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ABSTRACT

The potential benefits of using a canonical model for representing the shapes of solid objects has

led to the design and implementation of a number of geometric modelers. A variety erf approaches

have been used in different modelers, with varying capabilities. This paper generalizes and unifies

these approaches by defining the semantics of geometric modeling as semantic integrity constraints.

Different methods for representing semantic integrity constraints are reviewed and the solid shape

modeling systems that use them identified. The result is a unified view of existing solid shape

modeling systems that identifies their similarities and differences with regard to semantic integrity.

1 INTRODUCTION

In many fields of technology, practical applications often precede generalizing theories. Mr. Watt

built his steam engine before the laws of thermodynamics were formally expressed. In computing

sciences, languages was developed* before the logical structure of languages were dearly

formulated. While one may produce good solutions to many problems by judgment or intuition alone,

a theory serves to both help produce better solutions than before and to provide a conceptual

framework within which one can better understand and extend the implications of various choices.

In the past few years, a number of systems have been implemented and papers written about the

computer representation of solid shapes. The common objective of these efforts is to organize

information inside a computer so that it correctly represents a solid shape and to provide a set of

operations that allow modification of the shape, eg. its transformation into another solid shape. The

shape information is then available for use in a variety of applications. The techniques for doing this
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have generally been given the name geometric modeling. These systems and the papers that

describe them present alternative approaches which have much, in common, but are distinct in many

aspects. Two surveys have attempted to classify and relate the various results [21,(18].

No geometric modeler yet devised is completely general1; each is restrictive at least-according to

the types of surfaces by which the shape can be bounded. But if shape modifying operations are to

be applied iteratively, then the set of shapes allowed as input and generated as output must be

consistently defined in order to avoid errors. The mathematical properties of a consistent

representation and especially certain manipulation operations have been defined [19],[20] and are

generally referred to as the geometric modeling well-formedness conditions. These efforts

reformulate and refine the conditions for volume enclosing solids defined in topology and homology

theory [7], [8].

This mathematical treatment of well-formedness, however, has no direct correspondence in the

implementations of geometric modeling systems. That is, there is no means to directly verify that the

well-formedness conditions have been correctly implemented, because of the form in which the

conditions have been expressed. This paper presents the constituent requirements of geometric

modeling, as defined by the well-formedness conditions, in an alternative form that allows them to be

related to methods of computer implementation. To do so, we rely on the notion of semantic integrity

constraints. Semantic integrity constraints (or just integrity constraints) can be used to make

assertions about programs or the states of programs, in order that they may be verified {3]. The ADA

language, for example, incorporates facilities for defining integrity constraints for this purpose [21].

Integrity constraints are also proposed as a tool in database design, as a weans^ta embed rules

regarding the combination of meaningful values allowed within a database [10]. Methods for defining

and managing integrity constraints have been incorporated into several database management

systems.

Our purpose is similar to that of program verification; we wish to define the properties of a shape

that are "guaranteed to exist" in every object which is modeled; these conditions should be selected

so as to correspond to properties of real shapes that are to be represented. With the well-formedness

conditions defined as constraints, the techniques for applying constraints in a program can be

identified and related to the implementations of geometric modelers attempted thus far. This

approach allows comparison of various geometric modeling efforts in terms of their treatment of

1This goal is assumed to be impossible.



integrity constraints. More generally, however, an abstract space that encompasses all current

geometric modelers is thus defined, allowing investigation of unexplored domains within it. In

addition, the paper explores the generality of the use of integrity constraints in geometric modeling.

2 WELL-FORMEDNESS CONDITIONS

In this section we present, in an informal manner, the well-formedness conditions that are known to

be necessary for shapes which enclose volume.

In geometric modeling, we are interested in the class of shapes that correspond to the shapes of

physical objects experienced in the real world. Generally, these objects are solid, though we

sometimes also wish to model the shapes of rooms and other spaces that have functions associated

with them. In these shapes, there is np ambiguity as to what points in space are inside or outside of

the shape. In other words, the shape partitions space into two disjoint domains, one inside and the

other outside, one bounded, the other infinite. In addition, the domains defined by a shape are

well-behaved, in the sense that each point is completely surrounded by material [19]. this requires

that all dimensions of the shape be finite, so that the spatial domain of interest is always the bounded

(or inside) one. One last concern is that we are usually interested in shapes that are connected, eg.

there is a path within the bounded domain between any two points inside the shape.

