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1. Abstract

The execution time for simulating an ISP description can be improved a maximum of 5 to 20

percent when the ALU portion of the simulator is implemented in hardware. Factors which affect the

degree of improvement are the level of abstraction of the model, the complexity of the ISP description,

and programming style. Two hardware implementations are examined in detail. The first is based on

the AMD2900 family of bit slice microprocessors and the second is based on a VLSI microprocessor

chip designed at Carnegie Mellon University specifically for the Register Transfer Machine (RTM).



2. Introduction

ISPS is a hardware description language in which a large class of computers and other digital

systems can be described. ISPS has its origin in the Instruction Set Processor (ISP) notation [Bell and

Newell 71] and is oriented toward the description of digital computers.

Simulation of ISPS descriptions has a variety of applications. First, it would be particularly

useful in the hardware design phase of a digital computer. If the target machine could be simulated,

problems associated with its design could be uncovered and corrected before construction begins,

thus saving time and money. Second, insight into new architectures could be gained without the

expense of construction. Third, software could be developed and tested for the target machine

before a machine is actually available.

To date, work at Carnegie Mellon University has focused on the design and development of a

Register Transfer Machine (RTM), specifically designed to simulate ISP descriptions [Barbacci 81].

This machine is currently implemented entirely in software [Barbacci 80a]. There are certain

problems, however, with such an implementation. This software implementation is slow because it

adds an extra level of interpretation for each ISPS instruction. Small programs can be satisfactorily

simulated, but programs of moderate size take a long time to execute. For example, a program

running on a simulation of a microprocessor such as the Intel 8080 would take about five thousand

times longer than it would on the real machine. And for simulations of larger machines, the execution

speed ratio becomes even greater. It would take about ten thousand times longer for the same

program to run on a simulation of a PDP11 as opposed to the real machine [Barbacci 82].

In an effort to reduce the inefficiency inherent in the simulator, a project was recently

undertaken at Carnegie Mellon University whose goal is to implement an ISP emulator in hardware.

The project is divided into two parts: the ALU and the rest of the machine. The ALU includes all

functions necessary to execute the arithmetic and logical instructions of the RTM while the rest of the

machine supplies the user with the capability to interactively monitor the behavior of the target

machine.



The intent of this project is to evaluate the issues involved in the ALU portion of a machine that

executes the code generated from ISPS descriptions. First, the software simulator will be examined

to determine where most of its time is spent and what the potential speedups are that could be

realized from a hardware ALU implementation. This analysis consists of two parts. The first is a

determination of the percentage of Arithmetic/Logic operations that are executed by the RTM. The

second is a determination of the amount of time it takes to execute the various RTM operations.

Second, features peculiar to the RTM ALU will be discussed as well as algorithms for

implementing these features. The ALU can perform arithmetic in either two's complement, one's

complement, signed magnitude or unsigned magnitude number systems. It can perform alignment of

operands and extract fields from within a larger field. In addition, the ALU can operate on operands

of any word length.

Third, two implementations for the hardware ALU are studied. They are as follows: one based

on the AMD2900 family of bit slice microprocessors and one based on a VLSI microprocessor chip

designed at Carnegie Mellon University specifically for the RTM.



3. Simulating ISP Descriptions

ISPS is a hardware description language and can be used to describe virtually any computer.

The ability to simulate a target machine once it has been described in ISPS greatly enhances the

usefulness of the language as a design tool. Such a facility has been developed at Carnegie Mellon

University and has been given the name, "the ISPS simulator".

The simulator provides the user with the capability to interactively monitor the behavior of a

target machine. This is extremely useful in debugging both the hardware and software of the target

machine. For example, the user can instruct the simulator to set break points at key statements in the

target machine program and halt the simulation in order to examine various target machine

parameters (i.e., register contents, memory contents). The ISPS simulator manual contains complete

user oriented documentation for the simulator features [Barbacci 80a].

The simulator is currently implemented in software. Versions in several different languages and

for several different machines exist and other versions are being developed at this time. The heart of

the simulator is the Register Transfer Machine (RTM). (The specifics of the RTM will be described in

later sections.) ISP descriptions are translated into code for the RTM and are linked to the code

which interprets the RTM. Figure 3-1 shows the steps taken by a user performing a simulation. First,

the architecture of the target machine is described in ISPS. The description is then compiled and

translated into various tables containing the information from the ISP description. The tables, known

as Global Data Base tables (GDB), are organized by the compiler in such a manner that the

information they contain regarding the target machine is easily accessible to the simulator. The final

step before the simulator is ready to run is to link the target machine tables to the simulator code.
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Figu re 3-1 : Sequence of Steps Necessary to Perform a Simulation

3.0.1 The GDB Tables

The information for simulating an arbitrary machine is contained in the GDB tables. These

tables are generated during the ISPS compilation sequence previously described and contain target

machine dependent RTM code. The GDB is composed primarily of two tables: the symbol table and

the statement table.

The symbol table contains information regarding each entity declared in the ISPS description.



Examples of valid declaration types are register, memory, procedure, label, constant, etc. The bit

count (length in bits) and word count (number of words) are stored in the symbol table for those

entities for which this information is meaningful (i.e., register, memory, constant).

The statement table contains an entry for each RTM operation generated from the ISPS

description. There is a field in each entry for the opcode of the RTM instruction as well as fields for

pointing to entries in the symbol table which corresponds to the two source operands and the one

destination operand.

3.1 The RTM

The RTM employs three addresses and is designed specifically for simulating ISP descriptions.

The instruction set of the RTM can be divided into three general categories: data movement;

arithmetic/logical; and control. Figure 3-2 shows the instructions that fit into each of these

classifications.

