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ABSTRACT

Chemical plants have to be designed based on uncertain
thermodynamic, kinetic and equipment performance correlations, market
forecasts, raw material and product prices. They have to be able to
adjust to changes in operating conditions, disturbance levels, product
specifications, product distribution and demand, and they should be
able to tolerate equipment malfunction without leading to serious
safety hazards. The general term "operability" will be used to
describe the ability of the plant to perform satisfactorily under con-
ditions different from the nominal design conditions. Current indus-
trial practice accounts for operability at the design stage in an
ad hoc fashion through empirical overdesign factors and by introducing
large storage and surge tanks for raw materials, products and
intermediates. It is shown here that the heuristic approach is not
only often costly and ineffective but that it can have an adverse
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effect: a design modification intended to improre operability can
actually make it worse. Systematic methods to include operability as
a design objective are reviewed and directions for future research in
this area are given. Application examples demonstrate the utility of
the suggested approaches.

The best part of our knowledge is that which teaches us where

knowledge leaves off and ignorance begins
Oliver Wendell Holmes

INTRODUCTION

It is not uncommon that in our function as engineering educators
we encounter students with highly developed scientific and
mathematical skills which are unable to solve relatively simple
engineering design problems. The difficulties arise from the fact
that these problems tend to be more loosely defined; they require a
series of assumptions to be made before an answer can be obtained with
reasonable effort in an acceptable time period. Because of the
uncertainties inherent in the problem formulation there is rarely only
one "correct" or "best" solution which adds further complications and
confusion. The skills required from the student for "design" are
quite the opposite of what is stressed in the early training when
exact scientific reasoning is emphasized.

Even after the early education period one of the main challenges
in engineering design remains that decisions have to be made based on
limited knowledge. For example, the engineer has to deal with the
uncertainty in the kinetic data, the thermodynamic correlations, the
projected equipment performance, the feedstock quality, the product
price and demand etc. More important when designing a chemical plant
it is generally either not possible or not desirable to remove all the
uncertainties involved. For example, it is not possible to predict
prices with certainty even with an unlimited marketing research
budget. Or, for example, it might be economically unsound to try to
obtain more accurate performance correlations for distillation column
trays.

This discussion makes clear that it is very hard to provide an
unambiguous definition of the concept of "optimal design". The
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Improvements obtained in a given economic objective function by
Involved optimization techniques might become insignificant in the
engineering sense when compared to the uncertainties involved in the
problem formulation. Furthermore some of the more complex design
objectives like safety, reliability and operability are often equally
or more important than the economic objective (e.g. return on invest-
ment) but much more difficult to quantify.

In somewhat oversimplified terms one could say that this paper is
about uncertainty in engineering design. How much of it constitutes a
healthy dose in a particular situation, how one can cope with it and
how one can plan for it through the appropriate design; or in the words
of management guru Peter Drucker, what "we have to do today to be ready
for an uncertain tomorrow". We want to show that engineering rules of
thumb can fail quite miserably, what better techniques are available,
what their drawbacks are and where future research should be directed.
In order to do that we first have to establish a common vocabulary
with clear definitions of all the terms involved.

Synthesis vs. Analysis: By synthesis we mean the integration of
processing units into a system (plant, control system, etc.) such that
it has specified properties. By analysis we mean the examination of
an existing systems1 properties•.

Structure vs. Parameters: A system can be specified by its
structure and its design parameters. The design parameters which
correspond to sizes, flowrates, pressures, temperatures, etc. can
generally take on all real values within specified bounds. The
structure (presence or absence of system parts and their
1nterconnections)*can also be described by design parameters.
However, these design parameters are restricted to the integer values
"0" and "1", where M0 w denotes the absence and "1" the presence of a
certain system part or interconnection.

Design vs. Control: In design, decisions are made once and for
all before a plant is constructed. In control, decisions are made
continuously during the operation of the plant.

We will use the general term operability to describe the ability
of the plant to perform satisfactorily under conditions different from
the nominal design conditions. The major objectives that are to be
achieved in the operability of a chemical plant include the following:
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a) Feasibility of steady-state operation for a range of

different feed conditions and plant parameter variations

b) Fast and smooth changeover and recovery from process

disturbances

c) Safe and reliable operation despite equipment failures

d) Easy start-up and shut-down.

The first two objectives deal with the satisfactory performance of the
plant during periods of "normal" plant operation, whereas the last two
objectives are concerned with the plant performance during "abnormal"
operation. This distinction is of course somewhat arbitrary, but it
reflects the expected time of operation: most of the time the plant
will be under "normal" operation, whereas the occurrence of "abnormal"
operation is much less frequent. This paper will deal exclusively with
the first two objectives (a) and (b), and the purpose will be to
present how these ojectives can actually be addressed at the design
stage.

The attributes that denote the first two objectives of
operability will be denoted in this paper as Flexibility and
Resiliency. The dictionary defines resiliency as the "power of
recovery after strain". In the context of process design we mean by
it the ability of the plant to tolerate and to recover from
undesirable changes and upsets. For example,, the plant can tolerate
parameter variations and it can easily recover from process
disturbances in a fast and smooth manner. We will refer to the former
quality as "static" resiliency when only steady state operation is
considered, and we will refer to the latter quality as "dynamic
resiliency". * ^

The dictionary defines flexibility as the ability to readily
adjust to meet the requirements of changing conditions. For example,
a flexible plant can be adapted to different feedstocks, product
specifications or process conditions. In summary, the main difference
is that resiliency refers to the maintenance of satisfactory
performance despite adverse conditions while flexibility is the
ability to handle alternate (desirable) operating conditions.
Needless to say the distinction between resiliency and flexibility is
not always clear cut. However, the emphasis in resiliency is o*
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dynamic operation of the plant, whereas the emphasis in flexibility is

on the steady-state operation.

Armed with these definitions we can now proceed with four

motivating examples which should demonstrate the practical importance

of operability, and the failure of simple minded heuristic rules to

incorporate operability as one of the design objectives.

SOME MOTIVATING EXAMPLES

Overdesign or underdesign for resiliency and flexibility?

The conventional procedure for introducing resiliency in a
chemical plant is to use empirical overdesign. That is, a nominal or
"conservative" basis is selected for designing and optimizing the
plant. Empirical factors are then applied to the sizes of equipment
and extra units are also often introduced. However, although this
empirical procedure will in general add resiliency and flexibility of
operation to a plant, it has the following drawbacks:

1. Not much insight is gained on the actual degree of flexibility
that is obtained in the chemical plant*

2. Conditions that give rise to infeasible operation may not be
detected due to the fact that the interactions among the
different units in the process are not explicitly taken into
account.

3. The resulting overdesigned plant may not operate efficiently
and may not be optimal from an economic viewpoint.
In order to illustrate some of these drawbacks, and in particular

the problem of overlooking effects of interactions, consider the ex-
ample of the heat exchanger network shown in Fig. 1. Note that in
this case the outlet temperatures of streams H and C2 have been
specified in the form of inequalities: stream H must be cooled down
to at least 410K, while stream C2 must be heated up to at least 430K.

Assume that the areas of exchangers 1 and 2 are sized with the
nominal values of heat transfer coefficients Ui-U2s800W/m2|(, and that
the resulting areas are oversized by 20%. If such a design were
implemented in practice the following situation might occur:

Suppose that Ui is 20% higher than the nominal value while U2 is
20% lower. For such a case, as is shown in Fig. 2, the exit
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temperature of stream H from exchanger 1 would drop from the expected
440K down to 434K due to the larger transfer coefficient. However,
with this temperature change the temperature driving force in
exchanger 2 is reduced, which when coupled with the lower transfer
coefficient causes the outlet temperature of Cl from this exchanger to
be 425K, or 5K below the minimum temperature that was specified.
Therefore, for the above cited realization of transfer coefficients
the network exhibits infeasible operation since it violates the
temperature specification.

It should be noted that this network design satisfies the
temperature specifications when both heat transfer coefficients are
20% lower than the nominal values, which intuitively would be regarded
as the "worst" condition. This example illustrates then the danger of
overlooking interactions when using empirical overdesign.
Furthermore, it shows that identifying "worst" conditions for feasible
operation may not always be obvious from intuition. This observation
will be elaborated on further in the next section.

Another point of interest in the example is related to the choice
of areas such that temperature specifications are not violated for any
deviation within ± 20% of the nominal values of Ui and U2- For
instance, if one were to insist in oversizing the area of exchanger 1
by 20%, one would find that the area of exchanger 2 would have to be
oversized by 108%! On the other hand, if one were to oversize
exchanger 2 by 23%, one would find that the first exchanger would not
have to be oversized, but rather it would have to be undersized by 16%!
This then shows tjjat the choice of a resilient design which in addition
is economically optimal, may not be quite obvious in general. Hence,
the need for a systematic treatment of resiliency and flexibility in
process design should be evident.

