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Abst r act

A rigorous nathematical formulation is presented for the broblen1of
opti mal design Under uncertainty. This fornulation involves a nonlinear
infinite programming problemin which an optimzation is perfornmed on the
set of design and control variables, such that the inequality constraints of
‘the chemcal plant are satisfied for every paraneter val ue that belongs to a
speci fied pol yhedral region. In order to circunvent the problemof infinite
dimensionality in the constraints, an equivalence for the feasibility
condition is established which leads to a nax-mn-nax constraint. It is
shown that if the inequalities are convex, only the vertices in the poly-
hedron need to be considered to satisfy this constraint. Based on this
feature, an algorithmis proposed which uses only a small subset of the
vertices in a multiperiod design formulation. Exanples are presented to
illustrate the application of the nethod.

Scope

In the optimal design of chemcal processes it is very often the case
that considerable uncertainty exists in the value of sonme of the paraneters.
For instance, values of transfer coefficients, physical properties or cost
data may not be wel | established at the design stage. Furthernore, one can
expect that during the operation of the plant variations will occur in flow
rates, conpositions, pressures and tenperatures of the feedstreans of the
process. Therefore, it is clearly very inportant to consider at the design
stage the effect that uncertain parameters can have on both the optitnality
and feasibility of operation of the plant.

In order to account for the uncertainties in the values of these
paranmeters, the procedure that is normally used in practice is to assune
nom nal values for the paraneters in the optimal design, and then apply

enpirical overdesign factors to the resulting sizes of the units. Since this




procedure lacks a firmrational basis, a nunmber of different methods have
been suggested to account for the uncertainties in a nore systenatic nmanner,
and a detailed review of these nmethods can be found in Hal emane (1982). The
proposed nethods differ nainly in the basic design strategies that are

postul ated, since in principle the problemof design under uncertainty is

not wel |l -defined. However, it should bé poi nted out that the najor objectives
that one would like to acconplish in this problemare to ensure optinality

and feasibility of operation for a given range of paraneter val ues.

It is the purpose of this paper to present for the problemof optimal
desi gn under uncertainty, a new nathenatical forrulation that can ensure
rigorously feasibility of operation of the plant for a bounded range of
paraneter val ues specified by the designer. The proposed fornul ation which
i nvol ves an infinite nunber of constraints and variables, is very genera
and yi el ds fundanental insight and understanding of the problemof design
under uncertainty. A solution algorithmis proposed to solve this problem
for the case when the constraint functions are convex, and its application is
presented through two desi gn problens.

Concl usi ons and Si gni fi cance

This paper has presented a rigorous formulation for the probl em of
desi gn under uncertainty. As has been shown, the crucial aspect in this
problemis to guarantee the existence of feasible regions of operation for
the specified range of parameter values. The nax-nin-max constraint provides
the required mat hematical framework to handle this aspect. |In addition, this
forrmulation has yielded the following interesting insights and results:

1. For a given design and fixed paraneter value the max-mn-max probl em
pfovides a measure of the size of the feasible region for operation
2. The critical parameter value corresponds to the one for which the feasible

region of operation is the snallest.




In general there can be nore than a single critical point that nust be

considered in a design. This contradicts the usual practice in design

which I's to consider a single "worst" paraneter val ue.

If the constraints are convex the critical points nust lie at the vertices

of the polyhedral region of paraneters.

Based on these results an al gorithmhas been proposed for solving the

probl em of design under uncertainty. This algorithmleads to an efficient

sol ution procedure as has been shown in the two exanpl e probl ens.




| nt roducti on

In the design of chemcal plants there are usually a nunber of
paraneters for which there is considerable uncertainty in their actual
val ues. For instance, these paraneters can correspond to internal process
paraneters such as transfer coefficients, reaction constants, efficiencies
or physical properties. |In addition, the uncertain parameters can al so be
external to the process such as specifications in the feedstreans, utility
streans, environnental conditions or econonic cost data.

In order to account systenmatically for the uncertainties in the
par anmet er val ues, @ ossmann and Sargent (1978) have proposed a design strategy
in which the basic objective is to design a flexible plant as foll ows.
Firstly, a design should be selected for which it can be ensured that the
design specifications will be satisfied for a bounded region of the para-
meters. This should be acconplished by suitable mani pul ati on of the contro
variables for the different realizations of the paraneter val ues. Secondly,
the design should be selected so as to optimze the expected val ue of the
i nvestment and operating cost taken over the specified range of paraneter
values. The basic idea in this strategy is that advantage should be taken
fromthe fact that control variables can be adjusted to satisfy the design
speci fications during the operation of the plant, as it is only the design
of the plant itself that will remain fixed. The strategy clearly reflects
one of the mai n concerns of design engineers, which is to ensure feasible
operation of the plant in the region of paraneters that has been specified
In addition, the inportant point is that this is done while sinultaneously
optimzing the design of the chenmcal plant. Therefore, this strategy
offers the potential of avoiding enpirical overdesﬁgn for which neither

optimality nor feasibility of operation can be guaranteed.