2.1 DEFINITIONS

(figure 1 about here) '

is considered in its usual eudidian form as an infinite pomt set, contiguous in the three

dimensions of X .Y .Z .

A point is a location in space defined bv three values for pCY.Z] .

A ailfacfi is a set of points contiguous in two (not necessarily Euclidean) dimensions. An edoe is a

set of points contiguous in one (not necessarily Euclidean) dimension. A vertex is a bounding point of

an edge2. The critical property of a surface is that it may be completely triangulated, by which is

meant that it may be partitioned into multiple areas, each bounded by three edges and the three

vertices that are the ends of the edges. Around any vertex are an adjacent set of triangles for which

2Sudaces are sometimes called simpKcai complexes ô



the edges opposite the vertex are called the link of the vertex. A surface satisfies the property that the

link around any vertex in a surface is either a polygon or polygonal arc3 [1 ].

2.2 WELL-FORMEDNESS

One requirement of a solid shape is that its bounding surface be closed. A closed surface is one

that can be triangulated so that

1. any two triangles are either:

• disjoint,

• have a vertex in common

• or have two vertices and their common edge in common.

That is, they do not intersect except at vertices or edges. Also, all edges are simple in the
sense that they have exactly two incident vertices.

2. all edges within a triangulated surface are connected; that is, there is a path of edges
connecting any two of them

3. for every vertex on the surface, its link is a simple closed polygon. This results in every
edge of a triangle being adjacent to exactly two triangles.

We call these the trianguiation, connectedness and link criteria respectively. They are all parts

of the more general closed surface criterion [8].

There are many forms of closed surfaces, only some of which enclose volume. A second necessary

property required to ensure that the surface encloses a volume is that it is orientable. A closed

surface is orientable if its triangles (resulting from an arbitrary trianguiation) can have their vertices

ordered consistently, eg. clockwise or counterclockwise, so that the vertex pair of each edge is

ordered twice, once from each vertex. This orientability condition is known as Mobius9 Law [14]. An

orientable surface partitions space into exactly two regions, one bounded and the other unbounded.

The orientability criterion allows unambiguous distinguishing of these two regions. Of course, the

bounded region is the enclosed one.

In order to not limit ourselves to shapes whose surfaces are comprised only of triangles, we need to

generalize the above family of shapes. Some subset of triangles, that pairwise share common edges,

3A polygon is a circuit of pKnG segments A t A 2 . A? A 3 , . . . , A Aj joining consecutive pairs of p points. A polygonal arc
is a connected subset of tine segments comprising a polygon.



can be combined. This combination is called a face. In usual practice a face is chosen to be that

subset of edge-sharing triangles that lie on a surface defined by a single equation or set of parametric

equations. All triangles belong to exactly one face. When triangulation is relaxed, then the

connected part of the closed criterion ((2) above) must be reformulated, as faces may wholely bound

other faces (see Figure 3). The connected criterion may be reformulated as: there is a path from one

face to any other face by crossing shared edges4.

2.3 CONSTRAINT DEFINITIONS

The above criteria can be described in the form of constraints. Those below are only one of several

different sets that are equivalent to these criteria.

1. Faces can intersect only at shared vertices or edges (derived from the triangulation
requirement).

2. A path must exist between any two faces on a shape, where the path is defined by
crossing edges shared by two faces (derived from the connectedness requirement).

3. The link of every vertex is a polygon (derived from the link requirement). .

4. When the edges of each face are oriented consistently, eg. clockwise about a face, each
vertex pair comprising an edge is ordered twice, once in each direction (derived from the
orientability requirement).

5. No dimension or measurement of the shape may be infinite.

In the modeling of a shape, it is useful to distinguish the topology of a shape from its geometry.

The topology defines the-connectedness and structure of the boundary of a solid shape, as defined

by its constituent dements: faces, edges and vertices; the geometry defines the relative placement of

the boundary elements in some coordinate system. *

Of the above constraints, 2, 3 and 4 are strictly topological. That is, they can be evaluated by

examining the topology of the shape .model, if it is represented explicitly, without recourse to

examining its geometry. Constraint 1 requires evaluation of both the topology and geometry.

Constraint 5 is strictly geometrical.

This characterization docs not deal with shapes which have enclosed hollows, such as a pressure vessel.



