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Abstract

A rigorous mathematical formulation is presented for the problem of

optimal design under uncertainty. This formulation involves a nonlinear

infinite programming problem in which an optimization is performed on the

set of design and control variables, such that the inequality constraints of

the chemical plant are satisfied for every parameter value that belongs to a

specified polyhedral region. In order to circumvent the problem of infinite

dimensionality in the constraints, an equivalence for the feasibility

condition is established which leads to a max-min-max constraint. It is

shown that if the inequalities are convex, only the vertices in the poly-

hedron need to be considered to satisfy this constraint. Based on this

feature, an algorithm is proposed which uses only a small subset of the

vertices in a multiperiod design formulation. Examples are presented to

illustrate the application of the method.

Scope

In the optimal design of chemical processes it is very often the case

that considerable uncertainty exists in the value of some of the parameters.

For instance, values of transfer coefficients, physical properties or cost

data may not be well established at the design stage. Furthermore, one can

expect that during the operation of the plant variations will occur in flow-

rates, compositions, pressures and temperatures of the feedstreams of the

process. Therefore, it is clearly very important to consider at the design

stage the effect that uncertain parameters can have on both the optitnality

and feasibility of operation of the plant.

In order to account for the uncertainties in the values of these

parameters, the procedure that is normally used in practice is to assume

nominal values for the parameters in the optimal design, and then apply

empirical overdesign factors to the resulting sizes of the units. Since this
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procedure lacks a firm rational basis, a number of different methods have

been suggested to account for the uncertainties in a more systematic manner,

and a detailed review of these methods can be found in Halemane (1982). The

proposed methods differ mainly in the basic design strategies that are

postulated, since in principle the problem of design under uncertainty is

not well-defined. However, it should be pointed out that the major objectives

that one would like to accomplish in this problem are to ensure optimality

and feasibility of operation for a given range of parameter values.

It is the purpose of this paper to present for the problem of optimal

design under uncertainty, a new mathematical formulation that can ensure

rigorously feasibility of operation of the plant for a bounded range of

parameter values specified by the designer. The proposed formulation which

involves an infinite number of constraints and variables, is very general

and yields fundamental insight and understanding of the problem of design

under uncertainty. A solution algorithm is proposed to solve this problem

for the case when the constraint functions are convex, and its application is

presented through two design problems.

Conclusions and Significance

This paper has presented a rigorous formulation for the problem of

design under uncertainty. As has been shown, the crucial aspect in this

problem is to guarantee the existence of feasible regions of operation for

the specified range of parameter values. The max-min-max constraint provides

the required mathematical framework to handle this aspect. In addition, this

formulation has yielded the following interesting insights and results:

1. For a given design and fixed parameter value the max-min-max problem

provides a measure of the size of the feasible region for operation.

2. The critical parameter value corresponds to the one for which the feasible

region of operation is the smallest.
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3. In general there can be more than a single critical point that must be

considered in a design. This contradicts the usual practice in design

which Is to consider a single "worst" parameter value.

4. If the constraints are convex the critical points must lie at the vertices

of the polyhedral region of parameters.

Based on these results an algorithm has been proposed for solving the

problem of design under uncertainty. This algorithm leads to an efficient

solution procedure as has been shown in the two example problems.



Introduction

In the design of chemical plants there are usually a number of

parameters for which there is considerable uncertainty in their actual

values. For instance, these parameters can correspond to internal process

parameters such as transfer coefficients, reaction constants, efficiencies

or physical properties. In addition, the uncertain parameters can also be

external to the process such as specifications in the feedstreams, utility

streams, environmental conditions or economic cost data.

In order to account systematically for the uncertainties in the

parameter values, Grossmann and Sargent (1978) have proposed a design strategy

in which the basic objective is to design a flexible plant as follows.

Firstly, a design should be selected for which it can be ensured that the

design specifications will be satisfied for a bounded region of the para-

meters. This should be accomplished by suitable manipulation of the control

variables for the different realizations of the parameter values. Secondly,

the design should be selected so as to optimize the expected value of the

investment and operating cost taken over the specified range of parameter

values. The basic idea in this strategy is that advantage should be taken

from the fact that control variables can be adjusted to satisfy the design

specifications during the operation of the plant, as it is only the design

of the plant itself that will remain fixed. The strategy clearly reflects

one of the main concerns of design engineers, which is to ensure feasible

operation of the plant in the region of parameters that has been specified.

In addition, the important point is that this is done while simultaneously

optimizing the design of the chemical plant. Therefore, this strategy

offers the potential of avoiding empirical overdesign for which neither

optimality nor feasibility of operation can be guaranteed.
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It is the objective of this paper to present for the above cited

strategy a new mathematical formulation in which feasibility of operation

can be ensured rigorously* This formulation corresponds to a two-stage

nonlinear infinite program (NLIP), for which an equivalence has been

established through a max-min-max constraint for satisfying the infinite

number of inequality constraints. The proposed formulation is more general

than the one presented by Grossmann and Sargent (1978) which can fail in

some cases to ensure feasibility as shown by Halemane (1982). The paper

also presents a solution algorithm for the NLIP problem when the constraint

functions are convex, and its application is illustrated with two example

problems.

