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There is a certain amount of poetic justice in the present situation. It was Art Westerberg

who came to me some months ago, proposing that I give this keynote address to you, a group

of sophisticated chemical engineers involved in using computers to aid In the design process.

He skillfully deflected each of my arguments about why I was not the right person to do this,

until in the end I decided that, putting all notions of flattery aside, I was indeed the only person

to launch this conference. Moreover, it would be intellectually stimulating for me to develop

such an address. Now that, in the event, I am unnble to actually be with you, it Is Art himself

who is to give these remarks - though I still have the fun and intellectual challenge of thinking

them through.

I figure I am almost precisely half relevant to this conference, which Is one part

computers, one part design and one part chemical engineering. I surely know about

computers -- I get full credit there. I know a bit about design -1 assigned myself half credit on

that. But of the most important part, chemical engineering, I know nothing at all.

Therefore, I must talk to you about fundamentals. For if one cannot talk about the details

at hand -- and that is exactly my missing half -- then the choice is either fundamentals or

irrelevaricies. By sticking to fundamentals, I shall not only seem profound (always a good thing

in a keynote speech), but I shall be able to talk much about artificial Intelligence (Al) and

computers, whereof I know something, and avoid chemical engineering, whereof I know little.

Since you are all about to harangue each other for a week with intense chemical engineering

talk, this is probably a good thing. The wonder is only that conference organizers locate

keynote speeches nt the beginning, rather than in tlio middle, as breathers.

The most fundamental question that we have in common is how the computer is to be

viewed. We all understand that we are on a moving train on an unknown track. That has been

evident since the beginning - from the early fifties at least. The rate of progress has been

sufficiently fast that all who have ridden the train for a few years have sensed perceptibly the

changing nature of the computer under their intellectual feet.

As (at least moderately) hard headed engineers, you might wonder why viewpoints are

Important. They are Important for the future. They govern the direction of progress - how

computers will develop to advance technology. Indeed, the very notion of using computers to

aid In the design process is something that once was pure viewpoint, unencumbered by hard

facts - a sense of pure potential. *

To a conference such as this, concerned with how to advance computer-aided design In

chemical engineering, viewpoints are of the essence. Agreed, the meat and potatoes of such

a conference always lies with direct extrapolation of current work, which rests within

viewpoints already assimilated. But, if anything new is to happen, if a sense is to arise of new

directions In which to move, then viewpoints will make all the difference. It is unlikely that

anything an outsider like myself can say about viewpoints can be of service to you, but

nevertheless thus 601 lustify my choice of keynote topic.

There has certainly been no dearth of viewpoints put forward on how to view the

computer, either generally or within the scientific areas of concern to this group. These

. viewpoints range widely, from extolling the coming power, to cautioning that it is only man

who thinks, ne^mr the computer. Let me state my main point right at the outset:

Existing viewpoints are of no service,

Now, of course, I cannot mean quite that, for I myself have a viewpoint that I think Is of modest

service. Likewise, I do not simply mean to put down viewpoints that disagree with mine; I am

too fair-minded for that. I wish to make a substantive point. Most of what passes for the

conventional high-level technical wisdom In how to apply computers to the design process is

in fact bad advice, given what we know currently.

I will discuss five viewpoints. I will prefer to state them as dichotomous issues, for various

people have aligned themselves towards one or the other pole and I wish in general to argue
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that the entire polarity is not ol service. Here are my five. I trust they are all familiar to you In

one guise or another.

1. Heuristic computing ys Algorithmic computing - Or whether It to
appropriate to use Al for practical computing.

2. Aiding man yjs poipq jl all -* Or that the computer should do what it does
well and Man should do what he does well.

3 Task-oriented ya Engineer-oriented •• Or the engineer should help the
computer vs the computer should help the engineer.

4. Procedural uniformity ya Complexity and ad tlQCJly - Or to use the
computer efficiently implies finding simple and regular algorithms.

5. Computation, ya Knowledge - Or the computer is good for doing elaborate
computations.

The central role of Al in these viewpoints should be evident. However, my concern to

broader than that, covering the entire spectrum of how the computer shall be used. For I take

it as axiomatic - a good term, if one is dealing with fundamentals - that how the computer to

viewed, so shall it ultimately be used.

Without further ado, let us dig into our polarities.

HEURISTIC VS ALGORITHMIC COMPUTING

The Original Vjew

The original view of the computer is enshrined in its name - a device to do computation.

The model was the statistical clerk with a hand calculator. The universally agreed upon

measure of program size was the number of multiplications. The distinction between a

heuristic program and an algorithm was introduced in the mid fifties by the original workers In

Al as a way to bring home that computers could be used to solve problems where it was not

known exactly (or even very clearly) how to solve them, r must confess to being one of the

original perpetrators.

