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. ABSTRACT

The weak methods occur pervasively in Al systems and may form the basic methods for all intelligent
systems. The purpose of this paper is to characterize the weak methods and to explain how and why they
arise in intelligent systems. We propose an organization, called a universal weak method, that provides
functionality of all the weak methods. A universal weak method is an organizational scheme for knowledge
that produces the appropriate scarch behavior given the available task-domain knowledge. We present a
problem solving architecture, called SOAR, in which we realize a universal weak mecthod. We then
demonstrate the universal weak method with a variety of weak methods on a set of tasks.

This research was spoasored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No.
3597, monitored by the Air Force Avionics Laboratory Under Contract F33515-78-C-1551. The views and
conclusions contained in this document are those of the authors and should not be interpreted as represcnting
the official policies, either expresscd or implied, of the Defense Advanced Research Projects Agency or the
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A UNIVERSAL WEAK METHOD*

A basc paradign in artificial intelligence (Al) isto sructure sysemsin termsof goal sand methods, wherea
goal represants the intention to attain some object or state of affairs, and a method specifics the behavior to
attain the dedred objectsor scales. Some methods, such as hill dimbing and means-ends analyss, occur
pervasvdy in exiging Al sygems- Such methods have been called weak methods, 1t hasbeen hypotheszed
that they form the basc methods for all [ntelligent systems (Newell, 1969). Further, it hasbeen hypotheszed
that they all are methods of sear ching probl'em gaces (Newd| & Smon, 1972; Newell, 1980a). '

Whatever the ultimate fate of these hypotheses, it is important to characterize the nature of wesk methods.
That is the purpose of this paper. We propose that die characterization does not lead, as expected
organization, with a collection of the wesk methods plus a method-sdlection mechanism. Instead, we propose
asingleorganization, called auniversal weak method, embedded within zproblem-solving architecture, that
respondsto a gtuation by behaving according to die weak method appropriate for the agent's knowledge of
thetask

- Section 1 introduces week methods as spedifications of behavior. Section 2 introduces szarch in problem
gpacesand reatesit to weak methods.” The conceptsin thesefirs two sectionsare familiar, but it is useful to
provide a coherent treatment as a foundation for die rest of the paper. Section 3 introduces a specific
problem-solving architecture, based on problem spaces and implemented. in a production system, that
provides an appropriate organizatio'n‘within which to realize week methods Section 4 defines a universal
weak method and its redlization within the problem-solving architecture.  Section S demondrates an
experimental verson of the ar chitecture and the universal weak method. Section 6 discusses die theory and
relatesit to other work in the fied. Sectioﬁ 7 concludes. '

'A brief repot of the m t e oTtimpaperm pfescntedatUCAI-83(17ir dANewcen.1983)L
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1. The Weak Methods
We stan by positing an agent with certain capabilitiesand structure. We are concerned ultimately with the
behavior of this agent in some environment and the extent to which this behavior isintelligent We introduce

goals and methods as ways of specifying the behavior of the agent We then concentrate on methods that can

be used when die agent haslittle knowledge of its énvironment, namely the weak methods.

1.1. Behavior specification . .
Let the agent be characterized by being, at any moment, in contact with a task environment (or task

domain), which is in some state, out of a set of possible states. The agent possesses a set of operatorsthat affect

the state of the environment The behavior of the agent during some period of time is the sequence of

operators that occur during that period, which induces a corresponding sequence of states of the environment
For the purposes of this paper, certain complexities can be left to one side: concurrent or asynchronous

operators, continuously acting operators, and autonomous behavior by the environment

The gructure of the agent can be decomposed into two parts, [C. Q]g where Q is the set of operatorsand C
is the control, die mechanism that determines which operator of Q will occur at each moment, depending on
the current environmental state and die past history. Additional structure isrequired for a general intelligent
agent,. namely, that it be a symbol system (Newell, 1980a), capable of universal computatibns on symbolic
representations. This permits, first of aH the creation of internal representations that can be proc&;sed to
control die selection of external operators. These internal representations can also be cast asbeing in a sate,
ouf of a set of possibleétat&g with operators that change states internally. It is normal in computer science not
to distinguish sharply between behavior in:an external tak environment and in an internal task environment, -

since they all pose the same problems of controL

Having a symbol system also pennies the control to be further decomposed into C = [I, S|, where Sis a
symbolic specificatipn of the behavior to be produced in the tak environment and / is an interpreter that
produces the behavior from S in conjunction with the operators and the state. It is natural to take Sto bea
program for the behavior of the agent However, neither the form nor the content of Sisgiven. In particular,
it should not be presumed to be limited to the constructs available from familiar programming languages:
sequences, conditionals, procedures, iterations and recursions, along with various naming and abstraction
mechanisms. Indeed, a basic scientific problem for Al is to discover how future behavior of an agent is

represented symbolically in that agent, so as to produce intelligent action.

A critical construct for specifying behavior is a goaL A goal is a symbolic expression that designates an
6bject or state of affairs that isto be attained. Like other control constructs it serves to guide behavior when it

occursin aspecification, 5, and is property so interpreted by /. Goal objects or situations can be specified by
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means of whatever descriptive mechanisms are available to the agent, and such descriptions may designate a
unique situatio_n or aclass ofsituations. A goal does not sate what beha_vior isto be used to attain the goal
~ situation. This part of the specification is factored cut and provided by other processes in the agent which
need not be known when thegoal iscreated. However, there must exist a selection process to deter mine what
behaviors win occur to attain the goaL The goal does not include the details of this selection process;
however, the goal may contain auxiliary information to aid the selection, such as the history of attempts to
attain the goalL

An Al method (hereafter,just a method) is simply a specification of behavior that includes goals along with
all die gandard programming-language constructs. The creation 6fasubgoal, as dictated by the method, is
often divor ced from the attempt to attain the subgoal Thisseparation givesriseto the familiar goal hierarchy,
whidx co_nsis;s of the lattice of subgoals and supergoals, and the agenda mechanism, which keeps track of
which subgoals to attempt. Goals, methods, and selection processes that link goals to methods provide the

standard repertoire for constructing current Al systems,?

1.2. The definition of aweak method

Methods, being an “hanapw”™nt of .programs, can be used for behaVioral specificatibns of all kinds.
Indeed, amajor objective ofthe high-tevd Al languages was to make it easy to create methods that depended
intricately upon knowledge of the specific task domain. We consider here die other extreme, namely,

methodsthat areextremely general:

A weak methodis an Al method (a specification ofbehawor using goalsand the control constructs
of programming languages) with the following two additional features:

L It makeslimited dTnamfr for"knowledge of the t&"v environment.

2. 1t providesa schema within which domain knowledge can be used.

Any method (indeed, any behavior specification) makes certain demands on the nature of the task
environment for the method to be carried out These can be called the operational demands. Take for
example the goal to find the deepest point of alake. One method is to use a heavy weight with a rope, and
keep moving die weight aslong asthe anc.hor goesdeeper. One operational demand of this method is that die
task environment must include a weight and a rope, and their availability must be known to the agent.
Additional effectiveness demandsalso can exist Even if the method can be performed (the anchor and rope

arethere and can be moved), die method may attain the goal only if other facts hold about the environment

zEll"'l'-l goal gructures have been with Al almost from the beglnnlng (Fogenbaum & Fddman. 1963); but did not become fully
Iltgﬂted with programming tangua" coiBttigB wntil the high-level Al kmguages of the earty 1970s (Hewitt, 1971; Rulifson, Derksen &
WakSnger. 1972V Because of theflcribificy of modem lisp systems, the practice remainsto coostnia ad hec goal systems. “er thaa
W -gmintegestedg] U | M " programming knguage (bowever see Kowaiski, 1979)
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(thelake does not have different deep areas with shallows between them).

The fewer the operational demands, the wider the range of environments to which a method can be
applied.® Thus, highly general methods make weak demands on the task environment, and they derive their
name from this feature. Presumably, however, the less that is specified about the task environment, the less
effective the method will be. Thus, in general methods that make weak demands provide correspondingly

weak performance, although die relationship is not invariable.

;rhe intrinsic character of problematical situations (situations requiring intelligence) is that the agent does
not know the aspects of the environment that are relevant to attaining the goal. Weak methods are exactly
those that are useful in such situations, because not much need be known about the environment to use thenu.
Weak methods occur under all conditions of impoverished knowledge. Even i_f_e;strong method is uIti_n;fai‘er
used, an initial method is required to gather the information about the environment required by the strong
method. Thisinitial method must use little knowledge of the environment, and therefore is a weak method

Thusthemajor question about weak methodsis not so much whether they exist, but their nature and variety.

Weak methods can use highly specific knowledge'ofthe domain, despite their being highly general. They
do this by requiring the domain knowledge to be used only for specific functions. For instance, if a weak
method uses an evaluation function, then this evaluation function can involve domain-specific knowledge,
and an indefinitely large amount of such knowledge. But the role of that knowledge is strongly proscribed
The evaluation function is used only to compare states and select die best. A weak method is in effect a
method schema that admits many inétantiations depending on the domain knowledge that is used for the

specific functions of the method.

1.3. The common weak methods
The two defining features of weak methods do not delineate sharply a subclass of methods. Rather, they
~describe die diameter of useflil methods that seem in fact to occur in both artificial-intelligence systems and
human problem solving. Figure 1-1 providesallist of common weak methods, giving for each a brief informal
definition. Consider the method of hill climbing (HQ. It posits that the system is located at a point in 'some
space and has a set of operator s that permi-t it to move to new pointsin the space. It also posits the existence
of an evaluation function. The-goal ié to find a point in the space that is the maximum of this evaluation .
function. The method itself consists of applying operators to the current point in the space to produce

adjacent points, finally selecting one point that is higher on die evaluation function and making it the new

3|'|'bete Smoreto it than this. e& » whether the knowledge demanded by the method is Gkety to be available to a problem sotver who
does not under stand thé environment.
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current point. Thisbehavior is repeated until there isno pomt that ishigher, and this final point is taken to
attainthegoal

Genarage snd tesit (GT). Generatecandidate sofaiboos and test each one; terminate when found

iac8M hat(HC).ToGi»dailia* Bxra point in s spmce, coasider the next mov« (operator) from a gwWai position and sek ~* coe that
ncresscist hei e,

Simple hill clmbisy (SBC). HBI dsnbing with sdlection of the fiist operator that advances.
Steepest asctthffldMiJBggAHO. Hffl dimbing with selection of the operator that makesthe largest advance.

ffamstkseardi<HS). To find an object in a space generated by operators movefrom the current position by considering the possble _ -
operationsand. sricctingan untried oneto apply: test new positionsto determineifthey areasolution. In any event, savethem ifih_ey.
could plausibly lead toward asolution; and choose (from the positionsthat have been saved) likely positionsfrom which to cootinuethe

L

M ean-cafeanalysis(MEAX Inaheuristicsearch, select thenext operator to reduce the differ ence between thecurrent position and
the desired positions(sofar asthey are known).

Dexlfexfirstsear ck(DFSy. Tofind an object in a spice generated by operator§, doaheuristic search but alwaysmo*efrom the - .
hput posizion that still hes ssme untried openon

' MS«di (BrFS). Tofind an object in aspace generated by operator!, doaheuristicsarcfa, but always movefrom the
lsmst-deep pugibon that sun hassomeuntried operators.

Best-fiat search (BFS). Tofind an object maspacegenerated by opcraton. doaheuristic search, but aiways movefrom aposition
thal ntfif "Zff Btfty y> %1 1ff a “biution and still has some untried operators.

Madifled best-flest seaucic(MBFS). Tofind an object in aspace generated. by operator's, doa best-first search, but oocea position is
sdeaed from which toadvance, try all theoperatorsat that position before selecting a new position.

A*« Modified bestrftnt search when itisdesired to find thegoal stateat the minimum depth from the starting position. -

Operater subgnaling (OSG)» |fan operator cannot be applied to a position,.then set up a subgoal of finding a position (starting from the
carremt position) at which the operator can beapplied,

Matck(MGT). Oven aform to be modified and completed so asto be identical to adesired object, then compare corresponding parts
of dieform aod objectand-modif;l/ the mismatching pansto make them equal (ifpossible).
_ Figure2*1: Somecommon wesk methods..

Theaoperational demands of this method are dictated directly from the prescribed computations. 1t must be
possbfeto: (1) represent adatein the space; (2) apply an operator to producea new state; and (3) compare
two adjjacent states to deter mine which ishigher on the evaluation function.* These demandsare all expressed
in terms of the agent's abilities; thus, the demands on the task environment are stated only indirectly. Itisa

‘nlmethod requiresartrifrioiral capabilities of the agent that do ot involve the enviroament, such as selecting operators.
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matter of analysis to etermine exactly what demands are being made. Thus, hill climbing normally occurs
with an explicidy given cvaluation ﬁmction, so that the comparison is donc by evaluating each state and
comparing the results. But all that is required is comparison between two states, not that an explicit value be
obtainable for cach state in isolation. Furthermore, this comparison need not be possible on all pairs of states,
but only on adjacent states, where one arises from the other by operator application. Each of these
considerations weakens the demands on the environment, while still permitting the method to be applied.