Mathematical Formulation

The variables in the design problem of a chemical plant with un-

certainty in parameter values can be partitioned into four categories. The

vector d of design variables is associated with the sizing of the units.

These remain fixed once the design is implemented, and do not vary with the

changes in the operation of the plant. The vector z denotes the control

variables that can be manipulated in the operation so as to meet the

specifications and also to minimize the operating cost. The vector x

corresponds to the state variables which are determined by solving the set

of equations representing the process system. Finally, 9 is the vector of

independent parameters in the design whose values are subject to uncertainty.

Assuming that bounded values of these parameters are specified, the region T

that is defined to contain all possible values of these parameters, is given by

T « I e I 8L < 8 < GU| (1)

where 9 and 8 represent given lower and upper bounds on 9.

In order to derive the mathematical formulation it is convenient to
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consider the design strategy as being composed of two stages: an operating

stage and a design stage•

I. Operating stage: Assuming that a given design d has been

selected, it is anticipated that the plant will be operated optimally while

satisfying the constraints of the process for all possible realizations of

the parameters in T. Hence, the objective in this stage is to select for

every realization 9 e T, a control z which is optimal and feasible.

Clearly, for the given design d and for any value of 9, the state

variables can be expressed as an implicit function of the control z from

the system of equations of the process,

h(d,z,x,9) =0 -> x « x(d,z,9) (2)

Since the control variable z should be selected so as to satisfy the speci-

fications given by the vector of inequality constraints,

g(d,z,x,9) = g(d,z,x(d,z,9),9) = f(d,z,9) < 0 (3)

the optimal operation of the plant that minimizes the cost will be given by

the nonlinear program (NLP)

ndn C(d,z,9)

z (A)

s.t. f(d,z,9) < 0

The solution to this problem defines the cost function C*(d,9) which

corresponds to the optimal operation of the plant for fixed values of dy9.

Moreover, if the optimization is performed for every realization 9 e T, the

average cost of operation will be given by the expected value E |c*(df9)}.

9€T

II. Design Stage: In order to achieve the basic objective of

feasibility of operation in the region of parameters T, the design variable d

must be chosen so as to ensure that for every value of 9 the control variable

z in the operating stage can be selected to satisfy the constraints in (4).
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Rote that an improper selection of d can lead to infeasible operation for

some realizations of 9 in which case no selection of the control z will

exist so as to satisfy the inequality constraints in (4). Furthermore, in

order to achieve the optimal design,the design variable d must be

selected so as to minimize the expected value of the optimal cost function

C*(d,9) over the entire region T.

This strategy can then be expressed mathematically as

minimize E ( C*(d,9)
d

s.t. Y9eT I 3z( Vj€j[f (d,z,0) < 0]) 1 (5)

where J = j1,2,..,,ml is the index set for the components of vector f. The

constraint in (5) is denoted as the feasibility constraint, because the

existence of a feasible region of operation in the region T can be ensured

if and only if this constraint is satisfied. In fact, this logical constraint

states that for every point 9ET, in the space of parameters, there must exist

at least one value for the vector z of control variables, that gives rise to

non-positive values for all the individual constraint functions. Qualitatively,

this means that irrespective of the actual values taken by the parameters, the

proposed design d of the plant can be operated to satisfy the specifications.

Since the objective function in (5) is itself determined through the

NLP in (4), the problem of optimal design under uncertainty can be formulated

in its final form as a two-stage programming problem:

minimize E jmin C(d,z,9) \ f(d,z,9) < 0}
d 96Tl Z ~ I

s.t. V9€Tjaz(VjeJ [fj(d9zte) < 0 ] ) | (6)

Note that since there are infinite numbers of possible realizations for

the values of the parameters 9, and since the optimal operation of the plant
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i8 implicitly dependent on 0, the overall number of decision variables

involved in problem (6) is infinite. This is because for every value of 8

an optimal value of the control variables z is being chosen. Also, note that

the feasibility constraint represents an infinite set of constraints since the

inequalities in (4) are defined for the infinite set of values GcT. Therefore,

problem (6) corresponds to a two-stage nonlinear infinite program, it should

be noted that Malik and Hughes (1979) have also presented a similar two-stage

programming formulation, but without including explicitly the feasibility

constraint.

Simplification of the NLIP

The nonlinear infinite program in (6) that represents the mathematical

formulation of the design problem under uncertainty, poses great computational

difficulties for numerical solution, and in fact has a more complex structure

than the semi-infinite programs treated in the literature (see Hettich, 1979).