What constitutes a "worst" operating condition?

Traditional industrial practice generates resilient systems by
designing them for what are perceived to be "extreme" operating
conditions. Naturally, if these extremes are selected properly the
system will perform satisfactorily for the whole range of expected
situations. The following example is meant to demonstrate that the
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proper selection of "extremes" is far from trivial and that seemingly
logical choices can lead to extremely poor systems. For the problem
data in Table 1 the network shown in Fig. 3A was designed. There are
no other designs with a smaller number of heat transfer units, the
approach temperatures fall nowhere below 10°C and therefore this
structure is likely to be close to optimal economically. It is known
that the heat capacity flowrate of stream HI can be as large as 1.85
at times. The natural approach of the design engineer would be to
test his design for this extreme condition. The test reveals that the
network structure performs satisfactorily also at this flowrate (Fig.
3B). It appears then logical to expect that the structure can handle
all flowrates in the range between 1 and 1.85. Figure 3C reveals that
this is not the case. Even if exchanger 1 had an infinite area, for a
flowrate of 1.359 the outlet temperature of HI cannot be decreased
below 71°. With a reasonable approach temperature difference of 10°
(Fig. 3D) the minimum attainable outlet temperature for HI is 102.2°,
corresponding to a target violation of 52°. In particular if HI were
the feed stream to a reactor this design error could have serious
consequences.

By switching the cooler from H2 to HI the network can be made
flexible (Fig. 3E). In all exchangers the approach temperatures
exceed 10°C over the whole range of flowrate variations 1 < WHI < 1.85
and therefore the capital costs remain reasonable. The example shows
that flexibility can be reached not through additional exchangers or
excessive oversizing but rather by a proper redesign of the network
structure.

Let us also look at the slightly modified problem where the inlet
temperature of stream C2 is increased to 120°C (Tsc2 = 120°C). The
network structure used in Fig. 3A can be demonstrated to suffer from
the same deficiencies as previously. The flexible structure is shown
in Fig. 3F. It involves only three heat exchangers while the other
one had four. Selecting networks with a larger number of transfer
units does not only increase capital costs but can lead to a decrease
in flexibility. Flexibility cannot be accomplished by ad hoc addition
of equipment but by systematic design techniques based on a thorough
understanding of the physico-mathematical problem.
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Stream No.

HI

H2

Cl

C2

w(kW/°C)

1

2

3

2

TS(°C)

310

450

40

115

TT(°C)

50

280

120

290

Table 1: Stream data for Example 2
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Are long dead times bad for dynamic resilience?

The dynamic behavior of even quite complicated chemical
engineering systems like distillation columns or reactors can usually
be approximated well by first order plus dead time models. When
dead times dominate the dynamics, as is often the case, they can exert
severe limitations on the response time and therefore on the dynamic
resilience of a process. Consequently they are of central importance
in a resilience analysis.

In the single-input-single-output (SISO) case the detrimental
effect of dead times is clearly proportional to their magnitude.
Confronted with a number of possible SISO designs when dead times
dominate, the design engineer generally chooses the system with the
smallest delay. If dead times are significant but other aspects of
the dynamics are also important, then dead times can serve as the
basis of a first rough screening procedure where those designs whose
dead times are significantly larger are removed from consideration. A
more detailed analysis can then be carried out to select the proper
design from those remaining.

In the multi-input-multi-output (MIMO) case the analysis of the
effect of dead time on dynamic resilience is significantly more
complicated. Let us consider the following example: It is desired to
control the outlet temperatures of the streams 2, 3 and 4 of the heat
exchanger network shown in Fig. 4. The heat exchangers are assumed to
be distributed throughout a plant and the transport lag between heat
exchangers dominates the dynamics. The network is controlled by the
bypasses on heat exchangers 2, 4 and 5 with the transport lag between
heat exchangers indicated in Fig. 4. It can be shown (Holt, Morari,
1983) that for a dynamically decoupled system the best servo response,
i.e. output response to set point changes, is described by the
transfer matrix

6 = diag(e-6s, 1, e'4s)

That is the stream 2 temperature responds to a set point change after
6 minutes, stream 3 immediately and stream 4 after 4 minutes. It is
not surprising that by decreasing some of the delays between the
exchangers the response can be made faster.
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Fig. 4. Heat exchanger network with transport lag
(Example 3) .

Fig. 5. Thermally coupled dist i l lat ion columns (Example 4)
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It may not always be possible to decrease dead times but in many

cases it is possible to increase them. Contrary to the SISO case and

normal intuition this can lead to improved resilience in the MIMO

case. Continuing the example suppose it is not physically possible to

shorten the distance between units but it is possible to increase the

transport lag. Consider increasing the lag between heat exchangers 10

and 11 from 2 to 6 minutes. Then it can be shown (Holt, Morari, 1983)

that the best servo response is described by the transfer matrix

G - diag(e"6s, 1, 1)

Thus increasing a time delay has resulted in a significant improvement

of the best achievable performance in a dynamically decoupled system.

Again, it is clear that simple rules of thumb are unable to

explain the effect of design changes on resilience and more rigorous

techniques are called for.

How resilient are controlled systems to plant parameter variations?

In order to compensate for disturbances and to speed up the

adjustment of the plant to new operating conditions or in other words,

to make the plant more resilient, automatic controllers are employed.

The tuning of the controllers is always based on a model of the

process, albeit sometimes a grossly simplified one. The models are

invariably inaccurate because of identification problems and time

varying system characteristics. It is desirable that the control

performance be insensitive to modelling errors, such that the required

modelling effort can be kept to a minimum and frequent retuning of the

controllers can be avoided. Clearly the sensitivity is a function of

the control system design, but as we will demonstrate next, even more

so of the system itself.

Consider the system of coupled distillation columns {20 stages

each) shown in Fig. 5 which is used to separate a 70% methanol/water

mixture into a 99% methanol distillate and a 0.1% methanol bottom

product (Example 4). The detailed model and all the parameters are

reported by Lenhoff and Morari (1982). We will investigate two

different control structures for these columns.
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Manipulated Var. Fixed Var.

Structure 1 Ri, V2 F, R2
Structure 2 Fi, V2 D, R£

Here the "manipulated variables" are the two valves used for

composition control and the "fixed variables" are not used at all for

control. The other variables shown in Fig. 5 are employed in loops

maintaining the mass balance in the column. These loops are assumed

"fast" and are not included in the model.

For both structures 1 and 2 the multivariable composition

controllers were tuned based on the linear model to yield the response

to set point changes shown in Fig. 6A. The question is now how well

the controllers would work for the two systems if the real plant were

different from the model. To mimic a "real" plant time delays in

length equal to about 8% of the dominant open loop time constants were

introduced into the models. The performance of the controllers on the

"real" plant is shown in Fig. 6B and C. Even for this unreal istically

small modelling error the performance deteriorates significantly for

structure 1 and much less for structure 2. For a slightly larger time

delay or gain error the system with structure 1 would become unstable.

Naturally, any designer will opt for structure 2 which promises to .

allow a much simpler control system design and to require less

modelling effort. Instead of the control structure we could have

varied other design parameters and similar effects on the sensitivity

could have been observed (Saboo, 1982).

The example demonstrates that design decisions can have a very

pronounced effect on the dynamic resilience of a plant. Therefore, it

would be highly desirable to have a reliable criterion to assess the

dynamic resilience at the design stage, which does not require

extensive simulation runs. This is especially important since - in

the authors1 opinion at least - the observed sensitivity differences

do not seem obvious on physical grounds and no heuristic rules suggest

themselves.

The moral from the examples

1) The oversizing of existing and the addition of new units

into a process is not only costly but can lead to a decrease
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in flexibility and resilience.

2) What constitutes a "worst" operating condition on which to

base a conservative design is impossible to determine for a

complex plant with many interacting pieces of equipment

without a systematic analysis tool.

3) Longer dead times can sometimes improve a plants dynamic

resilience.

4) Design changes can have very pronounced but difficult to

predict effects on the sensitivity of the performance of a

controlled system to modelling errors and thus on the dynamic

resilience.

Much progress has been made over the last few years toward the

understanding of these counterintuitive phenomena and the foundations

have been laid for a framework that will allow operability

considerations to become an integral part of the design process.