It is the objective of this paper to present for the above cited
strategy a new mat henatical fornulation in which feasibility of operation
can be ensured rigorously* This formulation corresponds to a two-stage
nonlinear infinite program (NLIP), for which an equi val ence has been
establ i shed through a max-mn-max constraint for satisfying the infinite
nunber of inequality constraints. The proposed formulation is nore general
than the one presented by G- ossmann and Sargent (1978) which can fail in
sone cases to ensure feasibility as shown by Hal emane (1982). The paper
al so presents a solution algorithmfor the NLIP probl emwhen the constraint
functions are convex, and its application is illustrated with two exanpl e
probl ens.

Mat henati cal Formul ati on

The variables in the design problemof a chemcal plant with un-
certainty in parameter values can be partitioned into four categories. The
vector d of design variables is associated with the sizing of the units.
These remain fixed once the design is inplenented, and do not vary with the
changes in the operation of the plant. The vector z denotes the contro
vari abl es that can be manipulated in the operation so as to neet the
specifications and also to mininize the operating cost. The vector x
corresponds to the state variables which are determned by solving the set
of equations representing the process system Finally, 9 is the vector of
i ndependent paraneters in the design whose val ues are subject to uncertainty.
Assum ng that bounded val ues of these paraneters are specified, the region T

that is defined to contain all possible values of these paraneters, is given by
T«lel 8-<8<G (1)

where 9% and 8U represent given lower and upper bounds on 9.

In order to derive the nmathenmatical formulation it is convenient to




consi der the design strategy as being conposed of two stages: an operating
stage and a design stagee

I. Qperating stage: Assuning that a given design d has been
selected, it is anticipated that the plant will be operated optimally while
satisfying the constraints of the process for all possible realizations of
the parameters in T. Hence, the objective inthis stage is to select for
every realization 9e T, a control z which is optinmal and feasibl e.

Qearly, for the given design d and for any value of 9, the state
vari abl es can be expressed as an inplicit function of the control z from

the systemof equations of the process,
h(d, z,x,9) =0 ->Xx « x(d,z,9) (2)

Since the control variable z should be selected so as to satisfy the speci-

fications given by the vector of inequality constraints,
9(d, z,x,9) =g9(d, z,x(d, z,9),9) =1(dz9) <0 (3)

the optinal operation of the plant that minimzes the cost will be given by
the nonlinear program (NLP)
ndn C(d, z, 9)
z (A
s.t. f(d,z,9) <0
The solution to this problemdefines the cost function C(d,9) which
corresponds to the optinal operation of the plant for fixed values of d,9.
Moreover, if the optimzation is performed for every realization 9 e T, the
aver age éost of operation will be given by the expected value E | c*(df9)}.
9€T
I1. Design Stage: In order to achi eve the basic objective of
feasibility of operation in the region of parameters T, the design variable d
nmust be chosen so as to ensure that for every value of 9 the control variable

Z in the operating stage can be selected to satisfy the constraints in (4).




Note that an improper selection of d can lead to infeasible operation for
some realizations of @ in which case no selection of the control z will
exist so as to satisfy the inequality constraints in (4). Furthermore, in
order to achieve the optimal design,the design variable d must be
selected so as to minimize the expected value of the optimal cost function
c*(d,8) over the entire region T.

This strategy can then be expressed mathematically as

minimize E {C*(d,e)}
d 0€T

s.t. VOeT I 3z( Vi £,(d,2,6) < 0]) (5)

where J = [1,2,...,ml is the index set for the components of vector f. The
constraint in (5) is denoted as the feasibility constraint, because the
existence of a feasible region of operation in the region T can be ensured
if and only if this constraint is satisfied. In fact, this logical constraint
states that for every point 8€T, in the space of parameters, there must exist
at least one value for the vector z of control variables, that gives rise to
non-positive values for all the individual constraint functions. Qualitatively,
this means that irrespective of the actual values taken by the parameters, the
proposed design d of the plant can be operated to satisfy the specifications.
Since the objective function in (5) is itself determined through the
NLP in (4), the problem of optimal design under uncertainty can be formulated

in its final form as a two-stage programming problem:

minimize E lmin c(d,z,0) | £(d,z,8) < o] :
d 8eT! 2

s.t. VeeT'Elz(vjeJ [fj(d,z,e) <0 ])l (6)

Note that since there are infinite numbers of possible realizations for

the values of the parameters 6, and since the optimal operation of the plant




i8 inmplicitly dependent on 0, the overall nunber of decision variables

involved in problem (6) is infinite. This is because for every value of 8

an optimal value of the control variables z is being chosen. Also, note that

the feasibility constraint represents an infinite set of constraints since the
inequalities in (4) are defined for the infinite set of values GT. Therefore, .
probl em (6) corresponds to a two-stage nonlinear infinite program it should

be noted that Malik and Hughes (1979) have al so presented a simlar two-stage
progranmng formulation, but without including explicitly the feasibility

constraint.