A first step in simplification so as to make the problem more tractable, is

to perform a discretization over the parameter space in order to approximate

the expected cost by a weighted cost function (Grossmann and Sargent, 1978),

which reduces (6) to

minimize Y w1 C(d,zi,ei)

d,zx,z ,...zn i«l

s.t. f(d,zi,0i) £ 0 , i«l,2,...,n (7)

where the weights w correspond to discrete probabilities for the selected

finite number of parameter points G^T, i=l,2,...n. With this simplification

the number of decision variables in (7) is finite, since optimization is

performed over the vector d of design variables and the finite number of vectors *

z1,*2,...^11 of control variables. The control variables z1 are selected to

satisfy the corresponding constraints f(d,z1,01) ^ 0, so as to result in an

optimal feasible operation at the point 9 of the parameter space. Note that
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despite this discretization, the feasibility constraint is still imposed

so as to restrict the choice on the design d to guarantee feasible operation

for every point GeT. Thus, the formulation in (7) is a nonlinear semi-

infinite program (NLSIP), with a finite number of decision variables and

infinite number of constraints.

It is interesting to note that if the feasibility constraint is

excluded in (7), the resulting structure of the problem is equivalent to

that of a deterministic multi-period problem, where the plant operates in

each period with the parameter value 8 , and with the length of period

proportional to v , As discussed by Grossmann and Halemane (1982), this

class of multi-period design problems can be solved very efficiently with the

projection-restriction strategy that they have proposed. The question

that immediately arises then is whether a finite number of points in 0-

space can be selected, so that by ensuring feasibility of the design for

those points, one can guarantee that the feasibility constraint in (7) will

be satisfied. If such a choice of finite number of parameters values were

possible one could clearly solve problem (7) as an equivalent deterministic

multi-period design problem. In order to answer this question, it is

essential to first reformulate the feasibility constraint in (7) in a more

amenable form for analysis.

Reformulation of the Feasibility Constraint

The logical constraint

jOM.e) * o])] (8)

which ensures overall feasibility of the design is the major source of

computational difficulty in numerical solution of the design problem

represented by the NLSIP in (7). The reason is that it involves an infinite

number of inequality constraints for which feasibility has to be tested.
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The following theorem provides a possibility for circumventing this problem.

Theorem 1

The logical constraint (8) and the max-min-max constraint,

max min max f ,(d,z,9) £ 0 (9)
z J

are exactly equivalent.

Proof

The theorem can be proved in two parts, namely, (8) =^(9) and

(9)->(8), as given by Polak and Sangiovanni-Vincentelli (1979) and Halexnane

and Grossmann (1981). An alternative proof which is simpler and more direct

is given here. By the definition of the terms and relationships used in (8)

and (9), the following equivalences apply by considering global max and min

operators:

veeTlazacjj^d^e) * o])}

V9€T{3z(max fJ(d9s98) * 0)}

in max f.(d,z,9)
z jej J

min max f ,(d,z,9)
z J

From these steps the equivalence of the first and last relations is established,

which is exactly the one stated in the theorem. QED.

With this alternative and equivalent formulation of the feasibility

constraint the optimal design problem in (7) can be rewritten as

n

minimize Y w1 C(d,zi,0i)
1 2 n r*%d,z ,z ,...,

s.t. f(d,zi,01) £ 0, i = 1,2,...,n

max min max f.(d,z,e) £ 0 (10)
9€T z j€j

 J
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In order to describe qualitatively the significance of the max-min-max

constraint in (10), note that the inequality constraints are satisfied for

non-positive values of the functions f.(d,z,0), jej. Hence, the 'worst

constraint1 function is that which is most likely to be violated, and is

denoted by the index J which corresponds to the maximum valued function

f-r(d,z,0) for given d,z,0. The control 7 that minimizes this function

fr(d,z,0) for any given d,0, corresponds to the 'most feasible1 operation for

the worst constraint. Then, the critical parameter value 8° is that for

which the worst constraint f— is maximized while having the control z, for a

given design d. Therefore, if for a design d a control variable z can be

chosen to satisfy the constraints at the critical parameter value 0C, then the

design d can be guaranteed to have feasible operation at every 0€T.