For hill climbing, the difference between operational demands and effectiveness demands is a familiar one.
The state with the absolute highest value will always be reached only if the space is unimodal; otherwise only
a local hill is climbed. which will yield the global optimum only if the method starts on the right hill. There
also exist demands on the environment for the efficiency of hill climbing which go beyond the question of
sheer success of method, such as lack of plateaus and ridges in the space. o

Hill chmbmg is defined in terms of general features of the task environment, namely the operators and the
evaiuation function. These reflect the domain structure. The method remains hill climbing, even if arbitrarily
large amounts of specific domain knowledge are embodied in the evaluation function. But such knowledge
only enters the method in a specific way. Even if the knowledge used in the evaluation function implies a way
to go directly to the top. of the hill, there is no way for such an inference to be detected and exploited.

Many variations of a weak method can exist. For example, hill climbing leaves open exactly which
operators will be applied and in which order (if the system is scrial); likewise, it does not specify which of the
resulting points will be chosen, except that it must be higher on the hill. In simple hill climbing (SHC) the
operators are generatcd and applied in an arbitrary order, with the first up-hill step being taken; in steepest
ascent hill climbing (SAHC), all the adjacent points are examined and the one that is highest is taken. Under
different environments one or the other of these will prove more efficient, although generally they will both
ultimately climb the same hill.

Subgoals enter into hill climbing only if the acts of selecting an operator, applying it or evaluating the resuit
are problematical and cannot be specified in a more definite way. More illustrative of the role of subgoaling
is the method of operaror subgoaling, which deliberately sets up the subgoal of finding a state in which the
given operator is applicable. This subgoal is to be solved by whatever total means are available to the agent,
which may include the creation of other subgoals. Operator subgoaling is only one possibility for setting up
subgoals, and perhaps it should not be'diétinguished as a method all by itsclf. However, in many Al
programs, operator subgoaling is the only form of subgoaling that occurs (Fikes, Hart & Nilsson, 1972;
Sacerdod, 1977). s
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1.4. Complex programs are composed of weak methods ) s

Theweak methodsin Figure 1-1 occur with great frequency in practice. Many others arc known, both for
Al sygems (e, iterative degpening in game playing programs), and for humans (e.g., the main method of
Palya, 1945). The weak methods appear to be a maingay of Al sygems (Newell 1969). That is, Al sysems
rely on week methods for their problem-solving power. Much behavior of these systems, of coursg is
specified in highly congrained ways, where die program exhibits limited and stereotyped behavior. The
primary exceptionsto this occur in modern Al expert sysems (Duda & Shortliffe, 1983), which rdy asmuch
aspossible on large amounts of encoded knbwledgeto avoid search. But even here many of them arebuilt-on‘
top of seerch methods, eg™® MYCIN.

Toprovidean indication of how an Al sysem can be viewed as a compaosition of weak methods, die GPS of
Newell & Smon (1963) can bedescribed asmeans-endsanalysisplusopérator subgpeding. Tocarry out these:
twowesk methods, othersarerequired: matchingisused to odmparethecurrent dateto thedesred one; and
generateandtestisusedto select an operator when adifferencedeterminesasubset of operators rather than a
uniqueone. Likewise, generatéandtest isused to sdlect goalstotry if apath fails (although thismechaniam is
noc usually taken to be part of the core of GPS). Given these weak methods, little additional spedfilwtioh is
required for GPS: die representationsand their associated data operations, the mechanisms for congructing
and maintaining , goal tree, a table of fixed asociations between differences and operators, and a fixed
ordering function on the differences. A similar sory could be told for many Al programs, such as Dendral,
AM, Srips EL, and othersthat arelesswell known (for examplesof earlier programs, seeNewell, 1969).

To subgantiate die claim of die ubiquitous use of wesk methodsin Al would require recaging a subgantial
sample of Al programsexplicitly in termspfcompos?tionsofwaak methodsand no such attempt hasyet been
made Furthermore, no formulation of wesk methods yet exists that provides a notion of a basis or of
completeness. In any event, this paper docs not depend on such issues, only on the general fact that weak
methodsplay an important enough roleto warrant ther investigation.
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2. The Problem Space Hypothesis |
Behavior specifications of an agent lead to behavior by being interpreted by an architecture. Many
architectures are possible. However, existing families of architectures are designed primarily to meet the

requirements of current programming languages, which are behavior specifications that do not include goals
or methods. |

A key idea on which to base the architecture for an intelligent agent is search. Al hascome to under tand
that all intelligent action involves search (Newell & Simon,__1976). All existing Al programs that work on
problems of appreciable intellectual difficulty incorporate combinatorial search in an essential way, as the
‘examination of any Al textbook will reveal (Nilsson, 1971; Winston, 1977; Nilsson, 1980). Likewise, human
problem-solving behavior seems always to exhibit search (Newell & Simon, 1972), though many forms of
difficult and creative intellectual activity remain to be investigated from this viewpoint On the other hand,
die essential Tote of search in simple, routine or skilled behavior is more conjectural. In itsdf, the symbolic
specification of behavior does not necessarily imply any notion of search, as typical current progralnmiﬁg
languages bear witness. They imply only the creation at one moment of time of a partial specification, to be
further specified at later times until ultimately, at performance time, actual behavior is determined.
Nevertheless, the case has been argued that a framework of search is involved in off human goal-directed
behavior, a hypothesisthat iscalled the Problem Space Hypothesis(Newell, 1980b).

We will adopttibishypothesis of die centrality of search and will build an architecture for the weak methods -
around it The essential situation is presented in Figure 2-1, which shows abstractly the structure of a general
intelligent agent working on a task. As the figure shows, there are two kinds of search involved, problem

search and knowledge search. .

2.1.Problem search . . .

Problem search occursin the aﬁempt to attain a goal (or solve a problem). The current state of knowledge
of the task gtuation exists in the agent in some representation, which win be called a problem state (or just a
dtate) The agent is at'some initial state when a new goal is encountered The agent must f[nd a way of
moving from itscurrent stateto a goal state. The agent has ways of transforming this representation to yield a
new representation that hasmore (or at least different) knowledge about the Situation; these transformations
will be called operators. The set of possible states plus die operators that permit die movement of the agent
from sate to state will be-called die problem space. This is similar to the situation described in Section L1,

* except that here the state isarepresentation that isinternal to the agent.

The desired state of the goal can be specified in many ways. asa complete state, an explicit list of states, a
pattern, a maxixnizer of a function, or a set of congtraints, including in the latter, congtraints on the path




. Knowledge
Search

Problem
Search

Figure2-1: Theframework for intelligent behavior as search.

followed. The agent must apply a sequence of operators, starting at die initia state, to reach a state that
stisfies whatever goal specification isgiven. |

Search of die problem space is necessarily combinatorial in general To see this, note that die space does
not exist within the problem solver as a data structure, but instead is generated state by state by means of
operator applications, until a des réd sate is found. It at a state, there is any uncertainty about which
operator is the appropriate one to apply (either to advance aong a solution path or to recover from'a
nonsohition path), this must ultimately trandate into actua errors in sdlecting operators.  Uncertainty - at
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successive states cascades the errors of operator selection and thus produces'the familiar combinatorial®
branching search tree® Uncertainty over what to do is the essence of the problematic situation. It is
guaranteed by the de novo generation of the space, which implies that new states cannot be completely known

about in advance.®

The uncertainty at a state can be diminished by the agent's knowledge about the problem space and the
goal The task for the agent at each state is to bring this search-control knowledge to bear on the functions
required at a node of the search treein Fighre 2-L Thereis a fixed set of such functions to be performed' in

sear ching a problem space (Newell, 1980b):

L Decideon success (the sateis adesired state).
2. Decide on failure or suspension (the goal will not be achieved on this attempt).
3. Select a state from those directly available (if the current state is to be abandoned).

4. Select an operator to apply to the state,
5. Apply the operator to obtain the new state. _ ‘ .

6. Decide to save the new state for future use.

In addition there are decisions to be made that deter mine the goals to be attempted and the problem spaces
within which to attempt them. The architecture brings search-control knowledge to bear to perform these
functions intelligently. Depending on how much knowledge the agent has and how effective its employment

is. the search in the problem space win be narrow and focused, or broad and random.

2.2. Knowled'ge search
Some process must select the search-control knowledge to be used to make the decisions in the problem
space. In abroblem solver cbnstructed for aspecific and limited task, there islittle difficulty in associating the
| . cor(apondingly limited search-control knowledge with the site of its application. However, a general
. intelligent agent attempts many tasks and therefore has a large body of potentially applicable knowledge.
Thereisthen the need to determine what knowledge is available that is appli(_:able to controlling the search of
a particular tak. Knowledge is encoded in memory, hence in some extended data base. That is, extended
: knowledge implies extended memory. Since die problem, as represented in the problem space, is new, the

agent cannot know in advance what knowledge is relevant to controlling the search for a solution.

[ S .
Tn task environments that are densely enough interconnected, actual rcnim to p o tates cin be avoided in favor of afways moving
forward from thecurrent "bad" state, seeking a better state: but the essential combinatorial explosion remains.

‘TI ns argument applies equally well to serial and concurrent processing, as long as thereis an overall resource limit, Le, as long as
exponential paralld processing isnot possible.




PAGE11

Necessarily, then, the data base must be searched for dierctevant knowledge. Figure 2-1 shows search-
control knowledge being applied only to a single node in the problem space, but knowledge ssarch mugt
occur at each node in the problem search. Hence, knowledge search liesin the inner Ioop of problem search
and itseffidency is of critical importance.

Knowledge search differsfr'om problem search in at least one important respect. The data base to be
searched is available in advance; hence its accessng dructure may be desgned to make die retrieval of
knowledge asefficient aspossible. In consequence, the search-isnot néoes’sarily combinatorial, asisthe search
in the problem space. Thearchitectural possibilities for die memory that holds the search-control knowledge
arenct yet well understood. Much wark in Al , from semantic netsto frame sysemsto production sysems is
in effect the exploration of designs for search-control memory.

2.3..Goals and methodsin terms of sear ch

Themapping of goalsand methods into die search structure of Figure 2-1 is easy to outline. A goal Ieadst'o
forming (or sdlecting): (1) a problem space; (2) within that Space, die initial gate, which correspondsto die
agent'scurrent gtuation; and (3) die desred sates, which correspond to die desred Stuation of thegoal. A
method corresponds to a body of search-control knowledge diat guides die selection and appfication of
operators: A method with subgoals (such as operator subgoaling in Figure 1-1) leadsto cregting a new goal
(with anew problem spaceand goal dates), and to achieving it in die subspace. The new problem space need
not actually be different from die originél; e™, in operator subgoaling it is not Upon completion of die
subgoal attempt, activity may return to die original space with knowledge from die subgoal attempt A goal
need not be solved within a sngle-problem space, but may involve many problem spaces, with the
corresponding goal hierarchy.

The commitment to use search as die bassfor the architecture impliesthat the weak methods mug all be
encoded as search in aproblem space. A glanceat Figure 1-1 showsthat many of diem fit such a requirement
- heurigtic search, hiU dimbing, means-ends analyss, best firg search, etc. This hardly demondrates that all

week methods can be naturally so cadt, but it does provide encouragement for adopting a search-based
architecture,
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3. A Problem Solving Architecture

In this section we give a particular architecture for problem solving, based on the search paradigm of the
prior section. We will call it SOAR, for State. Operator and Result, which represents the main problem-
solving act of applying an operator to a state and producing a result. Such an architecture consists of a
processing smicture where die functions at a node of the search tree are decomposed into a discrete set of
actions executable by a machine with appropriate memories and communication links.

3.1. The object context -.

SOAR has representations for the objectsinvolved in the search process: goals, problem spaces, states and
operators.” Each primitive representation of an object can be augmented with additional information. The
augmentations are an open set of unordered information, being either infonnation about the object, an
association with another object, or die problem-solving history of the object For example, states may be
augmented with an evaluation, goals may be augmented with a set of constraints a desired state must satisfy,
problem spaces may be augmented with their operators, and a state may be augmented with infonnation
detailing the state and the operator that created iL - -

As shown in Figure 3-1, the architecture consists of the current context and the stock. The current context
congists of a single object of each type. These objects determine the behavior of the agent in the problem
space. Thegoal in the current context is the current goal; the problem space is the current problem space,
and o OIL The stock is an unordered memory of all the available objects of each type. The objectsin the
current context are also part of die stock.

C*rrent Context: Goal  Problem Soace State Qoerator

goal,, problem spacej state® operate®
Stock: ' SOal® ~ problem-space® state’ operator”
snaln problem-space® state® operator”
goal,,, problem-space; state® ‘ operator”

Figure3-1: Stock and current context of SOAR, the problem solving architecture.