3.1.1 Data Movement

This grouping includes all instructions which move data from one place to another. This

includes such instructions as MOVE, READ and WRITE. Also included are instructions that transform

the information contained in one or more data words to a new data word. Examples of instructions of

this type are the following: CONCATENATE, COUNTONE, FIRSTONE, LASTONE and MKMASK. The

CONCATENATE instruction connects the two source operands as shown in Figure 3-3. The bit length

of the destination is the sum of the lengths of the two sources. The result of a COUNTONE operation

is the number of bits in the source operand that is set to a 1. Similarly, FIRSTONE and LASTONE find

the bit position within the source operand where either the first or last one is found. MKMASK

generates a mask in the destination based on the values of the two source operands. A detailed

description of these and other instructions is found in [Barbacci 81].
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Figure 3-2: Classification of the RTM Instructions
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Figure 3-3: The Concatenate Instruction

3.1.2 Arithmetic/Logical

Instructions which fall into this category are those which control the ALU. Examples of such

instructions are ADD, SUBTRACT, MULTIPLY and DIVIDE. In addition, logical operations such as

OR, AND, XOR as well as instructions which compare two operands (EQU LEQ, etc.) would be

included in this group. There is also a rich set of instructions for shifting and rotating data.

There is a one-to-one correspondence between the RTM Arithmetic/Logical instructions and

the Arithmetic/Logical operations permitted in an ISPS description. All instructions in this group can

be specified in any of four numbering systems: two's complement, one's complement, signed

magnitude and unsigned.

3.1.3 Control Instructions

Instructions that affect the sequence of RTM execution belong in the control category.

Examples of these are: IF, BRANCH, CALL, START, RESUME, etc.



3.2 Implementation Issues

There are several features of the RTM which should be noted because they are peculiar to this

machine.

1. The capability to perform arithmetic and logical operations in four number systems (two's
complement, one's complement, signed magnitude and unsigned).

2. Operands can be of any length. The same operation can have operands each of which is
a different length.

3. Alignment/field extraction. The operands can be anywhere within the host memory word
or even across word boundaries. See Appendix A for further explanation.

The RTM is currently implemented entirely in software. This implementation deals with the first

issue of doing arithmetic in any of four number systems with separate high level language subroutines

for each arithmetic instruction for each number system.

The software RTty has both a fast and a slow execution sequence for each instruction. If the

semantics of Bliss coincide with the semantics of the RTM operation, then the fast sequence will

execute. Otherwise, the simulator must do extra housekeeping associated with the operation. For

example, if the operands are smaller than 36 bits (the word size of the PDP 10 on which the simulator

is implemented), then the fast sequence will execute for some RTM operations. However, if the

operands are larger than 36 bits, then the simulator must perform the operation on more data words

while keeping track of things (such as the carry bit across word boundaries in an add operation), thus

slowing down the execution speed for that instruction. Figure 3-4 shows the Bliss code for executing

either the fast or slow sequence for the RTM CONCATENATE instruction. The slow sequence is

contained in a separate subroutine.

The operands for the various RTM operations are packed in the PDP 10 memory so that they

take up a minimum amount of memory space. For this reason, it is not unusual to find operands

which lie across word boundaries. Also, ISPS allows the declaring of entities within other entities.

Thus the RTM must be able to extract fields from within larger fields. This is a very common operation

of the RTM since most instructions involve packed operands.
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%conc% BEGIN

IF fast

THEN mpdest[mpsize-1]«- (.mpsrd[mpsize-1] • 12) OR .mpsrc2[mpsize-1]

ELSE mpconc(mpdest<0,0>fmpsrc1<0,0>,11 tmpsrc2<0,0>,12);

tallvbop

END;

Figu re 3-4: Bliss Code for Executing Either the Fast or Slow Sequence
for the RTM CONCATENATE Instruction
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4. Analysis of the Software Simulator

A detailed analysis of the software simulator is necessary to determine what performance gain

(if any) can be acquired by implementation of the arithmetic/logical portion of the simulator's

instruction set in hardware, assuming the rest of the simulator is eventually implemented in hardware.

There are several questions of particular interest in this analysis. Where does the simulator

spend its time? What percentage of the time is it executing instructions from the Arithmetic/Logical

group? How long does it take to execute the various RTM instructions? What is the penalty for doing

RTM operations on long operands (greater than 36 bits)? And, finally, how often are long operands

encountered?

4.1 Static and Dynamic Instruction Frequency Data

Instruction usage data was very useful in this analysis. By knowing how often the various RTM

operations are actually used and how long it takes to execute each particular RTM operation, insight

is gained into the potential advantage of a hardware ALU.

Data was collected for this analysis in two different ways:

1. a static instruction frequency count

2. a dynamic instruction frequency count

The static count is obtained by analyzing the statement table of the RTM files for the machine

under study. The dynamic count is obtained by counting instructions as they are executed by the

RTM. The motivation for performing both a static and a dynamic frequency count is that their results

tend to complement each other. The static analysis by itself looks at all features of the target machine

but fails to realize that most programs use certain features of a target machine more than others. On

the other hand, the dynamic analysis looks at the features of the target machine that are used in the

benchmark programs but overlooks those that are not. By analyzing the data collected with both

methods, more can be learned about the potential speed up of the simulator with a hardware ALU.
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Several shortcomings of this analysis should be noted at the outset. The results of either the

static or the dynamic count experiments are highly influenced by the target machine, the ISPS

description of the target machine, and the benchmark program for the target machine. The static

analysis was performed on the ISPS descriptions in the CMU-A ISP library. Although the library

contains descriptions for a cross section of machines, from bit-slice microprocessors (AMD2901) to

large computers (IBM 360), it is far from exhaustive as to the types of machines that could be

described in ISPS. Also, it is possible to describe the same machine with two or more different ISP

descriptions. However, it is the best approximation until more complete data becomes available.