Sinplification of the NLIP

The nonlinear infinite programin (6) that represents the nathematica
formul ati on of the design problemunder uncertainty, poses great conputational
difficulties for nunerical solution, and in fact has a more conplex structure
than the sem-infinite programs treated in the literature (see Hettich, 1979).
A first step in sinplification so as to make the problemnore tractable, is
to performa discretization over the paraneter space in order to approxi mate
the expected cost by a weighted cost function (Gossmann and Sargent, 1978),

whi ch reduces (6) to

n
mnimze Y w C(d, z',e")
dzz=...z2" i«
s.t. f(d,z',0")y £0, i«l,2,...,n (7)

VeeT {Hz(vjeJ[fj(d,z,B) < 0))]

where the wei ght's wh correspond to discrete probabilities for the selected

finite number of paranmeter points GAT, i=l,2,...n. Wth this sinplification
the number of decision variables in (7) is finite, since optimzation is

perforned over the vector d of design variables and the finite nunber of vectors *
71 %2 ALl of control variables. The control variables z! are selected to
satisfy the corresponding constraints f(d,zI,Of) N0, so as to result in an

optimal feasible operation at the point ol of the paranmeter space. Note that




despite this d{scretization, the feasibility constraint is still inposed

so as to restrict the choice on the design d to guarantee feasible operation
for every poini GeT. Thus, the fornmulation in (7) is a nonlinear semi -
cinfinite program (NLSIP), with a finite nunber of decision variables and

i nfinite nunber of constraints.

It is interesting to note that if the feasibility constraint is
excluded in (7), the resulting structure of the problemis equivalent to
that of a determnistic nulti-period problem where the plant operates in
each period with the paraneter val ue 81, and with the length of period
proportional to v?, As discussed by G ossnann and Hal emane (1982), this
class of multi-period design problens can be solved very efficiently with the
projecfion-restriction strategy that they have proposed. The question
that imrediately arises then is whether a finite nunber of points in O-
space can be selected, so that by ensuring feasibility of the design for
those points, one can guarantee that the feasibility constraint in (7) wl
be satisfied. |If such a choice of finite nunber of paraneters val ues were
possi bl e one could clearly solve problem (7) as an equival ent deterninistic
mul ti-period design problem In order to answer this question, it is
essential to first reformulate the feasibility constraint in (7) in a nore
amenabl e formfor anal ysis.

Ref ormmul ati on of the Feasibility Constraint

The | ogi cal constraint
veeT {Hz(VjeJ[ £fOM e) * 0])] (8)

whi ch ensures overall feasibility of the design is the najor source of
conputational difficulty in numerical solution of the design problem
represented by the NLSIP in (7). The reason is that it involves an infinite

nunber of inequality constraints for which feasibility has to be tested.




-10-

L]
The followi ng theoremprovides a possibility for circunventing this problem
Theorem 1

The logical constraint (8) and the nmax-m n-nax constraint,

max minmax f,(d,z,9) £ 0 (9)
8T z JeJ ’

are exactly equival ent.
Proof.

The t heoremcan be proyed intw parts, nanely, (8) =(9) and
(9)=>(8), as given by Pol ak and Sangi ovanni -Vincentel li (1979) and Hil exnane
and G ossmann (1981). An alternative proof which is sinpler and nore direct
is given here. By the definition of the terns and rel ationships used in (8)
and (9), the follow ng equival ences apply by considering global nax and mn
operators:

veel'lazacjj’\d’\e) * o))}
&> VOET{3z(max f;(dese8) * 0)}

& VeETimi n  nax f.(d,z,9)so}
z jej '’

&pmax min max f,(dz,9) < 0
8T z 3j&3

Fromthese steps the equival ence of the first and last relations is established,
which is exactly the one stated in the theorem CED.
Wth this alternative and equivalent formulation of the feasibility

constraint the optimal design problemin (7) can be rewitten as

n
m ni m ze ,CY wt C(d, z', 0")
d,zl,z2 ..... 2 1<%
s.t. f(d,z,0Y) £0, i =12 ....n
mx mn mx f.(d,z,e) £0 (10)

9ET 2z jo& °
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In order to describe qualitatively the significance of the max-min-max
constraint in (10), note that the inequality constraints are satisfied for
non-positive values of the functions fj(d,z,e), jeJ. Hence, the 'worst
constraint' function is that which is most likely to be violated, and is
denoted by the index E'which corresponds to the maximum valued function
fg(d,z,e) for given d,z,8. The control z that minimizes this function
f}(d,z,e) fo; any given d,8, corresponds to the 'most feasible' operation for
the worst constraint. Then, the critical parameter value o is that for
which the worst constraint fi is maximized while having the control z, for a
given design d. Therefore, if for a design d a control variable Zz can be

chosen to satisfy the constraints at the critical parameter value ec, then the

design d can be guaranteed to have feasible operation at every ©€T.