3 REPRESENTATIONAL METHODS

Baer, Eastman et al [2], Requicha [18] and Wesley [23] present reviews of current methods for

geometric modeling. These papers mention at least six methods of representing the shape of a

three-dimensional body in a computer:

[a] Primitive instancing in which shapes are limited to families of similar shape. Each family

usually has a fixed topology and varies according to the relative placement of faces, edges and

vertices. Each shape is defined by a fixed list of parameters. For instance, the string [CYLIN, XQf YQf

ZQ, Xr Yr Zr R] can represent a right circular cylinder arbitrarily oriented in space, with the center

line extending from <XQt YQ, ZQ> to <X r Yr Z^ and a radius R. The string ['CONE', XQ, YQ, ZQI X,, Yr

Zr R] will, in a similar way, represent a right circular cone with base centre at <XQf YQ, ZQ> and vertex

at <X r Yv Z ^ . Note that if <X r Yv Z,> = <X2, Y2, ZJ then the format will not define a 3-D shape. At

least two primitive instances have been defined with a variable topology. The first is the extrusion, an

N-sided base and similar N-sided top, the base and top connected with N rectangles. The second is

the pyramid, consisting of an N-sided base and vertex top connected by N triangles. In primitive

instancing, the name of the shape specifies the topology or class of topologies created. The variable

topologies are specified by an additional single cardinal parameter. The dimensions i.e. the

geometry, are specified as parameters also.

<figure 2 about here>

Primitive instancing relies on explicit definitions of the topology or class of topologies created but

these definitions may vary from implementation to Implementation. For example, a right cylinder in

one implementation may have only one face for its barrel (two opposite edges of the face are joined)

and in another implementation it may have multiple faces (for example, that break the barrel into

quadrants). See Figure 2. Similarly, primitive instancing explicitly defines the dimensions for the

geometry of the shape being created. The definition should include the domain of dimensions, or

subrange, allowed (eg. are negative dimensions allowed?). Some dimensions or combination of

dimensions for a primitive instance may lead to violation of the triangulation or orientability

requirements. Some languages permit the definition of data types with subranges.

In this method of representation, all well-formedness conditions are embedded in the procedures

that operate on the shape definition specified. Several different means may be used to guarantee that

the well-formedness conditions are met. These will be discussed in Section 4.1 and 4.2.



(b) Spatial occupancy enumeration is another representation method. In it, space is partitioned

into a tessellation of cells. Each cell is specified by an index; there is usually a simple mapping from

the index to the spatial location of the cell5. A shape is a set of cells. This representation can specify

any general shape, provided the element-size is small enough to give good resolution.

Interpretation of spatial occupancy enumeration consists of logically combining cells of similar

occupancy. Spatial occupancy enumeration imposes its own topology on all shapes being described.

It is difficult to define rules for consistently mapping into this topology and interpreting it. For

example, after representing a polyhedron with a skewed face, how should its bounding edges and

vertices be located? Within the topology imposed, constraint 1 is guaranteed by the the structure

used; 3 and 4 are managed by the procedures interpreting the representation. Constraints 2 and 5

must be guaranteed by the procedure writing into the representation.

Because of the difficulty in consistently interpreting the surface topology in spatial occupancy

enumeration, it is not suitable for graphic interpretation; it may be useful for calculating spatial

pr&perties and for spatial conflict testing.

(c) Octree representation in which a cubic volume enclosing the shape is split into eight octants

[12]. Each octant if completely full or empty, is so marked and is then a terminal node on a tree, else

the octant is split into eight and so on recursively until a full or empty octant is reached, or until a cell

of size equal to the resolution of the model is reached.

This method is similar to spatial occupancy enumeration, but uses less memory due to the

aggregation of cells together. Constraints 1 and 5 are managed as for spatial occupancy

enumeration. This method can be used for graphic display [4J.

(d) Cell decomposition, which is a more general case of (b) above, in that different primitive

shapes and with varying sizes can be specified. In general, two primitive shapes can be related in one

of five relations; they are disjoint if they have no points in common; they are subjoint if all the points in

one shape are common with the other shape (but not vice versa); they are tangent if the shapes only

share points along their boundary; thay are conjoint if they share some points but not all, and they are

coincident if all points in both shapes are common with the other. In cell decomposition, primitive

shapes may be tangent or subjoint. A cell is defined as a type with its dimensions and locations,

for example, mapping first into a three-dimensional array, then scaling from the array into the coordinates of the proposed
shape.



represented by some method such as (a) above. An arbitrary shape can be represented only if it can

be made by "sticking together" or "cutting out" cells of the given collection of possible shapes. The

greater the number of shapes, the more general the representation.