" The stock 'is a memory and its structure is nécéssarily limited by the physical resources of the agent
However, the architecture assumes an unlimited memory structure, which implies unlimited access to the
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stock, unlimited capacity of the stock and unlimited reIiabiIity of the stock. It implies that the subobjects of
the objects in the stock (such as the operators of a problem space) arc also accessible and that new objects to
die system (such as from operator applications or the external environment) become automatically available

in the stock. Thisisasimplifying assumption for purposes of analysis and must ultimately be removed.

A single generic control act ié available in the architecture: replacement of an object in the current context
by another object of the same type, from the stock. All of the functions at a node in the search tree are
realized by replacements of one kind or a'no'ther. When activity for a goal ceases, because of success, failure or
suspension, a prior goal from the stock replacesthe current one. Returning to a prior state is accomplished by
'a state in the stock replacing the current one. An operator is selected by placing it in the current context. A
step in the problem space occurs when the current operator is applied to the current sate to produce a new
state. This new state is-deposited in the stock and it immediately replaces the state in the current context A
subgoal is evoked by replacing the current goal by die subgoal.  Similar .replacements set up or change the
problem space. The only function not performed is the saving of state, which is automatic given the

assumption of an infinite memory structure.

The horizontal order of the objects in Figure 3*1 is not fortuitOl_Js. Each object depends on the ones to its
left being established. A problem space is set up in response to a goal; a state functions only as part of a
problem space: and an operator is to be applied at a state. When any object changes, all those to its right
become functionally irrelevant and need to be determined anew. Therefore, after an object is replaced, all
current objects to its right become undefined by a process called initialization. Potential inversions of this
might be imagined, such as deciding to search for a state from which a given operator could be applied. In
fact, such situations must be handled at a higher level of organization. In the case in point, to find the new
gate in which die desired operator will apply requires applying other operators. Thus, the desired operator
cannot be identified simply as the occupant of the current operator slot; but must be identified in some other

way. &&» by association to the goal state (at which it will be applicable).

3.2. Example of the operation of the object structure

We illugtrate the basic mechanics of the.ar chitecture, ignoring where the control comes from to select each
step in Figures 3-2 and 3-3. These figures show a few steps of simple hQI climbing. [nitially, at time TO,
everything is undefined (undcf), except there is some current goal, GO, and the goal to be attained by hill
climbing, Gl, isalready in die stock. At Tl, Gl becomes the current goalL The goal includes an initial state

(XO) that is also deposited in the stock. We leave unexplicated the processes that generate from Gl the stété

N

XO and a problem space (PO) at T2; although important, these processes do not play a role in this paper.
When the problem space is selected, its operators, QI and Q2, are added to the stock of operators. The next
step (T3) is for the initial state, XO, to replace undcf as the current state. Then, at T4, the operator Ql is
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selected from the available admrissible operators, to become the current operator. The operator and state are
now defined, so that Q1 is applied to X0 to produce X1, a new state. X1 displaces X0 as the current state (TS),
and initialization automatically undefines the operator. Thus the search has started up and taken the first
 step.

Geal Problem-space  State Operator

T0 G0  wndef wndef undef
@
T Gl undef undef wadefl
- G0 X0

7 Gl PO undef uadef
c] X0 Ql
. Q
- a " po X0 wndel
Go Ql
Q
T4 Gl PO X0 Q1
G Q
TS Ql PO x undef
G0 X0 Ql
Q

Figure 32: The operation of the processing structure for Simple Hill Climbing (SHC).

Figure 3-3 continues the behavior, showing the actual hill climbing. The new state (X1) is compared to its
ancestor state (X0, the state used o generate X1) and the higher state (assume it to be X1) becomes the
current state. Indﬁsme.noreplacunéntianuiredbeciuschisak&dy&emmmsm Thus, a step has
been taken up the hill, from XD to X1 At T6, the operator QL is sclected to be the current operator. As
before, since all objects are defined, Q1 is applied to X1 to create a new state (X2) at T7. X2 is compared to its
ancestor state, X1 (assume X1 is better than X2). At T8, X1 replaces X2 as the current state. An operator is
then selected (T9), and since Q1 has already been applied to X1, Q2 is selected. Q2 is applied to X1 (T10) to
create X3 and the operator becomes undefined. X3 is then compared to its ancestor state, X1, and (assume X1
is again better) X1 becomes the current state (T11). A new operator could be selected, but since all available
operators have been applied to X1, this state can be extended no further. The current operator is set to fail in
mtosignifymatnoopermr.areavaﬂab!e. Since we arc in the context of hill climbing, this failure is
viewed as reaching a local maximum (at X1), so the search returns to the supergoal (G0) at T13.
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Time ' Opverator
‘T6. Gl FO Xi Ql
GO XD Q2
17 G FO X2 wndef
GO X0 Ql
A Q2
n d FO X wndef
GO XD Ql
x2. Q2
19 Ca PO Xl Q2
- GO X0 Ql
X2
HO Gl FO 3 wndef
GO x)@ Qi
%) @
TU ca FO XA wnief
. GO XD Ql
X2 Q2
3
"R X ]
nz - ;
- B Q2
T13 GO -- wadef wdal wnded

Figare 33: Continuation of behavior for Smple Hill Climbing (SHQ.

3.3. Search control: The Elaboration-Decision-Application cycle

Sear ch-control knowledge is brought to-bear on the processillugrated in Figures 3-2 and 3-3 by means of
- die EIaboration-Decision-AppIication cycle* which involves three diginct phases of processng. The *
dabor ation phase adds information to the current objects. The decison phase determines which obj ect (goal,
problem space, date, operator) is to become current, replacing an exiging object in the context The

application phase apblies the operator to.the date if both are defined. The details of the cycle are shown in
Figure3-4. .

The daboration phasé takes objects from the sock as input and augments the current-context objects.
Elaboration has access to all the objects in the sock, of whatever type. This includes objects, such as the
desired Sates operators of die space, etc™ that are in the stock by virtue of being augmentations of current
objects. It can examine these objectsto produce the daboration. However, the only objectsit can affect are
thosein thecurrent context, which it can augment but not replace.
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Elaboration-
Inputs: Objectsin sock
Result: Augments current objects
Monotone increase in information about current objects
Control: * Continue until quiescent
Decison _
Inputs: Obj ects in stock
Result: Votesfor, votes againg, or VEloes objectsin stock
One new object is selected: It replaces current object of same type
Control: ~ All voting occurs at the sametime
Application .
Inputs: Current state and current operator ‘
Result: Appliesthe current operator to the current state

Ifanew State results, adds it to the sock and replaces the current state -
(Thismovesto anew node in the search tree)
Control: Thisisprimitive relative to the architecture

Figure 3-4: The Elaboration-Decison-Application cycle.

Elaboration accomplishes two related functions. First, an object's unaugmented representation may not
make explicit the information necessary for a decision process that is limited in power, such as the decison
phase. Second, elaboration can add knowledge about the history of the: object during problem solving that
will be used later by the decision process. The processes of elaborating this knowledge cannot aways operate
inasingle step.' Information made explicit by one item of knowledge in search control, may enable another
item of knowledge to make something else explicit Thus, successve iterations of elaboration (where many
elaborationscan happen in one step) are possible, until astate of quiescence is reached

Structuraly, the process of daboration is drictly monotonic. Existing .data cannot be modified, only
augmented This does not guarantee that the process is logicaly monotone; that depends on the content of
the search-control knowledge and the objects being elaborated Likewise, nothing guarantees that die
elaboration phase terminates. Indeed, a basic breadth-first resolution theorem-prover would provide an
entirely acceptable elaboration process within the specifications so far. However, for present purposes, we
assume that the elaboration is relatively short lived, either because of the structure of die knowledge encoded
or because of a predefined limit on die duration of any elaboration phase. Though this latter would force the
voting processes to act on the basis of incomplete information, it would not induce processng errors a the
level of the architecture. A suitable metaphor for elaboration is the coming into awareness of the information
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in acomplex display under continued perception.

The decision phase follows the elaboration phase and converts the symbolized knowledge accumulated by
the elaboration phase into behavior by producing a replacement of some current object It is a voting
procedure with the candidates being the objects in the stock. Votes are registered for each object and the
winner replaces the corrésponding object in the current context The decision processes can consult all the
objects in the sock. The only outcome is vot!ng; die votes are not encoded or available to other Voters
Henceat voting time the situation is static and the votes are smply takén and tallied. Three typesof votes are
allowed: votefor, vote-againgt and-veto. Vote-for and vote-against each contribute one vote, respectively plus
or minus, for their candidate; a veto ensures that the candidate will never win. The winner of a vote is die

unvctoed candidate with the most net votes. Ifthereisatiein the voting, an arbitrary selection from the ti

[——

objects is made (in the particular implementation described in Section 5, the oldest object wins if there is a
tie). If no candidate has a net positive vote, a special symbol fail wins. Thereis a winner of the voting for
each type of object (which can be die'existing current object, Le" the status quo). However, given

initialization, only the leftmost object that ischanged will survive, all thoseto itsright become undefined.

Theapplication phase follows the decision phasg, if all of the context objects are defined (and not Tail). The
application of the operator to the state is a primitive operation in die architecture, with die current operator
and stale asinputsand anew resultasthe output” The new result becomes the current state and the current
operator becomes undefined (through initialization). As part of application, an association (one type of
augmentation) isbuilt between die operator, state and result Thiscan be used to determine a state's ancestor
and descendents, as well whether an operator has been applied to a state. If the current operator fails to
apply, the current state does noc change, but an association is built between the operator and die state. After
the application phase, the cyde continues by returning to die elaboration phase.

The elaboration and decision bhas& constitute die search-control knowledge of die agent We use a
AprrialiTrd, production system (Waterman & Hayes-Roth, 1978) to implement these phases. Our production
system consists of a collection of productions of die form: -

[fC;<mdCjand~andCthaiA
The C; are conditions that examine die current object context and die rest of die stock. The form of die
cooditkxisislimited to some class of patternson the encdding of the objects* A isan action that either adds

knowledge to a current object via an augmentation (for an elaboration production) or casts a vote for an

1Acoonpfishing_ the operator ray. of course, require processing in a subspace or even in some representation outside of the

.'lhmudassofpattensis not important, aslong ask issimilar to thosetypical of current production systems.




PAGE18

objéct (for a decision production). A production is satisfied if the conjunction of its condirons is satisfied
There can be any number of productions satisfied at a time. All satisfied eaboration productions fire
~concurrently énd asynchronously during the elaboration phase. All satisfied decision productions fire
together during the decision phase. The structure of the architecture (only augmentations, no deletions, etc.)
assuresthat there are no synchronization problerhs Thus, the only conflict-resolution principle is refraction,

which specifiesthat each instantiation of a production to the stock executesonly once.

Thereisan underlying search that compares the conditionéof_th_e productionsto the contents of the stock to
determine which productions are satisfied. This is the knowledge search, as described in Section 2. The
productions are die search-control knowledge, and each relevant item of search-control knowledge must be
found. This is much easier than problem solving in general and efficient architectures can be built to

interpret production systemswith alarge number of productions (Fbrgy, 1982).

3.4. Example of the operation of search control _

Figure 3-5 shows the search-control productions for the simple hill climbing presented in Figure 3-1 The
firgt production isresponsiblefor elaborating the current state with an evaluation of the gate'scloseness to the
goal, a better evaluation meaning that die state is closer to the goal.’ The rest of the rules are decision
productions, r&_eponsiblefor determining the current context If the current goal succeeds or fails, the two
goal-decision productions vote for the supergoal In this example, the goal is reached when either a specific
state or a local ffmTdimannin the evaluation function is encountered. In a pure maximization problem, only
the second production would be u‘s-ed The two state-decision productions are the heart of simple hill
climbing. The first production votes for the current state if it is better than its ancestor state. This is the
knowledge to take a step forward up die hUL The second production votes for the ancestor date if it is better
than the current state. Thisisthe knowledge to return to the ancestor state if the newly generated state is not
further up the hiH The operator-decision productions veto operators that have already been applied to the .
state, and they vote for an operator if it will apply to the state. If all operators have been applied to a gate

without producing astatewith a better evaluation, then all operatorsare vetoed and fail wins.

The SOAR architecture.providestheintérpreter, /, and the search control productionsin Figure 3*5 provide
the behavior specification, 51 Together, these create the complete control, [I S| = C. This control win
produce the behavior described in Figures 3-2 and 3-3 for any operator set Q. Consider Figure 3-2, starting at
T3, where XO has become the current st.ate, during the decision phase. Since the current operator is ill

undefined, thereis no application phase. Hence, SOAR goes to the elaboration phase, starting the processing

9Computation of the evaluation might require several daboration productions or it might even, fike operators, require processing in
another problem spaceor someother processing system; in these caststhiselaboration productkm * the evoking coatrol




PAGE 19

Elaboration i
Saane If the amremt gate doesoothaveaeY ahia™” eyahzate the state and augment the tate with the result.