FLEXIBILITY AND STATIC RESILIENCY

Problem definition

A first step in incorporating operability considerations
at the design stage is to provide an adequate treatment
of operational flexibility or static resiliency. As mentioned in the
introduction section, these attributes are mainly concerned with the
problem of ensuring that a plant is able to handle a number of
different steady-state conditions during periods of normal operation.
For example, this would involve the capability of processing different
feedstocks, producing different products, operating at various
capacity levels or -at a variety of process conditions. In other
words, the basic concern in flexibility or static resiliency is to
ensure feasible steady-state operation of the plant not only for a
single nominal condition, but rather for a whole range of
conditions that may be encountered in the operation.

Since the dynamic behavior of the process will be neglected in
this section it is impossible to distinguish mathematically between
resiliency and flexibility; in both cases the plant has to cope with
parameter variations in the steady-state. These parameters involve
uncertainties in internal process conditions such as catalyst activity
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and heat transfer coefficients. Alternatively, the parameters involve
uncertainties in external process variations such as feed or ambient
conditions. Because our emphasis will be on the mathematical formula-
tion we will use for simplicity the term flexibility.

It is important to point out that design decisions related to
selecting the process configuration, equipment sizes and mode of
operation, all have an impact in determining the flexibility of a
process. This was clearly demonstrated in the preceding examples.
However, the impact will in general be much greater at the synthesis
stage where the process configuration is selected. Furthermore, since
for the flexibility of the process to be "optimal" requires also that
the advantages of flexibility be balanced mainly in relation to its
cost, flexibility in design requires that it be incorporated early
in the synthesis stage as well as in the more detailed stages of
design. This clearly requires the development of a variety of
analysis and optimization tools which have to be based on a solid
foundation that captures the basic nature of the flexibility problem,
which is on establishing the existence of feasible regions of
operation.

For most design applications flexibility in chemical processes is
determined through the allowable variations of a vector of uncertain
parameters p. In the case of conventional design procedures these
parameters are usually treated as fixed nominal values, and typically
they correspond to feed or ambient conditions, or process parameters
such as reaction constants, transfer coefficients and other physical
properties. Since the values of these uncertain parameters can
normally be expected to change widely during the plant operation, it
is a major design objective to ensure that the chemical plant has the
required flexibility to operate over a given range of parameter
values.

A substantial number of methods have been reported in the
literature for dealing with parameter uncertainties in process design.
These methods have as a major objective to optimize a given flow sheet
configuration while introducing flexibility according to some
specified criteria or strategies. The methods consider the design
problem as given by the optimization problem
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min C(d,u,x,p)

s.t. h(d,u,x,p) = 0 (1)

g(d,u,x,p) < 0

where C is an economic objective function, h and g are vectors of
equalities and inequalities that define the performance and specifica-
tions of the design; and d, u, x are the vectors of design, control
and state variables for the process. The basic difference in the
methods lies on how the effect of the vector of uncertain parameters p
is taken into account for introducing flexibility. A recent review of
these methods is given in Grossmann et al. (1982), and Table 2 lists a
selected number of contributions. However, rather than discussing in
detail the relative advantages of these methods, it would seem more
appropriate for the purpose of this paper to discuss some of the main
issues that are involved in the synthesis and design of flexible
chemical processes.

I. Information on the uncertain parameters The first important
question in flexibility is on the kind of information that is
available on the uncertain parameters. Clearly, it is the task of the
designer to decide first as to what are the particular parameters in
the design that should be treated as uncertain. Since conceptually
these parameters can be regarded as random variables, their
probability of realization would be given by a distribution function.
However, the difficulty in practice is that these distribution
functions are normally not available at the design stage since no
measurements can be made to infer them. Furthermore, although one
could conceptually assign economic penalties for those parameter
realizations which cause violations in the design specifications, it

%has to be recognized that accurate knowledge on penalties is also
normally not available. Therefore, the minimum amount of information
that can be expected is the nominal parameter value pN, as well as its
expected range which is specified in the form of lower and upper
bounds

PL < P < PU (2)
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Clearly, the actual value of these bounds may be somewhat
arbitrary since in general they have to be provided by the designer.
However, these bounds could in principle be derived from a
distribution function if it were available, so that they would
represent confidence limits. In either case the parameter
bounds in (2) are to a great extent meaningful and easy to
interpret since they can be used to define the parameter ranges for
which it is desired to guarantee feasible operation. In this way the
designer has the capability of specifying explicitly the regions of
operation which are of interest in a flexible design. On the other
hand, it is recognized that since flexibility implicitly defines a
probability for feasible operation, the designer may have to
provide some subjective distribution function in order to define the
expected economic performance of the design.

Finally, it should also be noted that in general the uncertain
parameters will not necessarily be independent, in which case they
will typically be related by algebraic relationships which very often
can be expressed in terms of a subset of independent parameters.

II. Specification of flexibility requirements The flexibility
of a design is determined by its capability to meet constraints and
specifications for a range of conditions. However* it is clear
that in practice not necessarily all constraints will have
to be satisfied exactly when considering a variety of operating
conditions in a plant. In general, there will be on the one hand
"hard" constraints which cannot or should not be violated under any
circumstances, and on the other hand there will be "soft" constraints
which can be violated to some degree without affecting significantly
the performance of the system. An example of the former type of
constraints would be safety constraints or product specifications,
whereas examples of the latter type would be specifications on minimum
temperature approaches or maximum outlet temperatures of cooling water
which can often be relaxed to some extent. One possible approach to
handle the two types of constraints would be to enforce both the
"hard" and "soft" constraints at the nominal point, but only the
"hard" constraints for the other parameter values. However, whatever
type of approach is used to handle these constraints, it is ultimately
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the designer who has to decide which constraints in a design should be
strictly enforced. Therefore, when one refers to the flexibility of a
design, one has to realize that this is a relative concept and by no
means a universal attribute. Flexibility merely reflects the
capability of feasible operation with respect to the desired goals
that are set by the designer, and which are expressed explicitly in
the form of constraints that must be satisfied.

III. Flexibility problems The three basic types of problems
that would seem to be most relevant for synthesizing and designing
flexible processes are the three following:

a) Flexibility Analysis. The first subproblem addressed here
would be on how to test feasibility of operation of a design given
specified bounds of the uncertain parameters. This would help to
assert that the design has the required flexibility, or else, it would
allow to identify those parameter values that lead to infeasible
operation. The second subproblem which is more general would be to
measure the inherent flexibility in a design. For example, this could
involve the computation of a scalar index that would reveal the size
of the parameter space over which feasible operation can be attained.
This would allow, for instance, the evaluation of flexibility for
different process configurations at the synthesis stage, and also to
identify parameter values which limit the flexibility in each design.
Swaney and Grossmann (1983) have recently proposed an index of
flexibility for this purpose, and Morari (1983) has also proposed

an index for measuring the flexibility and resiliency in heat
exchanger networks.

b) Optimal Synthesis and Design with Fixed Degree of
Flexibility. The problem addressed here would be to obtain a minimum
cost design which is feasible to operate over a prespecified parameter
range. Most of the work shown in Table 2 has concentrated on this
type of problem for the case of fixed flowsheet configurations. For
the synthesis case the main work that has been published is by Morari
and coworkers for maximum energy recovery networks (Marselle, Morari,
Rudd, 1982; Saboo, Morari, 1983). It should be pointed out that the
major challenge in this class of problems not only lies in optimizing
the economics of the process, but also in obtaining a design for which
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Table 2

Methods reported in the literature for optimal design

with uncertain parameters

Authors Design Strategy

Kittrel and Watson (1966)

Wen and Chang (1968)

Avriel and Wilde (1969)

Weisman and Holzman (1972)

Watanabe, Nishixnura and
Matsubara (1973)

Takamatsu, Hashimoto and
Shioya (1973)

Nashida, Ichikava and
Tazaki (1974)

Freeman and Gaddy (1975)

Dittmar and Hartmann (1978)

Johns, Marketos and
Rippin (1978)

Grossmann and Sargent (1978)

Malik and Hughes (1979)

Halemane and Grossmann (1983)

Min. expected cost

Min. expected cost and/or max.
change in cost function

Two-stage programming and per-
manently feasible as applied to
geometric programming

Min. expected cost with penalties
for constraint violations

Min. combination expected cost
and maximum probable cost

Min. deviation of cost from nominal
point while satisfying linearized
constraints

Mini max strategy

Min. expected cost for given level
of dependability

Min. deviation of cost from nominal
point while satisfying linearized
constraints

Multiperiod two-stage programming

Two-stage programming with feasibil-
ity constraint

Two-stage programming

Two-stage programming with feasibil-
ity constraint



-23-

feasibie operation can be guaranteed for the specified parameter

range. This clearly involves as an important subproblem the

flexibility analysis.

c) Design with Optimal Degree of Flexibility. This is a

generalization of the previous problem as it is concerned with

establishing proper trade-offs, mainly between flexibility and the

economics of the process. Due to the common lack of information on

penalties for constraint violations a suitable approach would be to

develop trade-off or pareto-optimal curves that can help the designer

to decide on what is an "optimalM degree of flexibility, either when

developing the structure of the process or when sizing the equipment.