Interpretation of a model based on cell decomposition involves aggregating the properties of the

primitive shapes. Similarly to spatial occupancy enumeration, the topological well-formedness

constraints are embedded in these procedures. The triangulation requirement is guaranteed by the

shape definition procedures that prohibit more than one solid or more than one void from jointly

occupying points not in their bounding surfaces.

<figure 3 about here>

(e) Constructive solid geometry, (CSG) can be thought of as a generalization of cell

decomposition in that in addition to tangent and subjoint relations between two primitives, conjoint

relations are also allowed. This generalization allows definition of the spatial set operations of

negation, union, intersection and differencing. An example is given in Figure 3. The geometric

feasibility of the shape is ensured by guaranteeing valid representations for each primitive solid, and

by ensuring that the set operations do not introduce infeasible faces or other artifacts. Note that each

primitive solid has to be represented somehow, as* in (a) above. Constraint 1 is guaranteed by the

structure of the primitive solids and by the operators that derive the locations of new edges and

vertices resulting from the combining of shapes. Constraints 2 ,3 ,4 and 5 also must be guaranteed by

the manner of derivation of the primitive solids and by the operators that combine them.

(f) Boundary representation is a method in which sufficient information about the surface

boundaries is given to construct the shape. There are various collections of boundary information

that may be used, the only requirement being that the information be sufficient to define all bodies in

the class represented. Suitable representations are:

1. face and edge based structure:

• 3 space coordinates of each vertex

• a double <vertex 1, vertex 2> specifying which vertices are connected by an edge
(and possibly the parameters defining the space surve of the edge)

• an n-tuple specifying which n edges form a loop

• an m-tuple specifying which m loops form a face and the parametric representation
of the face surface; this is demonstrated in Figure 4 for the box of Figure 1

<f igure 4 about here> -
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2. loop based structure:

• 3 space coordinates of each vertex

• an n-tuple specifying which n vertices form a loop

• an m-tuple specifying which m loops form a face and the parameters that define the
surface of the face

3. edge based structure (for planar faces):

• 3 space coordinates of each vertex

• for each edge, a list of 6 vertices. There are the 2 vertices at the ends of the edge,
and another 4 "nearest neighbour" edges found by tracing along the two faces
which meet at that edge. This is known as the "winged-edge" representation, and
is demonstrated in Figure 5 for the box shown in Figure 1.

<figure 5 about here>

Other combinations of information are also possible.

In boundary representations, the data structures can represent the topology isomorphicalty; that is,

there can be a one-to-one correspondence between the data structure and each face, edge and

vertex. In the isomorphic representations, the operators that create or modify the data structure are

responsible for the topotogicaJ constraints (in contrast to the other representations, in which the

constraints must be embedded in the operations that read the internal data). The triangulation

constraint requires that a check be made that no faces intersect other than pcarwiseatong edges or at

vertices. In the non-tsomorphic boundary representations, the interpreting procedures must evaluate

the topologtcal constraints.

Boundary representations may be initially defined by a user in various ways in addition to those

above, such as (a), (e) or (g). In addition, a special set of operators, called the Euler operators, have

been developed that allow definition of a topology or combined topology and geometry incrementally

[6]. These operators allow for the partitioning the face of a sphere topology6 or for gluing together

matching faces of a shape to make new shapes of higher genus. The Euler operators can guarantee

conditions 2,3 and 4 by proper management of the data structures involved. Conditions 1 and 5 must

be evaluated by checking the geometry with the topology.

A sphere topology is made up of a single face which can be thought of as being shaped by a baMoon face so as to be
bounded by a single vertex.



(g) Half space equation representation, in which each face is represented by the parameters of

its equation and an orientation. The equations are the equations of a plane, or cylinder, or cone, or

spline surface, etc., as required. The locations of vertices and definitions of edges are computed

from the intersections of the surfaces. -Because various combinations of intersections are possible

(for non-convex shapes), a sequential ordering of surface combinations is required. This ordering

allows derivation of the topology from constraint 1. Like CSG. the resulting topology must conform to

constraints 2, 3 and 4. Constraint 5 is guaranteed by the constructing operations and also the

primitive surface types.