DedaM
Coat If the current state matchesthe dedred sate, vote forsupergoal
Goatff thecucrcm operator is & 1 votefor supergoal
StHe Ifthecurrent sutehasan evaluation better than itsancestor Sate, votefor thecurrent gate
Soar Ifthecuncnt salehasan evaluation worsethan itsancesor date, vote for itsancestor date
Cfrmior If am operator hasbeen applied toagatebefore vetoit
Opem* 1 |fan operator isassodated to the current problem space, vote for it

Figure3-5: -Search control for SmpleHill Climbing.

for T4. The gate-daboration ruleis satisfied and is applied, cregting an evaluation of the state No further
eaboration productionsare satidfied, so the decison phaseis entered. The goal-decison productions and the
gate-decision productions do not contribute, but the second operanr-decis'on_p-roduciion votes for all ijfthe
operatorsin the problem space Thetie is broken arbitrarily, and QI wins and becomes the current operator
(producing the Stuation at T4). All context objects are defined, o the application phase is entered. The
operator (Ql) is applied to the sate, producing XL which becomes the current date (at T5). In the
elaboration phase of TS. XI is augmented with an evaluation. In the decision phase, X1 is compared to XO,
and X1 isfound to be better, so thefirst Satededison production vates for it (the voting does not change the
gate). Thisinitiatesanother cycleat T6. No éaboration productions fire, but again an operator is sdlected in
the decision phase, which isthen applied in the following application phase (leading to 17). X2 isevaluated
andin T8the second state-derision production is satisfied and votesfor XL X1 replaces X2 and the operator
remainsundefined. In the following eaboration phase, no productions are satisfied, so the decisic;n phaseis
entered again. Thistime an operator is selected. This continues until TIL when both operators receve
vetoes, and SOAR inserts fail as the current operator (producing T12). In the following decison phasg, die
second goal-decision production votesfor t'hesupergoal, and the super goal becomesthe current goal.
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4. A Universal Weak Method _

The architecture of the previous section is suitable for encoding many weak methods. We illustrated this
only for hill climbing (Figure 3-5), but analogous sets of elaboration and decision productions can be written
for other weak methods. To demonstrate that the architecture is suitable for realizing weak methods
generally, the obvious path isto write productionsfor all weak methods, along with a selection mechanism to
evoke them. The collection of production systems can then be examined .for how perspicuoudy they encode
the weak methods. '

There are difficulties with this approach. One is the lack of a complete definition of the set of weak
methods. Lists, such as Figure 1-1, contain methods that happen to have become prominent enough to be
noticed and named. Moreover, even if a complete list of weak methods were available, the genesis of the

methodswould still remain — how did die system come to acquire each member of thislist

4.1.The possibility of auniversal weak method

An alternative organization is not to have the methods available as distinct behavior specifications, but to
gener ate each method's behavior as a function of the task situation. The obvious form of such an organization
is to analyze the situation and éynthesize die appropriate weak method. Thereisan ingtructive flaw in such a
proposal. Weak methods are used ia situations where the agent has little knowledge about the task
environment- as courts of last resort when expertise is missing, and courts of first resort when initial contact
occursand little hasyet been found out. T-he use of a power ful analyzer does not seem consonant with die use
of wesk methods in cither situation.” It smacks of the homunculus ~ of invoking an intelligent subsystem to

support a putaftvdy simple component of an intelligent system.

Tim suggests that die weak methods should arise out of the structure of the agent and a proposed tas,
There should exist som'ething, call k a universal weak method (UWM), that together with die agent's
knowledge of the task, responds.to a situation by behaving according to the appropriate weak method, -
without the need for significant analysisor synthesis of a behavior specification. A single method as the basis
of all weak méthods could have impommt consequences for the acquisition of the weak methods and for the
availability of all of them asappropriate. It could also providea basisfor defining the set of all weak methods
as those realizable through the universal weak method. It could certainly lay a claim to simplicity and

parsmony. Let usexplore the possibility of such a method.

A method consists of a representation of behavior, S and an interpreter, /, for producing that behavior
from S. /isoow fixed to be SOAR. Sisdetennined by what is assumed about the goal, the task environment
and the processing structure of the agent — what was termed the operational demands. We now seek a

factorization of the specification of method M into two parts, Sy + S* where S, is common to all weak
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methods and S is unique to method M. S, will become the universa wéek method and S, will be the
method increment for A/. By adding to it the Sy associated with any week method. A/, it will produce the
_ behavior of A/. :

A number of conditions must hold for a proposed factorization to provide a satisfactory universal wesk
method:

L The combination of S, and S, must produce wel-formed methods. (Neither component need
be amethod in isolation, athough either can be))

1 S, should specify” a nontrivial process; it is easy enough to produce a factorization if little is
factored out '

3. Sy and § must be combined during problem solving. It must happen easly and quickly,
without complex andlysis or synthes's; otherwise it will raise issues either of the homunculus or of
efficiency.

4. Sy must be extracted fifom the task environment during problem solving. It must aso happen
easly and quickly, without complex analysis, otherwise it win raise issues either of the
homunculus or of efficiency.

Consider hill climbing. In Section 2 we listed three operational demands: (1) to represent states, (2 to
apply operators, and (3) to compare adjacent states to determine which is higher (closer to goal attainment).
A possible factorization might asSign representing states and applying operators to S, and comparing
- adjacent. states to Sy Representing states and operators must then be part of die common specification used
(or available) for every wesk method. Some information about the factorization can be determined
immediately for this choice - S\ is certai nly not a method and S is nontrivid - but the key conditions
(such ashow S”*and 5™are combined) require a specific organization for the 5* and 5" to be nominated.

4.2. The proposed universal weak method

The week methods produce die behavior that is possible with some smdl amount of knowledge about die
task environment. Each wesk method should then be characterizablc by this knowledge. Thus, the method
increment, S* could be a control process corresponding just to the specific knowledge of the task
environment exploited by that wesk method. This would imply that S, would be composed of what is is left
after the knowledge characteristic of each wesk method per se has been removed. Thiswould be the default
behavior What can be done, given that nothing is kfiown about the task environment In standard
architebtur&, die default beHavior i‘s to do nothing, that is, to behave as a computer without a program.*®

ift systems with resident operating systems, the default behavior lends to be going into a quiescent receptive state to await aew
external input
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However, th> default behavior of our agent is dictated by the problem-space hypothesis: To scarch in a
problem space with no search-control information to guide the search. Such a default implies that an agent is
always in contact with a task cnvironment by being in some problem space that represents that environment;
it always has some representation of states, a set of operators, and a goal that can be translated into goal states
in the space. Thus, a candidate factorization is: ' -

L The Universal Weak Method (UWM) is the dcfault method of search in a problem space with no
search control.

2. Individual weak methods arc method increments (S, ) formed from the incremental knowledge
of the mk environment that is demanded by the weak method.

Figure 4-1 gives the elaboration and decision productions that constitute Su' the UWM. The first
elaboration production detects if all problem spaces have been vétoed and marks the goal unacceptable. The
goal must be claborated with this information so that when it is no longer the current goal, it will not be
selected as a subgoal. The other two elaboration productions serve the same purpose for problem spaces and
states. In the case of states, this signifies that all of the available operators have been exhausted for the
marked state. All the decision productions for the goal, problem space, and state vote for an acceptable object
(Le., one not marked unacceptable) and veto unacceptable objects. These allow all acceptable candidate
objects to be considercd, independent of any method or task specific knowledge. The opemtor-decxsxon

productions perform the same task for operators.

Blaboration:
Goal: If the current probiem space is fail, the goal is unacceptable.
Problem Space: If the current state is fail, the problem space is unacceptable.
State: If the current operator is fail, the state is unacceptable.

Decision:

‘ Goal: If there is an acceptable available goal, vote for it.
Goal: If there is an unacceptable availabie goal, veto it.
Problem Space: If an acccpuable problem space is associated to the current goal, vote for it.
Problem Space: If an unaccepaable probiem space is associated to the current goal, veto it.
Stare: If an acceptabie state is in the current problem space, vote for it.
State: If an unacceptable state is in the curreat problem space, veto it.
Operator: If an acceptabie operator is associated to the current problem space, vote for it.
Operator: If an operator has aiready beea applied to the current state, veto it.

Figure 4-1: The universal weak method (UWM).

Let us examine the factorization conditions. First, SU is actually a particular mcthod in its own right,
namely- search without any hcuristics for state or operator selcction. S o cing the modification of heuristic
search to incorporate particular knowledge, will generally not be a method. Second. the UWM specifies a
nontrivial behavior, even though it is a very simple specification that provides just enough control to sean:h a
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problem space. The simplicity of Figure 4-1 derives in large part, of course, from the problem-solving

character of the underlying SOAR architecture.

Third, the Weak_ methods are to be formed by adding additional specifications, S* to &* The composition
is performed by adding the elaboration and decision productions that correspond to the increments of
knowledge that constitute the operational and effectiveness demands of a particular weak method. For
mstarr*, if *© state-elaboration and state-decision productions from Figure 3-5 are addéd to the prodijctions
for the UWM (Figure4-'1), then die combined set of productions performs simple hill climbing (SHQ, The
hill-climbing state-decision productions will dominate the state-decision productions of the UWM because
they always vote for a subset of the states that the UWM votes for. Thus, adding the increment of control
information to the universal weak method to produce die actual weak method is easly accomplished_.__l_t_

requiresonly the addition of productionsto production memory.

Fourth, the incremental productions are'to be extracted from the task environment easily and quickly. This
condition cannot be fully addressed without an explicit model of task-environment knowledge to define the
extraction process. We will not present such a model in this paper. However, die maor ingredient for
satisfying this condition is already present, namely, that the method increments are factored cleanly from the
UWM, so they consist of productions that deal only with the incremental knowledge offhe task environment
that defines the weak method. This can be seen in hill climbing, where the incremental productions are
concer ned exclusively with the knowledge that is specific to hill climbing, namely, the evaluation function and
what it fmpliesfor behavior. Nothing in die method-increment productions involves other control aspects of
the method .

4.3. Method Increments

The productions that form the method increments (Sy) can be split into two functional types: elaboration
and decison productions. The elaboration productions are local to the current task and create knowledge
about specific states and operators. These create a set of concepts about the task, such as an evaluation of a
statP, whether the state is a duplicatestate, or the depth of search to the state. These concepts embody the
operational demands of the method. Thus in hill climbing, it mu'st be possibleto obtain the evaluation of a
state or the method cannot be applied. However, the concepts do not specify how behavior is to be affected;
they only provide die basis for specification. The productions that compute these concepts are generally task
dependent and must be provided separately for each prbblem space. Exceptiéns can occur when the concept
concents the behavior of die problem solver, which is the same no matter what specific task is being

performed, cg” the debth of search to a state.

Thedecisgon productionsconvert the knowledge embodied in these concepts infb action by testing concepts
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and making votes. The decision productions contain task-independent knowledge. More precisdly, they
depend on the.task environment only through the concepts provided by ihe eaboration productions and
these same concepts may be computed on many different tasks. However, the decision productions have
conditionsthat tic them to specific tasks (goals or problem spaces). When the agent has a decision production
for atask, that production isthe agent's knowledgéthat the behavior the production produces (through votes)
isappropriateto the given task-.

The productions of die UWM actually provide an i_nter&vt‘ing example of the two functions. The UWM
elaboration productions define a basic notion of die concept of unacceptable in terms of the symboal fail,
which isitself defined by the architecture. The UWM decision productionsare all concerned with converting
the concept of unacceptable (and acceptable) into action. Thusthe UWM productions as a whole provide the
semantics of the concept of acceptability. Method increments can mal<e use of this concept for their own
purposes, but they must respect the meaning of acceptability as defined by the UWM, because the method*

increment productions win be added to those of the UWM and cannot negate their actions.
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5. Experimental Demonstration

in this section we demonstrate empirically that the universal weak method just defined is capable of
producing maﬁy weak methods. We cannot speak of all the weak methods, because (as noted earlier) not only
isthe set not yet well-defined, but we hope ultimately to defineit in terms of the universal weak method itsdf.
We will regtrict die scope of the demonstration even further by not considering methods that involve
subgoals. Thisrestriction win be discussed in the next section. It restson the (predicted) existence of another
functional capacity of ageneral intelligent agent, which we call universal subgoaling, to set up subgoalsto cope
with difficulties that arise in accomplishing-J atask. Universal subgoaling raises many issues about which we
have only prdiminary understanding currently, and which require a separate treatment in any event We
expect that the universal weak method and universal subgoalingjointly will produce all that might reasonably
be called weak methods. Thus, in thispaper we can only address methods that do not involve subgoals. This

still permits a significant. demonstration.

5.1. Conditions for demonstrating a universal weak method
To demonstrate the proposed universal weak method requiresthe following:

L Implement asystem dial incor pbrafesthe SOAR problem solving ar chitecture of Section 3.
2. Encode the universal weak method in that system, corresponding to die productions of Figure4-L

3. Encode a set of tasks for the system. A task is defined by a problem space and goal states within
the problem space. We need not deal with the processes for creating problem spaces and goal
states, since auniversal weak method operateswith these as given.