The following general view still prevails An engineer does an analysis of the task, making

use of appropriate scientilic theories and mathematics, which result in a set of algorithms for

solvino his problem, which is programmed for the computer. This is appropriate engineering

nctiyily. On the conlrnry, gelling the computer to bohave intelligently is an exercise in not
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using all that the analyst knows, but only providing some general common sense knowledge

(indeed, the analyst could just solve the little puzzles himself, if he actually wanted them

solved). Thus, although an Al program might be used for some ill-understood engineering

task, as soon as sufficient engineering analysis is accomplished the Al program should be

replaced by a proper engineering calculation.

I want to dissolve this distinction. I want to make clear there exists only a single issue:

How to bring intelligence to bear on solving the final (here, engineering) problem. I will do this

by first analyzing the nature of intelligent action and then examining the process of solving

engineering problems by a set of intelligences distributed in time.

The Nature of Intelligence

It to fashionable to state that we don't know what intelligence is. In fact, good working

definitions are available. Consider a situation (sketched crudely in Figure 1) with an agent who

wants to perform some task, ie, to attain some goal. The agent has available some actions {A /,

A2, ...) to modify the situation. He also has available some knowledge; ie, ho knows things

about the task, about the relation of actions to effects, about methods, about the constraints

of the situation - whatever. Then:

intelligence ia itifl abilily. to briofl knowledge to bear, on action to attain

From a scientific viewpoint, the adequacy of this definition rests on the operationalization

of action, goal, knowledge and bringing knowledge to bear. This is no mean feat. Yet, Al has

•made some notable progress on all of these terms. Actions are relatively non-problematical.

An apparently satisfactory notion of goal *u>w exists, as a symbolic data structure that gives

the knowledge of what is desired, along with associated information on potential methods,

solving history, etc. Even knowledge, the toughest one of all, is pragmatically in quite good

shape. Al has been able to formulate increasingly general global data bases, for which it has

solved the problem of how to bring the encoded Knowledge to boar on data structures

representing the current task situation, to select appropriate actions.

For instance, consider how search arises, which is usually taken to be the hallmark of Al

programs. If the agents knowledge is insufficient to select a correct next action (an external
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Figure 1: Intelligence
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action In the completed task, an internal step in some subtask, whatever), then on occasion

the action must be wrong, ie, not lead to successful task completion. When this error is

recognized, a corrective action will be taken, and another positive step attempted. With this, a

unit step in a search has lust occurred. Pervasive insufficiency of knowledge is the hallmark of

the genuinely problematical. Hence, such errorful steps will cascade and -- voila -

combinatorial search emerges. Thus, heuristic search arises naturally, given this definition of

Intelligence.

Consider how routine behavior arises. In all cases, problematic or routine, the agent's

situation Is always the same. At each instant he has a range of possible actions he can take

towards goal attainment. However, as his knowledge increases, he (almost) always makes the

right next action (and knows it is right, as well). Occasional failures are immediately

recognized (Ie, more knowledge) and corrected without fuss (ie, still more knowledge), so they

seem mere slips. His behavior seems to follow a definite procedural path, defined without

reference to the possibilities of error and search. Thus, he moves into routine behavior.

But In fact he is always in a virtual search space. Those of you acquainted with

D'Alembert's Principle of Virtual Work in mechanics will understand the right way to view the

situation. Standard procedural programming languages make no reference to search and

error, and this provides a model which makes routine behavior seem qualitatively different

from Intelligent behavior. But this is one place where our current conceptualization of

computers leads us astray. They are both of a piece.

Knowledge resides both in memories (as data structures) and in machinery (for doing

things with Jhe data structures). The task of getting It out when needed is, of course, the whole

art of being Intelligent. The knowledge can be there, but if It can be extracted only in obvious

situations, the agent is not very intelligent.

Everything the agent has constitutes knowledge - facts about the task, procedures for

bringing knowledge to bear, meta notions about his own operation, criteria for evaluating

success, experience in solving past problems, etc. It is all knowledge: It all must be encoded;

it all takes memory space; it can be used only by being brought to benr on some set of actions

for some goals; and so on. This universal character is what makes this definition of
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intelligence theoretically pregnant. It also makes possible agents that are universally

intelligent -• who can take on any task and proceed to work away at it (though not necessarily

solve it).

Action at a Djstance

In this view, when an intelligent agent solves a problem matters are pretty

straightforward. The agent has some odd fund of knowledge, the situation is encoded (using

some of that knowledge), machinations are gone through that bring some of that knowledge

to bear (the more the better), and some solution occurs.