3.1 THE RELATION OF METHODS TO GEOMETRIC MODELING SYSTEMS

Geometric modelers with any degree of general capability have the ability to define primitive

elements (shapes, surfaces or topological entities) and to compose them. This usually requires a

combination of methods. For example, the GLIDE geometric modeling package relies on methods (e)

and (f) [6],[13]. PADL relies on methods (a), (e) and (f) [22]. Synthavision seems to rely on methods

(a) and (e) [9].

Correspondingly, the well-formedness constraints are managed in each geometric modeler by

several methods. These methods must be verified to be both complete and consistent in

combination. The structures used to manage the integration of methods are reviewed in Sec. 6.

4 IMPLEMENTATION OF CONSTRAINTS

While constraints may characterize conditions of many sorts, their treatmemkrgeometeria modeling

systems provides a means of classifying geometric modelers.

Different geometric modeling methods impose the well-formedness and shape family constraints in

different ways. Usually these are imposed in a manner that is implicitly defined by the representation

method used.

4.1 TOPOLOGICAL CONSTRAINTS

Modeling efforts of any type may impose integrity constraints in either of two phases of the

modeling process: when defining the model (writing it) or when interpreting the data (reading it).

There are no other options.

There is only one means known to the authors to enforce topological constraints during definition
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of a shape model. If the data structure has an isomorphic mapping to the topology of a shape, then

the operations defining the model can enforce the topological constraints. Isomorphism must exist

regarding the properties of the topology of a well-formed shape with properties of the model data

structure. For example, the topological construction operations can guarantee that the link of a

vertex is a polygon. Because of the needed property of isomorphism, only the boundary

representation is capable of evaluating topological constraints while the model is being defined.

If isomorphism does not exist, then the operators that interpret the shape model must do so in a

manner that satisfies topological constraints. Most representations involve many primitive shapes,

each with their own explicit or implicit topology. Interpretation of the modeled shape involves the

aggregation of the individual shape models. If the allowed combinations are only along shared faces,

(this is a usual restriction that is both imposed by the representation and also consistent with the need

to create vertex structures with polygon links), then this relationship defines the topology combining

operation required during interpretation.

Most geometric modelers rely on a set of primitive shapes, defined by primitive instancing (method

(a)). For each primitive, there is a corresponding simple fixed topology or topology class. The fixed

topologies are usually pre-defined in order to reduce the computation required when instancing the

primitive. (Some geometric modelers do not allow creation of a new shape primitive topology.) Those

primitives that rely on a topology class, such as the extrusion, must compute their topologies as they

are needed. But as hew instances of shapes are created, a check can be made to see if that class of

topology has already been constructed, in which case it can be used again. For example, in some

GLIDE applications, a table is kept of extrusion topologies made. If a desired topology structure

matches an existing one, it will be used again rather than recomputing it

The half-space representation combines surfaces sequentially so as to result in a well-defined

topology. This combining operation must guarantee that the resulting information is consistent with

topological constraints.

It should be noted that many properties of a shape model are not affected by the topological

wen-formedness constraints. Areas and mass properties can be derived from many shape models

without certain topological considerations (and thus without requiring complete well-formedness).
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4.2 GEOMETRICAL CONSTRAINTS

Different methods may be used for implementing geometrical constraints. Constraint 5 is usually

imposed through the definition of primitives or surfaces used in defining the shape. Explicit testing is

not required. For constraint 1, a check must be made that the values defining the geometry are

consistent with the topology. In those modelers where the topology is computed from geometrical

information, then this consistency is guaranteed by the derivation process. In the boundary

representation, which represents the topology, consistency of the geometry and topology must be

explicitly checked.