4. Run each task with the universal weak method by itsdlf, that is, with the default heuristic search
with no task-specific search-control knowledge. This shows both that the tak is encoded
successfully and that the univer sal weak method works asaweak method in itsown right.

5. Encode a set of weak methods, corresponding to the productions for simple hill climbing given
above. These will necessarily remain incomplete to the extent they contain knowledge of a
specific task environment that cannot be deter mined until the specific task is given.

6. Run each weak method on each task, by adding the weak-method incremental productions and
the requisite task-environment specific productions to the fixed set of productions comprising the
universal weak method and the fixed encoding of the problem space and goal-state recognition.
Theaddition issmply to take the set union of all the productions. The weak methods will not be
applicable to all tasks, but only to those tasks that admit of the knowledge required by the
method.

7. Verify that the behavior of die system constitutes that of the weak method. The effectiveness of
the behavior, which depends on the knowledge in the method, isirrelevant; what countsis only
whether behavior appropriate to the method is produced.
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5.2. The production system and the tasks

The problem solving ar chitecture is implemented in a production systém architecture, XAPS2 (Roscnbloom
& Newell 1932), which. was chosen because all its satisfied productions fire in parallel supporting Che paralle
features and the voting of the elaboration and decision phases.'*  The details of this impl-ementation are not
critical and we shall continue to use the descriptions at the level of Figure 4-L  Full details on all tasks,
methodsand runscan be found in Laird (1983). |

Figure 5-1 gives brief descriptions of the fourteen tasks used for the demongtration. Included in the
description is a statement of the task, followed by a d&cripfion of the states and operators that define the
problem spaces we chose for the tasks. For the Picnic Problem and the Root Finding task, .more than one
problem space wasimplemented. Thetasksaresimpleillustrative tasks, familiar from the Al literature, with a
few even simpler decision and logical tasks. Such tasks are suitable for an initial test of a universal weak
method, being familiar, knowledge-lean and relatively easy to implement Most of the tasks require searches
of combinatorial spaces, where state or operator selection determines the success of a method. A few ha\-/e

monotonic problem spaces where the operator selection iscritical

Each of these tasks is encoded as a set of productions. There are productions for the opérators of each
problem space and for detecting the goal states. These productions define representations of the states in the
problem space. For instance, the Eight Puzzle encodes the sate asa 3x3 gr'id of <x\\& [cell (Uj)g til€e], with eight
tiles, 1, — 8, and theOttile, indicating die empty celL Thereisan operator for each possible movement of tiles
into the empty cell (there are 24 such moves). Thus, operator (Z2—>(3,2) moves the tile in cell (2.2) into the
empty cell which is (32). ‘Each of these operators is realized by a production (operators for some tasks take
two productions). Operators that have multiple* .ingantiations for a given date are possible. Each
ingtantiation must be added to the stock (as an elaboration of the current state) with a unique name, and the
operator productions will implement a class of operators .indead of a single one. The initial_state is a
particular configuration, the final étate is encoded by another state, and there isa production that detects if a
Sate matches the final state. These productions are smply added to the productions for the universal weak
method to form the basic knowledge of the task.

Figure 5-2 shows the initial few movesfor die default behavior of die universal weak method in isolation on
the Eight Puzzle. Above each state is die operator used to createit. Below the operator is the name of the
state the operator was applied to, followed by the resulting state's name (S1=»S2). The initial state of the

problemisSL Thedesred state hasthe numbers 1*8, in order, around its border, starting from the upper I€ft

Vit have since implemented the system in OPSS (Forgy. 1961) with a modified conflict resolution to provide the required
CORCUTTEDCY.
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Eight Puzzle

Problem Statement: Thereare eight numbered movable tilesset in a 3x3 frame. Onecdl is always empty, making it possibleto move an
adjacent numbered tileinto the empty cdL The problem is to transform one configuration to a second by moving tiles.

States: Statesare configurations of the numbers0-8 in a 3x3 grid.

Operators: Thereare twenty* four operators, one for each possible movement of tilesin cells adjacent to.the empty ceil into that cdL

Tower oH la*oi )

Problem Statemenc A board hasthree pegs. 1, 2 and 3. On Peg 1 are three disks of different sizes, in order with the largest at the
bottom. Thetak isto get ail the diskson Peg 3in thesameorder. A disk may be moved from any peg to another, providing that it is
thetop disk on its peg and that it isnot put on top of a disk smaller than itssJL
States Arbitrary configurations of the three disks on the three pegs.

Operator* Therearesx operatorsthat move thetop disk on a peg to ancther peg.

Missionaries and Cannibals

Problem Statemenc Three missionariesand three cannibals wish to cross a river. Though they can all row. they only have available a
“small boat that holds two people:  The difficulty is that the cannibals are unréliable: if they ever outnumber the missonaries on ariver

bank, they will kill them. How do they manage the boat trips so that all sx get safdy tothe other side?

States: The sates contain the number of missonaries and cannibals on each side of theriver and the position of the boat.

Operators: There are’al operators, one for each \Wai combination for moving TXKSfanf*..* nnihato ,znd boat acrossthe river.

Water J«c Problem

Problem Statement: Given afive-gallon jug and a three-gallon jug, how can precisdly one gallon of water be put into the three-gallon
jug? Sincethereisawel nearby, a jug can be completely filled or completely emptied at wilL No measuring devicesare available other
than thejugsthemsefres. )

States: Thegates contain the amount of water in the five gallon jug and the amount of water in thethree gallonjug.

Operators. Thereareax operators, onefor each combination of pouring water between the well and the twojugs.

PIAMCPttzZfc

Problem Statement Al Bffl and Chris planned ahig picnic Each boy spent 9 doOars Each bought sandwiches, ice cream and soda
pop. For each of these items the boys spentjointly 9 dollars, although each boy split his money differently and no boy paid the same
amount of money for two different items. Hie greatest single expense was what Al paid for ice cream. Bill spent twice as much for
sandwichesasfor icecream. AH amountsarein round dollars. How much did Chrispay for soda pop?

Slates: " The three formnlariom (see beiow) have similar problem spaces with sutes that contain the amount each boy spent for each
item. Thecongraintsare equationsand inequalitiesover theitems. All theimplementationsassume that the maximum cost of any item
is6 dollars (derived from the problem statement). _

Note: The problem is from(Polya. 1962) and the problem spacesare adapted from (NewcH M cDennott & Forgy, 1977).

PfariePuzkl . - .
States; Thestates contain a 3x3 array with valuesfrom 1tod, but arc viewed asa 9 digit number from 111,111,111 to 666,666,666.
Operators: Thereisooeoperator Add 1tothe9digit number and cany ifavalueis greater than 6.

PtariePtafen

States: Thegtatesarea 3x3 matrix of numbersfrom 1tod, or unknown.

Operators. There aresix operators. Each operator assignsa number (1-d) to one of the unknown positionsin the matrix. The operator
instantiationsare determined by a predetermined ordering of the positionsin the matrix.

Pfenic Puzzle m
Stater Thestatesarea 3x3 matrix of numbersfrom 1 tod.
Operators. Thereare nineoperators, onefor each position in thematrix. Each operator addsone to thecurrent value of the position.

L abeiacL iae Drawings

Problem Statement: There is a fine drawing of 3D ohjects made of trihedral vertices. The problem is to determine a single, w* *,
bbetiag of thelinesand junctionsas edgesand vertices of the 3D objects.

States: Thestates consist of the drawing with sets of possible labefings of the verticesand edges.

Operators: That isone operator Mark asinconsistent a vertex labeling if one of its line labe& ngs is not available in one of the adjacent
consistent vertex Babelings.

Figure5-1: Tasksused for demonstration of the universal weak method (initial part).
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Syllogpas

Problem Statement A syllogistic reasoning task is formed from three terms (eg., A,B,Q, combined into two assertions (the major and
minor premise) involving pairs of terms (A and B: B and C), from which some assertion (the conclusion) about the third pair (A and Q
may or may not fottow. Four logical assertionsarc possible from the two quantifiers (all some), negation (no/not) and the copula of

. implication (ar€). For example, from AHA areBand No Bare C docs it follow that Seme A are notC?

States Sets of abstract objects. Each absoaa object represents the possible or necessary existence of objects with or without termsA, B
aodC

Operators. There ace four encoding operators dm transform the English statements into sets of abstract objects. There are three
combining operatorsthai create new abstract objects for existing abstract objects.

Note: Theproblem spaceisadapted from (Newefl, 1980b).

WasoaVerifkatioaTasi » -

Problem Statement: There are four cards on a table. Each card hasanumber ononesideand a letter on the other side. Thetask isto
select those cards that must be turned over to prove that a given logical ruleistrue for all cards. For example, the cards might be[E]
[KJ. f4J and [7], with therule: All cards Out haveaeven number on oneside havea vowel on the other side.

Stater The statesconsst of the four cards, augmented with alist (possibly empty) of cards to examinein detail

Operators. Thereisan operator toturn each card.

Note This problem hasbeen much investigated (Wason & Johnson-Laird. 1972X because it appearsto be difficult for humans.

Simple Strins Matcking

Problem Statement: There are two strings consisting of constantsand variables. The problem is to determine if the two strings can be
trandformed intoidcmial expressionsusing variablesubstitution.

States: The statesare pain of stringswith pointerstothecurrent elementsof the strings being considered,
Openzovx: Therearetwooperators: Cooskkr dienext clement in the srings, and Substitute aconstant for a variablein all occurrences.

Thrtt Wizards Task

Problem Statement Long ago a wicked ling was searching fora new wizard with whom to plot some devious schemes. He summoned
tohim ihxtewizardswho seemed especially piouihiug. and let diem intoa small room, which was barren except for a lighted candle on
atable in die middleof theroom. " listen to mewdL" he said. "In afew minutesall of you will be blindfolded and | will paste upon
each of your foreheadsa uniformly colored spot of black or white paper. At ledst one spot win be white. Thefirst of you who guesses
the color of hisown spot win becomemy new wizard, and ridein hisown chariot with all expenses paid. Tlic other wo of you will be
sent toaterrible £uedot | shall not describe. Nooeof you wul be allowed to remove any of die spots, and you will each be allowed
only one guess" The king then ordered his guards to blindfold die wizards, proceeded to paste white spots on all the wizards
foreheads, and finally had their bllndfoldsremoved After afew seconds, one of die wizanis correctly Kj CI’Oerd the color of the spot on
hisforehead. How did heknow it?

States: The states represent what awizard knows. Tinis includeswhether awizard has guessed, the color of another leard spatch, how
the color of die wizard's patch was deduced, whether there is aconflict in die knowledge, and what another wizard knows (which can
includeall of the above). This last part of the state is nwuisive and leadsto some of the difficulty with the problem.

Operators. There are eight operates dot add knowledge to die state: (1) Consider what another wizard knows, (2) Ascribe public
knowledge to what another wizard knows: (3) Assign a specific value to an unconfirmed patch: (4) Deduce that if X knows that die
other two wizards have black patches, he knows be must havea white one; (5) Deduce that if X knows datY knows something. theaX
knows it: (6) Deduce that if X knowsthe a>to of his pau” he shauld guess; {(7) Deduce that if X should guess and has not guessed,
thereisaconflict: (8) Deduce thatifthereisaconflict in X, the most recent assignment isincorrect and the other value is confirmed.
Note: Theproblem spaaisadapted from (NeweB. M cDennott <t Forgy, 1977).

RootFtndiacl
Problem Statement: Given a polynomial equation in terms of X find a root ofdleequatlon For example Y = 4X" 10X + 4 =0.
Stater The states contain die current guess (X) and prior guess. (X*) * well as die absolute value of die equation evaluated with

thoseguesses(rand r g ) . * A

Operators: There are d& teoperatocs. (1) Makethe current guess be  2X™X”\ (2) Make the current guess be X + {X- X’w)ll
©M atethecunentgiiessbeX-(X- X’.y i * A

RootFmfiagll

Problem Statement (“enapd>TKraialea™iatio«m tenratfmﬁ:dimdﬂneqm For example Y = 4X%10X + 4 =0.
Stater The states contain die current guess (JO and prior guess (XQt.) as wdl as die absolute value of die equation evaluated with
thoseguesses(Yand r 2 j L
Operators Thereis onlyoae opexatoc. compute a new guess usng Newton's formula: X =(YX 0 XY Y- T 1

new prior prlor - pnor

Flgnre5*1 Tasksused for demongration of the univer sal week method (continued).
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corner. The sHection of operators is made arbitrarily among the legal ones. This happens to rexult in a
breadth-firg search due to features of the underlying architecture. If the search were to sumble across the
desired dtate, it would recognizeit. All of the fourteen tasksin Figure 51 show similar default behavior.

(3.2) (3.

(2.2)- 1)-(3,2) (3,3)-(3.2) (1.2)-(2.2) (2.1)-(2.2) (2,3)-<2.2)
S S1=»82 S1=>S3 S1=»54 S2=>S* S2»S6 S2=>$7
283 263 283 283 203 283 233
164 1014 1614 1614 1814 0114 140
706 766 076 760 766 766 766
Figure5-2: Behavior of die universal wesk method only (default behavior) on the Eight Puzzle.