The same problem exists for the dynamic instruction frequency count experiments. The scope

of data to be collected here is even greater than for the static case since the results of a single

experiment are also dependent on the benchmark program that the experimenter chooses. For the

dynamic instruction frequency count, some benchmark programs were taken from the library on the

CMU-A and others were written by the experimenter.

The instruction usage data from the static analysis is summarized in Table 4-1. The data for this

analysis was derived from the ISP descriptions of fourteen different machines, consisting of a total of

approximately 2300 lines of ISPS code. Each machine was analyzed separately (Table 4-2). Table

4-3 summarizes the statistics from this analysis.

The dynamic analysis is described in detail in a CMU technical report by Benjamin Atlas [Atlas

82]. Table 4-4 summarizes the results presented in that report

4.1.1 Predicting the Percentage of ALU Instructions

4.1.1.1 Level of Abstraction of Modeling the Target Machine

Several factors influence the percentage of ALU operations contained in the RTM code

generated from ISP descriptions. The first one is the level at which the description models the target

machine (i.e., level of abstraction of the model) [Northcutt 82]. Examples of level of abstractions

would be the gate level, the register transfer level, instruction set level, etc. [Bell and Newell 71].
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MACHINE

TOTAL TOTAL
OPERATOR OPERAND IMPLEMENTATION
USAGE (N1) USAGE (N2) LENGTH N1/N2

%
ALU
OPS

1) BDX900

2) AM2910dn

3) AM2901

4) HP21MX

5) AM2910lb

6) CDC 6600

7) PDP8

8) PDP11/70

9) INTEL 8080

10) MARK1

11) MC6502

12) AYK14

13) IBM/370

14) ECLIPSE

841

424

382

867

344

2261

255

3316

888

65

1020

4103

4412

4511

1435

386

469

1141

178

3749

233

3717

741

40

783

4165

5262

5015

2276

810

851

2008

522

6010

488

7033

1629

105

1903

8268

9674

9526

1.496

1.759

1.744

1.988

7.167

2.468

2.55

3.531

3.496

3.824

3.893

4.455

4.070

5.999

23

22

20

20

5

14

13

10

10

9

9

8

8

6

Table 4 - 1 : Implementation Lengths of Various Models: Static Analysis

Machine

HP21MX
MC6502
ECLIPSE
IBM370
INTEL 8080
BDX900
AM29101b
AM2910dn
PDP8
PDP11/70
AYK14
CDC6600
MARK1
AM2901

Tota l Operator
Usage

867
1020
4511
4412
888
841
344
424
255

3316
4103
2261

65
382

Data
Movement

(X)

28.7
21.9
35.7
35.5
20.0
33.8
13.7
14.6
20.4
36.4
31.1
43.5
10.8
28.0

ALU/
Logical

(X)

19.2
9.0
5.9
8.3

10.1
23.1

4.9
22.2
13.7
10.0

7.8
14.5
9.2

20.7

Control
(X)

52.0
69.0
58.4
56.2
69.8
43.2
81.4
63.2
65.9
53.6
61.1
42.1
80.0
51.3

Table 4-2: Operator Usage-Static Analysis
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database:

2300 lines of ISP code, comprising 14 ISP descriptions

Target Machine Models at the Models at the Percentage of
Descriptions Microcode Level ISP Level ALII Operations

1
2
3
4
5
6
7
8
9
10
11
12
13
14

B0X900
AM2901dn
AM2901
HP21MX
AM29101b
CDC 6600
PDP8
PDP11/70
INTEL 8080
MARK1
MC6502
AYK14
IBM/370
ECLIPSE

X
X
X
X
X

X
X
X
X
X
X
X
X
X

23
22
20
20
5
14
13
10
10
9
9
8
8
6

Summary of statistical analysis for
the above machines

mean

standard
deviation

variance

All

12

6

35

Models

.64

.15

.09

Models at
Microcode

21.25

1.5

1.6

the
Level

Models
ISP

9

2

5

at the
Level

.67

.5

Table 4-3: Statistics of the Static Analysis

The descriptions studied for this analysis modeled target machines at one of two levels: the

register transfer level (microcode) and the instruction set level (ISP). Table 4-3 separates the data

into groups according to the level of abstraction of the model and shows the statistics for each group.
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TARGET
MACHINE

PDP11/70

PDP11/70

PDP11/70

PDP11/70

PDP11/70

PDP11/70

INTEL 8080

PROGRAM
DESCRIPTION I

DEC diagnostic for
branch instructions

DEC diagnostic for
unary instructions

DEC diagnostic for
floating point
instructions

DEC diagnostic for
floating point
instructions

DEC diagnostic for
floating point
instructions

DATA
MOVEMENT
(percent)

25

26

30

30

29

DEC diagnostic for 26
arithmetic instructions

matrix multiplication 21.4

ALU7
LOGICAL
(percent)

8.2

9.4

10

10

9.6

9.9

15.1

CONTROL
(percent)

65.5

63

58

59

60

63

63.4

Table 4-4: Summary of the Dynamic Instruction Usage Analysis

An inspection of the various descriptions reveals that machines modeled at the ISP level do not

model the interpretation of the target machine instructions in line with the decoding of the

instructions, but rather call subroutines to do the interpretation. The more levels of indirection in the

interpretation cycle, the more overhead is incurred in terms of transferring control from one

subroutine to another. An examination of Table 4-2 will verify this argument This table shows that

the machines modeled at the ISP level (see Table 4-3) also have a larger percentage of control

instructions, indicating a larger use of subroutines in the descriptions. When there is a larger

percentage of control instructions, the percentage of ALU instructions naturally drops. An

examination of the descriptions modeled at the ISP level of abstraction shows fewer levels of

indirection in the instruction interpretation cycle for those machines with the higher percentage of

ALU instructions.
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4.1.1.2 Measuring ISP Complexity

The various ISP descriptions were classified according to their complexities. The goal of this

portion of the analysis was to relate the percentage of ALU operations in the RTM code to the

complexity of the ISP description of the target machine. One measure of complexity (which is the one

chosen for analysis) is the implementation length (N) of the description. The basis for the validity of

this measure is described in Elements of Software Science by Maurice Halstead [Halstead 77].