Now what happens with a program? It embodies a (perhaps limited) fund of knowledge, a

problem is given to it, certain machinations are gone through, some of that knowledge is

brought to bear and a solution occurs. A program is in tact an intelligent agent. Thus, In

writing a program the programmer is creating an intelligent agent - he is creating the fund of

knowledge etc., etc. That seems straightforward enough. Yet the programmer can only endow

the program with knowledge that he (the programmer) has at creution time. For he, himself, is

simply an intelligent agent, with a certain fund of knowledge, etc., etc. In particular, at creation

time he is limited in his knowledge of the problem to be solved (by the program) at task time,

which lies in his future. Thus, the programmer is creating intelligent action at a distance, the

distance being mostly temporal, though also spatial on occasion. The situation is sketched

roughly in Figure 2.

The programmer (equivalents here the engineer) attempts to create programs that help

him solve his problems. What are the limits to what he can attain? Certainly the engineer's

own intelligence is important - the ability to get his knowledge translated into knowledge In

the program-agent. But the real limit is his inability to know the details of future problems. The

ideal, of course, would be that whatever problems the engineer's knowledge was capable of

solving, he could make that available at a distance. In fact, only in situations with highly

precise specification of the future, can an extremely precise program be built at design time.

This limit has nothing to do With the programmer's ability, only with the uncertainty of the task

to bo performed.

If the engineer could select his tasks to be only those that were highly foreseeable in their

c IIIMK AI n«>( i ss DI:SK;N

Programmer Program Task

t,

Figure 2: Action at a distance
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structural detail, then he could write only programs that were correspondingly specific. But

the engineer is not in control of this dimension of his task. All total tasks - for all time --

proceed from an inchoate start in some living COMIQXI, and pass through stages of sharpening,

decomposition, restriction and proliferation. Suhproblems do get more well specified, partly

from the acquisition of actual knowledge, but partly from stipulating facts [Thou shaft adopt a

linear programming model), which just pushes uncertainty off to another place (to the model

justified?). The full range of uncertainty will always exist. The game in writing programs will

always be to package enough knowledge into the program to lump the gap between the

engineer's uncertain knowledge about the problem at program-writing time, and the more

complete knowledge that will be available to the program at program-operation time.

It is useful to apply this samo analysis to the engineer himsolf. For what happens In the

four to seven years taken to educate on engineer? There is an act of building up a fund off

knowledge at design time (ie, education time), to be applied to problems by the engineer at

some later time. There are limits to the specificity of programming that is possible, precisely

because the future set of tasks is not known -- and cannot be known - to the educators. Thus,

educating an engineer can be equated functionally to writing a program. But If you think of the

activity as programming you are doing yourself (and computers) a disservice. If you think of It

as providing an agent with a fund of knowledge, etc. etc., then you are on the right track, both

for education and for getting computers to solve problems.

Conclusion

By this little exercise. I want to impress on you that, relative to solving problems, we are all

brothers under the skin - engineering programs, Al programs, and engineers. Relative to the

task, we all package a fund of knowledge, which we bring to bear at task time. Getting

intelligence to act at a distance is a groat thing, whether by education, instruction of humans,

or programming computers. The more certain in Ihe future, the easier It Is to do. If the future

were completely certain you coulil just solve it now, at design-time, and avoid programming

(or education, etc.) altogether. No distinction of kind exists between algorithmic and heuristic*

programs. There is only the attempt to <jet largei funds of knowledge to act fit a distance, so

as to deal with more variable future; tasks.
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AIDING MAN VS DOING IT ALL

The Original View

A theme that runs throughout the development of the computer is to find the proper

distribution of tasks between the human and the computer. Here is a quotation from a just

published book entitled Sohware Psychology (Sneiderman, 1980):

"I argue that as time goes by, and even as we develop more sophisticated
computer systems, the dichotomy between human creative skills and
computer's tool-like nature will become more clear. ... To help lead us to
(a) healthy ... position, which resolves the conflict by assigning tedious
repetitive tasks to computers and reserving issues of creative judgment for
humans, I propose five principles ...

(The principles are then enumerated, but they need not concern us.)

This concern Is not focussed just on the computer but spreads to all of the relations of

man and machine. The field of Human Factors psychology can be said to be devoted to this

wider topic. But the concern is even wider than that, as can be seen from works such as Lewis

Mumford's The Myth ol the Machine (Mumlord, 1967), where the entire relation of man to his

artifacts Is at Issue.

Though manifestly concerned with an engineering issue - the more efficient

accomplishment of a total task - the underlying concern Is clearly moral. This is evident In

the quote lust given. It can often be sensed in the implication that Al is not serving humanity

properly -- that the proper use of the computer Is to aid man, not replace him.

