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1. Introduction
The civil engineering profession covers of a wide spectrum of tasks in the planning, design, construc-
tion and management of constructed facilities, including structures, tunnels, environmental protec-
tion systems and transportation systems. Computers are an essential tool for the profession, but they
are only applied to limited aspects of the total process. In practice, tasks such as finite element
analysis of structures, surveying computations, construction accounting, and construction project
activity scheduling, are all performed using computer based tools on a regular basis. In fact, some of
these tasks are computationally intractable without the aid of computer based tools. However, there
exist numerous interesting, abstract and "difficult" problem solving tasks which have not been com-
puterized, or where the available computer tools do little to attack the intelligent aspects of the
problem solving process. To this end, researchers in the Robotics Institute's Civil Engineering and
Construction Robotics Laboratory are exploring knowledge-based expert systems (KBES) as an ap-
proach to extending the range of computer applications in the civil engineering and construction
domains.

Knowledge-based expert systems are computer programs, based on artificial intelligence (Ai) tech-
niques, designed to reach the level of performance of a human expert in some specialized problem
solving domain. Expert systems have a great potential for practical use in ill-structured problem
solving domains where explicit algorithms do not exist or where traditional computer programs
provide only restricted problem solving capabilities.

As the civil engineering and construction processes and the construction site increase in complexity,
expert systems will increasingly augment or replace conventional algorithmic programs in which all
decisions have to be anticipated and pre-programmed. Expert systems are applicable to a wide range
of tasks, and many problems in the civil engineering domain, such as structural design, structural
modeling, structural diagnosis, site investigation, estimating, scheduling and contingency manage-
ment, are potential expert system applications. The development of construction robots provides
many new applications for expert systems including tasks such as sensor interpretation, equipment
diagnosis, operational planning and operational monitoring. Finally, design for robotic construction
will be a new domain, and one particularly suited for expert system application.

A variety of potential expert system applications in civil engineering, construction and construction
robotics are described below. In addition, research work in progress, developing prototype expert
systems for several civil engineering domains, is presented.
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2. Expert Systems Versus Algorithmic Applications
In order to put expert systems into proper perspective, the nature and limitations of conventional
computer programs must first be examined. Any computer program can be viewed as consisting of a
recipe of rules that completely specifies the problem solving sequence and actions:

IF condi t ion , THEN ac t ion ,
IF condi t ion 2 THEN ac t ion 2

IF condit ion. THEN act1on ;

IF condit ion THEN act ion
n n

Each rule contains a premise or condition which is evaluated. If the condition is true, the correspond-
ing action is performed and execution continues with the next rule. If the condition is false, the action
is skipped.

The basic model of any program is a triplet of rules:

IF starting a new problem THEN input problem description
IF Input 1s available THEN compute results
IF results are computed THEN output results

A process such as compute resu l ts is further subdivided into thousands of more detailed rules.
As illustrated, the rules are intertwined; the action result of one rule becomes the premise of another
rule. Traditional computer programs are developed by explicitly stating all applicable rules and their
precise sequence of execution. Moreover, often only the action parts of the rules are explicitly stated.
Such programs are called algorithmic.

Only a person knowledgeable in the domain of the program, a domain expert, can define the ap-
plicable conditions and corresponding actions. This is particularly true in any practical engineering
program, where a very large proportion of the rules are not necessarily based on the causality of
physical laws, but represent the heuristics (assumptions, limitations, rules of thumb or style) of the
expert or his organization. Developing a complete set of rules for any engineering application is a
major undertaking. The rules must satisfy the following criteria:

• Completeness. The set of rules must provide an action for every possible combination of con-
ditions. Often, many of the conditions are not explicitly stated. They may be "second nature"
to the programmer or user, or the combination of conditions represents a case which is un-
usual, and thus not expected to occur. However, failure to consider all possible cases results in
a program which will not perform in an acceptable manner over the complete range of potential
applications.

• Uniqueness. The set of rules must provide one and only one unique outcome for every possible
combination of conditions. As outlined above, this is difficult to achieve, and if not achieved it
results in a program which is flawed.

• Correctness. The set of rules must provide a correct outcome for all possible conditions. In
addition, the sequence of rules must be correct. Misinterpretation problems occur when the
program (programmer) invokes the wrong action for a given condition. Either the action is



wrong, or the proper action is not associated with the proper premise. Alternatively, an incor-
rect sequence applies rules at the wrong time.

The program developer has the responsibility to insure that the three criteria listed above are met.
Due to the complexity and size of any real program, this goal is almost impossible to attain, and this
makes conventional program development expensive. Additional costs are incurred when programs
are updated; the program developer must not only modify or add rules, he also must locate the
affected rules in the sequence and modify the sequence itself.

Even if the completeness, correctness and uniqueness criteria are met, there are additional problems
with traditional programs:

• The program assumes all data has been input and is without error, while in many cases only
incomplete and uncertain data are available.

• The program functions as a black box with no mechanisms to explain how it produces the
computed results. The user must refer to external documentation, or the code listing itself, to
determine the problem solving approach.

• The program contains only limited mechanisms for controlling the problem solving approach. It
solves each problem in only one predefined and preprogrammed way — an all or nothing
situation.

Applications based on mathematical models and those requiring intense numerical computations may
be conveniently built as algorithmic programs. However many problem solving strategies, such as
interpretation or design, are ill-structured or ill-defined [Simon 81], and are not well suited to the rigid
algorithmic format. To date, such applications have not been successfully computerized. Numerous
civil engineering tasks fall into this category. The use of expert systems for such applications is
discussed in the next two sections.

3. Knowledge-Based Expert Systems

3 . 1 . Overview

Knowledge-based expert systems are designed to overcome the shortcomings of algorithmic com-
puter applications. They may be based on the same type of premise-action rules as algorithmic
programs, but the sequence of selecting and applying the rules is not specified a priori. The rules are
represented symbolically and are treated as knowledge which is used by the knowledge processing
component of the expert system. This knowledge processor determines which rules are applicable in
any situation and invokes the corresponding actions. By design, the set of rules need not be com-
plete or unique; the knowledge processor knows how to deal with such circumstances. Expert
systems have additional capabilities for selecting rules based on incomplete or uncertain data, and
explaining why rules are selected and how they are used.