Halstead defines implementation length as:

N = Hx + N2

where:
N = implementation length

Hx = t o t a l usage of a l l operators appearing in
tha t implementation

N2 = t o t a l usage of a l l operands appearing in
tha t implementation

Table 4-1 shows the implementation lengths for the various ISP descriptions studied in this

analysis. Figure 4-1 describes the relationship between implementation length and the percentage of

ALU operations in the RTM code for the target machine.

Each point on the plot in Rgure 4-1 represents one of the machines analyzed in the static

instruction frequency usage experiments of Table 4-1. In Table 4-1, the machines are numbered 1

through 14. These numbers are used to encode the various machines in the plot of Figure 4-1. A

circle around a point indicates data derived from the dynamic analysis. When more than one dynamic

instruction usage observation was available, the point furthest from the statically derived data was

plotted. An arrow indicates the difference between the two measurements, thereby giving an

indication as to the range in percentage of ALU operations encountered for a particular model.
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20

Per-
cent 15

ALU

Ops 10—1—

MICROCODE LEVEL

DESCRIPTIONS

20-
Per-
cent 15-
ALU

Ops 10-

4 6 8 10
Implementation Length

ISP LEVEL

DESCRIPTIONS

.13

14

4 6 8 10
Implementation Length

Machine

1 BDX900
2 AM2910dn
3 AM2901
4 HP21MX
5 AM2910lb

ALU
Ops

23
22
20
20

5

Length

2276
810
851
2008
522

12

Machine

6 CDC 6600
7 PDP8
8 POP11/70
9 INTEL 8080

10 MARK1
11 MC6502
12 AYK14
13 IBM/370
14 ECLIPSE

ALU
Ops

14
13
10
10
9
9
8
8
6

Length

6010
488
7033
1629
105
1903
8268
9674
9526

F(x) = .29(.OO1) [length] + 11.1

R**2 = 20.6%

12

Figu re 4 - 1 : Relationship between Implementation Length of the Target Machine

Description and the Percentage of Generated ALU RTM Operations
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4.1.1.3 Programming Style

The two different descriptions for the AM2910 (points 2 and 5 in Figure 4-1) demonstrate the

affects description style have on the static count of the percentage of ALU operations. The higher

percentage of ALU operations for point 2 is due to the description stating ALU operations common to

all selections of a decode explicitly rather than stating them before decode as in description 5

[Northcutt 82]. This is verified in table 4-2 by noting that the additional operations for the AM2910dn

over the AM2910lb are arithmetic/logical operations and associated overhead. It should be noted

that the difference in percentage of ALU operations generated by these two ISP descriptions lies at

the extremes for the data collected.

The dynamic instruction usage analysis reveals a different result. Both descriptions for the

AM2910 executed approximately the same percentage of arithmetic/logical operations. This can be

explained by the above argument The code that was factored out and stated before the decode in

description AM2901lb is executed before the decoding of each instruction. The AM2910dn executes

similar code during the interpretation of each machine instruction. Appendix B contains portions of

the two ISP descriptions and points out differences in styles.

4.1.2 Timing

How much time does it take to execute the various RTM instructions with the current software

implementation? This information, combined with the instruction usage analysis, is necessary to

evaluate the potential speedup for a particular ISP description.

Execution speed data for several instructions from each category of the RTM instruction set

were taken. Multiplying the relative execution speed of the ALU operations (with respect to the other

instruction categories) by the relative frequency usage of the ALU operations gives the expected

speedup.

The methodology and collection of the data for the timing analysis is described in a CMU

technical report by Benjamin Atlas [Atlas 82]. Table 4-5 shows the execution speed for various RTM
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operations. The table shows a large difference in execution speed for performing certain ALU

operations over others. For example, two's complement and sign magnitude addition take

approximately six times longer to execute than do other operations in the table. Table 4-6 shows the

frequency of use of those ALU instructions having the higher execution speeds.

OPCODE MNEMONIC SLOW SPEED FAST SPEED DIFFERENCE

44

60

61

62

65

101

111

141

161

162

171

172

176

SRO

NOT

AND

OR

XOR

2CAD0

EQL2C

SMADD

USADD

USSUB

USEQL

USNEQ

USGTR

60 to 120 depending on
number of shifts

40

40

50

40

230

220 to

40

40

40

. 40

10

10

20

10

200

20

320 depending on
signs

10

20

10

10

10

30

30

30

30

30

30

30

30

Table 4-5: Execution Speed of RTM Operations-all times in microseconds

A dynamic timing analysis shows a strong relationship between the percentage of instructions

executed from each category of RTM operations and the percentage of time spent by the simulator

executing the instructions from that catagory. Table 4-7 demonstrates this assertion and is typical of

the data derived from the dynamic timing analysts. The test program for this case was a crossection

of twenty instructions from the Intel 8080 instruction set.
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Machine

HP21MX
MC6502
ECLIPSE
IBM/370
INTEL 8080
BDX900
AM29101b
AM2901dn
PDP8
PDP11/70
AYK14
COC6600
MARK1
AM2901

Frequency of Instructions
With High Execution Times (percent)

2.5
4.3

.19

.1
4.2

13.6
0

.26
5.1

.63
1.6
0
5.1
0

Table 4-6: Frequency of Use for ALU Operations with High Execution
Speed

DYNAMIC
MEASUREMENT
(8080 TEST
PROGRAM)

STATIC
MEASUREMENT
(8080 RTM
TABLES)

PERCENTAGE OF

TOTAL INSTRUCTIONS

ARITHMETIC LOGICAL

6

6

9

4

PERCENTAGE OF TOTAL

EXECUTION TIME

ARITHMETIC LOGICAL

6 4

Table 4-7: Relationship between the static and dynamic instruction
frequency usage and the percentage of total execution time spent

by the simulator performing RTM ALU operations

Table 4-5 gives the execution speed for RTM instructions operating on both long and short
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operands whenever data was available. A long operand is one that is larger than 36 bits (the word

size of the PDP 10 on which the simulator analysis was performed), and a short operand is one that is

less than 36 bits. The table indicates an execution speed penalty of approximately 30 microseconds

for doing arithmetic/logical RTM operations on long words with the exception of shift operations.