Swaney and Grossmann (1983) provide a framework to accomplish this

objective, but much work remains to be done in this area.

IV. Design strategy Since in flexibility the main concern is to

ensure feasible steady-state operation for a variety of conditions, a

very important question is on the type of plant operation that should

be anticipated at the design stage. Clearly, chemical plants have a

number of variables that can be adjusted or manipulated during the

operation (e.g. flows, temperatures, pressures). These variables,

which can be regarded as control variables, represent degrees of

freedom that ought to be considered not only for optimal operation,

but also to attain feasible operation for the different parameter

realizations. Although this might seem a trivial point, it is

interesting to note that only few of the methods listed in Table 2

address explicitly this problem.

For instance^ methods based on minimizing the expected cost

min E{C(d,u,x,p)}
d,u

s.t. h(d,u,x,p) = 0 (3)

g(d,u,x,p) < 0

assume that a single choice of the control variables u is made for all

the parameter realizations.

Similarly, in the case of methods based on the minimax strategy
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min max C(d,u,x,p)
dfu p

h(d,u,x,p) = 0 (4)

g(d,u,x,p) < 0
pL < p < pU

the single choice of the control variable u is for the "worst"

economic outcome in the plant. In this way these two approaches fail

to account for the fact that control variables can be adjusted during

operation. Furthermore, the actual methods that have been proposed do

not guarantee feasible operation for the range of parameters

considered.

A much more suitable strategy for flexibility is the two-stage

programming strategy

min E{min C(d,u,x,p)}
d p u (5)

h(d,u,x,p) = 0

g(d,u,x,p) < 0

in which it is assumed that the control variables u are adjusted for

every parameter realization to achieve optimal operation. This is

clearly a more ambitious strategy, but it is more realistic in that it

anticipates more closely the way in which chemical plants are actually

operated. It should be noted, however, that from the methods based on

this approach (see Table 2) only the ones proposed by Grossmann and

Sargent (1978) and yalemane and Grossmann (1983) have as an explicit

objective feasible operation for the selected parameter range by

proper manipulation of the control variables.

In summary, as one can see from this section the type of problems

and assumptions involved in flexibility give rise to rather

challenging research questions for developing useful analysis and

synthesis tools. However, as will be shown in the next sections, a

number of ideas has emerged in the area of flexibility over the last

few years which have helped to gain some fundamental understanding and

insight into the nature of this problem.
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Parametric region of feasibility

For a design in which the process configuration and equipment

sizes are given, the steady-state performance of the system can be

represented by a system of nonlinear equations

h(dfu,xfp) =0 (6)

where h is the vector of equations consisting of heat, material

balances and design equations
d is the vector of design variables which define the

equipment sizes

u is the vector of control variables
x is the vector of state variables
p is the vector of uncertain parameters

It should be noted that the control variables u do not
necessarily have to correspond to variables that can be physically
manipulated in the plant, but rather they represent a suitable
selection of degrees of freedom in (6) when the design variables and
uncertain parameters have fixed values. In other words, the only
requirement is that the control variables u be selected such that the
system of equations in (6) is solvable for the state variables x,
given fixed values for the vectors d and p.

The feasibility requirements of the system are specified through
the vector of inequalities,

g(d,u,x,p) < 0 \ (7)

which define product specifications, allowable ranges for state or

control variables or other types of physical constraints that should

hold in the process.

Since for a fixed design and parameter values, the state

variables can be expressed from Eq. (6) as an implicit function of u

h(d,u,x,p) = 0 —• x=x(d,u,p) (8)

the inequalities in (7) can be expressed in a reduced form as

g(d,u,x(d,u,p)) = f(d,u,p) <0 (9)
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In this way the Inequalities, f(d,u,p) < 0, determine the
feasibility or infeasibility of steady-state operation for a chosen
control u, when for a given design d the plant operates at the
parameter value p. Note that since the control variables represent
degrees of freedom that may be adjusted to suit the prevailing
conditions, feasibility of operation for a given d and p, requires
only the existence of some control u for which the constraints can be
satisfied, i.e. f(d,u,p) < 0.

In order to determine the actual set of parameter values p for
which feasible steady-state operation can be attained, the following
parametric region of feasibility can be defined,

R - {pl[3u|f(d,u,p) < 0]} (10)

This region R defines the set of parameter values p for which

control variables u exist such that the reduced inequalities in (9)

can be satisfied. This region provides then the basic information on

the flexibility of operation of a given design. An example of this

region is depicted in Fig. 7.

A computationally more convenient, but equivalent form for

defining the feasibility region R has been shown by Swaney and

Grossmann (1983) to be given by

R - (pU(d,p) < 0} (11)

where

* *(d,p) - min max{fj(d,u,p)} (12)
u jej

which alternatively can be written as the nonlinear program

t(d,p) - min a
u'a (13)

S.t. a > fj(d,U,p)

where J is the index set for the constraints, and a is a scalar
variable.

This function *(d,p) provides a quantitative measure of
feasibility (* < 0) or infeasibility U > 0) for the chosen design d
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Y(d,p) - 0

\TVV\\ \ V

Fig. 7. Parametric feasible region of operation R for a fixed design.
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at the parameter p, since it determines the values of the control

variables for which the maximum constraint j is minimized. The

significance of this function *(d,p) is that it provides a systematic

way for defining the region R, and in particular its boundary which is

given by the parameters p for which *(d,p) = 0 as is shown in Fig. 7.

It is also interesting to note that if the gradients of the

constraints fj are linearly independent the number of active

constraints in (13) is dim(u) + 1 (Swaney and Grossmann, 1983).

Therefore, in order to solve for the function t(d,p) all that is

required in general is to solve a system of nonlinear equations for

the appropriate set of active constraints in (13).

Flexibility Analysis

The definition of the feasible region R as given in (10) or (11)
provides the conceptual framework that is required for analyzing the
feasibility of operation for the specified set of bounded parameters,

P - (pIpL < p < p u) (14)

which for simplicity in the presentation will be assumed to be .

independent.

As indicated previously, the set P can be interpreted as the

desired parameter range for feasible steady-state operation specified

by the designer. Figure 8 illustrates the case when the set P, which

is a rectangle, is feasible for the region R since it is totally

contained within that region. On the other hand, Fig. 9 shows an

example where the^r^ctangle P is infeasible since part of the

parameter points in P lies outside from the feasible region R.

When analyzing the flexibility of a given design it is also of

interest to determine the maximum feasible parameter set that a given

design can handle. In order to accomplish this task, assume that we

define the family of parameter sets

P(«) = {p|pN - 6Ap- < p < pN + 6Ap+} (15)

where Ap- = pN . pL^ Ap+ = pU - pN, pN -js a feasible nominal parameter

point and 6 is a scalar variable. The sets P(6) can be interpreted as
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Fig. 8. Feasible parameter set P.

Y(d,P) - 0

A \ v \ \ \ v \ \ \ w v v x

Fig. 9. Infeasible parameter set P.
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a family of hyper-rectangles of different sizes that are expanded
around the nominal point (Fig. 10). The sides of the rectangles are
proportional to the expected parameter deviations Ap+, Ap~, and to
the scalar 6 which defines through (15) the actual size of the
parameter set. Note that If the scalar 6 = 1 , then P(l) = P; i.e. we
have the rectangle defined by (14). On the other hand if 0 < 6 < 1,
the hyper-rectangle P(6) is a subset of the specified parameter set P.

The motivation in defining the family of parameter sets in (15)
is that it provides a way for quantitatively measuring flexibility in
a given design. That is, by determining the maximum parameter set
P(6) that can be inscribed within the feasible region R, it is
possible to define the scalar flexibility index F as

F « max 6

s.t. P(6) £ R (16)

The index F defines then through (15) the size of the maximum
hyper-rectangle P(F) that can be inscribed in the feasible region R.
Furthermore, this f lexibil ity index defines through (16) the actual
parameter bounds

pL < p < jjli

pL = pN . FAp- , pU = pN + FAp* (17)

for which feasible steady-state operation can be guaranteed.