In the formulation given by (10) the max-min-max constraint provides the
possibility of circumventing the problem of simultaneously handling the infinite
number of inequality constraints. The reason is that the max-min-max constraint
determines a point 6% for which the inequalities are most likely to be violated,
while requiring that these inequalities be satisfied at that point. However,

this constraint involves solving the subproblem,

max min max f,(d,z,9) (11)
Q€T =z jeJ 3

which in general is very difficult to solve (Polak and ¢ ingiovanni-Vincentelli,
1979). Furthermore, it is not clear under which circumstances the solution of
this subproblem is unique since in Theorem 1, global max and min operators had
to be assumed for the proof. Therefore, it is desirable as a next step to
examine the properties and interpretation of the max-min-max constraintAso as to

gain a better insight and understanding from it.
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| nt erpretation and Propertiés of the Max-M n-Max Constrai nt

The ntx-mn-nax constraint can be witten as a constrai ned nax-m n
probl em by ihtroducing an extra variabl e u:

maxrnin«IM u:zf.(dz0), viej} £0 (12)
9€T z 8 b

It then follows that for a given point 9eT the val ue 4(d, 6) determned by

v (de) = ninfuj uh f7d.2.9), Vi) (13)
z
indicates the extent of (in)feasibility of operation of the design d for that
single point 0. A negative value of t(d,0) indicates a finite region of

feasibility and a positive value indicates infeasibility. Thus, the val ue
¥(d,e) can be interpreted to be a good neasure of (in)feasibility of operation

at the chosen point 0,T. Since the constraint in (12) leads to a point 0°€
whi ch maxi m zes ~(d, 0), 0° corresponds to critical point in the parameter
space for which the design d has either the snallest degree of feasibility
(if t(d, 0% ~ 0), or the largest degree of infeasibility (if t(d,9% > 0).
To illustrate these ideas consider the following set of two constraints

whi ch invol ve one control variable z and one paraneter O:
f, = -z + 0 £0

f,= z-20 + 2-d~O0 (14) -

Figure la shows a plot of the feasible région on z-0 space, for a design
corresponding to d = 0.5. As can be observed in the figure, the size of the
feasible region increases as O increases, with 0=1 being infeasible, 0-1.5
being feasible at one point of z, and 0 =2 having a finite region of feasibility*

f(d,0) is determned by solving for d = 0.5, 1 £ 0 £ 2, the problem
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t(d,0 Snminu
Z

s.t. u”M f; * -z +e
u*f,= 2z - 20+2 - d (15)

and its results are plotted in Figure Ib. Note that f =0 for 0 = 1.5 which
has a single point of feasibility as show in Figure la. Al so, negative val ues
of if correspond to finite regions of feasibility as for instance at 9 = 2, and
positive values of if are associated with infeasibility as in6 =1, whichis
the critical point where the maximumof f is attained. Note also that f
decreases nonotonically with increasing 0, since the feasible region gets
expanded. Fromthese observations it is clear that :{ can be interpreted as

a neasure of the size of the feasible region for operability. This region
corresponds to the projection of the actual overall feasible region in the

d-z-9 space onto the z-space for fixed values of d and O.

To study the effect of changes in d, the region of feasibility of
(14) is shown in Figure 2a for d = 1, and the correspondi ng val ues of f are
shown in Figure 2b. By changing d from0.5 to 1.0, overall feasibility has
been achieved for all values of O in the specified.range 1 ~ 0 £ 2. Again,
it is clear fromFigure 2a that 0 * 1 is a critical point, since it corre-
sponds to the smallest size of feasible region in the z-space for the
specified range 1 £ 0 £ 2 . Thus, the design d = 1, which is feasible for
the critical point 0 =1 is found to be also feasible for the entire range
1*0<g 2.

The exanpl e above woul d suggest that feasible operation in the design
can be guaranteed by considering one single critical O-point. In fact, this
may not be true in the general case, as is easily observed if a third con-

straint is considered together with the two others in (14) to give:
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o= z+ 9 £ 0

fy = zZ- 29+2-d £0
_f3 = -2+ 69 - o £ 0 (16)
lg 9g< 2

The feasible region for this set of constraints is shown in Figure 3a for
d =1, and the corresponding function f is shown in Figure 3b. Note that f
is nondifferentiable at 0 = 9/5, and that it exhibits two local maxim at
9=1and 0 =2. It is clear fromFigure 3a that the size of the feasible
regi on decreases at both extrenme points, 0=1 and 0=2, and gets enlarged
tomards the interior point 0 = 9/5. Thus, there are in this case two
critical points to be considered for design, which are in fact the two
extrene points of the specified range 1 € 0 £ 2. This observation on the
| ocation of critical points can be generalized for the case of a set of
nonl i near convex constraint functions through the follow ng theorem
Theorem 2

[f the constraint functions fj(d,z,O) are jointly convex in z and
9, then the problem

mx mn mx f.(d z 0) (17)
06T z jeJ !

has its global solution 0° at an extreme point of the polyhedral region

T ={e| 0-* 0£ %},

Proof ;
This theoremis proved in three parts as follows -
Property 1. If for every jej, fj(d,z,O) is jointly convex in z and 0, then