The penalty for these operations varies according to the number of shifts. Data was collected to

determine the relative frequency of performing ALU operations on long operands versus short

operands. Both static and dynamic operand bit length frequency counts were taken. The data for the

static count was collected as follows. The symbol table of the GDB for each description was scanned.

The bit length for each entry was entered into an array. Then the statement table was scanned. Each

time an operand was pointed to as a source or destination for an ALU operation, a counter associated

with the operand was incremented. The counters for all operands having the same bit length were

added. Figure 4-2 summarizes the results of this analysis with a histogram of the operand word

length. The histogram, which is a composite of all descriptions studied, shows that most operands

are less than 32-36 bits long. An examination of the tables together with an analysis of the dynamic

operand length provides additional insight as to the effects of operand size on ALU performance.

With the exception of the CDC 6600, descriptions studied were for machines with word lengths

of 36 bits or less. Although the histogram of Figure 4-2 shows a significant number of long operands,

in many cases, the ALU RTM instructions are actually working on subfields of these operands and

these subfields are smaller than 36 bits. This was demonstrated in the dynamic frequency analysis

using the description for the PDP11/70 on the CMU-A ISP library as an example. A benchmark

program was written [Atlas 82] with floating point instructions which referenced long operands.

However, for the 3,746 ALU RTM operations that were executed, only 44 of them or 1.2 percent

operated on long operands.

A benchmark program was also written for the CDC6600 (60 bit length machine) containing

only ALU operations [Atlas 82]. Counting the number of RTM ALU operations on long operands while

executing this program on the simulator should give some indication as to the worst case frequency

of encountering them.
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NUMBER OF
TIMES USED

3500

3000

2500

2000

1500

1000

500

HISTOGRAM OF OPERAND WORD LENGTHS

(STATIC MEASUREMENTS)

n n n n r-i n
1-4 5-8 9-12 13-16 17-20 21-24 25-28 29-32 33-36 37-48 49-60 61-80 81-144

OPERAND BIT LENGTH

Figu re 4-2: Histogram of Long vs. Short Operands-Static Measurement

The results show a relatively small percentage of long operands (1 -2 percent). This is explained

by the fact that there is an overhead associated with the execution of each target machine instruction

in terms of additional RTM operations. These extra operations are necessary for houskeeping

functions of the RTM. Because additional operations are on short operands, they minimize the

relative frequencies of encountering long versus short operands.
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This analysis shows that a hardware ALU word size of 32-36 bits would be sufficient since the

worst case frequency of encountering larger operands is small. Furthermore, this analysis indicates

that the ALU operations account for about 5-20 percent of the total execution time-the maximum

potential speedup of a hardware ALL).
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5. Hardware Implementations for the ALU

The hardware implementation for the simulator can be divided into two modules: the host and

the ALU. Figure 5-1 shows how the two modules fit together.

5.1 The Host

The host computer sequences through the RTM code as it interprets the statement table of the

GDB. The host also takes care of all overhead associated with the simulation of the target machine.

This includes operations such as the operator interface, setting breakpoints and monitoring the

execution of RTM code.

5.2 The ALU

The ALU executes the RTM instructions. It performs arithmetic, logical, shifting and other

operations on data from the host The results of the operations are sent back to the host

As shown in Figure 5-1, the ALU can be divided into two modules: the data path portion and the

control portion. The control portion receives instructions from the host and coordinates the activity of

the data path portion. All communication of status and control information between the host and the

ALU is via the control portion, and all data is transferred between the host and ALU via the data path

portion.

5.2.1 Specifications for the ALU

5.2.1.1 Inputs

Inputs to the ALU are instructions and data. The instructions contain the opcode of the RTM

operation to be executed. The length (number of bits) as well as the bit offset within the host memory

word of each operand is included as part of the instruction.
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SYSTEM BUS
A

V

A

V

MICROINSTRUCTION

CONDITION CODE

RESULTS

Figure 5-1: The ALU

5.2.1.2 Outputs

There are two outputs from the ALU which are returned to the host computer the results of the

RTM operation and processor status information.

5.2.1.3 Functions

The ALU will emulate RTM instructions from the Arithmetic/Logical instruction category

discussed in Section a 1.2. The instruction set includes operations from several number systems:

one's complement, two's complement, signed magnitude and unsigned. The operands can be any

specified length.
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5.2.2 Variable V/ord Length

One of two problems can occur when manipulating data with an arbitrary word length on a fixed

word length ALU. The first case is when the data word is smaller than the word size of the ALU. This

situation can be dealt with by right justification and sign extension of the data. The other situation is

when the operand is larger than the ALU word size. In this case, the data operation must be done in

steps with intermediate parameters peculiar to the operation (i.e., carry, borrow, etc.) saved between

steps. An ALU slice is the width of the data path of the ALU. The control portion of the ALU can keep

track of how many ALU slices to fetch for each operand, as well as other housekeeping data.