4.2.1 CONSTRAINTS ON SHAPE CLASSES

the geometry of a shape is restricted not only to be well-formed, but also to depict a certain class

of shapes. The reason for constraining the shapes to such a class is in order to: (1) simplify their

input specification so as to require only the minimal or non-redundant specifications for the shape

class, and (2) to simplify the construction of the shape models. As an example, a right cylinder cannot

include shapes with unequal racfii along the axis. This reduces the parameters required to define the

shape and associates the shape defining process with appropriate mathematical techniques (such as

conies). In this section, we identify different means by which the set of possible shapes may be

constrained to subsets of the wen-formed set

<figure 6 about here>

We rely on the boundary representation in the development of this example. The data structure

shown in Rgure 4, as it stands, wffl represent any hexahedron, whether welt-formed or not The set of

shapes to be characterized can be defined by applying constraints to the three nested sets shown in

Figure a These sets are noted by super scripts, and correspond to:

1. vertices on the same face

2. opposite faces

3. a closed body

If we consider the class of hexahedral shapes, in a scale from less constrained to more constrained,

then we can order them as follows, each with the set of constraints that defines them:

(a) a self-intersecting (impossible) shape: (no constraints)

(b) a non-self-intersecting hexahedron: (no points exist within one face that also falls within

another face, except along edges or vertices (constraint 1)).
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(c) a plane hexadron, without self-intersecting faces: (within each of .the 6 face sets, unique

parameter values of a, b, c and d exist to satisfy the equation

ax + by + cz • d = 0

(d) a plane hexahedron with parallel faces: (add the constraint that for each of the three sets of

opposite faces, the radio of the parameter a from one face to the parameter a in the other face i$ equal

to the ratios of b and c for the two faces.)

(e) a box with all right angle corners: (note that any one vertex is included in just three sets. If we

call the set of those 3 sets the intersecting set, 8 intersecting sets exist. For each of those intersecting

sets, add the constraint that

a i a i * b i b j • c i c j = °

(f) a cube with allskies having the same dimensions: (add the constraint that for each of the three

disjoint pairs of the six sets, the differences in d / t e , 2 • bf • c ; 2 ) 1 / 2 are equal.)

Other representations than the nested sets in Figure 4 could be used to express the above set of

constraints. However, the sets of constraints would have the properties of being additive and would

demonstrate the same overall point: that the constraints defining classes of shapes are extensions to

the constraints required by geometric well-formedness-

4.2.2 METHODS FOR CONSTRAINING SHAPE GEOMETRY

Methods for imposing these constraints upon input include:

1. restrict the degrees of freedom allowed on the geometrical dimensioning of the shape
class. In our example of the constraint set which sequentially restricts the allowed
shapes of an hexahedron, the degrees of freedom are:

• (a) = infinite (three for each surface point)

• (b) » infinite (same except for pair wise inequality constraint)

• (c) « 18 (6 sets of face coefficients, the d values being redundant)

• (d) = 9 (one coefficient and two ratios, each for 3 face sets)

• (e) = 3 (3 distances)

• (f) = 1 (1 distance)
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Both (a) and (b) do not incorporate any representation scheme for defining the surface
points (as in (c)), thus allowing each surface point to be defined independently. These
restrictions on the degrees of freedom may be implemented as procedures triggered
when coordinate values are assigned to vertices in Figure 4, or directly into the data
structure by limiting the cardinality of values stored and using pointers to the common
values [5] and/or by restricting the number of parameters the user may specify. This is
shown in Figure 7.

2. In addition to restricting the degrees of freedom, it is also sometimes necessary to rely on
a process that checks values on input and only assigns them if they satisfy constraints.
This means of imposing constraints is managed by the parsing process and has been
used in database management systems as a means to impose semantic integrity
constraints [10].

3. allow any assignment, then test if the assignment is correct when evaluating it. This is
essentially the process of generate-and-test, a weak problem-solving method in that the
computational requirements are greater than necessary.

The first two methods of constraint imposition on the geometry apply during the definition of a

shape model; the last one applies during interpretation.

The means of implementing geometric constraints in a geometric modeler are largely hidden from a

user, they are embedded in the coding. It appears that most rely on restrictions on the degrees of

freedom to implicitly define classes of shapes. This is clearly the case in primitive instancing. There

may be important reasons, however, for making the constraints explicit. They precisely define the

class of shapes that must be dealt with by operators on ttie shape. They also specify the conditions to

which any combination of input must be restricted (for example, when the thickness of a shape is

zero). Thus they serve the purpose of assertions that can be used ta verify the code produced [3].

<figure7abouthere>

The capabilities of the seven representation methods to maintan 3-D shape consistency are

summarized in Table 1.