4(d,z,0) =mx f.(d,z,0) is also jointly convex in z and O.
jeJ
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Proof :

Let 053 <1, 22 = (1)z! +222, 8 = (1-1)e! +10%. Since for every jeJ

fj(d,z,e) is jbintly convex in z and O,

2 3

(1 - X) fj(d’z’lyel) +A fj(d’z ’92) 2 fj(d’z ,93) Vied

Taking the summation over the index set J and replacing the functions at each of

the three points by the maximum valued function,

m(l - A) max f.(d,zl,el) + m\ max fj(d,zz,ez) 2 m max f
jeg 3 jeJ jeg !
where m = IJI. Cancelling out the common factor m and using the definition

@,23,03

of the function é(d,z ,0 ),

1.1 2

QA - M)éd,z .00y + ré(d,z 3

8%y 2 4(a,23,0%)

from which it is clear that the function 6(d,z,0) = max f (d,z,0) is jointly

jes 3
convex in z and @.
Property 2. 1If 4(d,z,0) is jointly convex in z,0, then, ¥(d,0) =

min $(d,z,0) is convex in 0.
z

Proof:

Let 4(d,8) = min #(d,z,0%) = 6(d,z>,0).
1 .2 z
Let 87, 67 € T be two distinct points that are different from 93, and 0 < A < ]

such that 63 = (1 - x)el +-162.

Let ¥ (d,01) = min 6(d,z,8) = é¢d,21,0})

2

z
and '(d,ez) = min 6(d,z,62) = ¢(d,z ,62).

z
Since 4(d,z,0) is jointly convex in z and 6,

(@ - M)6(d,zt,01) + aé(d,2%02) = é(a,212,83),

where 212 = (1 - X)z1 + lzz.
~ But,

6(d,2'2,0%) > min 6(4,2,0%) = 6(4,2°,0%)
z




t her ef or e,
- X ricd.zZ"y + Xf(d 4 ¢):2 4(d 2% 8
or,

(@ - X) tcd.el) +xu<i,e?) *t(ded) o
3 _ 1 2
Noting that 9 = (1 - X9 + X9 , it is clear that t(d,9) is convex in 9.

Property 3, If t(d,9) is convex in9, then every local solution 0° of the problem

max t(d,9)
9eT

lies at an extreme point of the convex region T.

Proof;

Assune that 0° is a non-extrene point of the region T, and let 9', 0°%T be two
di sti nct points in the- nei ghborhood of 9% and 0 < X< 1 such that

G - (1 - X)© + X@- Since $(d,8) is convex in 9,

(i - X +(d, @) Ay(d,0”) 2 4(d,6°).
That is, x[t(d, e?) - tCre)] * *(d,e°) - y(d,0L).
Since 8* and 0* can be chosen in the nei ghborhood of 0° so as to nmake the left-

hand side negative, the above inequality gives
t(d,0°) - tCd, € * 0

which is a contradiction since 0° maxi nizes locally the function o(d,O0).
Hence, the assunption that 0° is a non-extreme point of the region T must be
incorrect, and this proves the result stated above.
Property 4, If the region T is a pol yhedron defined as in (1), the gl obal
solution 0° nust lie at a corner point (vertex) of this polyhedron, unless
t he solutibn i s degenerate.

This result is obvious fromthe fact that the vertices are the only
extreme points for a polyhedral region, and that all boundary points (as wel
as the interior points) can be expressed as a convex conbi nation of the extreme
points (vertices). Therefore, any local solution to the problem (18), and hence
its global solution 0°, nust lie at a vertex of the polyhedral region T. Thus,

the result stated in Theorem?2 is proved. QED.




Di scussi on

Since there are a finite nunber of vertices for the pol yhedron T,
Theorem 2 provides an answer to the question as to whether a finite nunber of
points can be considered for design to ensure feasibility for all the points in
the polyhedron T. It follows fromTheorem?2 that if the constraints are convex,
feasibility of operation for every value of O€T can be guaranteed by considering
in the design all the vertices of the polyhedron T, since any of themwill
correspond to the critical parameter 8°. Also, since (17) represents a
maxi m zation of a convex function as shown in Property 3 of Theorem 2, there
can be multiplicity of local solutions for (17), and hence a nunber of different
critical points. This result contradicts the comron practice in design of
considering only a single "worst' paraneter val ue.

It should also be clear that the assunption of convexity on the

constraint functions in Theorem?2 is a sufficient condition for the |ocation of

critical points at the vertices of the polyhedron T. Therefore, there can
al so be cases when even if nonconvex constraint functions are involved, the
critical points correspond to vertices. However, it is clear that this wl
not al ways necessarily be true.