In the formulation given by (10) the max-min-max constraint provides the

possibility of circumventing the problem of simultaneously handling the infinite

number of inequality constraints. The reason is that the max-min-max constraint

determines a point 0° for which the inequalities are most likely to be violated,

while requiring that these inequalities be satisfied at that point. However,

this constraint involves solving the subproblem,

max min max f.(d,z,0) (11)

0€T z jej J

which in general is very difficult to solve (Polak and [ mgiovanni-Vincentelli,

1979). Furthermore, it is not clear under which circumstances the solution of

this subproblem is unique since in Theorem 1, global max and min operators had

to be assumed for the proof. Therefore, it is desirable as a next step to

examine the properties and interpretation of the max-min-max constraint so as to

gain a better insight and understanding from it.
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Interpretation and Properties of the Max-Min-Max Constraint

The ntx-min-max constraint can be written as a constrained max-mi n

problem, by introducing an extra variable u:

max rnin «u | u ;> f.(d,z,0), vjej} £ 0 (12)
9€T z 3 J

It then follows that for a given point 9eT the value 4(d,6) determined by

• (d,e) = min {u j u^ f^d.z.S), Vjej} (13)

z

indicates the extent of (in)feasibility of operation of the design d for that

single point 0. A negative value of t(d,0) indicates a finite region of

feasibility and a positive value indicates infeasibility. Thus, the value
e) can be interpreted to be a good measure of (in)feasibility of operation

at the chosen point 0eT. Since the constraint in (12) leads to a point 0C

which maximizes ̂ (d,0), 0° corresponds to critical point in the parameter

space for which the design d has either the smallest degree of feasibility

(if t(d,0C) ̂  0), or the largest degree of infeasibility (if t(d,9C) > 0).

To illustrate these ideas consider the following set of two constraints

which involve one control variable z and one parameter 0:

fl = -z + 0 £ 0

f 2 = z - 2 0 + 2 - d ^ O (14)

Figure la shows a plot of the feasible region on z-0 space, for a design

corresponding to d = 0.5. As can be observed in the figure, the size of the

feasible region increases as 0 increases, with 0 = 1 being infeasible, 0-1.5

being feasible at one point of z, and 0 = 2 having a finite region of feasibility*

f(d,0) is determined by solving for d = 0.5, 1 £ 0 £ 2, the problem
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t(d,O) s min u
z

s.t. u ̂  fl * -z + e

u * f 2 = z - 20 + 2 - d (15)

and its results are plotted in Figure lb. Note that f = 0 for 0 = 1.5 which

has a single point of feasibility as shown in Figure la. Also, negative values

of if correspond to finite regions of feasibility as for instance at 9 = 2, and

positive values of if are associated with infeasibility as in 6 = 1, which is

the critical point where the maximum of f is attained. Note also that f

decreases monotonically with increasing 0, since the feasible region gets

expanded. From these observations it is clear that -{ can be interpreted as

a measure of the size of the feasible region for operability. This region

corresponds to the projection of the actual overall feasible region in the

d-z-9 space onto the z-space for fixed values of d and 0.

To study the effect of changes in d, the region of feasibility of

(14) is shown in Figure 2a for d = 1, and the corresponding values of f are

shown in Figure 2b. By changing d from 0.5 to 1.0, overall feasibility has

been achieved for all values of 0 in the specified range 1 ̂  0 £ 2. Again,

it is clear from Figure 2a that 0 * 1 is a critical point, since it corre-

sponds to the smallest size of feasible region in the z-space for the

specified range 1 £ 0 £ 2 . Thus, the design d = 1, which is feasible for

the critical point 0 = 1 is found to be also feasible for the entire range

1 * 0 <; 2.

The example above would suggest that feasible operation in the design

can be guaranteed by considering one single critical 0-point. In fact, this

may not be true in the general case, as is easily observed if a third con-

straint is considered together with the two others in (14) to give:



f l

f 2

f 3

= -z

= z

= -z

1

+ 9

- 29

+ 69

<: 9 <

+ 2 - d

- 9d

: 2

£ 0

£ 0

£ 0 (16)

The feasible region for this set of constraints is shown in Figure 3a for

d = 1, and the corresponding function f is shown in Figure 3b. Note that f

is nondifferentiable at 0 = 9/5, and that it exhibits two local maxima at

9 = 1 and 0 = 2. It is clear from Figure 3a that the size of the feasible

region decreases at both extreme points, 0 = 1 and 0 = 2 , and gets enlarged

towards the interior point 0 = 9/5. Thus, there are in this case two

critical points to be considered for design, which are in fact the two

extreme points of the specified range 1 € 0 £ 2. This observation on the

location of critical points can be generalized for the case of a set of

nonlinear convex constraint functions through the following theorem.

Theorem 2

If the constraint functions f.(d,z,0) are jointly convex in z and

9, then the problem

max min max f.(d,z,0) (17)
0€T z j€J

 J

has its global solution 0C at an extreme point of the polyhedral region

T = {e | 0L * 0 £

Proof;

This theorem is proved in three parts as follows -

Property 1. If for every jej, f.(d,z,0) is jointly convex in z and 0, then

4(d,z,0) = max f.(d,z,0) is also jointly convex in z and 0.
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Proof;

Let 0 £ X * 1» « 3 " (l-X)*1 + X*2, 63 " (l-X)e1 + X«2- Since for every jej

f.(dfz99) is jointly convex in z and 0,

(1 - x) fjW,*, 1^ 1) + X fj(d,*
2
f9

2) * f^d.z3^3) Vjej

Taking the summation over the index set J and replacing the functions at each of

the three points by the maximum valued function,

m(l - X) max f . ( d . z 1 ^ 1 ) + mX max f (d ,z 2 , 9 2 ) ^ m max f , (d , z 3 , 0 3 )
J€J J j e j J j c j J

where m = | J | . Cancelling out the common factor m and using the definition

of the function 4(d,z ,9 ) ,

from which it is clear that the function 4(d,z,8) » max f (d,z,9) is jointly
J«J J

convex in z and 0.