5.2.3 Alignment/Field Extraction

The host will pass the ALU the necessary information to extract fields from within larger data

words and perform alignment of operands. The information required is as follows:

• the bit offset of the field within the larger word

• the length of the field

An algorithm for doing alignment is shown in Figure 5-2. The algorithm will right justify the operand

and zero out the unused high order bits.

5.2.4 Arithmetic Operations in Four Number Systems

Arithmetic is done with full adders with the proper correction terms added depending on the

particular number system of the RTM instruction. Figure 5-3 show examples of algorithms for

performing addition and subtraction with full adders in two's complement, one's complement, signed

magnitude and unsigned number systems.

5.2.5 Implementations

Two hardware implementations for the ALU were analyzed. The first is based on the Advanced

Micro Devices AMD2900 family of bit slice microprocessors, and the second is based on a

microprocessor chip designed at Carnegie Mellon University.
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GIVEN:
the length of the operand in bits (Length)
the bit offset of the operand with the word (BitofO
the ALU slice width in bits (ALUSUCE)

N = 1

shift the operand to the right bitoff times

mask off to the left erf (ALUSLICE - Bitoff)

shift left
(ALUSUCE - Bitoff)

times, shifting in
zero's

Logical OR operand
with operand*

N * (ALUSLICE - Bitoff) < Length

Read in the next
word (operand)

N « N • 1

Figu re 5-2: An Algorithm for Doing Alignment and Reid Extraction
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SIGN and MAGNITUDE

Subtraction:
—change the sign of the b operand and proceed as for addition

Addition:
—exclusive OR the signs of the two operands

IF FALSE (0)
—then ADD the two operands and give the sign of either

ELSE
— INVERT the b operand and add the two operands (except

the sign bit)
--check for carry out of MSB

IF TRUE
—then ADD 1 to the LSB of the sum
—the sign is that of the a operand

ELSE
—then ADD 1 to the LSB of the sum
—the sign is that of the b operand

TWO'S COMPLEMENT

Addition:
—the a operand is added to the b operand (including sign bit)

Subtraction:
—the b operand is inverted and added to the a operand

(including sign bit)
—a 1 is added to the least significant bit of the sum

ONE'S COMPLEMENT

Addition:
—the a operand is added to the b operand (including sign bi t )
—a 1 is added to the LSB of the sum if a carry out of the sign

bit occurs

Subtraction:
—the b operand is inverted and added to the a operand
—a 1 is added to the LSB of the sum if a carry out of the sign

bit occurs

Figure 5-3: Algorithms for Addition and Subtraction in Four Number Systems



29

5.2.5.1 AMD2900 Bit Slice

Figure 5-4 shows a block diagram of the four bitwide data path of the AM2901 [AMD 81].

Several 2901's can be connected together in series to provide an ALU slice width of any multiple of

four bits. The AMD Microprocessor Logic and Interface Data Book [AMD 81] and Bit Slice

Microprocessor Design [Mick and Brick 80] describe the 2900 family of chips in detail and give

numerous examples of how to use them.

Figure 5-5 gives the microcode for the RTM OR instruction and the number of machine cycles it

would take to execute for the block diagram of Figure 5-6.

5.2.5.2 VLSI

A second implementation is based on a microprocessor chip designed in-house specifically for

the RTM instruction set. Because the chip is non-standard and very little documentation exists, it will

be described in detail.

The name of the chip is P.mbs which stands for Processor.multiple byte slice. The layout for

P.mbs was performed by two Carnegie Mellon University Electrical Engineering students, William

Birmingham and Jamie Saulnier. Production and testing of the chip is planned. P.mbs is a

microprogrammed arithmetic logic unit and is designed to be the ALU data path portion of an ISP

RTM. Figure 5-7 shows the data paths and functional blocks of P.mbs. It is a bit slice machine where

each slice is 8 bits wide. Slices can be cascaded to form an ALU of any size multiple of 8 bits (1 byte).

Timing

The chip is docked with two phases per machine cycle. During the first phase, data is moved

onto the buses and latched at their various destinations where they will be worked on during phase

two. The chip can be clocked at a rate of 1.96 MHZ [Birmingham 82]. The clocking rate is limited in

clock phase two by the ALU module.

The Buses
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RAM SHIFT

<->RAM0 RAM3

CLOCK

'A1 READ

ADDRESS

READ/WRITE
ADDRESS

B DATA IN

'A' ADDRESS

RAM

16 ADDRESSABLE
REGISTERS

'B' ADDRESS

•A' 'B'
DATA DATA
OUT OUT

CP

DIRECT •

DATA IN

CARRY IN

i LOGIC
•0'

D A B

ALU DATA SOURCE

SELECTOR

t
S

8 FUNCTION ALU

LIN !

-> Q
-> p

F3(SIGN)

OVERFLOW
FaOOOO

Q SHIFT

Q REGISTER

CP

OUTPUT

ENABLE

A F
DUTPUT DATA SELECTOR

DATA OUT

Figu re 5-4: The AM2901 4-bit Microprocessor Slice [AMD 81 ]

P.mbs has two buses through which data can be transferred among the various elements of the

chip. Sources for the A bus are the I/O latch, output latch of the shifter/masker, the RAM A port and

the output latch of the ALU. The B bus can select from all of the same sources as the A bus with the

exception of the output latch of the ALU.
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1

11

12

13

31

MICROINSTRUCTION

• s h i f t operand A <b i to f f> times
<bitoffa>=4 for th is example
( t h i s operation takes 1 micro-
cycle for each s h i f t )

• load mask for f i e l d extract ion
of operand into RAM

•load mask for f i e l d extract ion
of operand b into RAM

• s h i f t operand b <bi tof fb> times
<bitoffb>=4 for th is example
( t h i s operation takes 1 micro-
cycle for each s h i f t

•mask o f f 4 b i t f i e l d of operand
a by ANDing mask with operand a

•mask o f f 4 b i t f i e l d of operand
b by ANDing mask with operand b

•OR operand a and operand b

COMMENT

al ign operand a

al ign operand b

perform f i e l d
extract ion for
operand a

perform f i e l d
extract ion for
operand b

Figu re 5-5: Microinstruction Sequence for Implementing the RTM
OR Instruction on the AM2901 for Operands Less Than ALUSLICE Bits

Wide

The I /O Latch

The I/O latch allows the data pins for the chip to be bidirectional. The two bit opcode for

controlling the latch allows the programmer to select the A bus or the data pins for the latch or to put

the contents of the latch onto the chip's data pins.