Sol ution Al gorithns

In solving the design problem (10) it is essential to satisfy the
max- m n- max constrai nt in order to guarantee feasibility of operation of
the plant for every O€T. As was proved in Theorem2, if the inequality
constraint functions are convex, then the critical points nust lie at any of
the vertices of the polyhedron T. Since there are a finite nunber of vertices
in T, a design obtained by considefing all these vertices will be feasible for
any other point in the polyhedron. This would then suggest the follow ng
al gorithm
Algorithm |
Step 1. Include all the vertices in the set T°<<{53ij O'1 is a vertex of T,

1 =1,2,...x5}
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Step 2. Solve the problem:

N
mnimze  C(d) +Y w C(d,z%9)
S Ay A \ L
d!z 2Z 5...2 i=1
s.t. f(d,z',0) *0 i»l,2, ..., N (18)
Oie'l'o

with the projection-restriction strategy (G ossmann and Hal emane, 1982) so as
to obtain the design d°.
Since Tg includes all N vertices of the polyhedron T, every critical

poi nt 6° corresponding to the above design d° will also be included in T .
0

Therefore the design d° will be feasible for its critical points, and hence
it will also be feasible for every CCT.

The drawback in this algorithmis that the nunber of vertices N to
be consi dered Lor desi gn i ncreases exponentially with the nunber Qf par aret er s
p, since N=2 . Thus, for a probleminvol vi niyoten uncertai n paraneters
(p-- 10), the design problemhas to consider 2 = 1024 vertices, which would
lead to an extrenely large problemin (18). Because of this fact, it is
desirable that the above al gorithmbe nodified so as to reduce the nunber of

vertices that have to be considered in Step 2. An algorithmthat can be used

for this purpose is as follows:

Algorithm Il

Step 1. Set k * 0. Choose an initial set T consisting of N vertices where
N°< 2P, 0 0

Thi s can be achi eved by anal yzing the signs of t_he gr adi enté of each of the
i ndi vidual constraint functions with respect to the péramet ers at initial
values of d and z, as suggested by Gossmann and Sargent (1978). If the
constraints are nonotonic in the parameters, these vertices correspond to

maxi m zation of individual constraint functions (Qossnmann and Sargent, 1978).
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Step 2. Solve the problem:-

nininize C(d) 4V w C{doz'4B') (19)
d,z A 11
s.t. fcd, *AY £0 i=l,2, ... N

so as to obtain the design d ™
Step 3. Determne the critical paraneter val ue 9 & k, by solving for every
i

not included in T,, the problem

vertex O W

fcdrel) - mnju| u* fArdrzrY), jej} (20)
The vertex that gives rise to the maxi numvalue of f is then determned and

is denoted by 8°"k. If t(d* e°” ) < 0, stop; otherwi se go to step 4.

Step 4. Define Tyer « T [1{e®9 N » JTA).

Set k » k+1 and iterate fromStep 2.

Note that at the termnation of this algorithmthe design wll
necessarily be feasible for all values of parameters, because it wll be
feasible for the critical paraneter values. Also, the algorithmhas to
termnate in a finite nunber of iterations since there are only a finite
nunber of critical parameter points to be considered. The initial vertices
predicted in Step 1 by the nethod of Gossmann and Sargent (1978) wll often
yield very good guesses for which only one iteration in Algorithmll nay be
required* Simlarly as in Algorithml, problem (19) in Step 2 can be
solved with the projection-restriction strategy (G ossmann and Hal enane, 1982),
Al so, note that the mnimzations in (20) may not have to be performed until '
conmpletion for all vertices, as they can be stopped when f reaches a
negative val ue in which case the existence of a non-enpty feasible region
is detected. Thus, by the above considerations AlgorithmIll will provide in

general a much nore efficient nethod of solution than AlgorithmI.




However, there are'two features in AlgorithmlIl which would require
further investigation. One of themis the nunber of paraneter points
consi dered. for design, which in turn determnes the size of problem (19)
in Step 2. This nunber will increase at each iteration since a new
paraneter point will be added. The question is whether this nunber can be
kept srall throughout by elimnating sone of the previous points while
addi ng n.ew ones. This elinination can probably be performed on the basis
of the value of J. A second quésti on is whether it is possible to determne
the critical parameter point in Step 3 without explicitly analyzing each of
the indi vi dual ver‘tices and solving for f |If this were possible, it would
certainly enhance the efficiency of the above solution strategy when
dealing with a large nunber of paraneters.

To illustrate the application of Algorithmll described above, two
exanpl e problens are presented bel ow
Exanpl e 1

In this exanpl e the heat exchanger network 4SP1 of Lee et al. (1970)
with outlet tenperatures specified as inequalities is considered (see
G ossmann and Sargent, 1978). The flowsheet consists of five heat exchangers,
one of which is a steamheater and anot her being a cool er using cooling water,
and with two hot streans and two cold streans as shown in Figure 4. Table |
gives the data for the prob’em The overall heat transfer coefficients
Ui’ I «1,2,...5 were considered to be the paraneters with + 20% uncertainty
in their nomnal values. The design problemthen consists in selecting the -
ar eas A‘:.’ i - 1,2,...5 so that irrespective of the actual values of the heat
transfer coefficients (wthin the +20%range), the specifications on the
outlet streamtenperatures should be satisfied by suitable choice of the

cooling water outlet tenperature Tis and the steamtenperature TA. Apart
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fromthe equality constraints representing the heat bal ance and design
equations for the network, the follow ng inequality constraints on the

tenperatures of various streans have to be satisfied

T w T s. 0
5 8 (22)