Note that a design featuring a flexibility index F > 1 exceeds

the specified bounds for feasible operation. On the other hand a

flexibility index*0 < F < 1 implies that the design can only operate

within a maximum fraction F of any of the expected deviations. The

example in Fig. 11 shows a rectangle that defines the flexibility

index F.

Critical points for flexibility

A very important concept when analyzing the flexibility of a
design is the notion of critical parameter points* Qualitatively,
these points can be interpreted as "worst" conditions for feasible
operation. Clearly if these points could be predicted a priori, they
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Parameter sets P(6) expanded from nominal

N

Fig. 10.

point p .

Fig. 11. Maximum feasible parameter set P(F)
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could simplify considerably the design of flexible processes. However

in general it is a nontrivial problem to correctly predict critical

points in a design. Therefore a good understanding is required on how

critical points arise in design. Formally, the critical points, pc,

can be defined as those points for which the feasibility function

1>(d,p) attains a global maximum over a given parameter set P(6); that

is
\

pc = arg{ max *(d,p)} (18)
peP(6)

According to this definition, points C in Figs. 8, 9 and 11
correspond to critical points. Also, as shown in Fig. 12, the
critical points need not be unique since different parameter values
may attain the global maximum value of *(d,p), which in this figure
has zero value.

The importance of identifying critical points in a design is that
they have the following properties:

a) If the critical points are feasible (i.e. 1>(d,pc) < 0),
they guarantee also feasible operation for all other
peP(6). This simply follows from the fact that in (18) by .
the definition of global maximum, *(d,p) < <Kd,pc) for

p * pc, pcP(6).
b) If the critical points lie on the boundary of the region R

(i.e. t(d,pc) = 0), then pc represents a parameter point
that limits the flexibility in the design, since then the
hyper-rectangle P(6) cannot be expanded further within the
region R̂ fjjr any 61 > 6 (e.g. see Fig. 11).

c) If *(d,pc) > 0, it follows from (12) that the critical
parameter point pc represents the parameter point in
P(6) for which there are maximum constraint violations.

Although physical intuition can often predict correctly the
location of critical points, interactions in a process may lead to
rather unexpected values as was shown in the two heat recovery network
problems at the beginning of the paper. In these two examples the
critical points did not correspond to the intuitive "worst"
conditions, namely, the lowest heat transfer coefficients for example
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Fig. 12. Region with multiple critical points
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1 and the highest heat capacity flowrate for example 2. In the former

example the critical point was defined by having one transfer

coefficient at the upper bound and the other at the lower bound. In

the latter example the critical point was not even an extreme point but

rather at an intermediate value. Before discussing how one can

identify systematically critical points in a design, it is useful to

consider first how they arise in the general formulations of

flexibility problems.

Formulation of flexibility problems

We will consider in this section how the three main types of

flexibility problems can be formulated mathematically so that they

have a form that is amenable for numerical solution.
a) Flexibility analysis The flexibility index F can in

principle be determined by the formulation in (16). However, the
constraint of that problem P(6) £ R, cannot be handled readily by
standard numerical optimization procedures since this constraint
imposes feasibility conditions for the infinite number of parameter
points in P(5). Therefore, to formulate this constraint in a more
convenient form the following equivalence can be established,

P(6) £ R <=>VpeP(6)[3u|f(d,u,p) < 0]

<=>YpeP(6)[*(d,p) < 0]

<=> max *(d,p) < 0 (19)
peP(6)

<=> max min max fi(dtu,p) < 0
pd>(6) u jeJ

by treating the max^and min operators as global operators.

With the equivalence in (19) , problem (16) can be formulated as

F = max 6
u,6

s . t . max min max fj(d,u,p) < 0
peP(6) u jeJ

P(6) = (plpN - 6Ap- < p < pN + 6Ap+}

Note that in (PI) the max-min-max constraint imposes the
feasibility condition since from (19) it can be seen that it simply
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states that the maximum of the function *(d,p) taken over all peP(6)
should be non-positive to ensure that the rectangle P(6) is indeed
contained in the region R. Also, the solution to this constraint
yields the critical point pc for which feasibility of the constraints
must hold.

For the case when the f lexibil ity analysis consists in testing

feasibility for a given parameter set P (F - 1) , problem (PI) reduces

to

max min max fj(d,u,p) - max *(d,p) (P2)
peP u jeJ - peP(l)

In this case when +(d,pc) < 0 feasibility is confirmed, and when
t(d,pc) > 0 infeasible operation is detected at the critical point.

b) Optimal design with fixed degree of flexibility In this
problem the objective is to obtain an optimal and feasible design for
a specified set of parameters P (or equivalently for a flexibility
index F = 1).

Assuming that the control variables are adjusted for both
feasible and optimal operation depending on the parameter realization
pf the optimal expected cost of operation is given by

C = E {min C(d,u,p)|f(d,u,p) < 0} (20)
peP u

However, since the design variables d must in this case be
selected optimally (to minimize C), and so as to guarantee feasible
operation (P£ R), the problem corresponds to the two-stage programming
problem ^

min E {min C(d,u,p)|f(d,u,p) < 0}

d peP u

s . t . max min max f.(d,u,p) < 0 (P3)
peP u jeJ J

P = {plpL < P < PU>

Note that in this formulation by including the max-min-max constraint
the design variables d are selected in such a way so as to ensure that
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feasible operation can be guaranteed, provided that the control

variables are adjusted to achieve both feasible and optimal operation

for every parameter peP.

c) Design with optimal degree of f lexibi l i ty This case can be

regarded as a generalization of problem (P3) in which the simultaneous

objectives are to minimize the cost and to maximize f lex ib i l i ty , while

ensuring feasible steady-state operation over the parameter set P(6)

that is to be determined. This problem then leads to the bi-criterion

optimization problem

min E {min C(d,u,p) |f(d,u,p) < 0}
d peP(6) u

(P4)

s . t . max min max f.(d,u,p) < 0
peP(6) u jeJ J

P(6) * (plpN - 6Ap" < p < pN + 6Ap+}

which as is well known defines not a single optimal solution, but

rather an infinite number of pareto-optimal or trade-off solutions as

shown in Fig. 13. Note that when 6 = 1 , (P4) reduces to problem (P3),

while fixing the design variables d and eliminating the f i rs t

objective function reduces (P4) to problem (P I ) .

General approaches for solving f lexibi l i ty problems

The formulattofts presented in the previous section have in common

that they correspond to nonlinear infinite programming problems

(see Fiacco and Kortanek, 1983) since they require that the infinite

number of constraints contained in the specified parameter range be

satisfied. The direct solution to these problems (PI , P2, P3 and P4)

poses in general a formidable problem since the »ax-min-max constraint

usually involves a non-differentiable global optimization problem (see

Grossmann et a l . , 1982).

The only general algorithm for solving this class of problems has

been proposed recently by Polak (1982). The main idea in his method
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Flexibility

Fig. 13. Trade-off curve for cost vs. flexibility
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1s to construct outer-approximations of the feasible region by
discretizing the parameter sets P or P(6) which allow the problems to
be solved as a sequence of nonlinear programming problems. Although
the advantage In Polak's method Is that It does not assume any
particular location for the critical points, the drawback is that the
method is computationally yery expensive as it requires the solution
of global optimization subproblems in order to ensure feasibility of
the constraints.

An alternate approach for solving flexibility problems is to
assume that the critical points correspond to vertices or extreme
values of the parameter sets P or P(6) (e.g. see Halemane and
Grossmann, 1982; Marselle et al.f 1982). This has the advantage of
reducing the infinite dimensional problem into one of finite
dimensions since feasibility must then only be ensured at the
vertices. This number, however, can still be very large, particularly
for a large number of parameters np, since the number of vertices is
given by 2nP. For instance if np * 10 the number of vertices is
1024, and for np = 20 the number is 1,048,576! Despite this
limitation, from a computational viewpoint this assumption simplifies
the global optimization problem, since in this case one is also
assuming that the global maximum of the feasibility function *(d,p)
lies at one of the vertices. However, the drawback is that the
property that critical points correspond to vertices does not
necessarily apply for any arbitrary type of constraint functions
fj(d,u,p) jej. As has been shown by Swaney and Grossmann (1983), a
sufficient condition for the property to hold is that the feasibility
region R in (10) must be one-dimensional convex. That is, as shown in
Fig. 14, in this type of region the convexity condition must only hold
for points that are parallel to the coordinate directions (e.g. line
A-B in Fig. 14). It should be noted that this class of regions is not
necessarily convex as it covers some types of nonconvex regions.
Swaney and Grossmann (1983) have also shown that a region can be
guaranteed to be one-dimensional convex if the constraint functions
fj(d,u,p) are jointly one-dimensional quasi-convex in p and
quasi-conve* in u. This is a more general condition than requiring
that the constraint functions be jointly convex in p and u.
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Fig. 14. One-dioensional convex region

Criticol Point

15. Nonconvex region vita nea-vertex
critical point
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Unfortunately in practice, unless a particular problem has a
special mathematical structure, it is not possible in general to
verify that critical points will correspond to vertices. Although
physical intuition would tend to support this conjecture for a very
large number of cases, as was shown in the second example of the heat
recovery network, one cannot always expect the critical point to
be a vertex. This situation may occur for some types of non-convex
feasible regions such as the one depicted in Fig. 15 where the
critical point lies at one of the faces of the rectangle.