The Shifter/Masker

Data is latched into the shifter from either the A bus or B bus during clock phase one. The

shifter is an eight bit barrel shifter capable of shifting up to eight bits across chip boundaries. Data is

shifted from the most significant bit (MSB) to the least significant bit (LSB). Data for the shifter from

outside the chip is from the higher order slice via the eight bit shifter port. Before performing a shift in

which data is being shifted across chip boundaries, the data in the shifter must be put onto the chip's
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START
ADDRESS CLOCK DATA IN

AM2910
MICROPROGRAM

SEQUENCER

ADDRESS

MICROPROGRAM

STORE
OUT

(ROM/PROM)

A/B

28-40 BITS

REGISTER

V V

CPU

AM290VS

C
N
V
Z

STATUS

w OUT

TOOTHER

DEVICES

Figure 5-6: Implementation of an ALU Built around the AM2901 [AMD 81]

data I/O pins so that they are available to the lower order chip's shifter port. The masker performs a

logical AND with the shifter output and a specified mask.

ALU

The ALU performs one of five arithmetic/logical functions as specified by an opcode. The five

functions are as follows: AND, OR, XOR, ADD WITH CARRY and INVERT. Data come from the A bus

and/or the B bus. Four flags indicate the status of the previous result and can be useful for

implementing a mechanism for conditional branching. These are N (negative), C (carry), V (overflow)

and Z (zero). Results can be placed on the A bus.

Carry generate and carry propagate signals are produced so that full carry lookahead can be

implemented across chip boundaries.
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SCRATCHPAD

RAM

(8 BIT BY
16 WORD)

OFF CHIP SIGNALS

BBUS

BBUS

A BUS

Figure 5-7: P.mbs Functional Block Diagram

RAM

A sixteen word by eight bit RAM is provided to buffer intermediate results. RAM is two ported.

Any cell can be accessed for reading or writing at the same time: one by the A bus and the other by

the B bus.
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5.2.5.3 Programming P.mbs for the RTM Instruction Set

To gain some idea as to the performance of P.mbs with regard to the RTM instruction set,

several RTM instructions were microprogrammed. The sequence of events is similar for most of the

instructions.

• the source 1 operand is latched from the I/O pins to the I/O latch

• the A bus is loaded from the I/O latch; also the source 2 operand is now loaded into the
I/O latch

• the shifter is loaded from the A bus, the data is shifted and the source 1 operand is
masked; also the B bus is loaded with the source 2 operand from the I/O latch

• the shifter is loaded from the B bus, the data is shifted and the source 2 operand is
masked; also the ALU is loaded with the A operand

• the ALU is loaded with the B operand

• the arithmetic/logical operation is performed

• the results are written to the I/O pins through the I/O latch

Figure 5-8 shows the microinstructions necessary to add two operands in two's complement

when each of the operands is less than 32 bits.
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MACHINE
CYCLE INSTRUCTION COMMENT

1) IO.LAT <--IO.PINS READ OPERAND A FROM THE PINS
INTO THE CHIP

2) A. BUS <—IO.LAT LOAD THE A-BUS WITH OPERAND A

IO.LAT <--10.PINS READ OPERAND B INTO THE CHIP

SHIFT.MUX <—A.BUS LOAD THE SHIFTER WITH OPERAND A
FOR ALIGNMENT AND FIELD EXTRACTION

SHIFT<BITOFF(A)>PLACES
TO THE RIGHT BITOFF IS THE BIT OFFSET OF THE

WITHIN THE ALU SLICE

MASK OUT THE <BITOFF(A)>
MSB'S

3) B.BUS <—IO.LAT LOAD THE B-BUS WITH OPERAND B

A.BUS <--MASK.OUT LOAD OPERAND A FROM THE MASKER
TO THE A-BUS

SHIFT.MUX <--B.BUS LOAD THE SHIFTER WITH OPERAND B
FOR ALIGNMENT AND FIELD EXTRACTION

SHIFT<BITOFF(B)>PLACES
TO THE RIGHT BITOFF IS THE BIT OFFSET OF THE

FIELD WITHIN THE ALU SLICE

MASK OUT THE <BITOFF(B)>
MSB' S

ALUA <--A.BUS LOAD THE ALU WITH OPERAND A

4) B.BUS <--MASK.OUT PUT OPERAND B ONTO THE B-BUS

ALUB <--B.BUS AND LOAD INTO THE ALU

ADD, OR, AND, XOR PERFORM THE DESIRED OPERATION

5) A.BUS <—ALU.LAT PUT RESULT ON THE A-BUS

IO.LAT <—A.BUS AND INTO THE I/O LATCH

6) 10.PINS <—IO.LAT PUT THE RESULTS OF THE OPERATION
ONTO THE PINS

Figure 5-8: P.mbs: Microprogramming for Operands Less Than the ALU Slice Width
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6. Conclusions

6.1 Summary

This project presented an analysis of a software simulator in order to determine the advantages

of a hardware ALU. The results indicate that only a relatively small portion (5 to 20 percent) of the

RTM operations would be handled by a hardware ALU. Therefore, the advantage of converting only

the ALU portion of the simulator from software to hardware is minimal in terms of expected overall

performance improvement. However, when the rest of the ISP simulator is implemented in hardware,

the ALU portion should be converted to hardware because the percentage of time spent by the RTM

on arithmetic and logical operations would be considerably greater than 5 to 20 percent

Static and dynamic instruction usage data were evaluated in the analysis of the simulator. Data

collected by these methods showed a similar mix of RTM instructions and both were useful.