5.3. The Sy increments for the weak methods

Figure 5-3 gives the twelve week methods that occur in the demongtration. One method, avoid duplication
(AD) does not occur in Figure 1-1, because it is usually Smply incorporated as an additional mechanism in
other methods. Some methods (DFS and BFS) each have two alternative versons that produce identical
behavior (both versonswererun). Two wesk methods, generateand test (GT) and match (M CH), showed up
in die demondration, but without special productions(Sy). These methodswill be discussed later. The wesk
methods in the figure (excepting AD) correspond to the subsat of those in Figure 1*1 that need not involve
subgoals.® With each method isgiven the task-indgpendent productions of the method that are added to the
universal week method (SJ to produce the behavior of the wesk method. These are all @ther decison
productions, or daboration productionsthat produce conceptsthat are independent of atask (such asdepth).
The task-dependent concepts used in each week method arein bold-italics. To complete the method, task-
dependent eaboration productions had to be added to compute each such concept. In addition, in actual
runs, a task-dependent decision productidn was added to vote for operators that would apply to the current
date. All methodswould have woriced without this, but it isa useful heurigtic that saves uninteresting search
where an operator is sdlected, does not apply, and is then vetoed because it was attempted for the current’
date.

Examination of each of the method increments in the figure confirms the daim made in Section 4.1 in
regard to the fourth factorization condition, namely, that method increments do not specifiy any control that is
not directly related to the task-environment knowledge that specifies die week method. All the contral (the
decison productions) deals only with the consequences of die concepts for control of the method behavior.
Themissng task-dependent productions do not involve any method-control at all, snce they are exdusvely
devoted to computing the concept

nK>n the other hand, any weak method can be implemented using subgoals to perform some of its decisions, such as operator
selection.
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Avoid Dwplicates (AD)
State Ifthe current stateisa dmpBemteof a prevlous gate, the state is unacceptable
. Operator |fan operator isthe «p«j * oftheoperator that produced the current state, veto the operator.
Opcrtor SdectkHi Ikaristk Sean* (OSIIS)
State: |fthe sutc>«& agoal nuriuaint. it isunacceptable.
<Bfrrralorr (Thesear e ttsfr-sperifi’s decision productions that voue for or vote 2gainst an operator based on the aurrent state.)
M eaas»Eofe Analysis (MEA)
Operator |fan operator emmndme* the dQJfcf«» between theairrcm state and the desired state, vate for that operator.
Bfeadth»Fnst Searca (BrFS) ’
Snirer Ifastti€sdepthisnot known, itsdeptbisthedepth of theancestor state phisone:
State: Ifastate hasadepth thatisact larger than aqy other acceptable sate, vote for that sate.
Depdr Fust Search #1 (DFS>
State: Ifthe current staleisacceptable, votefor iL
State: Ifthe current stateis not acceptable, vote for the ancestor state.
Deptk-Firs! Search *2(DF5)
State: Ifastate'sdepth isnot known, itsdepth isthe depth of the ancestor sate plusone.
State: If astatehasa rf*pfo 2 snot 5Ti3W than any of her acceptable state, votefor that Se.
Simple Hffl daabias(SUQ
State: Ifdie current sol eisnot acceptable or hasa ov/aria* worse than the ancestor sta” vote for the ancestor state.
State: Ifthe current state isacceptable and hasa owt ei'm better than theancestor state, votefor the cunent stabe.
Steepest Aseeat HOl C£a*ias(SAHQ
State: |fthe ancestor sateisacceptable, vole for theancestor state.
State: Ifthecurrent stateisnot acceptableand adescendent hasan O«£BI11£M (hat isnot wor sethan any other
‘descendent, vore for tha descendent.
State: Uthe current scat ni acceptable and the aaccsttr state is not acceptable, votefor the cunest date. -
Best-Fust Sesca #1(BFS)
State: Ifastatehasan MrfMtMsdiatis not wocsethan any other acceptable sate* vote tat that state.
Best-First Search #2 <BFS> .
SEtfa* T £* wrhn& #M%aattMaidiatii £ ffi f1a™ 2« Hiifr yy c A ote fix that sate.
Modified Best-First Search (M BF5) : -
Sttver Iftheaztcestor stateisacceptable, votetar theancestor state. ’
& w Ifthe current scaeis not acceptable, and astatehasa m A w m that is na worse than any other sate, mhﬂmm
State: Ifthe current stateis acceptable, and theanocsus stateis n«accgic*}le.Y ocefor the cunent state
A* .
State: |fa statés emmtedEstmmee m i**Eaif plusits depth is not larger than an” ather sate, vote for that state.
MCH
Note: No juciemental prodinr TifHi method arises from thestructure of the task.
GT T
Note: No perrmfitfat pooiiidMWR tnefhod arises firoc thestructure of the task.

Figure5*3: Method increments The seardi control for weak methods

Ifigure 54 shows die moves for two week methods on the Eight Puzzle. Thefirst is dmple hill climbing
(SHQ); the second is depth-firg search (DFS). The information added wasjust the productions in Figure
5-3for each method. ThehS climbing productionshad to be ingantiated for the particular task because the
evaluation function is task-specific A smple evaluation was used, namely the number of tiles already in ther
correct place. Additional daboration productions had to be added to compute this quantity for the current
gdate. Depth-firs search, on the other hand, requires no task-gpedific ingantiation, because it depends on an
aspect of the behavior of the agent (depth) that is independent of tak sructure. Examination of the traces
will show that the sysem was following the appropriate behavior in each case.
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Adding the smple hill-climbing knowledge to the UWM allows SOAR to solve the problem® A typical
problem solver usng smple hill dimbing would reach sate S2, find it to be alocal maximum and terminate
the search. With the UWM, 2 is also found to be alocal maximum, and smple hill climbing does not help
to sdlect another gate. However, the default search contral gill contributes to the decison process o that all
datesrecave votes (although S2 is vetoed). To break the tie, SOAR choses one of the datesasawinner. The
oldest gate alwayswinsin atie (because of a " feature' in the architecture) and S issdected. S7 and S3 are
generated, but they arc no better than SL S is now exhausted and receivesa veto. Anather local maximum is
reached, 0 the default search control cdmes into play again. The oldest unexhauged date is S3 and it
generates SO which is better than S3. The hill dimbing productions select sates until the desred gate is
readied (SlI). Depth-firg ssarch alone (without AD) does not solve the problem because it getsinto a cycle
after 12 movesand gaysin it because duplicate Sates are not detected.

Sloplt 11111 mafing (SHC)

(2.2)-<3.2) (1.2)-<2,2) (2.1)-<2.2) (2.3)-(2.2) (3.2)-(2.2) (3.1)-(3.2)
S| S1=»S2 S2-S3 S2=»S4 S2=»S5 S2=»56 S1=>S7
2 8 2 8 3 2 03 283 2 8 3 283 2 8 3
1 8 4 1 0 4 18 4 01 4 .1 40 1 8 4 18 4
7 8 8 7 8 8 7 8 6 7 6 6 - 7 6 6 7 0 6 07 6
(3.3)—(3.2) (1.1)-+(1.2) (2,1)-*(1.1) (2.2)-(2.1)
S1->H S »PD S9=»S10 $10—SII
283 623 123 123 succeas
164 184 084 604
760 766 766 766
O#ptH-F1rst S**rctt (OFS)
(3.1)-<3.2) <2.1)-<3,1) (2.2)~(2.1) (3.2)-<2.2) (3.1)-(3,2)
. S1=»2 S>—3 S S4»S4 S5«S6
28 3 283 263 263 283 283 eyelts
164 164 ‘0 64 604 674 - 674
706. 076 176 \l 75 106 016

Figure54: Behavior of Smple HOI Climbing and Depth-First Search on die Eight Puzzle.

5.4. Results of the demonstration

~ Figure 55 gives a table that shows die results of all the wesk methods of Figure 5-3 againgt al the tasks of
Figure5-1, using theincremental productions specified in Figure 5-3. In all the caseslabeled +, the behévior

wasthat of the ipulated weak method. In the cases|eft blank there did not seem to be any way to define die

wesk method for the task in question. In the case of methods requiring sate-evaluation functions, an

evaluation function wascreated only if it had heurigic value. Although in principle there could be an issue of

determining whether amethod isbeing followed, in feet, thereisno doubt at all for the runsin question. The

’_‘_Smplehffldi mbing may often lead the search agtray in other Eight Puzzle problems. But, again, the effectiveness of these methods
B not at issue, only whether the universal weak method can produce the appropriate method behavior.
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structure of the combined sct of productions makes it evident that the method will occur and the trace of the
actual run simply serves to verify this.

- Task UWM AD OSHS MEA BrFS DFS SHC SAHC. BFS MBFS A*
EightPuzle F Ty v TR e ey e e
Tower of Hanoi + + + + +

" Missionaries  + + + + + + + + + + +
WaerJug  + +  + + o+
Picnic [ +
Picnicll  + ¥ + + o+ o+ o+ o+ o+ o+ o+
Picnic III + + + + + + + + ¥ + +
Labeling!*  + +
Syllogisms ~ + +
Wason + + i
String mawch'®  + +
Wizards + o+ ' _

RootFindingl + +  + o+ v+ +
Root Finding IT +

Fig.eS-Si All methods versus all tasks

All fourteen tasks in Figure 5-5 are marked under UWM, indicating that they were attempted (and
sometimes solved) without additional search control knowledge. For Picnic I, there is no additional search
contrel knowledge available, so this is the only method that can be used with it With Root Finding II, the"
problem (given the problem space used) is simple enough so that no search control knowledge is necessary to
solve it. Four of the tasks (Eight Puzzle, Missionaries, Picnic II and III) can use a variety of search control
knowledge to both sclect operators and statcs so that it was possible to use all methods for these tasks. Tower
of Hanoi, the Water Jug puzzic, and the Wason task depend on operator selection methods (and avoiding
duplicate states) to constrain their searches. The Syllogism and Wizards task are monotonic problems, where
all of the opecrators add knowledge to the states, so that state selection is not an issue. However operator
selection is needed to avoid an exponential blowup in the number of operator instantiations that would occur
if some operators were applicd repeatedly.

lﬁh&&mmaaMMmSOA&bﬁngdevdopedmapbre_univasalmbgoaling: however, it has the
Same esscntial structure with respect to the aspects relevant here.
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Asmentioned earlier, two weak methods occurred during the demonstration, generate and test, and match,
that did not require any incremental productions. In Picnic |, each date is a candidate solution that must be
tested when it iscreated. The UWM carries out the selection and application of the single operator to create
the new states, produdng a gener ate-and-test search of the problem space. In the Simple String Match, which
isaparadigm casefor MCH. the UWM itself sufficesto carry out the match, given the operators. The special
knowledge that accompanies MCH that failure at any step implies failure on the task (so that backing up to
try the operators in different ordersis futilcX is embedded in the definition of the problem space. The two
examplesamply illugtrate that the sructure of the problem space can play apart in determining the method
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6. Discussion
A number of aspects of the SOAR architecture and the universal weak method require further discussion
and analysts. '

6.1.Subgoaling
In demonstrating the universal weak method, we excluded all methods that used subgoals, on the grounds
that a more fundamental treatment using universal subgoaling was required. Although such a treatment is

beyond the scope of this paper, a few additional remarksarein order.

The field has long accepted a distinction, originally due to Amarei (1967), between two fundamentally
different approaches to problem solving, the state-space approach and the problem-reduction approach
(Nflsson, 1971). The firs is search in a problem space. The second is the use of subgoal decompositif)kré\s
ekemplified in AND/OR search. This separation has always been of concern, since it is clear that o such
sharp separation exists in human problém solving or should exist in general intelligence. The SOA'R
architecture is explicitly structured to integrate both approaches. Goal changes occur within die same control
framework as state and operator changes, and their relation to each other is clear from the structure of the
architecture. In this pdper we have been concerned only with one specific mode of operation: goals set up
problem spaces within which problem search occurs to attain the goals. We need to consider maodes of

" operation that involve che goal structure,

New subgoals can be created at any point in searching a problem space. Thisrequires determining that a
subgoal is wanted, creating the subgoal object and voting the subgoal to become the current goal object. The
new subgoal leads (in the normal case) to creating a problem space, and then achieving the goals by search in
the subspace. Reinstating the original goal leads (again, in the normal case) fo reingating the rest of the
object context and then extracting the solution objects of the subgoal from the stock. We have not described
the mechanics of this process, wHich is the functional equivalent of a procedure call and return. It is not
without interest, but can be assumed to work as described. Tasks have been run in SOAR that use

—r——cr

The normal mode of operation in complex problem solving involves an entire goal hierarchy. In SOAR,
thistakesthe form of many goalsin the stock, with decisions about suspending and retrying goals being made
by seaich control voting to oust or reingtate existing goals. The evaluations of which goal to retry are made by
the same elaboration-decision cycl'e that is used for all other decisons, and they are subject to the same
computational limitations. Similarly, methods that involve subgoals are encoded in seaich control directly.
Such amethod opérat% by having search control vote in subgoalsimmediately, rather than apply an operator

to take a step in the problem space. How such explicit methods are acquired and become part of search
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control knowledge is one more agpect that is beyond this paper. All we have pointed out here is how goal
decompastion and problem-space sear ch combine into a single integrated problem-solving or ganization.