Property 2. If 4(d,z,8) is jointly convex in z,9, then, t(d»9) •

min ^(d,z,8) is convex in 9.
z

Proof:

Let t(d>©3) - min 4(d,z,93) * rf(d,z3,93).

1 2 Z

Let 9 , 9 e T be two distinct points that are different from 93, and 0 < X < 1

such that 93 - (1 - X)91 + X92.

Lett (d.G1) = min ̂ (d.s^1) = ^(d.z1^1)

and t(d,92) - min rf(d,z,92) * ^(d,z2,92).

z
Since 4(d,z,9) is jointly convex in z and 0,

12 1 2
z * (1 - X)z + Xz .

But,



therefore,

or,

- X) rfCd.z1^1) + Xrf(d,z2,e2):> 4(d,z3,83)

- X) tcd.e1) + xu<i,e2) * t(d,e3) •
3 1 2

Noting that 9 = (1 - X)9 + X9 , it is clear that t(d,9) is convex in 9.

Property 3, If t(d,9) is convex in 9, then every local solution 0° of the problem

max t(d,9)
9eT

lies at an extreme point of the convex region T.

Proof;

Assume that 0° is a non-extreme point of the region T, and let 91, 02cT be two

distinct points in the neighborhood of 9° and 0 < X < 1 such that

G° - (1 - X)©1 + X®2- Since $(d,8) is convex in 9,

(i - X) •(d,©1) + 2

That is, x[t(d,e2) - tC^e1)] * *(d,e°) -

Since 8 and 0 can be chosen in the neighborhood of 0° so as to make the left-

hand side negative, the above inequality gives

t(d,0°) - tCd,©1) * 0

which is a contradiction since 0 maximizes locally the function o(d,0).

Hence, the assumption that 0° is a non-extreme point of the region T must be

incorrect, and this proves the result stated above.

Property 4, If the region T is a polyhedron defined as in (1), the global

solution 0C must lie at a corner point (vertex) of this polyhedron, unless

the solution is degenerate.

This result is obvious from the fact that the vertices are the only

extreme points for a polyhedral region, and that all boundary points (as well

as the interior points) can be expressed as a convex combination of the extreme

points (vertices). Therefore, any local solution to the problem (18), and hence

its global solution 0°, must lie at a vertex of the polyhedral region T. Thus,

the result stated in Theorem 2 is proved. QED.



Discussion

Since there are a finite number of vertices for the polyhedron T,

Theorem 2 provides an answer to the question as to whether a finite number of

points can be considered for design to ensure feasibility for all the points in

the polyhedron T. It follows from Theorem 2 that if the constraints are convex,

feasibility of operation for every value of 0€T can be guaranteed by considering

in the design all the vertices of the polyhedron T, since any of them will

correspond to the critical parameter 8°. Also, since (17) represents a

maximization of a convex function as shown in Property 3 of Theorem 2, there

can be multiplicity of local solutions for (17), and hence a number of different

critical points. This result contradicts the common practice in design of

considering only a single "worst11 parameter value.

It should also be clear that the assumption of convexity on the

constraint functions in Theorem 2 is a sufficient condition for the location of

critical points at the vertices of the polyhedron T. Therefore, there can

also be cases when even if nonconvex constraint functions are involved, the

critical points correspond to vertices. However, it is clear that this will

not always necessarily be true.

Solution Algorithms

In solving the design problem (10) it is essential to satisfy the

max-min-max constraint in order to guarantee feasibility of operation of

the plant for every 0€T. As was proved in Theorem 2, if the inequality

constraint functions are convex, then the critical points must lie at any of

the vertices of the polyhedron T. Since there are a finite number of vertices

in T, a design obtained by considering all these vertices will be feasible for

any other point in the polyhedron. This would then suggest the following

algorithm:

Algorithm I

Step 1. Include all the vertices in the set T « {G 1 j 01 is a vertex of T,

i = 1,2,...,}
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Step 2. Solve the problem

N

minimize C°(d) + Y w1 C(d,z1,9i)
1 7. N

s.t. f(d,zi,0i) * 0 i»l,2,...,N (18)

o

with the projection-restriction strategy (Grossmann and Halemane, 1982) so as

to obtain the design d°.

Since TQ includes all N vertices of the polyhedron T, every critical

point 6 corresponding to the above design d° will also be included in T .
o

Therefore the design d° will be feasible for its critical points, and hence

it will also be feasible for every OCT.