5 SOME CONSIDERATION IN SELECTING INTEGRITY
MANAGEMENT SCHEMES FOR GEOMETRIC MODELING

In the structures described, well-formedness requires both that the primitive shapes be well-formed

and that each of the structuring operations propagate the well-formedness conditions and/or

guarantee the well-formedness for any new combination of shapes. This combining process may be

done during the input and storing of the shape information (writing) or during its interpretation

(reading). ' • .
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Table 1

Capability of different representation Methods
*

to maintain consistency

METHOD 3-D FEASIBILITY
GUARANTEED

BY

Data
Structure

Procedures

SHAPE
GUARANTEED

BY
Data Procedures

Structure

Primitive
Instancing

Spatial
Occupancy
Enumeration

Octtree
Encoding

Cell
Decompo-
sition

CSG

Boundary
Represen-
tation

Half Space
Represen-
tation

NO

NO

NO

YES (1)

YES (2) NO

YES (2) NO

YES (4)

YES (4)

YES and/or YES

NO YES

YES

NO

NO

YES

POSSIBLY (3) YES

NO

NO

YES (4)

YES (4)

YES and/or YES

NO YES

Notes: 1. The format does not in itself guarantee that the body is
feasible, e.g., the vertex of a cone may be in the base plane.

2. Assuming unconnected bodies are allowed.

3. Using a fixed tree structure is possible but it is unlikely
in practice.

4. Assuming each primitive body is guaranteeed consistent.
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At one extreme is the combining of information only during interpretation. This is the approach

followed by Synthevision, for example [9]. Synthevision computes the surface orientations and

location and shape properties by a sampling method, passing "rays" through the combination of

shape primitives at uniform intervals. Ray passing is done during interpretation and it integrates the

separate definitions of the shape primitives.

An intermediate approach relies on some processing of the combined shape information upon

input and further processing at interpretation time. This approach is used in TIPS, developed by

Okino's group at Hokkaido University [17]. TIPS maps the parametrically defined solids defined in the

input into a three-dimensional . The array cells can be pre-processed to determine the proportion

filled for deriving mass properties. For drawings or sections, the array is used to access relevent

parametrical solids in each region of the final shape. Thus the mapping into the array and the

computation of mass properties is done once, probably at entry; the drawing information is generated

when it is needed, during interpretation.

At the other end of the range are modelers using the boundary representation. Here, inputs are

combined into a structure tsomorphic to the topology, in which case the combining operators take full

responsibility for the topology well-formedness constraints. The geometric constraints also are

checked as the geometry is entered or modified. Thus there is no checking during interpretation.

In CAD, it is usually the goal to use the geometric model to integrate several applications. That is,

the information is entered once, then read several times. This ratio of use identifies an advantage to

modeling schemes that check well-formedness during definition (as versus during interpretation).

The methods that require checking during interpretation can reduce unnecessary checking by

imposing an interpretation at various points during design and hence checking the well-formedness

of the model once only prior to actual interpretations. If there are no later writes, then later

interpretations need not check again. For a geometric modeler supporting continuous design

development, this approach still imposes serious overhead, because the scope of checking during

interpretation is not matched to the operations of entry; global checks are often required. This

suggests that there is an inherent advantage to modeling schemes that check well-formedness

constraints when data is entered into the model, such as boundary representations, and hence do not

need checking later.
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6 COMPLEX SHAPES AND ASSEMBLIES

There is recent interest in extending the concept of well-formedness beyond single shapes, to

assemblies. In assemblies, the well-formedness constraints are defined by the functional

requirements of the assembly [5,16].. These well-formedness conditions can be approached in a

similar manner to well-formedness, but with the addition of a new class of constraints.

In the modeling of single shapes, well-formedness relied on only two types of constraints:

topological and geometrical constraints. In assemblies, in addition to these two, there is a third type

of constraint that relates the position of the two shapes together, that is, there are location constraints

[5]. in a complementary manner, topological constraints have only a minor role in well-formedness at

the level of assemblies.

<ftgure 8 about here>

<figure9abouthere>

As an example. Figure 8 shows an assembly made up of two of the shapes of Figure 3 and a plate.

Similarly to the representation of shapes, the representation of assemblies relies on a hierarchical

structure.

Constructive solid geometry (CSG) represents a shape as a n-level tree. Conceptually, the shape is

broken into sub-shapes, then sub-sub-shapes and so on until the level of primitive solids is reached.