The Moral and the Political

The moral issue Is certainly legitimate. We need to understand our relation to technology,

especially as this technology becomes not only more pervasive, but more active and capable

of autonomy. The computer Is certainly at the center of any such discussion. This moral

dimension, of course, is linked Intimately with the political question of who controls whom,

which always exists when there Is organized action to some end. II there is a complex task to

be performed and a collection of agents sets out to perform it, there will always be a division

of work, with a consequent flow of signals which amount to commands and orders - agents

controlling the behavior of other agents in various patterns of hierarchy, distribution and

interaction. We recognize this situation in our everyday cultural institutions for dealing with



A. Newell I I

governance and rights. It is surely complex and important, but it is not especially mysterious

nor is it unfamiliar. It does not become more complex when the issue is between man and

machine, as opposed to man and man.

Now, the point I would make is that these political issues exist independent of what

functions occur in the division of work. They are questions of interests, rights and

exploitations. When we look at the total task of design, in our current state of knowledge, we

understand well how to use the computer for some functions, and not at all well how to use it

for others. These happen to correlate with some notion of degree of intellectuality. But it

makes no difference. If the computer did the total task, but did it only at our bidding, It would

serve us. If it only computed energy balances, but did so at its own caprice and In its own

interest, then we would have grounds for charges of insubordination. I conclude then that this

dichotomy is not relevant to the issue of how to use the computer, but is primarily a

smokescreen for this other, important but quite separate issue*.

TASK-ORIENTED VS DESIGNER-ORIENTED

Thft Original View

Back in the bad old days, computers were precious commodities. Almost any preparation

off-line was deemed appropriate in order to minimize the use of the machine for dlspensible

tasks to allow it to do what man clearly could not -- all those multiplications.

This same attitude still prevails. For instance, in speech recognition by computer it Is

axiomatic that it must be justified to spend computer cycles on processing speech.

Cost /benefit analyses are expected before research and development efforts are launched.

Only ten years ago (1969), in a famous letter to the Journal of the Acoustical Society (Pierce,

1969), John Pierce of Bell Labs asserted that speech was not a proper input for computers.

"When we look further for reasons [to recognize speech mechanically],
we encounter that of communication with computers. ... In this general
form, the reason is as specious as insisting that an automobile should
respond to gee, haw, gkldap, whoa, and slaps or tugs of the reins. We
communicate with children by words, coos, embraces, and slaps. ... It is
not clear that we should resort to the same means with computers. In fact,
we do very well with keyboards, cards, tapes and cuthode-ray tubes."
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An Alternative History: The Increasing Capacity of the Computer

Yet, an Interesting history of the computer can be written in terms of increasingly

spending computer cycles to help humans solve their housekeeping tasks of working with the

computer. The development of higher level program languages is the first obvious example,

but everyone could understand compilation as a computation-intensive task. Moving from

batch to time sharing, is another such step - and one that was strongly opposed. The

development of interactive editors, document production systems, message systems and the

like -- all involve extending the computer to tasks that are not computation intensive (to a

narrow analysis) but help the human with his unintellectual data processing tasks.

The one future fact we all know about the computer field is that the cost of computation -

of cycles and of memory -• continues to decrease at a prodigious rate. I assume you all know

this story. It Is currently heralded as the story of integrated circuitry, whose current acronym

has reached VLSI (for Very targe Scale Integration), having progressed through IC

{Integrated Circuits), MSI [Medium Scale Integration), and LSI (Large Scale Integration), and

apparently leaving for the future only ULSI (for Ultra ...). A bit of historical perspective (over

our ultra-short computer history) shows that there is always a current story for what is

producing this remarkable growth, but the story changes from half-decade to half-decade.

The computer field has been gaining at a prodigious rate for almost thirty years, and the only

reasonable bet is that it will continue to do so, well after the integrated circuit development

has had its half-decade or so.

The True Principle: Where Is the System Bottleneck

The relevance of the great advances in computer power is that cycles and memory will

become freely available. Never completely freely available, but enough so that limitation of

power cannot be used as the reason for not accomplishing a function by the computer.

The right principle, then, is that whatever tasks are limiting the productivity of the total

system - those are the ones that we should be asking how to get on the computer. The focus

should be on the total task, with no preconception of what type of function it is.

I have moved too fast. A caveat must be stated. The principle makes the implicit

assumption that if only the function to be performed can be identified, then shifting it to the
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computer can be accomplished without further ado. But of course this is nonsense - or at

least it is current nonsense. The functions in question are any and all Intellectual and

information processing functions involved in total projects (such as the design and

construction of new chemical engineering enterprises). Many of these functions are not well

understood - not scientifically, not computationally. We must qualify the principle above,

since the key consideration may be our understanding of the function, not just its Importance

in the total task. But the limit Is certainly not some apriori categorization of what belongs on

the machine.