The drawback in this algorithm is that the number of vertices N to

be considered for design increases exponentially with the number of parameters

p, since N = 2 . Thus, for a problem involving ten uncertain parameters

(p - 10), the design problem has to consider 2 = 1024 vertices, which would

lead to an extremely large problem in (18). Because of this fact, it is

desirable that the above algorithm be modified so as to reduce the number of

vertices that have to be considered in Step 2. An algorithm that can be used

for this purpose is as follows:

Algorithm II

Step 1. Set k * 0. Choose an initial set T consisting of N vertices where

o o

This can be achieved by analyzing the signs of the gradients of each of the

individual constraint functions with respect to the parameters at initial

values of d and z, as suggested by Grossmann and Sargent (1978). If the

constraints are monotonic in the parameters, these vertices correspond to

maximization of individual constraint functions (Grossmann and Sargent, 1978).



-19-

Step 2. Solve the problem

minimize C°(d) +V w1 C{d9z
l
9B

l) (19)

.!^ 1-1

s.t. fCd,*1^1) £ 0 i=l,2,...Nk

so as to obtain the design d .

c k
Step 3. Determine the critical parameter value 9 * , by solving for every

vertex 0 not included in T,, the problem

fCd^e1) - minju | u* f^d^z^ 1), jej} (20)

The vertex that gives rise to the maximum value of f is then determined and

is denoted by 8Cfk. If t(dk,e°>k) <; 0, stop; otherwise go to step 4.

Step 4. Define T k + 1 « Tfc ll{e
C'k} , N^ » JT^J .

Set k » k+1 and iterate from Step 2.

Note that at the termination of this algorithm the design will

necessarily be feasible for all values of parameters, because it will be

feasible for the critical parameter values. Also, the algorithm has to

terminate in a finite number of iterations since there are only a finite

number of critical parameter points to be considered. The initial vertices

predicted in Step 1 by the method of Grossmann and Sargent (1978) will often

yield very good guesses for which only one iteration in Algorithm II may be

required* Similarly as in Algorithm I, problem (19) in Step 2 can be

solved with the projection-restriction strategy (Grossmann and Halemane, 1982)

Also, note that the minimizations in (20) may not have to be performed until

completion for all vertices, as they can be stopped when f reaches a

negative value in which case the existence of a non-empty feasible region

is detected. Thus, by the above considerations Algorithm II will provide in

general a much more efficient method of solution than Algorithm I.
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However, there are two features in Algorithm II which would require

further investigation. One of them is the number of parameter points

considered for design, which in turn determines the size of problem (19)

in Step 2. This number will increase at each iteration since a new

parameter point will be added. The question is whether this number can be

kept small throughout by eliminating some of the previous points while

adding new ones. This elimination can probably be performed on the basis

of the value of J. A second question is whether it is possible to determine

the critical parameter point in Step 3 without explicitly analyzing each of

the individual vertices and solving for f • If this were possible, it would

certainly enhance the efficiency of the above solution strategy when

dealing with a large number of parameters.

To illustrate the application of Algorithm II described above, two

example problems are presented below.

Example 1

In this example the heat exchanger network 4SP1 of Lee et al. (1970)

with outlet temperatures specified as inequalities is considered (see

Grossmann and Sargent, 1978). The flowsheet consists of five heat exchangers,

one of which is a steam heater and another being a cooler using cooling water,

and with two hot streams and two cold streams as shown in Figure 4. Table I

gives the data for the prob1em. The overall heat transfer coefficients

U., i « 1,2,...5, were considered to be the parameters with + 20% uncertainty

in their nominal values. The design problem then consists in selecting the

areas A., i - 1,2,...5 so that irrespective of the actual values of the heat

transfer coefficients (within the +20% range), the specifications on the

outlet stream temperatures should be satisfied by suitable choice of the

cooling water outlet temperature T-5 and the steam temperature T^. Apart
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from the equality constraints representing the heat balance and design

equations for the network, the following inequality constraints on the

temperatures of various streams have to be satisfied.

T5

T3

Tll

T7

T3 S

T6 s

T 1 0 *

T 1 2 *

" T 8 s

" T 1 3 2

- T5 ,

" T 2 2

: 534

: 434

: 411

: 367

: 0

: 0.55

: 0.55

s 0.55

(22)

Tg - T6 * 0.55

T9 " T15 * °-55

Here the first four constraints correspond to specifications on the outlet

temperatures, and the last five on the minimum temperature approach. Table 2

gives the initial set of vertices considered for design, which were obtained

by analyzing the signs of gradients of individual constraints as suggested by

Grossmann and Sargent (1978). Note that this set consists of the nominal

point and four extreme points. The design corresponding to these five parameter

points was found to be feasible for all the 32 vertices. The results are

given in Table 3, from which it is clear that the values of f are non-positive

at all the vertices, thus ensuring feasibility. Note that the actual value

of p is dependent on the scaling factors used for the constraint functions,

which are given in Table 1 for this problem. Although the choice of these

scaling factors is arbitrary, it does not affect in detecting the (in)feasibility
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of a given design. The total CPU-time required to solve this problem was

only 34.7 sec (DEC-20). Optimization was performed in each case with the

variable metric projection algorithm of Sargent and Murtagh (1973). In this

example problem the optimal feasible solution to the design problem was

obtained with a single iteration through Algorithm II, without the need for

considering additional vertex points. This may not always be the case as

can be seen from the second example below.