3.2. Background

Knowledge-based expert systems have emerged from decades of research in artificial intelligence.
They are practical problem solving tools that can reach a level of performance comparable to that of a
human expert in some specialized problem solving domain. Rather than being a program with
general problem solving knowledge that can be applied to any task, an expert system contains a large
body of domain-specific knowledge gathered from human experts. This knowledge is used to per-
form problem solving tasks in a manner similar to experts. The expert system mimics the behavior of



the expert whose knowledge is encoded in the program, and does not pretend to learn or to be
innovative. Furthermore, an expert system is highly idiosyncratic, in that it reproduces the knowledge
of one domain expert (or, at most, the consensus of a small group); it does not pretend to generate or
condense the combined knowledge of several experts.

Expert systems have been developed in a number of disciplines, including: medical consultation
(MYCIN) [Shortliffe 76], hypothesizing molecular structure from mass spectrograms (DENDRAL)
[Buchanan 69], computer configuration (R1, XCON) [McDermott 80], mathematical formula
manipulation (MACSYMA) [Moses 71], oil well logging (Dipmeter Advisor) [Davis 81, Smith 83], and
mineral exploration (Prospector) [Duda 79]. Numerous applications are moving from the research
laboratory into production (Duda 83]. Many civil engineering problem domains are candidates for
expert system formulation [Sriram 82], and several prototypes are under development, as described in
Section 6.

3.3. Architecture of an Expert System

The principal distinction between expert systems and algorithmic programs lies in the use of
knowledge. A traditional algorithmic application is organized into data and program. An expert
system separates the program into an explicit knowledge base describing the problem solving
strategy and a control program or inference machine which manipulates the knowledge base. The
data portion or context describes the problem being solved and the current state of the solution
process. Such an approach is denoted knowledge-based [Nau 83].

A variety of expert system architectures exist. Various domain independent systems have different
inference procedures and different knowledge representation schemes, including: production sys-
tems [Forgy 81], semantic inference networks [Reboh 81], and frame representations [Wright 83].
More complex blackboard systems, which are based on multiple experts operating at different levels
of abstraction, have also been built [Balzer 80, Erman 80, Nii 82]. In the production system formalism
for domain knowledge representation, the knowledge is represented directly in terms of IF-THEN
rules illustrated above. Other types of expert systems use different knowledge representation for-
malisms. Some of the problem solving strategies incorporated in expert systems are discussed in
Section 3.4.

A schematic of an expert system using the production system formalism (IF-THEN rules) is shown in
Figure 1. It is to be emphasized than only the knowledge base is domain specific. All the other
components are parts of a general purpose expert system building framework applicable to other
application domains. The components of the expert system are:

• Knowledge Base. The knowledge base is the repository for all the knowledge and rules used by
the system in problem solving. This information can be divided into two classes: the factual or
causal knowledge of the application domain, and the empirical associations or rules. The
knowledge base may also contain long term historical information and facts. All the information
in the knowledge base is organized so that it may be effectively utilized by the other com-
ponents of the system. .

• Context. The context contains all of the information which describes the problem currently
being solved, including both problem data and solution status. The problem data may be
divided into facts provided by the user and those derived or inferred by the program. The use of
an expert system program begins with the user entering some known facts about the problem
into the context
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Figu re 1: Schematic View of an Expert System

> Inference Machine. The inference machine or inference engine is the knowledge processor. It
operates on the context, utilizing the rules in the knowledge base to deduce new facts which
then can be used for subsequent inferences. The basic operation of a forward chaining in-
ference machine, discussed in Section 3.4, is an infinite loop performing three steps:

1. Examine the premises of rules in the knowledge base and determine which of these
currently evaluate to true, based on the current problem data maintained in the context.
This step, performed by the change monitor or pattern matcher, yields a set of candidate
rules.

2. Select one of the applicable rules. The rule is chosen by the scheduler or processor.

3. Invoke or fire the corresponding action, which will change some items in the context.
The context is updated by the knowledge modifier.

The objective of the inference machine is to arrive at a global conclusion (goal), and the
process continues until the problem is solved and the context is transformed into the desired
goal state, or when there are no more rules remaining to be fired.



Many expert system inference machines can deal with imprecise or incomplete knowledge.
Associated with all data are certainty measures indicating a level of confidence in the data.
Rules conditionally fire based on the certainty of the premise. The inference mechanism can
then propagate certainty about the inferences along with results of the inferences.

• Explanation Module. The explanation module provides the expert system with the capability to
explain its reasoning and problem solving strategy to the user. At any point the user may
interrupt the system and inquire what it is doing and why it is pursuing the current line of
reasoning. In addition, the program can explain, in an a posteriori fashion, how any fact was
deduced and how knowledge was applied.

• Knowledge Acquisition Module. The information in the knowledge base is in a rigid format, and
the translation of knowledge obtained from experts to the required internal format may be
tedious. The knowledge acquisition module aids in this task. Although it is desired that even-
tually the human expert be able to enter directly knowledge into the system, this goal is cur-
rently not achieved.

• User Interface. The user accesses the system through a friendly interface, often using a
problem oriented subset of English or computer graphics. The interface provides capabilities
for the user to monitor the performance of the system, volunteer information, request explana-
tions, and redirect the problem solving approach used by the expert system.

The basic concepts of a knowledge base, knowledge acquisition, explanation, context and inference
mechanisms are common to the different types of expert system architectures. Details of system
organization, knowledge and data representation, and inference method vary among the different
approaches.

3.4. Problem-Solving Strategies

Problem solving involves the search for a solution through a state-space by the application of
operators, where the state-space (the possible states in the problem solution) consists of an initial
state, a goal state and intermediate states. A solution path consists of all states that lead from the
initial state to the goal state. Domain independent problem solving strategies are commonly referred
to as weak methods and may lead to combinatorial explosions; the number of states to be explored
grows combinatorially with the number of variables describing the problem. Expert systems can be
considered strong problem solvers since they employ domain knowledge in the solution strategy to
reduce the search space. A number of problem solving strategies used in current expert systems are
briefly presented below. More detailed descriptions of a number of problem solving strategies can be
found in [Nilsson 80, Rich 83, Stefik 77].

• Forward Chaining. A system exhibits forward chaining (bottom-up, data-driven, antecedent-
driven are all equivalent to forward chaining) if it works from an initial state of known facts to a
goal state. All facts are input to the system and the system deduces the most appropriate
hypothesis or goal state that fits the facts. The main drawback of this strategy is that it is
extremely wasteful to require as input data all the possible facts for all conditions; in many
circumstances all possible facts are not known or relevant. This strategy is useful in situations
where there are a large number of hypotheses and few input data. Sometimes the problem
solving mechanism is guided by the events occurring during the solution process; this type of
forward chaining is called event-driven.