The partitioning is non-unique (see Figure 9) and corresponds to the reverse of the spatial set

operation. The primitive solids at the bottom of the hierarchy are represented by an appropriate

structure for evaluating the constraints. Relations between sub-shapes at level H7 and the feasibility

of each level i is preserved by the spatial set operators, which generate the higher level shapes from

the lower level ones.

<figure 10 about here>

The representation of assemblies relies on a hierarchical structure similar to the representation of

shapes. An example is shown "in Figure 10. In an assembly, when a constraint relation is stated at

some level in the structure, it gives rise to constraints at the lower levels. The lower level constraints

can be thought of as a more detailed relation of the higher level constraint. For instance, for the

The levels in the hierarchy are numbered from the most aggregate to the most detailed.
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assembly of Figure 3, if one specifies that the two horizontal holes be collinear, each level below in

the hierarchy will have an appropriate constraint Depending on the levels of hierarchy chosen these

could include the constraints (see Figure 10):

• At the level of the complex shape, the horizontal holes of B1 must be collinear with the
horizontal holes of B2

• At the level of a simple shape, the horizontal hole of P, of B1 must be collinear with the
horizontal hole of P* of B2

• At the level of faces,

• the central normal to the end face of Ct of P1 of B1 must be collinear with the central
normal to the end lace of (^ of P1 of Br or

• At the level of vertices, the center vertices of the two plane faces of Ct of Px of Bt must be
collinear with the center vertices of Ct of Pt of B2.

In the above example, if the assembly were directly defined as boundaries, in a 1-level hierarchic

definition, then only the last two mentioned constraint would be applicable. At each level the

constraint is specified so as to apply to the information at that level.

Similar to the definition of well-formedness of shape classes, constraints can define conditions that

an assembly must meet Wheras the conditions defining a shape class are to facilitate shape defining,

the constraints associated with an assembly are generally defined by its function. Like shape families,

these constraints define the conditions that must be respected by operations that manipulate an

assembly, unless the constraints are explicitly varied.

7 CONCLUSIONS

We have formulated the well-formedness conditions of geometric modeling as integrity constraints.

This allows them to be related to the implementation of geometric modelers and opens the door to

verifying the correctness of modelers, a capability not currently possible.

It has also been shown that a useful characteristic of constraint management in geometric

modeling is whether the constraints are managed during entry or during interpretation. This

distinction is important because of the different ratios of reads to writes in CAD systems. We believe

that well-formedness checking at entry is to be preferred for interactive systems.

<figure 11 about here>
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Representation of shapes and assemblies can be viewed as a multi- level hierarchic data structure,

with integrity constraints imposed at various levels. Certain constraints apply at particular levels,

depending on the representation. The whole structure can be conceptually seen as being in three

different general classes (Figure 11). The upper levels contain data relating, from the top down,

assemblies to sub-assemblies, eventually sub-sub .... sub-assemblies to complex shapes, complex

shapes to sub-shapes, and sub-sub...sub-shapes to simple shapes. The next class of levels contains

topological information, or information about which vertices are related to which edges, loops or

faces. Constraint relations in this class of levels define the shape of the object without giving vertex

assignments. The lowest class of levels contains full geometric information, in that face, edge or

vertex location assignments are made.

The structure can be data-driven, that is, with shape information implicit in the structure, in which

case the structure relies on a data structure tsomorphic to the structure of the shape topology. An

alternative is a procedure- driven structure, when the shape information is contained in constraint

relations that operate (during reading or writing) on different parts of the structure.
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FIG. 1 A SIMPLE BOX SHAPE USED TO ILLUSTRATE
THE CONCEPTS.

FIG. 2 DIFFERENT TOPOLOGIES FOR THE SAME BODY.
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FIG. 3 A COMPLEX BODY MADE UP OF 4 SIMPLE BODIES.

The operators shown are addition and substraction.

Union, intersection and symmetric difference are

other possible operators.
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FIG. 9a. AS FIG. 3 BUT IN A 3-LEVEL HIERARCHY.
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= IG. 8 AN ASSEMBLY AS A HIERARCHY OF BODIES WITH
CONSTRAINT RELATIONS BETWEEN THEM....* * FIG

J. 9b AS FIG. 3, BUT AS A MULTIPLE LEVEL BINARY TREE.
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Constraint relations are shown in broken lines.
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