Practical algorithms

Despite possible exceptions to the assumption that critical
points correspond to vertices, it would still seem to be worthwhile to
develop algorithms based on this assumption since the scope for
computational efficiency is much greater in this case. A detailed
description of these methods can be found in Grossmann et al. (1982)
and Saboo and Morari (1983). This section will outline only wery
briefly the main idea behind the methods.

In the case of the flexibility index, problem (PI) can be
decomposed in subproblems that determine the maximum parameter
deviation along the vertex direction (Ap)k, keV, where V is the index
set for all the vertices. These subproblems have the form

max 6.

s.t. f(d,u,p) < 0 (21)

which can be shown (see Swaney and Grossmann, 1983) to define points

on the boundary of the feasible region R. The value of F is then

simply given by F = minUfc}. However, in order to avoid solving (21)
kcV

explicitly for each vertex k, an enumeration procedure has been
proposed by Swaney and Grossmann (1983) which tests with problem (13)
the feasibility of vertices with the current upper bound 6. If a
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vertex is found to be infeasible, it is solved with (21) to update the

value of S. Also, Swaney and Grossmann (1983) have developed an

alternate procedure that assumes monotonic constraints with which only

a small number of subproblems need to be solved out of the total

number of vertex points. Both procedures can also detect under some

conditions whether the critical point is not a vertex, in which case

a local maximization procedure is used to find a non-vertex

critical point.

For the problem of optimal design with fixed degree of

flexibility (P3), Halemane and Grossmann (1983) have proposed an -

algorithm that considers a finite set Pj of Nj parameter points in

successive iterations j = 1,2,... These points include vertices that

are estimates of critical points, as well as other parameter values

that provide a suitable weighting for the cost function. With this

discretization problem (P3) reduces to:

min Xj w .

s.t. ftd.u 1^ 1) < 0 i * 1, ... IT.

where WJ correspond to the probabilities of realization of the

selected parameters pePj. Rather than considering all vertices of P

in the set Pj to ensure feasibility, the algorithm solves problem (22)

iteratively by augmenting the set of Pj with those vertices that were

not included in tfie set Pj-1, but were found to have the largest

infeasibility by solving the subproblem in (13) for all vertices. The

algorithm makes use of the method suggested by Grossmann and Sargent

(1978) to generate the initial vertices in the set Pi- The procedure

consists in analyzing the gradients of individual constraints in order

to determine the vertex for which each constraint is maximized. The

resulting set of vertices is then merged in a smaller set of predicted

critical points, with which very often problem (22) needs to be

solved only once.
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It should be noted that problem (22) has the structure of a

multi-period design problem where the weights WJ can be interpreted as

lengths of time of each time period i in which the plant operates

under the parameter p1. The projection-restriction strategy proposed

by Grossmann and Halemane (1982) and implemented in the computer

package FLEXPACK (Avidan and Grossmann, 1983) can be used to solve the

multi-period problem wery efficiently since its computational effort

tends to vary only linearly with the number of points Nj.

As for the solution of the problem of design with optimal degree

of flexibility (P4), one approach would just simply be to solve it for

different values of 6 for generating the trade-off curve. Since this

requires solving a sequence of problems (P3) this approach tends to be

computationally expensive. Work is needed to develop a more efficient

procedure for this problem.

On the synthesis of flexible processes the only problem that has

been studied systematically is the one of resilient heat recovery

networks. Marselle et al. (1982) consider the flowrates and inlet

temperatures of n$ process streams as uncertain parameters that are

specified within given lower and upper bounds. The objective is then,

to determine a configuration of a heat recovery network that is

feasible to operate and attains maximum energy recovery for the

specified range of parameters. Out of the 4ns vertices that are

possible, Marselle et al. (1982) identified four predicted critical

vertices that are shown in Table 3. Note that these vertices

correspond to four physical situations: maximum total heat exchanged,

maximum heating and ̂ cooling duties, maximum heat transfer area. The

proposed synthesis procedure consists in deriving a network structure

that is feasible and attains maximum energy recovery for the four

vertices. The actual network structure is derived by combining

networks for each of the four vertices. Very often the resulting

network structure will be feasible for all the parameter points in the

specified range. However, this may not be true in general as was

shown in the second example at the beginning of this paper which

involved an uncertainty in the flowrate of one of the streams.

Recently, Saboo and Morari (1983) have identified a class of

network problems for which feasibility can rigorously be guaranteed if
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Table 3

Predicted critical vertices for resilient

heat recovery networks

Case

B

Stream
Type

Hot •

Cold

Hot

Cold

Hot

Cold

Cold

Inlet
Temperature

U

L

U

U

L

L

L

U

Flowrate

U

U

u
L

L

Q

D

U

Description

Maximum heat

exchanged

Maximum

cooling

Maximum

heating

Min AT

Max area

L — lower bound, U — upper bound
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feasibility holds at the vertices of the uncertain parameters* In

particular, the following assumptions must hold for that class of

problems:

a) Heat capacities are temperature independent.
b) No boiling/condensing streams.
c) Only uncertainties in the inlet temperatures are considered.

d) The networks do not feature stream splitting.
e) The range of pinch point variations is defined by the inlet

temperature of the same processing stream.
In practice, however, these assumptions can be relaxed somewhat.

Although the assumptions are rather restrictive they illustrate the
great difficulty involved in the problem of guaranteeing the existence
of regions of feasible operation.

Finally, Papoulias and Grossmann (1983) have developed a
synthesis procedure based on mixed-integer linear programming for
designing flexible utility systems. They specify a finite number of
different demands that the utility system must provide in a sequence
of time periods. By formulating the problem as a multi-period
mixed-integer problem a minimum cost structure of the utility system
is obtained which is feasible for each time period. Although this
synthesis problem is not as general as the one where demands are
specified as uncertain parameters, it has the interesting feature that
the structure is obtained automatically through the solution of a
mathematical programming approach.

Examples

In order to il lustrate some of the ideas on f lexibi l i ty three

examples will be discussed. The f i rs t one is taken from Swaney and

Grossmann (1983), the second from Halemane and Grossmann (1983) and

the third from Saboo and Morari (1983).

Example 5: In the system shown in Fig. 16 a pump must transport

liquid at flowrate m from its source at pressure Pi through a pipe run

to its destination at pressure P2*. The actual pressure ?z m u s t

remain within a tolerance ±20 kPa of the desired pressure P2*. Both

the flowrate m and the pressure P2* are uncertain parameters. The

nominal value of m is 10 kg/s with expected deviations of +2 and -5
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Fig. 16. Pipeline example problem
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Fig. 17. Regions of feasible operation for designs
d°, d1 and d2.
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kg/s* The nominal value for P2* is 800 kPa with expected deviations
of +200 and -550 kPa; P^ is fixed at 100 kPa. The design variables to
be selected are the pipe diameter D, the pump head H, the driver power
tf, and the control valve size C v

m a x; the control variable is the valve
coefficient cY which can be adjusted with different valve openings.

The resulting feasible regions R corresponding to three different
proposed designs are depicted in Fig. 17. Note that these regions
are one-dimensional convex. The first design <P is a design
which has been optimized at the nominal parameter point. Since
this point lies at the boundary of the feasible region R for <P, no
rectangle of finite size can be expanded, and therefore the flexibili-
ty index for this design is zero. Design dl has been overdesigned by
increasing the pump head by 230 kPa and by sizing the driver power H
at the expected high value for m * 12 kg/s. The index of flexibility
for d1 is illustrated in Fig. 17 by the rectangle inscribed within the
d* region. The critical point for this design lies at the vertex
which simultaneously maximizes P2* and m, for which F = 0.62. Note
that in spite of the chosen overdesign allowances the condition
P2* = 1000 kPa, m = 12 kg/s remains infeasible. Design d2 shown in
Fig. 17 is one for which the flexibility targets are exactly met, i.e.
F = 1, at minimum cost. Note that in this case the region R is
modified in such a way so as to exactly accommodate the rectangle
whose sides correspond to the specified expected deviations. Also
note that in this design, three vertices of the rectangle are critical
points. Finally, Fig. 18 shows the trade-off curve between the
annualized cost and^flexibility for this system. As can be seen from
this curve, for values of flexibility that lie within 0 and 1.3 only a
moderate linear increase is experienced in the cost. However, for
flexibility values greater than 1.3 a rather sharp increase in the
cost is experienced since the system becomes more inefficient to
operate. Analysis of this trade-off curve gives the required insight
to the designer to select an appropriate point in the curve, and so
establish the degree of flexibility considered to be optimal.