• Backward Chaining. A system exhibits backward chaining (also referred to as consequent-
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driven, top-down, goal-driven and hypothesis-driven) if it tries to prove a goal or hypothesis by
checking known facts in the context. If the known facts in the context do not support the
hypothesis, then the preconditions that are needed for the hypothesis are set up as sub-goals.
Essentially, the process can be viewed as a search in the state-space going from the goal state
to the initial state by the application of inverse operators.

• Means-ends Analysis. In means-ends analysis the difference between the current state and the
goal state is determined and used to find an operator most relevant to reducing this difference.
If the operator is not directly applicable to the current situation, the problem state is changed by
setting up subgoals so that the operator can be applied. After an operator has been applied,
the current state corresponds to the newly modified state. Means-ends analysis utilizes both
the forward and backward chaining techniques. However, this strategy is only applicable to
those tasks where the measures of differences between the various states and the operators to
reduce these differences can be formulated a priori.

• Problem Reduction. Problem reduction involves decomposing problems into smaller sub-
problems. The problem is represented as a tree, in terms of an AND-OR graph. An AND node is
a parent of a number of child nodes, all of which must be solved for the AND node to be true.
For the OR node, it is sufficient for one of the sibling child nodes be solved; an OR node
indicates that a number of alternate solutions exist for the problem. In many cases, backward
chaining is used to solve the AND-OR graph. A detailed description of an algorithm (AO*) for
finding solutions in an AND-OR graph is given in [Rich 83]. This technique is very useful in
tackling large complex problems.

• Backtracking. Backtracking is used when it is determined that an infeasible solution path has
been followed. Backtracking withdraws or revises previous decisions. Backtracking is incor-
porated in many Al languages, such as PROLOG [Clocksin 81]. Backtracking, in its pure form,
can be very inefficient. Stall man and Sussman [Stallman 77] developed the concept of
dependency-directed backtracking (DDB) as an efficient way to backtrack from wrong deci-
sions. In DDB, a record of all deduced facts, their antecedent facts along with their support
justifications and the relevant rules are maintained; these records are known as dependency
records. Support justifications are justifications for any assumptions made during the search.
When the problem solver identifies an infeasible solution path, it retrieves the antecedents of
the contradiction. Those dependency records are used to determine which alternative path to
pursue. This strategy involves a lot of book-keeping. However, this additional book-keeping
helps in a number of ways. For example, explanation of the program behavior can be extracted
from the dependency records. This concept was further extended by Doyle [Doyle 78] for
systems that incorporate nonmonotic reasoning.

• Plan-Generate-Test. The generate-and-test strategy, in its purest form, generates all possible
solutions in the search space and tests each solution until it finds a solution that satisfies the
goal condition. The plan-generate-test sequence restricts the number of possible solutions
generated by an early elimination of inconsistent solutions. Elimination is performed in a plan-
ning stage, where the data is interpreted and constraints are formulated and evaluated; these
constraints eliminate solutions that are inconsistent with the data and the goal state.

• Hierarchical Planning & Least Commitment Principle. Hierarchical planning involves developing
a plan at successive levels of abstraction. For example, in design of complex systems the
design space is divided into a set of levels, where the higher levels are abstractions of details at
lower levels; the problem is hierarchically decomposed into loosely coupled subsystems. A



number of solutions may exist for each subsystem. However, enough information may not be
available to ascertain variables describing a subsystem. Further, the solution to one sub-
problem may depend on the decisions made in the solution of another subsystem. To minimize
this dependency, it is important to defer decisions as late as possible. This principle is called
the least commitment principle because problem description variables are not instantiated
(decisions are deferred) until more information about the problem space is available.

• Constraint Handling. If the subgoals in hierarchical planning do not interact with each other,
they can be solved independently. However, in practice these subgoals do interact. The
interaction between subgoals can be handled by constraint satisfaction methods. Constraint
satisfaction methods involve the determination of problem states that satisfy a given set of
constraints. Constraints may be used to eliminate solution paths, to partially describe solutions,
and to express interactions between subproblems. Stefik [Stefik 80] presents an extension to
the classical constraint satisfaction method [Mackworth 77] by integrating it into hierarchical
planning. This method, denoted constraint posting, involves three stages.

1. Constraint formulation is the operation of adding new constraints representing restric-
tions on decisions and variable values. The constraints contain increasing detail as
problem solving progresses.

2. Constraint propagation is the operation of creating new constraints from formulated con-
straints. This operation handles interactions between subproblems through the refor-
mulation of constraints from different subproblems.

3. Constraint satisfaction is the operation of finding values for problem variables so that the
constraints on these variables are satisfied.

• Agenda Control. When a human problem solver is required to perform a number of tasks at one
time, he gives a priority rating to these tasks. A list of justifications and a priority rating can be
associated with each task. The task with the highest priority rating is performed first; an agenda
of tasks is prepared. This type of control can be used for complex tasks that require focusing
attention on certain subparts of the problem solving process. Agendas can also be used in
systems that require several independent sources of expertise to communicate with each other.

4. Development of Expert System Applications

4 . 1 . Scope of Expert System Applications

Expert system applications are appearing in many disciplines. However, not all tasks are amenable to
expert system formulation. The following is a partial list of criteria for the evaluation of promising
potential applications [Hayes-Roth 83]:

• There are recognized experts in the field whose performance is better than that of novices.

• The factual component of domain knowledge is routinely taught to neophytes who become
experts by developing their own rules and empirical associations.

• Typical tasks are performed by an expert in a few minutes to several hours.

• Tasks are primarily cognitive, requiring reasoning at multiple levels of abstraction.
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• Algorithmic solutions are either impractical or result in overly constrained or specialized
programs.

• There are substantial benefits in applying the expert knowledge to each occurrence of the task.

A resulting system should have the following characteristics:

• Usefulness. The expert system must be capable of performing useful functions. Usefulness
depends on the domain and task for which the expert system is developed.

• Performance. The expert system must have a high level of performance, reliability and accuracy
over a range of application cases. This requires that the expert system have the specialized
knowledge that separates human experts from novices.

• Transparency. An expert system is transparent if it can be understood by people using the
expert system. To have this characteristic, the expert system must be able to explain its actions
and reasoning to the user.