Example 2

Figure 5 shows the flowsheet consisting of a reactor and a heat

exchanger, used to handle a first-order exothermic reaction A-B, for which

the problem data is given in Table 4. The parameters considered to have

uncertainty in their values are: (i) F , the feed flow rate (+10%),

(ii) To> the temperature of the feed stream (+2%), (iii) T^, the inlet

temperature of cooling water (+3%), (iv) k , the Arrhenius rate constant

(+10%), and (v) the overall heat transfer coefficient for the heat exchanger

U (+10%). Among these five parameters, the first three are associated with

inlet streams to the units while the latter two correspond to internal

parameters of the process. The conversion is specified to be not less than

90%, and the temperature of the reactor must be lower than the specified

upper bound, 389°K. The design problem consists in selecting the optimal

sizes for the reactor and heat exchanger so that the spc ifications can be

satisfied by suitable choice of the temperatures T-, Tj, T «, in Figure 5,

irrespective of the actual values of the parameters. The material and heat

balance equations and design equations for the reactor and heat exchanger

represent the equality constraints of the design problem, and are given in

Grossmann and Halemane (1982). Other specifications to be satisfied are

expressed by the following inequality constraints:
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(a) V * V

(b) (CAo - CA1)/CAo * 0.90

(c) 600 £ Tx £ 389

(d) Tx - T 2 2> 0 (23)

(e) T w 2 - T w l * 0

(f) Tx - T w 2 * 11-1

(8) T 2 - T w l * 11-1

The initial set of parameter points consists of the nominal point and

three vertices, obtained by analyzing the gradient of the constraints, as

given in Table 5a. The design corresponding to these four points is given in

Table 6a. This design is found to be infeasible for eight of the thirty-two

vertices as indicated in Table 6b by the positive values of f for these eight

vertices. Since the value of f is found to be the same for all these eight

vertices, one among them is chosen to be added to the initial set of vertex

points considered in design. This new set of five parameter points is given

in Table 5b and the resulting design shown in Table 7a. This design is

feasible for all the 32 vertices as shown by the non-positive values of f

given in Table 7b. Here again, these values of J correspond to the scaling

factors given in Table 4 for the constraints of the problem. This example

illustrates the need for analyzing the max-min-max constraint as a means to

achieve feasibility of operation for the specified set of parameter values.

The CPU-time needed to obtain the design in each of the two iterations through

Algorithm II is also given, in Tables 6a and 7a respectively. Tables 6c and 7c

give the CPU-time for checking feasibility and determining f for all the

vertex points. It took a total of 162 sec (DEC-20) for the complete solution

using the variable-metric projection algorithm of Sargent and Murtagh (1973).
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Nomenclature

2

A * Area of heat exchanger, m

C - Annual cost, $/yr

C. « Concentration of component A, kgmole/m

C « Heat capacity, kj/kgmole K

^ * Vector of design variables

E/R «= Ratio of activation energy to the gas constant, K

F • Flowrate, kgmole/hr

Fg * Flowrate of steam, kg/hr

Fw « Flowrate of cooling water, kg/hr

FC = Heat capacity flowrate, kj/hr K

f»g ~ Vector of inequality constraint functions

h = Vector of equality constraint functions

" Heat of reaction, kj/kgmole

s Index set for the inequalities

= Reaction rate constant, m /kgmole hr

111 • Dimension of vector f

N « Number of vertices

T = Region of uncertain parameters

T^ = Temperature of stream i, K

Tw ~ Temperature of cooling water, K

u * Heat transfer coefficient, kj/m2hrK

V s Reaction volume for operation, m
A 3

V = Design volume of reactor, m

W± « Weight for parameter 0

x m Vector of state variables

z * Vector of control variables

® * Vector of uncertain parameters
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Table 1. Data for Example 1

I. Nominal values of uncertain parameters.

Ul " U2 * U3 " U5 " 2

U4 - 4088 kj/m2 hr K

II. Other process parameters

F C 1

F C 4

FC?