In general, subgoals arise because the agent cannot acdomplish what it desires with the knowledge and
meansimmediatdy at hand. Thus, amajor sourcefor subgoalsare the difficultiesthat can be detected by the
agnL Operator subgoaling, where the difficulty is the inability to apply a sdected operator, isthe most well
known example; but there are ochers, such as difficultiesin sdlecting operators or difficultiesin ingantiating
partialy specified operators. A complete set of such difficulties would lay the base for a universal subgoaling
scheme.  Subgoals would be created whenever the pursuit of a goal runs into difficulties. Such subgoals
would arise at any juncture; rather than only within the confines of*prepecified methods  Universal
subgoaling would complement the universal wesk method in that both would bea response to stuationsthat
are novel and where, at least at the moment of encounter, there is an absence of extensive sear ch-control
knowledge

Central to making subgoaling wark is die creation of problem spaces and goal states. Every new subgoal
requiresa problem space. No doubt many of these can pre-exist in a sufficiently well developed form so that
all that isrequired is an ingantiation that is within die capabilities of ssarch controL  But more subgtantial
congtruction of problem spaces is dearly needed as wefl. The solution that flows from the architecture, and
from the mechanism of universal subgoaling just sketched, is to creste a subgoal to creéte the new problem
gpace Fallowing out thisfinett> problem spaces for creating problem spaces is necessary for the present
architectureto beviable. Thereareindicationsfrom other research that thiscan be succesfully accomplished
(Hayes& Simon, 1976), but working that out Isyet onemoretask for the ﬁJture

6.2. The voting process

The architecture uses a voting scheme; which suggests that search control balances off contenders for the
decison, the one with the preponderance of weight winning.?  However, a voting scheme provides
important forms of modularity, as well as a means to adjudicate evidence. In a voting scheme, sources of
knowledge operate independently of each other, so that sources can be added or ddeted without knowing
what other sources exigt or ther naturé and without disrupting the decison process (although possbly
altering its outcome). 1f knowledge sources are highly specialized, so that only a very few have knowledge
relevant to a given decison, then a voting gcheme is more an opportunity for each source to contral the
gtuation it knowsabout than an opportunity to weigh the evidencefrom many sources. The balancng aspect
of vating then becomes merdy a way to deal with the rarecases of conflicting judgement, hopeﬂjlly without
grongly affecting the quality ofthe decisions.

L ndeeia_laanmoncpj&siMajswhywe don't adanis varying weights on the votes of decision productions.




PACE 36

The wesk methods and the tasks used for the demonstration provide a sample of voting situations that can
be used to explorethe functions that voting actually servesin SOAR. We can examine whether the voting
was used to balance and weigh many different sources of knowledge (so that the number and weight of votes

‘is an issue), or whether the productions are highly specialized and act as experts on a limited number of
decisions. The simatioos are limited to state and operator changes, that is, search within a problem space,
with no goal or problem-space changes, but the evidence they provide is ill important The following
analysis is based on an examination of the productions used for each method and the traces of the runs of
each task using thedifferent methods. .

The dracture af the sate changes is smple. The UWM votes for all acceptable states and vetoes all
unacceptable states. AH of the weak methods have at most one state-change voting production active at a
time. It may votefor many states, but the states will an be equivalent to the method. Thus, voting on states

fits the eXpert model in which balancing of votes does not occur.

For operator changes, the result is die same (the voting fits the expert model), but the analysisis a bit more
complicated. The UWM votes for all operators in the current problem space-and vetoes all operators that
have already applied to the current state. The weak methods may have many operator-change voting
broductionsactiveat atime. However , the final winner receivesa vote from every production that was voting
for an opelra'tor16 and no votes from a production voting against or vetoing an operator. There may be many
operators receiving the same number of votes, but they have votes from the same productions, and the final
selection is made randomly from this set There is never a balancing of conflicting evidence for the final
decision. Each time aproduction is added, it only refines the decision, E)y shrinking the set from which die
operator israndomly selected. Therefore, the weighting and balancing of votes would not affect the selection

ofoperatois.

6.3. Unlimited memory

We have assumed an unlimited. memory capacity, primarily to simplify the investigation. In fact, each
method is characterized by a specific demand for memory. If die memory available is not sufficient for the
method, or if it makes disruptive demands for access, then the method canﬁot beused. A useful drategy to
study the nature of methodsisto assume unlimited memory capacity and then investilgate which methods can.
be used in agents with given memory structures. Figure 6-1 gives the memory requirements for the stock of
the weak methodsused fn the demonstration. This is die requirement beyond that for the current context,
including the spécefor die problem space and operators. Several of the methods require an unbounded stock

I‘Actually, the final winner reoéncsa vote only from every concept, rather than every prbduction, since it is sometimes necessary to

knplcmcfttacoocetxwidtaior ethaponfr production, because of the limited power of the production-sysicm hinguage.
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for sgates They differ sgnificantly in the rate at which the stock increases and in the type of memory
management scheme needed to control and possibly truncate the gock if memory limits are exceeded.

Method Sock g padity renuirement

Universal Wesk Method (UWM) | : None

Avoid Duplication (AD) | Unbounded: Al statesvisited

MeansEnds Analyss(MEA) None

Breadth-Firg Search (BrFS) Unbounded: The set of satesat the frontier

: depth [equal to the (branching-factor)?#" ]

'Depth-Fust Search (DFS) ' Unbounded: The set of gateson thelineto the )
frontier (equal to the depth)

Smple Hill Climbing (SHQ | One: Theancestor state

* Stegpest Ascent HSi Climbing (SAHQ | Finite: The next-states cor responding to each

operator, plustheancestor date;

_ Or two, for the next-stateand the best-so-far
Best-Firs Search (BFS)
Unbounded: The st of all acceptable gates

Modified Best-Firs Search (MBFS)
Unbounded: Fhe st of all acceptable sates

A*
Unbounded: The st of all acceptable sates

Figure6*1. Memory requirementsof the methods on the gock, beyond the current context

Capadity limits on the sock affect how wel die agent solves problems, but they do not produce an agent
that cannot function, Le* cannot cany out some search in the problem space. Redricting the sdlection of
sates to a small number would cause methods such as best-first search to become 'more like hill dimbing.
Problem solving-would continue, but the effectiveness of the method might decrease However, the
architectureis not Smilarly protected againgt all capacity problems. In particular, if the memory istoo limited
fix the problem space to berepresented (e because of the number of operatorsin the problem space), then
dieagent cannot function. '
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6.4. Computational limits and the uniqueness of the UWM

Processing at a Sate in the problem space must be computationally limited, both for speed (it lies in the
inner loop of the search through the problem space) and for functionality (it must be the unintelligent.
subprocess whose repealed occurrences give rise to intelligent action). Neither 'of these congraints puts a
precise form on the limitation, and we do not ‘currently have a principled computational model for this
processing. Indeed, there fnay’not be one. Neither die architecture nor the universal weak method described
here is unique, even given die problem-space hypothesis. Organizations other than the elaboration-decision-
application cycle could be used for processing at a node. Much more needs to be learned about the
computational issues, in order to understand the nature of acceptable architectures and universal weak
‘methods. * -

Thelimitation on functionality playsarole in defining the architecture. The central concern isthat problem
solving on the basic functions of search control giv'en originally in Section 2, must not be limited by some
fixed processing. Otherwise die intelligeﬁt behavior of the system would be inherently limited by these
primitive acts. Subgoals are the general mechanism for bringing to bear the full intéllectual resour ces of the
agent. Thus, the appropriate solution (and the one taken here, although not worked out in this paper) is

univer sal subgoaling, which shifts die processing limitation to the decision to evoke subgoaling.

The temptation is strong to ignore die limit on functionality and locate the intelligence within the
processing at a node, and this approach has generatéd an entire line of problem-solving organizations. These
usually focus on an agenda mechanism. for what to do next, where the itemson the agenda in effect determine

both the state and the operator (although die organization is often not described in terms of problem spaces)
| (Ennan, Hayes-Roth, Lesser, Reddy, 1930; Lenat, 1976; Nilsson, 1980). A particularly explicit version isthe
notion of metarules (Davis, 1980), which are rules to be used in deciding what rules are to be applied at the
object-level with of course the implied upward recursion to metametarulcs, etc The motivation for such an
organization is the same concern as expressed above, namely, that a giVen locus of selection (operators, states,
etc) be made intélligently. The two approaches can be contrasted by the one (metarules) providing a
gructurally distinct organization for such selections versus the other (SOAR) merging all levels into a §ingle

one, with subgoaling to per mit the metadécisions to be recast at the object level

That search control in SOAR operates with limited processing does not mean that the knowledge it brings
to bear is smalL In fact, the design problem for search control -is precisely to reconcile maximizing the
knowledge brought to bear with minimizing processing. Thisleads to casting search control asa recognitional
architecture, that is, one that can recognize in the present state the appropriate facts or considerations and do

so immediately, without extended inferential procng.17 The use of a produ.ction system for search controi

nTheconcept of recognitionisnot of course, completely well defined, but it does convey the right flavor.
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follows upon this view. Search control is indefinitely extendible in numbers of daboration and decision
productions. The time to select the relevant productions can be essentially independent of the number of
productions, providing that the comparisons between the production conditions and the working memory
dements are appropriately limited computationally.’®  This leads to the notion of a learning process that
continually convérts knowledge held in other ways into search-control productions. This is analogous to a
mechanism of practice(Anders;)n, Grecno, Kline, Neves, 1981; Newell & Roscnbloom, 1981; Rosenbloom &
Newell, 1982) and the modular characteristics of production systems make it possible. These are f‘ami!iar
properties of production systems; we rr;ention them here because they enter into the computational

characterization of search control.

The two phases of search control, elaboration and decision (voting), perform distinct functions and hence
cannot be merged totally. Elaboration converts stored knowledge (in search control) and symbolized
knowledge (in objects) into symbolized knowledge (in the current object). Voting converts stored knowledge
and symbolized knowledge into an action (replacement of a current object). However, it isclearly possibletb
decrease the use of Voting until it is a mere recognition of conventional signals associated with the objects,
such as seiect-me and reject-me. In the other direction, shifting voting to respond directly to relevant task
structure is equivalent to short circuiting the need to make éll décisions explicit, with a possible increasein

efficiency.

With limits on the computational power of search control, a universal weak method cannot realize all
methods. It cannot even realize all versions of a given weak method. That is, there are varieties of a weak
method, say hill climbing, that it can realize and varieties it cannot It will be able to carry out the logic of die
method, but not the computations required for the'decisions- Thus, the correct claim for a universal weak
method is that it provides for sufficiently computationally simple versions of all the weak methods, not that it

can providefor all versions.

Imagine a space ;)f all methods. There will be a distinguished null point, the default method, where no
knowledge is available except that the task itself is represented. Then a universal weak method claims to
realize a neighborhood of methods around this null point These are methods that are sufficiently elementary
in tenns of the knowledge they demand about the task environment and the way they use this knowledge so
that the knowledge can be directly converted into the appropriate action within the method. Other methods
win be further away from the default point in die amount of knowledge incorporated and the inferences
required to determine the method from that knowledge. To create the method from such knowledge requires

1"I'ilm per cyde can be logarithmic in the number of productions (providing the conditions are till fimited). where the units of
o)mputaDonar ethcek gK atar yaxnpahsocs(For gy;19S2"
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techniques anclogous to program design and synthesis.© Only inside some boundary around the default
method will a universal weak method be able to provide the requisite method behavior.

Different universal weak methods will have boundaries at different places in the space of methods,
depending on how much computational power is embodicd in the processing power is in the architecture and
how much knowlcdge is embodied in its search control. An adequate characterization of this boundary must
wait until universal subgoaling is added to the universal weak mcthod. But it is clear that the universal weak
method is not unique. | ' '

‘6.5. Weak methods from knowledge of the task environment

The weak methods were factored into the universal weak method plus increments for each weak method
Sy + SM)' The increments were encodings of the particular knowledge of the environment that underiay
the weak methods. One issue not dealt with is the conversion of task knowledge into the elaboration and
decision productions of a method increment. This would have required a scheme for representing task
knowledge indepeadent of the agent to permit the conversion to be analyzed. We did provide two steps
towards satisfying the condition that weak-mcthod increments be easily derivable from task-environment
knowledge. First, we required that a weak-method increment encode only the special knowledge used by the
weak method. Thus; obtining an increment becan'lc a local process. Second, the method increments
themselves decomposed into conccpts (computed by elaboration productions) and conversions of concepts to
the appropriate action for the method (computed by the decision productions).