UNIFORM PROCEDURES VS COMPLEXITY AND AD HOCITY

The Original View

The fourth view I wish to discuss has rarely been an object of explicit controversy, but

has simply been assumed. To wit: the natural, hence best, way to use the computer Is with

uniform and simple procedures. For instance, in some sampling I did of the chemical

engineering literature, I lound this statement by Sargent (1979):

"It means that we now have (he capability of solving realistic engineering
problems by standard nonlinear programming algorithms, without the
need lor clever exploitation of particular features of the problem to make
the computations practical."

Such a statement seems almost obvious. It fits with our notions of elegance and efficiency. It

shades into a view that uniformity and well-honed standard algorithms are what computers do

best. Yet, this view needs to be examined.

The issue has been argued considerably in Al, though focussed on the nature of

intelligent processes, rather than the proper me of computers. This perspective Is of use to

us, so let me go into it a bit.

Ptacccrujrjij Uniformity

Practically since its beginnings, there hnr> been a raging, but one-sided, debate in Al to

the eflect that uniform procedures are hnd It hns been one-sided, because no one has really

argued the contrary. II has rncjod. because Al programs turn out to be mostly quite uniform,

occasioning the vehemence ol Ihe critics who leel the lesson hns not yet been learned.
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One example occurred In the early sixties. The original successes of Al occurred in tasks

such as theorem proving In elementary logic and geometry, and elementary symMlic

Integration (Felgenbaum A Feldman, 1963). These programs used heuristic search, that is,

sophisticated combinatorial trial and error. A reaction set in almost immediately, in which

these programs (and the underlying research paradigm) were charged with not being

concerned with knowledge and expertise. A quote from Joel Moses (McCorduck, 1979), a

major figure In modern work in symbolic computation, gives the flavor:

"The word you look for and you hardly ever see In the early Al literature Is
the word knowledge. They didn't believe you have to know anything, you
lie, the computer] could always rework It all."

Another (important) example occurred in the late sixties. Alan Robinson developed a

form of first order predicate logic, called Resolution (Robinson, 1965), especially adapted for

theorem proving on computers. Five golden years of intensive exploration followed.

Resolution Is a highly uniform procedure, built around a single inference rule (called

resolving, naturally). First order logic can be seen as a sufficient base for general reasoning,

and fair expectations bloomed. However, it soon became clear that resolution based theorem

provers remained extremely limited (though much more powerful than their predecessors). In

the early seventies this was converted to an argument about the inherent failure of uniform

procedures.

Two things emerged from this. One was the development of a new family of Al languages

(Planner, Connlver, QA4,...) (Bobrow S Raphael. 1974) that attempted to provide the ability to

write non-uniform programs, ie, programs containing much specialized and ad hoc

knowledge. The other was a widespread conviction that uniform procedures had been

demonstrated to be a bad thing for intelligent processes.

Insight into this debate can be obtained from my own personal experience. When Herb

Simon, Cliff Shaw and I did the original LT theorem proving program (Newell. Shaw & Simon,

1957), we billed It as complex information processing. It was our view that we were dealing

with supercomplex programs; indeed, LT was right at the limit of what we could cope with.

Within a few years, LT came to appear - to us and others -- as a simple program, whose

complete structure could bo captured in a single page of technical description. This suggests
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the limitation is in the program designer. His programs always turn out more uniform than he

thinks, because the simplicity is essential for their initial discovery in operational form. The

critics get no real argument, though no one seems to take their advice to produce really

complex programs. It calls to mind the old catch-phrase, Ml would if I could, but I can't so I

won't11

Representational Uniformity

When thinking of uniformity, procedural uniformity comes first to mind - search and

uniform logical inference in the cases jus! described. But that Is not the only type of

uniformity. Representations can be uniform too. Jhe same considerations appear to prevail.

The availability of uniform representations paves the way for progress in getting computers to

perform intellectual functions.

One interesting case comes from work in chemistry that some of you may know, namely,

that of the Dendral group at Stanford, which began in the mid sixties. It was the first

successful effort to apply Al methods to serious scientific problems, using mass spectrogram

data to determine the structural formula for complex molecules (Lindsay, Buchanan,

Feigenbaum & Lederberg, 1980). It has been very successful indeed. The question I wish to

raise is why did chemistry yield first?

Although any historical event always has many causes, a good case can be made for the

critical role of the simple uniform representation inherent in the classical structural model of

chemical molecules. It was there, available. The space of all isomers provided an arena within

which additional processes could be defined and attached, such as heuristicalty guided

search and evaluation functions linked to mass spectra. Indeed, the initiating step was a

graph theoretic algorithm by Lederberg (called the Dendral algorithm) to generate graphs of

all isomers without duplication, a step that already exploited the basic representation. The

Dendral group was, to mix metaphors mightily, presented with a playground on a silver platter.