The AMD 2900 implementation does poorly when it comes to aligning operands and performing

field extractions. This is due to the fact that it can only shift one bit position per one microcycle.

Generating the proper mask for field extraction is also a nontrivial task eating up additional

microcycles. The VLSI implementation deals with these problems by providing an on-chip 8-bit barrel

shifter capable of shifting across chip boundaries and an on-chip masker which provides up to

sixteen masks. The layout for the VLSI implementation has been completed, and there are plans for

production and testing of the chip. The architecture for the chip has been verified by simulation with

ISP.

ALU operations account for approximately 5 to 20 percent of the total time spent by the

simulator. The VLSI chip could perform these operations 60 to 70 percent faster than the software

ALU implementation. However, two quantities have not been taken into account in this measurement

which may improve or detract from performance.
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On the one hand, the VLSI chip performs alignment and field extraction of operands. In the

software implementation, this function was performed by simulator code not included in the RTM.

Since alignment and field extraction are performed very often, including this function in the hardware

ALU will greatly improve total system performance.

But on the other hand, it takes additional time to load the system bus and feed the hardware

ALU data and instructions necessary for the RTM operation. This includes handshaking or other

methods for coordinating the data transfer. The transferring of data and instructions from the host to

the ALU would detract from the performance improvement of a hardware ALU.

6.2 Future Work

A number of questions relating to a hardware implementation of the RTM ALU has not been

touched on and thus require further investigation. First, the interface between the host and the ALU

should be defined. The interface consists of both hardware and software. The simulator should be

modified to present the ALU the opcode of the RTM instruction, the operands and the information

necessary to align the operands (i.e., the bit offset of the operand within the host memory word and

the bit count). The hardware interface consists of registers on the system bus (see 5-1). The ALU and

host could signal each other READY or BUSY by using bits in these registers.

A second area for investigation is an evaluation of the potential performance improvement if a

front-end barrel shifter and masker is added to do alignment and field extraction. This operation was

the major bottleneck in both the AMD2900 and the VLSI implementation.
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Appendix A. Alignment/Field Extraction of
Operands Across Word Boundaries

ISPS allows the declaration of operands across word boundaries of the target machine. These

operands can be anywhere within the host memory word or even across host memory word

boundaries as shown by the example below.

MB[0:maxb]<0:7>
MH[0:maxb]<0:15>{INCREMENT:2} :«

MB[0:maxb]<0:7>,
MW[0:maxb]90:31>{INCREMENT:4} :<

MB[0:maxb]<0:7>t
MDW[0:maxb]<0:63>{INCREMENT:8} :<

MB[0:raaxb]<0:7>,

1 Byte memory

t Half word memory

I Word memory

IDoubleword memory

PDP10

W0RD1

PDP10

WORD2

PDP10

WORD3
"MOW" "MOW"

PDP10

W0RD4

PDP10

WORDS
MOW

MW MW MW MW MV

MH MH MH fvfl MH MH MH MH

MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB

Figu re 6 - 1 : ISP of the IBM370 Virtual Memory Space and its Mapping onto
thePDPIO
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Appendix B. Example of the Effects of
Programming Style on the
Percentage of RTM ALU Operation
Generated

AM2910: =
begin

! ISPS description of AMD AM2910 microprogram sequencer.

! The AM2910 is a 12 bit microprogram address controller.
! The controller is designed to be used with the AM2901 or the AM2903
! microprocessor slice and external memory.

! Simulation of the AM2910 alone is possible, but emulation of any
! computer systems requires that this description be joined with
! the AM2901 or AM2903 description.

•Address.SourcaSe*ection-{us}

begin
IF ieq r2 => enable = map.;
IFieql"6 = > enable « vect;
IFCineqN2)andrineqN6) = > enable * pL;

fail = (not CCEN) and CC next ! EXPLICITLY STATED BEFORE
pass = not fail next I BEFORE THE DECODE

DECODE I «>
begin
w 0 :=J2 :« (Y= SP»O;FULL « 1),
"1 := CJS :» (IFfail =>(Y « uPC);

IFpass5=>(YsD;push.O)),
H2:s JMAP:= (Y = D),
H3:= CJP :* OFfaH =>(Y « uPQ;

IFpass=>{YsrD)) f
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! J. Duane Northcutt 8-5-81

! AM2910 Micro-sequencer

AM2910(OE.not.K>,a.iO,RLD.not.iOlCCEN.not.iO,CC.not.K>llnst.K3^)>,D.

BEGIN

! This is an ISPS description of AMD AM2910 microprogram sequencer.

••Macro.Definitions**

MACRO Enable: = |0|, ! Enable Active Low Outputs

MACRO HiZ : = TFFFFI, ' High impedence constant

MACRO Pass : = |CCEN.noti OR NOT(CC.noti)), ! MACRO DERNITION TO
MACRO Fail: = (NOT(CCEN.noti) AND CC.not.t|, ! BE INCLUDED INSIDE

I THE INTERPRETATION

! OF EACH INSTRUCTION

r

• Address.Source.Setectton* *{us}

BEGIN
DECODE (lnsti)=>

BEGIN

"O\JZ:= BEGIN

! • * . . • • • • • • • • • • • • • • • • • • • • • • • « • » . .

IF (Pass OR Fail) => ! INCLUSION OF THE MACRO

! * • • • • • • • • • • • • • • • • . . . . • . . . . •

BEGIN

NextAddr = a,

SP = 0;

Full.noto s 1

END;

PI. no to s Enable

END,
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