Example 6: The heat exchanger network 4SP1 of Lee et al.
(1970) with outlet temperatures specified as inequalities is
considered. The network involves two hot and two cold streams and
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Fig. 18. Trade-off curve of cost vs. flexibility index
for pipeline problem.
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five exchangers as shown In Fig. 19. The overall heat transfer

coefficients are considered as uncertain parameters with expected

deviations of ±20% with respect to their nominal values. The problem

consists In selecting the five areas so that irrespective of the

actual values of the heat transfer coefficients (with ±20% range), the

specifications on the outlet temperatures are satisfied by suitable

choice of the cooling water outlet temperature l\s and the steam

temperature T13.

Table 4 gives the initial set of predicted critical vertices

considered for design, which were obtained by analyzing the signs of

gradients of constraints as suggested by Grossmam and Sargent

(1978); the nominal point Is included to provide an adequate weighted

cost function. Note also that the vertex where the five transfer

coefficients lie at their lower bounds (intuitively the "worst"

condition) is not included. The optimal design of the network

corresponding to these set of points was obtained by solving the

corresponding multi-period design problem. The resulting design was

found to be feasible for the 32 vertices. It is Interesting to note

that 24 of these vertices are actually critical points since they

attain the maximum value of +(d,p) = 0. This result is to be expected

since the optimization procedure will have the tendency of adjusting

the feasible region so that its boundary touches the parameter set on

as many vertices as possible.

The actual areas that were obtained are shown in Table 5 which

also shows the areas that are obtained when the network is optimized

at only the nominal j)oint. Clearly the striking feature is that the

overdesigns that are predicted are quite different for each exchanger;

for instance, exchanger 5 has been oversized by 64.2% whereas

exchanger 4 has been oversized by only 8.4%. However, more

interesting Is the fact that exchanger 2 is actually being undersized

by 7.7%. Physically, the explanation of this is that when the

transfer coefficient in exchanger 2 takes the upper bound value, the

outlet temperature of H2 drops to a point which rauld make the

heat exchange infeasible in exchanger 3. Therefore, to avoid

this situation the area of exchanger 2 must be undersized. This

result shows the effectiveness of the procedure by Halemane and
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Table 4

Paraaeter values considered for heat exchanger netvork
(Example 6)

1

2

3

A

5

Beat

Di

N

U

L

U

L

transfer coefficients

N

U

U

L

U

U3

N

U

U

L

L

N

U

U '

L

U

N

N

N

L

N

N-nominalf L-lower bound, U-upper bound

Table 5

Comparison of optimal areas predicted for
heat exchanger network (Example 6)

Areas (m*) Expected cost
&l Aj A3 A4 A5 ($/yr)

H&G Algorithm

Nominal design

Z Overdesign

30

24

25

.8

.6

65

70

-7

.4

.7

45

40

12

.6

.6

.2

3

3

8

.9

.6

.4

2

1

64

.8

.7

.2

11

9

,758

,959
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Grossmann (1983) in accounting for the interactions that may lead to
infeasible operation in a processing system.

Example 7: The objective is to synthesize a heat exchanger
network for the problem specified in Table 6 such that arbitrary inlet
temperature variations up to ± 10K and up to ± 15K can be tolerated
while maintaining maximum energy recovery. It can be shown (Saboo &
Morari, 1983) that for this problem all assumptions stated above are
satisfied which ensure that feasibility at the vertices is sufficient
for feasibility over the whole operating range. In particular for all
possible temperature variations the pinchpoint is defined by the inlet
temperature of stream H2. Saboo and Morari developed the program
RESHEX, which - among other features - provides an efficient means for
checking the feasibility at all the vertices. A network structure
capable of providing maximum energy recovery at the nominal operating
conditions with the minimum number of exchangers is shown in Fig. 20A.
For inlet temperature variations up to ± 10 K the only vertex at which
the approach temperature constraint of ATmin

 = 10K is violated is Case
C (cf. Tab. 3) (Fig. 20A). For all practical purposes the network is
therefore structurally resilient for this temperature range. However
care has to be given to the area design to account for the small
approach temperature which occurs for Case C. Figure 20B & C show
that Cases B and C for ± 20K are physically impossible with this
structure. Based on recommendations for modifications generated by
the program RESHEX the structure in Fig. 20D 4 E was obtained which is
structurally resilient for a range of ± 20K.

DYNAMIC RESILIENCE

Problem definition and general terminology

Clearly the primary requirement for plant operability is steady
state resilience and flexibility. But these qualifications are of
little help when the transients of the process moving from one
operating condition to another or the actions taken to compensate for
a disturbance, are exceedingly slow resulting in large amounts of
off-specification product. It is then very likely that at the next
level of the screening process a design candidate with less favorable
static but more attractive dynamic resilience characteristics will be
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Stream No*

HI

H2

. C1

C2

Table
Stream data for

w(lcW/K)

8

13

8

6

6

Example 7

450

510

355

390

TT(K)

380

410

445
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240
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525 „ ^

445
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Case !, t • 15 K

410
C) >

370

405

[Cl

[C2"

Fig. 20.A,B: Heat exchanger networks featuring maximum
energy recovery generated for Example 7.
A: Case C with AT = -10K. B: Case B with
AT - +15K. Situation B is physically
impossible because temperature crossovers
occur.
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Fig.20.C,D,E: Heat exchanger networks featuring maximum energy
recovery generated for Example 7. C: Case C with
AT = -15K. D: Case B with AT = +15K. E: Case C
with AT = -15K. Situation C is physically impossible
because temperature crossovers occur.
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preferred. The quantitative evaluation of "dynamic resilience" Is
much more difficult than that of Its static counterpart. Though It
could be cast Into the form of a variational problem with an Integral
square error objective function and though the trade-offs could be
judged conveniently using a vector valued objective function (Lenhoff
& Morari, 1982), It Is essentially Impossible to relate these numbers
to features which are observed on the real plant by the operators.
Therefore this approach Is rightfully frowned upon by the
practitioner. A further difficulty arises from the fact that a
judgement of the dynamic behavior without Including a controller In
the analysis appears to have as little meaning as Including a specific
controller which might very well bias the results: a different
controller could lead to a very different conclusion on the dynamic
resilience of a design.

The situation can be compared quite accurately to the problem of
judging the performance of a car. Obviously the performance depends
on the driver (controller) but clearly there are also properties
inherent In the car, e.g. power, which determine its dynamic
characteristics independent of the skill of the driver. In practical
use the best performance will be realized by a car which has not only
good inherent dynamic characteristics but also one whose performance
is not extremely sensitive to our driving skills or - expressed
differently - to our lack of detailed knowledge about the cars
properties. For example, a high powered car is north little if it is
difficult to handle.

Translating these arguments into the area of process design we
are looking for a*m&thod to judge the inherent dynamic characteristics
of a plant independent of the installed controller and a technique to
quantify the sensitivity of the performance to uncertainty. To obtain
good performance for a "sensitive" plant a good model and a good
controller are needed. A good model is often very difficult to obtain
and therefore sensitive plants should be avoided.

System description

In order to evaluate the dynamic resilience in a process it will

be assumed that both the configuration and equipment sizes at the
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plant are given. Furthermore, although no specific controller type

will be assumed, it is clear that a given set of controlled and

manipulated variables must be specified. In general there might be a

number of different choices for the manipulated variables in a process

as was illustrated in example 4 at the beginning of this paper.

Because of the complexity of the problem and because in control

we are usually concerned about "small" deviations from steady state

operating points, we restrict our discussion to linear systems.

Furthermore, we assume that the uncertainty is described in the

frequency domain as a "region" around the nominal model in which the

real plant lies. More specifically, the input/output model is

y(s) = G(s) u(s) + p(s) (23)

where y(s) is the vector of controlled variables, u(s) the vector of

manipulated variables, p(s) the vector of unmeasured disturbances

affecting the outputs and G(s) is the transfer matrix. This matrix

can be obtained by linearizing the performance equations of the

process at the nominal operating conditions. Apart from the

additive uncertainty expressed through p(s) there is uncertainty in

the model i tse l f .