4.2. Range of Expert System Applications

The range of potential expert system applications covers a spectrum from derivation or interpretative
problems to formation or generative problems [Amarel 78]. In derivation problems, the problem
conditions and description are given as part of a solution description (goal). The expert system
completes the solution description by applying the available knowledge and rules such that the initial
data and conditions are well integrated in the solution. As an example, in a derivation problem such
as theorem proving, a solution hypothesis is formulated which the expert system attempts to prove by
applying rules to the known data. Repeated application of rules transforms the problem statement
(the initial state) to the solution state. In formation problems, conditions (constraints) are given in the
form of properties that the solution as a whole must satisfy. Candidate solutions are generated and
tested against the specified constraints. Two subclasses exist: constraint satisfaction in which the
solution need only satisfy the governing constraints, and optimization where an attempt is made to
find the optimal solution. The design of a plan, object, or system fits this paradigm. Most actual
problems are not pure formative or derivation problems, but lie somewhere in-between and require
that techniques from both categories be used in problem solving.

The following list of problem types covers the spectrum of expert system applications.

• Interpretation. An interpretation system takes observed data and explains its meaning by infer-
ring the problem state which corresponds to the observed data. Examples are Dipmeter
Advisor, a system for interpreting geophysical oil well log data [Davis 81, Smith 83], and
Prospector, a system for identifying geological ore-bearing formations [Duda 79].

• Prediction. Starting with a given situation, a prediction system infers likely consequences.

• Diagnosis and Debugging. Diagnosis systems infer malfunctions or system state from observed
irregularities and interpretation of data. MYCIN, an infections disease diagnostician [Shortliffe
76], and several other medical diagnosis programs fall into this category.

• Monitoring. A monitor observes system behavior and compares the observations to the planned
behavior to determine flaws in the plan or potential malfunctions of the system. An example is
Ventilation Manager, a program for monitoring a patient's ventilation therapy [Fagan 79].
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• Design. Design is the process of developing a configuration for an object which satisfies all
applicable constraints. R1 (or XCON) is an example of a design system which is used to
configure VAX4 computers [McDermott 80].

• Planning. Planning is a design process that yields a set a actions intended to produce a desired
outcome. An example is MOLGEN, an expert system for planning experiments in molecular
genetics [Stefik 8 i].

• Repair. Repair systems plan remedies for malfunctions found through diagnosis and debug-
ging.

• Control. A control system encompasses many of the characteristics of the other types of ap-
plications described above. It must interpret data, predict outcomes, formulate plans, execute
the plans, and monitor their execution.

Interpretation, prediction, monitoring and diagnosis lie at the derivation end of the spectrum while
design, planning, and control lie at the formation end.

4.3. Languages and Tools for Building Expert Systems

A number of languages and tools are currently available for building expert systems. These tools can
be grouped into three categories [Hayes-Roth 83].

• General Purpose Programming Languages. Expert system may be implemented directly in a
high-level, general purpose programming language. These high-level languages contain some
special features, such as facilities for handling large chunks of knowledge and operators for
developing planning and reasoning strategies. In addition, these languages contain powerful
abstraction mechanisms with which other higher level constructs can be built, making program-
ming flexible and easy. Current expert system have been built using a number of languages, of
which LISP [Winston 81] and PROLOG [Clocksin 81] are very popular among researchers.

• General Purpose Representation Languages. General purpose representation languages are
programming languages developed specifically for knowledge engineering. These languages
are not restricted to implementing any particular control strategy, but facilitate the implemen-
tation of a wide range of problems spanning the derivation-formation spectrum. Some general
purpose languages are: SRL [Wright 83], RLL [Greiner 80], KEE [Intelligences 84], OPS5 [Forgy
81], ROSIE [Fain 81], LOOPS [Bobrow 83] and AGE [Nii 79].

• Domain Independent Expert System Frameworks. A domain independent expert system
framework provides the expert system builder with an inference mechanism from which an
application can be built by adding domain specific knowledge. Such systems also provide
knowledge-acquisition and explanation modules to simplify the construction of the expert sys-
tems. Usually, these frameworks have evolved out of domain specific KBES. Hence, their
control strategies are restricted to those provided in the original system. Systems in this cate-
gory include: EMYCIN [vanMelle 79], KAS [Reboh 81], HEARSAY-III [Balzer 80], EXPERT [Weiss
79], and KMS [Reggia82].

A number of widely used languages and tools are listed in Table 1. A detailed description of these
tools is beyond the scope of this paper and the reader is referred to Part V of [Hayes-Roth 83].

4VAX is a registered trademark of Digital Electronics Corp.
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Table 1: Languages and Tools for Building Expert Systems

4.4. Building Expert System Applications
The process of building a complete expert system consists of two distinct steps. The first step is the
selection of the appropriate language or framework (inference engine, knowledge base and context
structure) from among those listed in the previous section. The second step is denoted knowledge
engineering and consists of gathering expert knowledge and augmenting a domain independent
expert system shell with domain dependent knowledge to provide a fully functioning system.
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Knowledge engineering is an incremental cooperative process commonly performed by two people.
The first is the domain expert who possesses the problem solving knowledge for the problem area
being addressed. The second is the knowledge engineer who gathers expertise from the domain
expert and translates this knowledge into the format required by the expert system. A knowledge
engineer who is also literate in the application domain is desired, as he can understand the issues
involved and the nomenclature used by the domain expert [Dym 84, Fenves 84a].

The knowledge engineering process of building an expert system application is outlined below
[Reboh 81, Hayes-Roth 83]. This process is similar in nature to building an algorithmic program or
producing the design of an object.

• Problem Identification. The first step in building an expert system is to identify the problem to be
solved and the characteristics of the solution. Identification of* resources, domain experts, and
computer facilities are made and overall goals for the project are set.

• System Design. The overall structure of the system is selected. Based on processes used by
the expert, available data, strategies, information flow, etc., a preliminary model of problem
solving to be used by the system is developed. From this, a problem solving strategy and a
candidate domain independent expert system development tool is selected and key concepts
are formalized. If the selected system appears to have the correct formalisms for problem
solving and knowledge representation, a more detailed analysis is undertaken to produce a
detailed design of the system.

• Knowledge Acquisition. Knowledge acquisition is the process of gathering the expert
knowledge from the domain expert. This process may be difficult. In some instances the
cognitive portions of the problem solving process used by the expert have never been verbal-
ized and are difficult to extract (the expert is not conscious of how he solves problems). In
other cases the expert may feel threatened by a computerized replacement and will be reluctant
to cooperate.

• Implementation. The knowledge engineer's tasks is then implementation; the expert's
knowledge is encoded in the format required by the expert system framework. This yields a
prototype operational program.