Only a few basic concepts occur in the collection of weak methods of i’igure $-3, beyond acceptability and
failure, which occur in the UWM itself. Some are defined on the search behavior of the agent and are task
independent: ancestor, current, depth, descendant, previous and produce. The rest depend on the specific
task situation: can reduce, difference, duplicaton, estimated distance to the goal, evaluation and inverse.
Other concepts would gradually be added as the number of methodS increased. More important than the
smalil number of thtse concepts is their extreme generality, which captures the fact that only notions that are
applicable to almost any task are used in the weak methods. '

If weak methods are generated by knowledge of the task environménL then weak mcthods should exist for
each different state of knowledge, although conceivably an additional bit of task knowledge might not help.
Also, this correspondence of knowledge to methods can only be expected within the computationally feasible
region for the universal weak method. Although, as noted, we cannot explore this issue directly without the
independent definition of a space of task knowledge, we can explore the issue at the level at which we do have
a represention, namely, at the level of productions and their composition into method increments.
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One quedtion is whether smply combining the productions of existing method, increments produces viable
newv methods or some son of degenerate behavior. |f the productions from Figyre 5-3 arc combined with
fich other* it ispossible that productions will interfere with each other, causing the system to thrash among a
small number of operators and states without exploring the problem space. Note, to begin with, that the
methodsin Figure 53 fdl into two digtinct typeé, dther sdecting sates or sdecting operators. Thus, we can
bresk theanalysisup into cases. '

Combining together the S* of a sate-sdection method With the Sy of an operator-sdection method will
not cause any interference, but only enhance the search (assuming that both methods are appropriate). This
correspondsto improving astate-selection method by further narrowing the operator choices.

When operator-sdection methods are combined, the productions will never cause the sysgem ttTCmse
searching. It is possible that one method win vote for an operator and another vote againg it, wiping each
other out; but an operator win till be sdected, spedifically the one with the most total votes without any
vetoes. Following die operator sdlection, die operator win be immediately applied to create a new state and
causethecurrent operator to become undefined.

When state-sdection methods are corﬁbined, the effects take two steps to wark out When sate-sdection
methods are salecting a gate, they combine in the same manner asoperator selection methods. The votesare
merdy totaflcd and one stats win win and become the current sate. After die Sate is sdected, die next
decison phase would normally select an operator, however, die sate could change again. Thissecond chance
at sate selection opens the possibility for the resdection of the prior state, setting up an infinite loop. For
imstance, productions need not be independent of the current date, Le* they win not vote for a date
independent of whether it, or another Sate, isthe current gate. In segpest ascent hill dimbing, the following
production win vote for the ancestor of the current state, but win not vote for that ate once it is die current
date, '

Siotc I Tthe an*im& { smeis ' ifIflblg. vole foethe andim?f 5%k
_Ifthis production alone was combined with a best-firs method, an infinite loop would develop garting with
die creation of a new best state by operator application. The above production would vote for die ancestor
date, while the best-first method would vote for die current sate. The tie would be broken by sdecting the
oldest-date, at which point the above rule would not apply, but the bes-firs rulewould vote in the best Sate, -
and the cyde would continue. This looping depends on die breadth-firs-nature of die architecture, but
analogous loops can develop with other methods of tie-breaking. This problem does not appear for die
methods we have described, because they an have die property that there is die same number of votes for a
étateindependent of whether it is die current state‘ Thisis achieved in steepest asoent hill climbing by adding
aproduction diat votesfor diecurrent gate if it is acceptable qnd itsancegtor date isnot acceptable. The only
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general solution isto requirenew productionsto be added in sets that obey the above property.

Instead of combining all of the productions from one method with another, it should be possible to generate
new methods by an appropriate set of productions using the same concepts. Four -new methods were in fact
created during the investigation. The S* productions for these methods appear in Figure 6-2. Each of these
new methods consists of knowledge ffom previous methods, combined in new ways. All of them where

implemented for at least one of Ac tasks.

The firg new method, depth-first)breadth-second search (DFBrSS), has a single rule, which tates that if
the current state is acceptable, it should be voted for. Aslong as this production is true, the search will be
depth first. The current state will remain selected, an operator will be selected, and then applied to create a
new current state. This new state will then stay as the current state and the process will continue until an
unacceptablestateisencountéred. At that point, the unacceptable state will be vetoed; and all other states will
receive one vote. Thetie will be broken by the architecture selecting the oldest acceptable state.™ This gives
die breadth-second character of the search. Following the selection by breaking the tie, the search will
continue depth-first until another unacceptable state is encountered. Although this method relieson a feature
of the _architecture, we could add in the knowledge for breadth-firg search, modified to apply when the

current sateis unacceptable, and achieve the sameresult

The second new method isactually the implementation of smple hill climbing given earlier. It isincluded
.here because it differs from the classical nnplementation of simple hill -climbing in that it falls back on the
UWM, which produces a breadth-first search when a local maximum is reached. This can reélize classical
simple hQl climbing by adding a production that detects the local maximum and returns the current state as
. the desired state. None of die tasks in o‘ur demonstration were ssimple maximization problems, so such a

production was never needed.

The third and fourth methods are variations of simple hill climbing that deal with a local maximum in
different ways. The first-will select a descendant of the maximum from which to continue, giving a depth-

second search. Thesecond will select the best state other than the' maximum, giving a best-second search.

l"l'l:'-'ulsi a "feature- of the XAFS2 architecture.
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Dcptk-Hrst/Oreadth-Sccond Search (DFBrSS) (Used for Tower of Hanoi]
Sate If the current State is acoeptable, vote for it
Smpleinn Oirabiii”Breadlh-Stcoiid Search (SIICBrSS) [Usd for Eight Puzzle. Missionaries, Picnic | and DJ
Sate If the current state is not acceptable or not as good as the ancestor Sate, vote for the ancestor state.
Sate If the current state is acceptable and better than the ancestor state, vote for the current state.
Shpfellill Ourting/Dcpth-Seco*! Search (S1ICDSS) (Used for Eight Puzzl€]
Sate If the current state is not as good as the ancestor tate, vote for the ancestor tate.
Sate Ifthe current state is better than the ancestor state vote for the current state.
Sate If the current state is unacceptable, vote for its descendents.
Satelf the current Sate is acceptable, and the ancestor Sale is unacceptable, vote for the current state.
SimplellL1 aimbivg/Bcst-Sccoad Search (SHCBSS) [Used for Eight Puzzle]
. Saue If the current state is not as good as the ancestor state, vote for the ancestor State:
State If the current State is better than the ancestor state, vote for the current stete.
Sate If the current state is unacoeptable, vote for the best of its descendents,
Sate If the current state is unacceptable, and there is only one descendant, vote for it
Sate If die current state is acceptable, and the ancestor state is unacceptable, vote for the current stale.

Figure6-2: Additional weak methods

6.6. Defining the weak methods

The universal weak method suggests a way to define the weak methods:

A weak method isan Al method-that is realized by a universal weak method plus some knowledge
about the task environment (or the behavior of the agent).

This definition satisfies the characterization given at the beginning of Section L First, it makes only limited
demandson the khowledge of the task environmenL The proposed definition starts at the limited-knowledge
end ofthe spedrum and proceeds toward methods that require more knowledge At some point, as d.ism_:us@ed,
the form of automatic assimilation required by a universal weak method fails as the knowledge about the task
environment becomes sufficiently complex. We do not know where such a boundary lies, but it would seem
plausible to take as sufficiently limited any knowledge that could be immediately assimilated. Second, it
provides a framework within which'doméin knowledge can be used. The amount of domain specific
knowledge embedded in the concepts that enters into a weak method is limited in the first instance by the
computational limits of search control. As we saw in discussing these limits, there can be an indefinite
amount of recognitional knowledge. In die second ins.tance subgoaling permits sill more eaborate
computations and the use of further knowledge, providing the use of the results remain as stipulated by the

sear ch control of the method increment

The definition implies that the set of weak methods is relative to the universal weak method. As the latter
variesin its characteristics, so too presumably does the set of weak methods. The set is also relative to the
knowledge framework that can be used to form the increments to the universal weak methods. Finally, the
definition isin terms of the specification of behavior, not of the behavior itsdf. Thusa weak method (e.g" hill
climbing) can be represented both by an increment to a universal weak method and by some other
specification device, eg, a Pascal program. All three of these implications are relatively novel so that it is not

dear at thisjuncture whether they make this proposed definition of weak methods more or lessattractive.
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This proposed deftnition of week methods must remain open until some additional parts of the total
organization come into being, especially universal subgoaling. Only then can a sufficiently exhaustive set of
weak methods be expressed within this architecture to provide a strong test of the proposed definition.
Additional aspects must also be examined, for example, fleshing out the existing collection of weak methods
in various directions, such as methods for aco|uiring knowledge and methods for handling the various

subgoab gener ated by universal subgoaling.

6.7. Relation to other work on methods
Thework here endeavorsto provide a qualitative theory for Al methods. Thus, it does not make immediate

contact with much of the recent work on methods, which has sought to apply the research paradigm of

algorithmic complexity to Al methods (see Baneiji (1982) for arecent review). N

However, it is usefll to understand our relation to the work of Nau, Kumar and Kanal (1982). They have
described a general form of branch and bofmd that they claim coven many of the search methodsin AL At a
sufficiently general level, the two efforts express the same domination of a search framework In terms of the
details of the formulation, the two research efforts are complementary at the moment. They are concerned
with a logical coverage of all forms of given methods under instantiation by specifying certain general
functions. The intent is to integrate the analysis of alarge number of methods. We are concerned with how
an.agent (not an analyst) can have a common organization for all members of a class of methods, under
certain constraints of simplicity and directness. Their algorithm claims universal coverage of all forms of a
given method; oursislimiredtt>the neighborhood around the default search behavior asdescribed in Section
6.7. However,-in the longer ran it is clear that the two research efforts could grow to speak to identical
resear ch questions - iftheir algorithm becemethe base for a general problem-solving agent or if our universal
weak method phis universal subgoaling came to have pretensions of extensive coverage. Then a detailed

comparison would be usefulL

A just-published note by Ernst and Banerji (1983) on the distinction between'strong and weak problem
solversisalso relevant They wish to associate the strength of a problem solver with the formulation of die
problem space - srong solvers from good (knowledge-intensive) and weak "solvers from weak (knowledge*
lean) formulations. Once the formulation (the problem space) is given, then the problem solver isjust an
interpreter chat runs off the behavior. This view agrees only in part with the one presented in this paper.
Certainly the amount of knowledge available governs the strength of a problem solver - weak methods use
little knowledge. Certainly, also, the entire problem solving system is usefully viewed as an interpreter of a
".behavior specification - the /X 1J of Section I.L Finally, the total knowledge involved in a problem is
oistributed amongst several components: the data structures that define the states, the operators, and the

search control. The view of Ernst and Banerji seems to ignore the factorization between the problem space
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(state representation and operators) and the search control treating the latter asan unimportant contributor to
the success of problem solving. The theory presented here takes the opposite view - that after the space is
given, heuristic knowledge must still be applied to obtain successful problem solving. Thus if this state isjust
an interpreter, asErng and Baneiji maintain, it is neverthelessan interpreter that must il solve problems.
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7. Conclusion

We have attcmpted in this paper to take a step towards a theory of Al methods and an appropriate
architecture for a gencral intelligent agent. We introduced a specific problem-solving architecture, SOAR,
based on the problem-space hypothesis, which trcats all behavior as scarch and provides a form of behavior
specification that factors the control into a recognition—like scheme (the elaboration-dccision process) separate
from the operators that perform the significant computations (steps in the problem space). Non-search
behavior arises by the control being adequate to specify the correct operator at each step. This can be viewed
as simply another programming formalism, which makes differcnt assumptions about the default situation
- problematical rather than certain, as in standard languages.

On top of this architecture we introduced a universal weak mcthod that provides the ability to perform as
any weak method, given appropriate search-control increménts that respond only to the special knowledge of
the task environment. The existence of a universal weak method has implications for an agent being able to
use the weak method appropriate to wwa knowledge it has about the task environment, without separate
development of selection mechanisms that link knowledge of the task environment to methods. It also has
implications for how weak methods are acquired, since it becomes a matter of acquiring the right elementary
concepts with which to describe the environment; and does not require learning cach weak method as a
separate coatrol structure. )

Additional major steps are required to complete the theory. The most notable, and immediate is universal
subgoaling. Enmailed therein, in ways not yet completely worked out, is the need for processes of problem
space and goal-state creation, since every subgoal must lead to a problem space and description of the goal
states in order to provide actual solutions. But there are other steps as well. One is driving the factorization of
weak methods back to the descriptive knowledge of the task environment, rather than just the productions of
Figure $-3, which combine descriptive and normative knowledge. A second is including the processes of
planning, namely the construction of the plan as well as its implementation interpretively. A third is studying
how the scheme behaves under the conditions of large bodies of search-control knowledge, rather than the
lean search-controls that have been our emphasis here.
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