Other areas of science have in general much more complex basic representations. So, of

course, does chemistry, taken in toto. Significantly, however, a class of problems of genuine

interest lay totally within this already invented, uniform representation.

yv second example lies closer to hand. In reading about process synthesis, I observed
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that substantial progress has already been made in applying what are fundamentally Al

techniques (Westerberg, 1079). Many of the first order things I could olfer you on applying Al

techniques to design seemed already well understood and were being exploited in

sophisticated ways. (This carried some weight, I suspect, in my decision that I must speak to

you about fundamentals. No way was I going to discuss these programs without intensive

study!)

However, though I congratulate you on your advanced state of computational

sophistication, my real point may dull the luster a bit. For it seems to me that the advance has

been made precisely because there was an available uniform representation, within whose

closed world combinatorial problems of genuine applied interest could be defined. Take the

central problem of heat exchange, which appears to be one of the furthest advanced.

Conceptualization is possible in terms of a discrete set of streams plus a set of thermodynamic

utilities, with the individual elements (the streams) characterized by a well understood small

set of stated variables. Structure variation - the essence of why one cannot just cram such

problems into an optimization format - is neatly combinatorial. It is no wonder you have been

able to exploit what amounts to the basic heuristic search model of Al, discovering for yourself

many fundamental lessons.

Conclusion

I am prepared to concede - even emphasize - the importance of uniformity. But in all

these cases (and others as well) uniformity makes its difference in the ability of the designers

to conceptualize what is going on. We humans are limited in our ability to deal with

complexity. We can only create programs of a given degree of complexity relative to our own

understanding at design time. Procedures and representations do not seem so complex after

creation, when we become familiar with them. That is often noted. But then, importantly, we

are ready to take another step in complexity in conceiving the next generation of programs.

Throughout all this, the computer itself is prepared to be instructed and to perform according

to any degree of complexity we can muster.
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KNOWLEDGE VS COMPUTATION

The Original View

The final view I wish to take up is that computers ought to be used for computation. This

again is not so much a point ol controversy, as an implicit assumption. Actually, our notion of

computation has gradually expanded from nn essentially numerical conception (those

multiplications, again) to include symbolic computation. Indeed, the chief Impact of At, when

viewed critically, may not be so much intelligent processes, as the invention and routinlzatlon

of manipulate symbolic representations. An interesting bit of evidence comes from the

Dendral protect, already mentioned. Its major impact has been through a program called

CONGEN, which is the manipulative guts of the total Dendral program that permits the

generation and manipulation of i3omers and sets of, isomers. The intelligent processes were

left to the Al researchers.

The computer is certainly already used for large data bases, and these are surely

storehouses of knowledge, rather than computations. For instance, I noticed a strong

emphasis in a recent work on process synthesis (Westerberg, Hutchison, Motard A Winter,

1979) on the data base of chemical constants. So my characterization, computer* lor

computation, is not wholly accurate. Yet, such data bases, whether of chemistry data or Chem

Abstracts, are somehow fundamentally narrow. They are not repositories of general

knowledge about a domain. They are sets of numbers and class names that fit Into a world

already parameterized.

Towards Handling General Knowledge

Recent advances in Al have moved us towards computer systems that do have mostly

knowledge, and simply use that knowledge rather than engage in computation. These

programs tend to be applied programs, and thus they are of special interest here. They are

called ox part programs - which actually is a pun. Recall the early controversial dichotomy in

Al on search programs vr, expertise. Those reennt Al programs are supposed to be (at long

last) the programs that have expertise in some task domain. Now, many of these programs

turn out to embody the oxpurtirw of human ox ports in domains where the knowledge has
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heretofore existed only in the expert's heads. These programs have required extracting this

knowledge, and have become the only explicit form of this knowledge. Thus, they are also

programs that embody the human expert's knowledge, hence they are properly expert

programs. No conflict exists between these two senses; on the contrary, (he pun captures well

the complex attitudes towards these programs in the Al field.

Many of these expert programs have been in medical diagnosis. For instance, MYCIN

' (Shortliffe, 1976), developed by Ted Shortliffe at Stanford Medical School and generally

acknowledged as the program that set the style, provides consultation to a doctor about

antibacterial agents. The doctor provides knowledge about his patient; MYCIN provides

knowledge about bacterial infections, through a large set of rules that embody the knowledge

of clinical experts. Other medical expert programs also exist (Pople, 1977, Weiss A

Kullkowskl, 1979). However, the expert system I want to talk about, called R1, works in a quite

different domain. It has just recently been developed by John McDermott of CMU (McDermotf.

1980).