• Testing. Once a prototype or partial system is developed, it is tested. The domain expert and
the program are given the same problem and their problem solving behavior is compared.
Flaws in the system are detected and corrected by adding or modifying the knowledge used by
the program.

The knowledge engineering process is not sequential, and a number of iterations in the last three
steps may be necessary to correct and tune the system's behavior. Adding depth of knowledge,
breadth of capabilities, and improved interfaces and explanations to the prototype yields the final
version of the system.

5. Potential Expert System Applications in Civil Engineering,
Construction and Construction Robotics

Today, there are no production expert systems in the civil engineering or construction domains. In
addition to a general survey of the field [Sriram 82], potential applications in construction
[McGartland 83, Rehak 84], construction robotics [Fenves 84b], geotechnical engineering [Stanford
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83], automated tunnel boring [Sriram 83a] and water resource management [Rehak 83] have been
examined by researchers in the Civil Engineering and Construction Robotics Laboratory. Prototypes
and studies indicate that the following areas, covering the spectrum of applications discussed in
Section 4.2, are excellent candidates for expert system development in the civil engineering, con-
struction and construction robotics domains. However, the list is by no means exhaustive. Develop-
ment of prototypes in these areas is described in more detail in Section 6.

5 .1 . Diagnosis

• Equipment Diagnosis and Repair. Construction equipment is becoming more complex and
harder to maintain. Robotic and automated construction equipment will present even more
complex diagnosis and repair problems. Expert system diagnosticians can keep track of the
equipment's internal conditions by diagnosing its operating state, make "connections" be-
tween spatially and temporarily dispersed signals and events, e.g., distinguish between tran-
sient and hard failures, and revise their operational expectations based on previous history.
Such systems can act as expert mechanics or mechanic's assistants in suggesting possible
fault causes or repair and preventive maintenance procedures based on operational behavior
and failure symptoms. A prototype equipment diagnostician is MOVER [Fenves 83, Fenves
84c].

• Structure Diagnosis. Systems which assess the safety and serviceability of various classes of
structures (bridges, buildings, dams, etc.) would take data from tests and descriptions of a
structure to assess its integrity (load carrying capacity, potential life, etc.), identify likely causes
of deficiencies in the structure, and provide recommendations for remedial actions. Such
systems would be particularly valuable in repair, reconstruction and restoration work, where
detailed plans are often not available and where many possible modes of deterioration must be
considered. An example of such an application is SPERIL, an expert system for the assessment
of seismic damage to buildings [Ishizuka 81].

5.2. Interpretation

• Site Investigation. Much of the information which is the basis for substructure design of con-
structed facilities and for field operations comes from site investigations. Information is ob-
tained from field and lab tests, visual and other inspection devices, and observations. The data
is then presented to an expert geotechnical engineer who interprets the data to characterize
the site and makes recommendations concerning possible actions and substructure design.
Since such tasks rely almost wholly on human experts using their empirical knowledge, they are
excellent candidates for expert system formulation.

Such applications could be built to perform portions of the expert's post-facto data interpreta-
tion, or could be built into intelligent, automated site investigation equipment. The most excit-
ing possibility offered by expert systems is to completely bypass certain exploratory or evalua-
tion operations. For example, with appropriate sensing, interpretation, theoretical correlation
and empirical knowledge, one should be able to infer as much geotechnical information from a
production rock-drill as one obtains today from geotechnical explorations. An example of such
a system for the interpretation of cone penetrometer data is being built [Mullarkey 83]. Another
prototype for the inference of a three-dimensional model of site stratigraphy based on borehole
and sample test data is being designed [Norkin 84]. Similar pre-interpretation expert systems
can be developed for other aspects of the construction environment.
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• Sensing. Construction is often performed in an environment characterized by unseen and
unanticipated conditions. Constructors, both manned and robotic, must transform raw sensor
data in a variety of ways to properly interpert them, i.e., build a reliable and usable world model
of the environment. Many "low-level" transformations such as signal conditioning, smoothing,
imaging, feature extraction, etc., can be performed algorithmically — in fact, dedicated

. hardware or firmware is available for several of these processes. However, "high-level" inter-
pretations which extract meaning from the transformed sensor data are more likely to be imple-
mented as expert systems.

As an example, REX (Robotic Excavator) is a robotic gas pipe excavator under development in
the Civil Engineering and Construction Robotics Laboratory for the hazardous task of gas line
excavation and repair. A variety of sensors will be used to determine subsurface features such
as locations of utilities, prior to excavation [Ray 83]. The data from the various sensing modes
will be separately transformed to a common, high level representation (e.g., bounding planes of
features "seen" by each sensor). It is anticipated that an expert system will be needed to
interpret and integrate the separate sensor images and to build a composite world model of the
subsurface features. Such a model would then be used as part of the input to the planning
process for excavation. The expert system will have to deal with issues such as:

o discrepancy between expected position taken from utility maps and sensed position — an
obvious heuristic is:

IF sensed diameter, m a t e r i a l , e t c . agree wi th expected
THEN accept sensed posi t ion;

o discrepancy or conflict between sensing modes;
o discrimination between pipe valves, tees and other attachments.

• Quality Control. In construction, there are major uncertainties in the condition and quality of
the emplaced components. A prototype system which uses magnetic imaging to determine the
location and size of concrete reinforcement in structures such as bridge decks or nuclear
reactor containment vessels is being built [Motazed 84]. Similar to pre-interpretation, there is
the exciting possibility to integrate post-interpretation into the process itself. Thus, eventually
one should get as much information about the quality of a weld from an instrumented
automated welder as one obtains from a post-facto weld inspection.

5.3. Design

• Design with Conventional Components. The design of constructed facilities is a complex and
ill-defined task. Computer-aided structural design processes today primarily consists of al-
gorithmic analysis, proportioning or optimization programs. The "creative" component of the
design task has been largely ignored. HI-RISE [Maher 84a] is an example of an expert system
for the preliminary design of high rise buildings. Similar expert design systems could be
developed for other constructed facilities where preliminary design or synthesis essentially
involves the selection, combination and customization of relatively standard components (e.g.,
small-to-medium span bridges, prefabricated buildings and, possibly, certain water treatment
and wastewater processing plants).

