
NODE baetypen

fanetypem: boetypeh; foetypep
END
NODE vitibkn

visibkm; visibleh; vUblep
END.

FIGURE 3-2

FIGURE 3-1