R1 configures DEC VAX computer systems. That is, given an order from a customer, it

analyzes the order to see that it is complete, adding additional components, such as power

supplies, cables, etc, where necessary, and then lays out the components in the appropriate

racks. You might think this is a trivial task, but that is not true. It is a genuine expert task. If

you don't know anything about VAXs except that they are a modern computer, you won't be

able to solve this problem at all. Of course, if you are one of the design engineers, it is all

pretty obvious -- )ust like bacterial infections to an expert clinician. On the other hand, if you

are just an average employee, with only a modest amount of experience with VAXs, it is easy

to make errors on this task. R1 is not a toy program. It is actually in use by DEC to process

Incoming orders, Its expertise by now fully attested.

Figure 3 shows the first page of output from R1. The problem as input is on the right,

under Components Ordered. The rest of the figure consists of RI's resulting output: the

cabinets with the components that go in each cabinet. There are half a dozen more pages that

give successively more detailed information about the components and their

Interconnections, information of interest only to a customer and a manufacturer.
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Figure 3: Task for R1.
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The main reason for using R1 as an example is that its method is almost pure knowledge

application. No simple test can be applied to a proposed final conliguration to tell if it is

properly, configured, so no sort of trial and error works. Actually, that is not true. One can

physically assemble the configuration and find out that it won't run - that is how errors are

finally (and expensively) discovered. To configure VAXs requires knowing all the facts

relevant to configuration about the 250 odd components that make up the VAX world. This

knowledge is not uniform, but is of various kinds and has to be applied in particular ways that

require stiM more knowledge. It is all rather straightforward for a human who learns about

VAXs and spends some time configuring them. It is all rather novel for a computer, since there

is no computation to do. R1 is not just a data base (though clearly it has one implicitly), for R1

itself applies its knowledge. It is my impression, in fact, that for quite awhile the inability to find

what to compute stood in the way of using the computer to aid in this task.

To understand how R1 operates you have to know a bit about the programming system in

which It is embodied. These are called production systems, taking the term not from

manufacturing, but from the granddaddy system of this kind developed in 1038 by the logician

Emil Post and called ever after Post production systems. In any event, as shown

schematically in Figure 4, a production system consists of a set of rules, called productions.

Each production has a condition part and an action part. All the productions look into a

Working Memory, which holds the current state of the task and consists of a set of data

structures.

The behavior of the production system is simplicity itself. A production whose condition

is satisfied by the data in the Working Memory fires and its actions modify the Working

Memory. This causes other rules to be satisfied, hence to fire, hence to modify Working

Memory further. Many rules can be satisfied simultaneously, but only one fires at a time,

principles of conflict resolution guaranteeing this to be the case. The behavior proceeds,

then, simply by productions firing when they become relevant. No other forms of conditional

action exist in this system. This system is about as pure an apply knowledge system as one

can invent. It is, by the way and to put your mind at rest, a perfoctly general, powerful

programming system, in which any computations whatsoever can be performed.
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WORKING MEMORY:

(description* dtscriptlonB d«scr1pt1on»)

RULE MEMORY:

(RUU-1:
RULE-2:
RULE-3:

(situattonl «> actionl)
(situation --> action2)
(t1tuat1on3 --> act1on3)

ASSIGN-POWF.R-SIIPPLY-2: (sUutttonl --> act1o.nl)
ASS IGN -POWER - SUPPLY- 3: (sUuationJ --> nctionj)
ASSIGN-POWER SUPPLY-4: (sUuationK --> action*)

RULE-772: (s1tuat1on772 —> act1on772))

Figure 4: Production System architecture.

Rt is a production system. All of the knowledge about VAX components and how they

are to be configured is embedded in a large number of productions. There are about 000

rules, of which some 500 are centrally concerned with configuring, the rest being concerned

with housekeeping functions, mostly output. Here is a typical rule:

ASSIGN-POWER-SUPPLY-1

IF: THE MOST CURRENT ACTIVE CONTEXT IS ASSIGNING A POWER SUPPLY
ANO AN SBI MODULE OF ANY TYPE HAS BEEN PUT IN A CABINET
AND THE POSITION IT OCCUPIES IN THE CABINET (ITS NEXUS) IS

KNOWN
ANO THERE IS SPACE AVAILABLE IN THE CABINET FOR A POWER SUPPLY

FOR THAT NEXUS
AND THERE IS NO AVAILABLE POWER SUPPLY
ANO THE VOLTAGE AND FREQUENCY OF THE COMPONENTS ON THE ORDER IS

KNOWN

THEN: FINO A POWER SUPPLY OF THAT VOLTAGE AND FREQUENCY
ANO ADO IT TO THE ORDER

This is an external format for the production, which suppresses some detail. The actual form

is more algebraic. To do a typical configuration takes about 1000 firings of such rules.
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Conclusion from R1

As I said, the beauty of R1 is that it is an almost pure knowledge program. It does its task

simply by knowing enough about its domain to be able to recognize what knowledge is

appropriate to apply when in the developing task situation. You should take from this that Al is

learning to get computers to use diverse knowledge, and not fust to do heuristic search

(surely a form of computation).