• Design with Robot-constructed Components. The constructed facilities built with the first
generation of construction robots will not look significantly different than those built presently,
nor will their design process be significantly affected. Eventually, however, the existence of
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construction robotics will provide major influence on the form and functions of the facilities,
and will alter the design process iiself in significant ways. In other industries, this feedback is
already evident; "design for manufacturability" has become a major concern in manufacturing
industries, reflecting the clear need to explicitly address manufacturing concerns and con-
straints at the earliest, most abstract levels of conceptual design. The same trend, "design for
constructability," can be expected in civil engineering design, as the means of manufacturing,
i.e., constructing, facilities change drastically [Warszawski 84].

It is too early to speculate on the specific forms that this feedback from robotic construction to
civil engineering may take. What is clear, however, that the feedback will be largely heuristic:
certain forms, techniques, materials, etc., will be shown by experience to be more appropriate,
efficient, economic, etc., for robotic construction than others. Expert systems are the most
appropriate computer aids developed so far for representing and processing such heuristic
knowledge. It is to be expected, therefore, that computer-aided civil engineering will increas-
ingly use knowledge-based systems to integrate knowledge about robotic construction into the
design process.

5.4. Planning

• Operation Planning. Some of the first pieces of robotic construction equipment are being
designed to operate in an automated mode in hazardous environments such as mining and
excavation. As outlined above, expert systems have a role in the automated interpretation and
sensing of the environment of the machine. This environmental information is needed to plan
the operational strategies of the machine so it can realize its goal (excavating a pipe, digging a
tunnel, bolting a mine roof, etc.). An expert system can augment and eventually replace the
operator to provide such control strategies. Such an application has been proposed for the
strategic and tactical control of an automated tunnel boring machine (TBM) [Sriram 83a].
MOVER also is an example of a prototype operational planning system. Fully autonomous
construction robots, such as REX, will require such operational planning expert systems.

• Construction Planning. Construction estimating is an example of a task which is computerized
at the micro level, but which requires expertise at a macro or strategic level. Once a quantity
take-off has been prepared, the computation of unit prices and determination of total estimated
cost is an algorithmic task. However, true construction planning, the process of determining
what tasks must be undertaken to execute the project and the sequencing and resource re-
quirements of the tasks must be completed before their costs are known. The process of
allocating equipment and crews, determining the sequencing of construction tasks and deter-
mining the items for the estimate are planning tasks which require expertise. Expert systems
could be developed for such applications.

The planning of robotic construction processes and the design of robotic equipment is itself an
area for expert system applications. Problem solving strategies such as hierarchical planning
and problem reduction, discussed in Section 3.4 are directly applicable to the complex task of
planning construction processes involving robotic equipment. A significant component of the
planning will be the selection of the robotic equipment itself. Construction tasks to which
robotics can be applied exhibit a large variation in the types of sensors, actuators, locomotion
and control strategy that may be incorporated [Warszawski 84]. Therefore, both the construc-
tion task and the construction robots have to be configured from a variety of components for
specific tasks. Since there are very few experts in this area, an extremely useful and practical
expert system would be one which could recommend appropriate combinations of robotic
components based on a description of the environment, tasks and constraints.
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5.5. Monitoring

• Equipment Monitoring. Equipment monitors are similar to equipment diagnostic systems
described above. However, in this application, the goal is not to determine and rectify the fault
in the equipment, but to continually observe the operation of the equipment and determine if it
conforms to the planned operation. Such systems can simulate the monitoring functions of an
expert operator, who often takes automatic action based on the sound or the feel of the con-
trols.

• Construction Process Monitoring. Construction management continually involves handling con-
tingencies, reallocating resources and forecasting consequences during the construction
process. This requires continual monitoring of the state of the construction process and com-
parison to the planned schedules. Expert systems could be built to model the processes used
by experienced construction managers to track and monitor projects.

5.6. Control

A construction robot has to perform three functions:

1. Sense both the external environment and its internal state;
2. Plan an action based on the sensed state; and
3. Act according to the plan.

These three functions are supervised, coordinated and scheduled by an overall control functions.
Most of the processing or "reasoning" takes place in the functions of sensing, planning and control.

In robotic construction equipment, the complete control system will require the integration of several
types of expert systems outlined above. As an example, an automated tunnel boring machine re-
quires an expert system to interpret the sensor readings to infer the tunnel geologic conditions.
Diagnosis of machine faults is also made from machine sensor data. An additional expert system is
required to monitor the machine performance. This data is then used to drive a planning task to
select a mining strategy and detailed machine operation tactics. Such a combined control system is
illustrated in Figure 2 [Sriram 83a].

6. Research In Progress
A number of research projects are underway, all aimed at developing prototype expert systems and
exploring the application of expert system technology to civil engineering and construction computer
applications. Major projects are described below.

6 . 1 . MOVER — Automated Mass Transit System Diagnosis

A prototype equipment diagnostician is MOVER [Fenves 83, Fenves 84c], designed to assist in the
diagnosis and repair of operational failures of a fully automated mass transit system. MOVER takes
information on system failures reported to the central control computer and combines these with
requested status information to determine the fault and to suggest repair procedures. MOVER also is
an example of a prototype operational planning system. Once a fault has been determined, it makes
suggestions to the operational supervisor to facilitate the timely restoration of service.

The transit system to be diagnosed contains a number of interacting subsystems, both electronic and
mechanical. MOVER has models for a number of those subsystems. Each subsystem model performs
two tasks:
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• Fault Diagnosis — Based on external data regarding the failure and additional requested infor-
mation, determine the likely causes of the failure

• Service Restoration Actions Recommendations — From the fault diagnosis, produce a con-
ditional set of recommendations to restore normal operation of the system.

Two prototype versions MOVER have been implemented, both demonstrating a range of capabilities
and in-depth diagnosis for selected subsystems.

• The first version was developed in KAS [Reboh 81], and contains both deterministic rules and
probabilistic inferences. KAS was found to have some serious deficiencies for this application.
In particular, database techniques are needed to handle historical information on system be-
havior, and causal representations of intended system behavior (as opposed to purely empirical
knowledge about performance and failures) are needed.

• The second version of MOVER was developed in PDS [Fox 83], an event-driven expert system
framework. A conclusion from the development of the first prototype was that efficiency of
operation would be enhanced by direct access to the diagnostic data and state information of
the subsystems being diagnosed. The PDS version addresses this issue by providing direct
access to the available sensor information, and making failure inferences based on both the
current state and past history of signals.