T3 0w T 13 2. 0.55
Tll - T5 - 0 55
T7 n T 2 2S 0.55

Tg - Te * 0.55

Tg nT{g* o_55
Here the first four constraints correspond to specifications on the outlet
tenperatures, and the last five on the mninumtenperature approach. Table 2
gives the initial set of vertices considered for design, which were obtained

by anal yzing the signs of gradients of individual constraints as suggested by

G ossmann and Sargent (1978). Note that this set consists of the nom nal

point and four extreme points. The design corresponding to these five paraneter
points was found to be feasible for all the 32 vertices. The results are

given in Table 3, fromwhich it is clear that the values of f are non-positive
at all the vertices, thus ensuring feasibility. Note that the actual value

of p is dependent on the scaling factors used for the constraint functions,
which are given in Table 1 for this problem Al though the choice of these

scaling factors is arbitrary, it does not affect in detecting the (in)feasibility
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of a given design. The total CPU-tine required to solve this probl emwas
only 34.7 sec (DEGC-20). Optimzation was perforned in each case with the
vari able netric projection algorithmof Sargent and Murtagh (1973). In this
exanpl e problemthe optinmal feasible solution to the design probl emwas
obtained with a single iteration through AlgorithmIl, w thout the need for
consi dering additional vertex points. This nay not always be the case as
can be seen fromthe second exanple bel ow
Exanpl e 2

Figure 5 shows the flowsheet consisting of a reactor and a heat
exchanger, used to handl e a. first-order exothermc reaction A-B, for which
the problemdata is given in Table 4. The paraneters considered to have
uncertainty in their values are: (i) Fo’ the feed flowrate (+10%,
(i) To> the tenperature of the feed stream (+2%, (iii) T", the inlet
tenperature of cooling water (+3%, (iv) JgR the Arrhenius rate constant
(#1099, and (v) the overall heat transfer coefficient for the heat exchanger
U (+10% . Among these five paraneters, the first three are associated with
inlet streans to the units while the latter two correspond to internal
par aret ers of the'process. The conversion is specified to be not |ess than
90% and the tenperature of the reactor must be | ower than the specified
upper bound, 389°K  The design problemconsists in selecting the optinal
sizes for the reactor and heat exchanger so that the spc.ifications can be

satisfied by suitable choice of the tenperatures T-, Tj, T“<£<, in Figure 5,

L
irrespective of the actual values of the paraneters. The material and heat
bal ance equati ons and desi gn equations for the reactor and heat exchanger

represent the equality constraints of the design problem and are given in

G ossmann and Hal emane (1982). Qher specifications to be satisfied are

expressed by the following inequality constraints:
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: A
(a) vV 2V
(b) (P C1)/Cy = 0.90
(c) | 600 < T, < 389
(C)) T, - T, 2 0 (23)
(e) T, Ty 20
(£) T, - T, = 111
(8) T, - T, 2 11l-1

The initial set of parameter points consists of the nominal point and
three vertices, obtained by analyzing the gradient of the constraints, as
given in Table 5a. The design corresponding to these four points is given in
Table 6a. This design is found to be infeasible for eight of the thirty-two
vertices as indicated in Table 6b by the positive values of § for these eight
vertices. Since the value of § is found to be the same for all these eight
vertices, one among them is chosen to be added to the initial set of vertex
points considered in design. This new set of five parameter points is given
in Table 5b and the resulting design shown in Table 7a. This design is
feasible for all the 32 vertices as shown by the non-positive values of §
given in Table 7b. Here again, these values of § correspond to the scaling
factors given in Table 4 for the constraints of the protlem. This example
illusfrates the need for analyzing the max-min-max constraint as a means to
achieve feasibility of operation for the specified set of parameter values.
The CPU-time needed to obtain the design in each of the two iterations through
Algorithm II is also given, in Tables 6a and 7a respectively. Tables 6c and 7c
give the CPU-time for checking feasibility and determining ¢ for all the
vertex points. It took a total of 162 sec (DEC-20) for the complete solution

using the variable-metric projection algorithm of Sargent and Murtagh (1973).
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Nomrencl at ur e
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2
Area of heat exchanger, 'm
Annual cost, $/yr 3
Concentration of conponent A, kgnol e/ m
Heat capacity, Kkj/kgnole K
Vector of design variabl es
Rati o of activation energy to the gas constant,
Fl ow ate, kgnol e/ hr
Fl owrate of steam kg/hr
Fl owate of cooling water, kg/hr
Heat capacity flowate, kj/hr K
Vector of inequality constraint functions
Vector of equality constraint functions
Heat of reaction, kj/kgnole
I'ndex set for the inequal gties
Reaction rate constant, m/kgnole hr
D nensi on of vector f
Nunber of vertices
Regi on of uncertain paraneters
Tenperature of streami, K
Tenperature of cooling water, K

Heat transfer coefficient, kj/ n?@r K
Reaction volume for operation; m
3

Design volune of reactogr, m
Wi ght for paraneter O
Vector of state variables

Vector of control variables
Vector of uncertain parameters

K
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Table 1. Data for Exanple 1

Nom nal val ues of uncertain paraneters.