F c u

III. Cost

- 21,912

- 27,461

= 38,009

» 31,674

function

5

kJ/hr

kJ/hr

kJ/hr

kJ/hr

K

K

K

K

5

T l "

T4 =

T l l "

T 1 4 -

389

333

434

311

K

K

R

R

C - 145-6 £ A°'6 + £ Wi(18.5 F* + 0-923 F* )
i-1

wt - 0.6, v± - 0.1, i - 2,3,4,5

IV. Scaling factor for constraints: 1.8

V. Bounds on control variables: 314 £ T_5 £ 355 K; 534 s T 1 3 * 556 K



Table 2. Parameter Values Considered

For Design in Example 1.

1

2

3

4

5

U l

N

U

L

U

L

U2

N

U

U

L

U

°3

N

U

U

L

L

U4

N

U

U

L

U

U5

N

N

N

L

N

N - Nominal

L - Lower bound

U - Upper bound



Table 3. Results for Example 1.

2
(a) Heat exchange areas, m

Ax Aj A3 A4 A5 cost, $/yr.

30.8 62.2 45.58 3-9 2.9 11,758
CPU time (DEC-20) for obtaining the design using the projection-
restriction strategy: 16*7 sec

(b) Test for feasibility at the vertices

f(d,8) Number of vertices

0.0 24

- 0.679 Nominal point

- 2.452 4

- 3.775 4

CPU-time (DEC-20) for checking feasibility and

determining f at the vertices: 18*0 sec

(c) Values of f(d,e) for individual vertices

f(d,6) Vertex number v

0.0 0-15, 24-31

- 2.452 20-23

- 3.775 16-19

,5-1 ° "

'-1 * 1 If



II. Other

E/R •

CAo '

process

• 555.6

* 32.04

parameters

K

kgmole/m

Table 4. Data for Example 2.

I. Nominal values of uncertain parameters

» 0.6242 m3/kgmole hr U = 1635 kj/m2 hr K

F = 45.36 kgmole/hr T = 333 K
o o

T , - 300 K

= 23,260 kJ/kgmole

C "167.4 kJ/kgmole

III. Cost function ($/yr)

n
C = (691-2 V0*7 + 873-6 A0*6) + Y wi(l-76 P^1 + 7-056 1

w1 = 0.5 , w1 = 0.5/(n-l) i " 2,3,...n

IV. Scaling factors for constraints

(a) 3.531 (b) 100 (c) 1.8

(d), (e), (f), (g) 18.0

V. Bounds on control variables

311 s Tx * 389 K

311 £ T 2 * 389 K

301 * T _n * 355 K



Table 5. Parameter Values Considered

for Design in Example 2.

1

2

3

4

5

N

L

U

U

L

U

N

U

L

L

L

Fo

N

L

U

U

U

To

N

L

U

U

U

Twl

N

L

U

L

U

a) Initial set of points: (1), (2), (3), (4)

b) Second set of points: (1), (2), (3), (4), (5)

N - Nominal

L - Lower bound

U - Upper bound



Table 6. Results of Example 2, First

Iteration with Algorithm II

(a) Design obtained for parameter points given in Table 3a,

V = 5.3 m3

A - 10.5 m2

cost - 10,820 $/yr

CPU-time (DEC-20) for obtaining the design using the

projection-restriction strategy: 9*2 sec

(b) Test for feasibility at the vertices

f(d,6) Number of vertices

+1.280 8

0.0 16 + Nominal point

-1.151 8

CPU-time (DEC-20) for checking feasibility and

determining f at the vertices: 65*8 sec

(c) Values of f(d,6) for individual vertices

if (d,9) Vertex number v

+1.28 4-7, 12-15

5

z *
i - 1

•v

0

-1

9

.0

.151

2 - U ,

0-3,

16-19

a =

• 93 = V

8-11, 20-23,

, 24-27

0 i f 9± »

1 i f 9± =

9, = T , 9«.4 o 5

28-31

9 i L

9 i U

wl



Table 7. Results of Example 2, Second

Iteration with Algorithm II

(a) Design obtained for parameter points given in Table 3b

V - 6.5 m3

A - 9.2 m2

cost = 10,110 $/yr

CPU-time (DEC-20) for obtaining the design

using the projection-restriction strategy: 12*8 sec

(b) Test for feasibility at the vertices

f(d,6) Number of vertices

0.0 8

-1.220 16 4- Nominal point

-2.323 8

CPU-time (DEC-20) for checking feasibility

and determining $ at the vertices: 73*9 sec

(c) Values of f(d,9) for individual vertices

f(d,9) Vertex number v

0.0 4-7, 12-15

-1.22 0-3, 8-11, 20-23, 28-31

-2.323 16-19, 24-27



Fig. 1. Feasible region and {(d,e) for constraints (14) with d • 0.5

Fig. 2. Feasible region and {(d,0) for constraints (14) with d - 1

Fig. 3. Feasible region and ^(d,0) for constraints (16) with d • 1

Fig. 4. Heat exchanger network of example 1

Fig. 5. Reactor-cooler system of example 2
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