6.2. CONE — Cone Penetromenter Interpretation

An example of a prototype for sensor interpretation in the geotechnical engineering area is an expert
system for the interpretation of cone penetrometer data, CONE [Mullarkey 83]. As the cone
penetrometer is pushed into the soil, electrical signals provide raw data about tip resistance, friction,
and pore pressure. This data is used by experts to infer the soil stratigraphy and more detailed
engineering parameters about each soil layer.

CONE performs four interrelated tasks:

• Data Input and Validity Scans — Screen errorful data while allowing interactive editing of
suspect data, followed by several preprocessing steps based on both theoretically-derived and
heuristic corrections.

• Classification and Stratigraphy Delineation — Using the corrected data, infer the soil stratig-
raphy and the soil type of each layer.

• Design Parameter Inference — Based on both the classification and data, derive engineering
parameters, such as shear strength, for each soil layer.

• Aggregation and Trending — Using the engineering parameters for each layer, revise stratig-
raphy and establish trend lines.

Cone is implemented as a rule based system in 0PS5 [Forgy 81]. For tasks such as classification,
several domain knowledge sources are used concurrently to increase the accuracy and flexibility of
the system. Fuzzy logic is also used to quantify uncertainty with respect to the quality of the in-
ferences being made, representing heuristic factors that an expert would use in a judgemental fash-
ion. The initial system will provide post-facto analysis as an office-based consultant, but it has been
proposed that such a system could be used to build an automated microprocessor-based field
penetrometer expert.
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6.3. SITECHAR — Geotechnical Site Characterization

Another expert system prototype performing an interpretation task in the geotechnical enginnering
domain is begin designed [Norkin 84, Rehak 85], to aid an engineer in inferring subsurface stratig-
raphy from available bore log data, field and lab test data, and overall site information and charac-
teristics. Due to time limitations, an engineer can explore only a small number of potential inferences.
The expert system aids in developing alternative inferences yielding three-dimensional models of site
stratigraphy.

Cooperation of several type of problem solving, such as geometric trend recognition, matching soil
descriptions, determining proximity, etc., is required to complete the characterization. Each set is
represented as a knowledge module in a blackboard model expert system. The system simul-
taneously operates at two levels of problem solving:

• Strategic — At the strategic level an overall approach to characterizing the site is selected. The
system poses hypotheses on the overall site stratigraphy, i.e., faults are present, depositional
patterns result from oxbow lakes, etc., and several different alternatives are pursued in parallel.
Strategic processors also monitor the problem solving process and redirect the system to focus
its attention on those alternative which appear most promising.

• Tactical — At the tactical level a set of problem solvers attempt to prove hypotheses and fill in
the details of the characterization.

All the problem solvers communicate through global data structures on the blackboard which
represent the different hypotheses under consideration and the inferred model of the site. The results
of the characterization are presented to the engineer through a set of two- and three-dimensional
subsurface diagrams.

6.4. HI-RISE— Preliminary Design of Structures

HI-RISE [Maher 84b, Maher 84a] is an expert system which acts as an engineer's assistant for the
preliminary structural design of high rise buildings. HI-RISE synthesizes feasible structural configura-
tions for a building, performs the preliminary sizing and costing of key structural components, and
then presents to the designer the "best" alternative.

Starting with a specified spatial layout, the preliminary structural design process is divided into two
ordered subtasks:

• Design of the lateral load resisting system
• Design of the gravity load resisting system

For each subtask, the space of design alternatives is represented by a hierarchy of candidate three
dimensional subsystems, two dimensional subsystems, materials and components. The design
process for each subtask consists of the following steps:

• Synthesis — Search for a set of feasible structural systems.
• Analysis — Perform an approximate analysis to insure that the alternative under consideration

provides the necessary load-carrying capacity.
• Parameter Selection — Select structural components by heuristics.
• Evaluation — Compute for each alternative a ranking based on a linear combination of factors

such as drift, deflection, number of frames, member size, approximate costs and compatibility
of subsystems.

• Selection — Select the best alternative based on a minimum value of the evaluation function.
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HI-RISE is implemented as a rule based system in PSRL (Production Schema Representation
Language) [Rychener 84], a frame based production system built on SRL (Schema Representation
Language) [Wright 83].

HI-RISE is the most comprehensive prototype completed to date. Work is ongoing to extend its range
of capabilities and accuracy. In addition, it has been used as a testbed for other work, including
access to engineering databases and graphical interfaces.

Associated with HI-RISE is a smaller expert system-database interface, HICOST [Howard 83], used to
develop preliminary cost estimates. It is used by HI-RISE to evaluate competing preliminary designs
based on structure cost. Given the topology and geometry of a building and HI-RISE's preliminary
choice for the structural system and elements of the superstructure, HICOST produces an estimate of
the building's cost.

HICOST is implemented as a rule-based expert system, with algorithmic computational functions,
which queries a database for specific data on component costs. It is a tightly coupled integration of
several expert system tools and a relational database. The cost estimator is a hierarchically-
organized production system with rules written in PSRL. Data objects are defined in frames in SRL,
and cost data is stored in a relational database supported by INGRES [Stonebraker 76]. The produc-
tion system computes the estimated cost from aggregate subsystem costs. Access to the database is
through demons attached to HI-RISE cost schemas. Each subsystem data element has an associated
cost value. Accessing the cost value of a basic component (beam, column, etc.) via a rule in the cost
estimator triggers a demon which invokes a FRANZ LISP function [Foderaro 82] which in-turn calls a
C procedure [Kernighan 78]. The C procedure uses EQUEL, the INGRES procedural query language,
to access the database and return the item cost to the estimator.

DICE [Barnes 84], a graphical output interface to HI-RISE provide two user interface functions. First,
it uses a geometric model of the building to accept the user's input and to display the alternative
configurations generated by HI-RISE. Second, during execution, it displays the context tree of
feasible alternatives as these are generated by HI-RISE. The completed tree is used for designating
alternatives to be displayed and for selecting the "best" alternative.

6.5. DESTINY — Integrated Structural Design

DESTINY (Integrated Structural Design) [Sriram 83b] is an extension of HI-RISE to encompass more
building configurations, more design tasks and to provide a more flexible design process. The system
consists of a number of knowledge modules (KMs) (which are comprised of smaller rule sets) which
communicate through a blackboard. Its structure is modeled after expert system frameworks such as
HEARSAY-II [Erman 80] and HASP/SIAP [Nii 82]. In DESTINY, knowledge is divided into four levels:

• Strategy KMs analyze the current design state and determine the next action.
• Activation KMs invoke the appropriate specialist KMs to carry out the current design strategy.
• Specialist KMs perform one knowledge-based processing task, and are similar to traditional

expert systems. Specialist include:

o Preliminary Design System used to generate potential structural configurations
(ALL-RISE — an extension of HI-RISE),

o Analysis and Modeling Consultant used as a modeling and result interpretation interface
for a finite element analysis program, (similar to SACON [Bennett 79]).

o Specification Consultant used to interface to a set of design standards.
o Estimating Consultant used to determine cost estimates for alternative designs (similar to

HICOST).
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o Design Critic used to evaluate alternative designs based on functional and technical
criteria.