UI " U2 * U3 " U5 " 3066 U@ ht K

Uy, - 4088 kj/nf hr K

Q her process paraneters

FCq - 21,912 kJ/hr K T 389 K
FCyq - 27,461 kJ/hr K T4 = 333 K
FC, = 38,009 kJ/hr K T 434 R
FCu » 31,674 kJ/hr K T14- 311 R
Cog function

_ 5 5
C - 145-6£ A"i' S + £ w(18.5 F*. + 0-923 F*“)

i=]1 i-1

w - 0.6, v. - 0.1, i - 23,45

Scaling factor for constraints: 1.8

Bounds on control variables: 314 £ 11_5 £ 355 K 534 s Ti3 * 556 K




Tabl e 2.

Par anet er Val ues Consi der ed

For Design in Exanple 1.

UI U2 03 U4 U5
N N N N N
U U U U N
L U U U N
U L ‘L L L
L U L U N

N - Nom nal

L - Lower bound

U - Upper bound




Tabl e 3.

(a) Heat exchange areas, m
Ay Aj As

30.8 62.2 45. 58

Results for Exanple 1.

A, As cost, $/yr.

3-9 2.9 11, 758

CPU time (DEG 20) for obtaining the design using the projection--
restriction strategy: 16*7 sec

(b) Test for feasibility at the vertices

f(d, 8)
0.0

- 0.679

- 2,452

- 3.775

Nurmber of vertices -
24
Nom nal poi nt
4
4

CPU-time (DEG20) for checking feasibility and

determining f at the vertices: 18*0 sec

(c) Values of f(d,e) for individual vertices

f(d,6)
0.0
- 2,452

Vertex nunber v
0-15, 24-31
20-23
16-19




Table 4. Data for Exanple 2.

Nom nal val ues of uncertain paraneters

k, » 0.6242 m/ kgnol e hr U = 1635 kj/nf hr K
F = 45.36 kgnol e/ hr T = 333K

(o} (0}

T, - 300K

wa

Q her process paraneters

EfR e« 5556 K ~AH = 23,260 kJ/ kgnol e
rxn
Ao ¥ 32.04 kgnol e/ n? Cp "167. 4 kJ/kgnole

Cost function ($/yr)

» n i
C = (691-2 V°*7 + 873-6 A*®) + Y w(l-76 P"* + 7-056 1y )
i=1
w = 05, w = 0.5(nl) i " 23...n

Scaling factors for constraints
(a) 3.531 (b) 100 (c¢) 1.8

(d), (e), (f), (g) 18.0

Bounds on control vari abl es
311 s T, * 389 K
311 £ T, * 389 K

301 ~* T\rf* 355 K




Table 5. Paraneter Val ues Considered

for Design in Exanple 2.

wil
1 N N N N N
2 L U L L L
3 U L U U U
4 U L U U L
5 L L U U U

a) Initial set of points: (1), (2), (3), (4)
b) Second set of points: (1), (2), (3), (4),

N - Nom nal
L - Lower bound
U - Upper bound

(5)




Table 6. Results of Exanple 2,_ First
Iteration with Algorithmll

(a) Design obtained for paraneter points given in Table 3a,

¢ = 53
A - 10.5 n?
cost - 10,820 $/yr

CPU-time (DEG 20) for obtaining the design using the

projection-restriction strategy: 9*2 sec

(b) Test for feasibility at the vertices

f(d, 6) Nunber of vertices
+1. 280 8

0.0 16 + Nom nal point
-1.151 8

CPU-tinme (DEC 20) for checking feasibility and

determning f at the vertices: 65*8 sec

(c) Values of f(d,6) for individual vertices

if (d,9) Vert ex nunber v

+1. 28 4-7, 12-15
0.0 0-3, 8-11, 20-23, 28-31
-1.151 16-19, 24-27
5 .
* . 0 if 9 »g4.
v - Z ; 25 i ai — i
i-1 1 if 9 = 9; U

ey %2 U 3=V % To % w




Table 7. Results of Exanple 2, Second
Iteration with Algorithmll

(a) Design obtained for paraneter points given in Table 3b

V- 65
A - 9.2 nt
cost = 10,110 $/yr

CPU-time (DEG 20) for obtaining the design

using the projection-restriction strategy: 12*8 sec

(b) Test for feasibility at the vertices

f(d, 6) Nunber of vertices

0.0 8
-1. 220 16 4- Nom nal point
-2.323 8

CPU-time (DEGC 20) for checking feasibility
and determning $ at the vertices: 73*9 sec

(c) Values of f(d,9) for individual vertices

f(d,9) Vertex nunber v
0.0 4-7, 12-15
-1.22 0-3, 8-11, 20-23, 28-31

-2.323 16-19, 24-27
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