CONCLUSION

We have now worked our way through the five Issues. Each has provided a polar pair of

viewpoints on a different aspect of the fundamental nature of the computer. All the issues bear

on how we shall use the computer. Some have the flavor of should, others only of obvious or

efficient. Let us recap these viewpoints along with the specific attitude I have tried to

engender about each. For this talk has been no neutral, analytical exercise in examining these

viewpoints. I have pushed particular conclusions In each case. So, here are the polar issues

plus my own opinions.

The VlewDOlnta and their Upshot

The first issue was Heuristic vs Algorithmic computing, in which the received view in the

engineering community Is that engineering computations are properly algorithmic. By

examining the fundamental nature of Intelligence and programming, I tried to show there Is no

distinction. AH Intelligence Is bringing knowledge to bear, all programming is trying to do that

at a temporal distance.

The second Issue was Aiding man vs Doing it all, In which (again) the received view is

that the computer should operate as an aid to man and not be used to completely automate

tasks. I tried to show that the driving force behind this polarity was moral and political. These

Issues are Important and may even dominate on occasion. But they should not be confused

with what functions we get computers to perform.

The third Issue was Task-oriented vs Engineer oriented, where the received - but fading

- view Is that the computer Is Ill-employed if Its cycles are devoted to helping the designer

with the Informational trivia of his task. On the contrary, the only criteria are what limits the
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total system and whether we understand the intellectual function.

The fourth issue was Uniformity vs Complexity and ad hocity, in which the received view

is that computers are good for uniform procedures. I agreed that uniformity helps in applying

computers, even showing that representational uniformity was important, as well as

procedural uniformity. However, I argued that uniformity is primarily an aid to keeping things

simple for designers in creating programs. It does not aid the computer at all.

The fifth and last issue was Knowledge v$ Computation, where the received view Is that

computers are to be used for computation. The difficulty here is not so much a notion of what

is proper, as one of limited understanding. Given recent progress In Al, I was able to make the

point substantivoly that computers are as apt for knowing as for computing.

The True Viewpoint

So, what should be the true viewpoint towards that computer? It comes in several forms,

some a little flip, some more reasoned.

First version; None of the existing views are serviceable.

This is the one we started with, that led me to use my time beating down existing views. It It

primarily negative in tone.

The second form can be stated (with due apologies to Dante):

Second version; Abandon cliches all ve who eqter here.

The upshot of all of my argumentation has been that no simple classification can describe

what the computer is good for or how it ought to be used. This is still a negative conclusion,

but contains the seeds of an explanation.

A final, more positive, version is:

Third version: M intellectual functions aia natural 1Q Ihfl computer; the
limits tQ aopJicaiioo !i£ in our understanding of ilifiss functions.

This viewpoint rests on the bedrock of the continued exponential growth of computer power

(memory, speed and cost/performance). One can no longer rely on the instinctive

engineering reaction to look for the limiting factors in the cost structure of the machine. In the

instant short run, of course, such limits will exist (I can't get enough computer cycles, either).

But this conference is concerned with how to advance computer-aided design of chemical

engineering systems. It operates with a time horizon of five to ten years. New conceptual

24 C H E M I C A L PROCESS DHSKiN

paths launched now, at this conference, will reach fruition in that order of time. Five to ten

years Is long compared to the rate of growth of computing power. The computing power

constraint is no longer of service in structuring our view of the computer.

The real limitation is that one cannot (yet) get the computer to accomplish novel

intellectual functions where we ourselves are lacking scientific understanding of these

functions. Manifestly, there is much we do .not understand. Several examples were evident

during the talk. However, the time scale on changing our understanding is also of this same

order, five to ten years. If certain intellectual functions have a high payoff for design, that they

are not well understood now cannot suffice to dismiss them. The research you initiate could

well include understanding intellectual functions not now well in hand.

Finia

So much for fundamentals. I hope it has gotten just close enough to the mark of your

technical concerns with design so that during the conference you will catch yoursolf using

one of these five viewpoints in an argument or discussion about what can or should be done

in computer aided design of chemical engineering systems. With luck, you may be caused to

think twice about what is appropriate - and to stretch your view a little further.

I say again that I am sorry that I have not been able to be with you on this occasion.

Thank you, Art, for giving voice to my thoughts. Good wishes to you all for the success of the

conference.
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