• Resource KMs provide the knowledge-based and algorithmic processors required for design
and analysis such as: finite element analysis, database management systems with associated
design and component databases, and standards processors and associated standards.

The overall structure of DESTINY is depicted in Figure 3. DESTINY is currently under development
and is being built from several tools including PSRL, INGRES, and FINITE [Lopez 77], and is being
written in several programming languages including FRANZ LISP, C and FORTRAN.
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Figure 3: DESTINY System Structure

6.6. KADBASE —Interfacing Expert Systems to Design Databases
KADBASE (Knowledge Aided Database Management System) [Howard 84] is a multiple database
manager for knowledge-based structural engineering applications. It provides the capabilities for an
integrated system to access a collection of databases, and it addresses the issue of interfacing
databases with expert systems. Its overall architecture resembles a networked heterogeneous
database management system [Cardenas 80]. The individual databases may be based on different
data models (relational, network, hierarchical) and may reside on different host computers. However
KADBASE is not concerned with the issues involved in the physical networking of the databases.

In current applications which combine databases and expert systems, the expert system is tightly
coupled to the database in one of two ways: either the expert system has detailed knowledge of the
syntax and semantics of the database [Blum 82, Howard 83], or the expert system and database form
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a combined system [Kellogg 83]. KADBASE is an attempt to provide a flexible interface between
expert systems and networks of databases by freeing the expert systems fronr, the requirement that
they conxain detailed syntactic and semantic database knowledge.

KADBASE provides an interface which allows an expert system to issue queries and updates and
receive replies, all in terms of its own information model. In addition, each individual database
communicates with the interface in the context of its own database schema. The interface uses
mapping information provided by the individual expert systems and database schemas to construct a
global schema. Queries from an expert system are first translated into the context of the global
schema. KADBASE determines a strategy for answering the query within the context of the global
data model and decides which databases contain the necessary information to answer all or part of
the query. Subqueries to the individual databases are translated from the global data model to the
syntax and semantics of the design databases. The replies are handled in the reverse fashion. In
each translation, KADBASE performs a two level, two step language transformation process to com-
municate between the expert and database management systems. The basic system architecture is
shown in Figure 4.
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Two small-scale expert systems prototypes are being developed in association with KADBASE, one
aimed at showing a breadth of capabilities and the other demonstrating in-depth techniques for
database-expert system interaction:

• HICOST-II — A revised version of the HICOST cost estimator, interfacing with a building design
database and an interrelated set of databases containing cost and estimating information.
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• JADE (Joint Analysis and Design Expert) — A system for designing and detailing structural
connections in a building, interfacing with a building design database.

7. Future Directions

7 . 1 . Expert System Development

Work in producing expert systems for civil engineering and construction applications is progressing
in parallel in three areas.

• Frameworks and Basic Capabilities. Research is underway in developing better expert system
frameworks and functional capabilities. Such frameworks provide better knowledge represen-
tation schemes, alternative inference techniques, and alternative mechanisms for dealing with
uncertain or partial data. Extensions of basic functional capabilities to provide interfaces to
algorithmic programs, database management systems, graphical displays, and connections to
sensors are also being investigated. Better user interfaces and knowledge acquisition modules
will improve the usability of expert systems and will reduce application development cost and
time.

• Applications in New Domains. In addition to the work in progress described in Section 6,
numerous prototype expert system applications are under development or consideration in
many civil engineering domains. This work leads to demands for better expert system
frameworks and capabilities and results in better techniques for applying expert system tech-
nology. Equally important, this work also leads to a more fundamental understanding of the
decision making process in the application domains.

• Knowledge and Process Engineering. In many application areas, the actual processes used by
experts do not appear in the literature, and has not been critically reviewed. Through the
development of an expert system, the process and domain knowledge must be formally
gathered and represented. The knowledge used is then available for critical examination,
which may lead to refinements or improvements in the processes. Equally as important, once
captured the knowledge is preserved and can be disseminated.

Continued work will improve the technology and applications of knowledge based expert systems in
the civil engineering, construction and construction robotics domains.

7.2. Long-Range Implications

The emergence of expert systems as an additional component of the civil engineers' "toolkit"
promises to introduce changes at least as far-reaching as the entire "computer revolution" to date.
This new development has far-reaching implications for engineering practice.

• Practice. The most direct implication in civil engineering practice is that computer assistance
to engineers can be significantly extended into application areas that were previously intract-
able. More importantly, engineers will be able to operate as if the most expert person in a
particular problem area were looking over each engineer's shoulder, providing advice and
guidance based on long experience. Also, organizations will be able to "capture" and con-
structively use the expertise of senior people for many years after their retirement.

• Education. Expert systems can serve as training or teaching tools, providing the student or
novice "synthetic experience" in dealing with ill-structured problems. The development of
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simple expert systems may be an excellent pedagogical tool, permitting the student to organize
and formalize his thought processes. One such experiment has been reported in [Starfield 83].

• Research. KBES provide for the first time an environment for conducting research on the
practical aspects of the profession, namely, on how practitioners use, integrate, and combine
elements of textbook knowledge to perform practical and innovative tasks. Beyond this, ex-
perimentation with expert systems, particularly with the formalization of concepts and thought
processes, may eventually lead to theoretical insights and discoveries which may obviate the
need for heuristics.

8. Summary
Knowledge-based expert systems were introduced and presented as an alternative to traditional al-
gorithmic programs in extending computer applications in civil engineering and construction. The
overall structure, use, and operation of expert systems was presented. Potential applications in many
civil engineering domains have been outlined and research in progress aimed at developing
prototypes was described.

By capturing the knowledge used by experts in problem solving, expert systems are capable of
addressing problems which, to date, have avoided computerization. There is a wide variety of poten-
tial applications in civil engineering and construction. The emergence of construction robots will
create the need for many further applications. Additional research and development of expert sys-
tems will demonstrate how this powerful new computer based technology can aid in the civil en-
gineering, construction and construction robotics domains.
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