Uncertainty description for SISO systems A convenient way to

describe model uncertainty for single-input-single-output (SISO)

systems (dim u = dim y = 1) is

g(s) = g(s)(l + £(s)) (24)

where g(s) denotes £he plant and g(s) its model and £(s) is bound by

o))| < £(o)) (25)

Here *{w) is a function defined on the positive reals. Combining (24)
and (25) we find
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< i(u>) (26)

On a Nyquist diagram (26) describes an uncertainty bound swept by
circles of radius l{cu) Ig(iu) | within which the plant l i e s (Fig. 21).
In all practical situations the model jj(s) i s of lower order than the
plant g(s) . Therefore |g(i«u)| will vanish faster at high frequencies
than |g(i<u)| and typically

lim i(w) = 1 (27)

This form of uncertainty description has become quite standard in the
control literature but i t is not necessarily the most convenient in
every situation. As we will show next i t can be extended to
multivariable systems but some information on the location of the
uncertainty is lost in the process. Before we discuss this extension
we have to introduce the notion of gain for multi-input-multi-output
(MIMO) systems. .
Vector and matrix norms In the SISO case the gain is simply the
amplitude ratio as a function of frequency. For MIMO systems the
situation is somewhat more complicated because the magnitude of the
output of a system does not only depend on the magnitude but also on
the direction of the input. We will follow here the ideas by
MacFarlane 4 Scott-Jones (1979). Taking norms on both sides of the
equation describing the system

y(io>) * G(iw)u(iu>) (28)

we obtain

i y ( i u ) i - iG(iu) u(i(d)l

< iG(ia)) i iu ( iw) i
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Fig. 21. Uncertainty band around model g(ioi) within
which the real plant g(iw) lies.

u I
Us)

Fig. 22. Multiplicative input and output uncertainties
for a multivariable system.
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ly(ico) I

or < iG(iu) i (29)
lu( i u) I

Employing the Euclidean vector norm a compatible matrix norm is the

spectral norm

IGI • max X . 1 / 2 ( G * G ) (30)

i 1

The square roots of the eigenvalues of G*G (* denotes complex

conjugate transpose) are called the singular values (Kiema S Laub,

1980) or, in the control context, the principal gains (MacFarlane &

Scott-Jones, 1979) of G. We will employ the notation

It can be shown that

°m(G)iui < iGul < OM(G)IUI (31)

Thus the maximum singular value is a natural definition of gain for

multivariable systems. Singular value plots play much the same role

for MIMO systems as Bode plots for SISO systems. As is clear from

the definition, for square systems the number of singular values is

equal to the number of inputs (outputs). The minimum and maximum

singular value provide bounds (31) on the stretching action exerted by

the system on a particular input vector.

Uncertainty description for MIMO systems As shown in Fig. 22 the

multivariable multiplicative uncertainties can act either on the

inputs (Lj) or the outputs (LQ)
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6(s) = !

(32)
G(s) = (I + L0(s))G(s)

(33)

where i\9 !Q are scalar functions defined on the positive reals.

These functions do not allow to distinguish between uncertainty

localized in one element and uncertainty "spread" over all elements.

However, this might not be so disadvantageous at the design stage

where better uncertainty information is rarely available.

The Internal Model Control (IMC) structure

The classic feedback structure (Fig. 23) makes an identification

of the system inherent characteristics affecting dynamic resilience

quite complicated. This analysis is greatly facilitated when the IMC

structure (Fig. 24) (Garcia, Morari, 1982) is employed. Obviously,

through simple block diagram manipulations the IMC structure and the

classic feedback structure can be made equivalent

6C - C(I + G C H (34)

C = GC(I - GGc)"1 (35)

but the IMC structure makes certain results more transparent as we

will see shortly. The closed loop relationship is

y = G(I + GC(G - G))"1 Gc(ys - p) + p (36)

For G = G this reduces to

y = GGc(ys - p) + p (37)



-60-

u r +

Fig. 23. Classic Feedback Structure.

Fig. 24. The Internal Model Control Structure.
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i.e. it becomes equivalent to an open-loop controller where the
disturbances are measured. Note that Gc allows to specify the
structure of the closed loop response. For example, when GGC is
diagonal the response will be decoupled. The following three
properties follow directly from (36).

Property 1: Assume that the model is perfect (G - G). The system is
closed loop stable if the plant G and the controller Gc are stable.
Property 2: Let the controller be the right inverse of the plant
model fi(Gc

 s G*1) and assume that the system is closed loop stable.
Then y(t) = ys(t) f° r all times t and all disturbances p.
Property 3: Let the steady state controller gain be the right inverse
of the steady state model gain, i.e. Gc(0) = G~*(OK Further assume
that the system is closed loop stable and that the set points ys(t)
and the disturbances p(t) are asymptotically constant.
Then the system will have no offset:

lim y(t) = y s

where lim ys(t) - ys
 s constant.

Fundamental limitations of dynamic resilience

We can now look at the resilience assessment in the light of the
IMC framework. We will analyze the reasons why the "perfect"
controller (Gc = G"*) can usually not be implemented. Because the
controller is simply the process inverse we obtain from this analysis
of the controller a direct indication of the system characteristics
which limit resilience.

The controller Gc is to be selected "close" to G*
1 subject to the

constraints that it be causal, realizable (to allow physical
implementation) and stable (to guarantee closed loop stability
according to Property 1).

G-l is not causal and/or unstable if G has one of the following
properties.
1) G involves time delays. Inversion of time delays can result in
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noncausal expressions (prediction) which can not be implemented

2) 6 has zeros in the right half plane (RHP). Inversion leads to

poles in the RHP and therefore an unstable 6c
A transfer function containing either delays or RHP zeros is commonly
called non-minimum phase (NMP). In the presence of NMP elements G is
factored into an invertible part GL and a noninvertible part G+

G = G+ G_ (38)

such that G+(0) = I and L - 1 is realizable and stable. Gc is then
chosen as

Gc = GL-1 (39)

The factorization is clearly not unique but from (36) we note that for

G = G, G+ is the closed loop transfer function

y = GcG(ys - p) + p (40)

y s <Mys - p) + P (41)

The noninvertible part of the system G+ expresses the "best"
achievable performance by a system and is therefore a direct measure
of its dynamic resiliency. Except for SISO systems it is generally
not possible to define a unique factor G+. Clearly G+ should be
"close" to unity but the designer often has some freedom in giving
preference to certain outputs. We will now discuss in more detail the
options available for choosing G+ and finally elaborate on the other
limitation to control quality, namely the constraints on the
manipulated variables and the model uncertainty.

I. Time delays: The aspects of the time delay factorization
have been discussed in detail by Holt and Morari (1983). In general
a trade-off between the speed of the closed loop response and
decoupling is possible. For example three possible factorizations for
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are

0

e-2s(l-e-

(l-e"2s) e"2s

G indicates that output 1 can react only after two time invervals,

output 2 can react immediately. These numbers are a lower bound on

the response time but they are not an indication of the actual

settling time. If both outputs are equally important and decoupling

is chosen, G+* provides an upper bound on the settling time. This is

verified by G+2, where preference is given to the first output which

settles in minimum time (cf. G), at the cost of decoupling and a

maximum settling time for the second output (cf. G+l). Analogously,

in Gf3 preference is given to the second output. These upper and

lower bounds on the settling time serve as measures of resiliency for

a multivariable system involving time delays. Holt & Morari

(1983) have shown that a diagonal G+ which renders G_"l causal is

"optimal11 if and only if the rows and columns of G can be rearranged

such that the smallest time delay of each row is on the diagonal. For

example, the Wood & Berry (1973) distillation column has the transfer

matrix
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G(s)

12.8 e'5

l b . 7 S + 1

6.6 e'7 s

iu.ys+1

-18.9 e
~2Ts+T

-3 s

(42)

-19.4 e
14.4S+1

-3 s

Here the smallest time delays are on the diagonal and therefore

6+ = diag(e~s, e"^s) is "optimal". The lower aad upper bounds on the
settling time coincide.

We are now in a position to explain the counterintuitive result
presented earlier which indicated that lengthening dead times can
improve the dynamic resiliency. For the original network (Fig. 4) the
simplified transfer function involving only dead times is

6(s) ,-lls

-8 s

r l l s

1
.-13s

r2s

-12s (43)

and the diagonal factor is

G+ = diag(e-
6s, 1, e"4s) (44)

If the lag between heat exchangers 3 and 5 is increased from 2 to 6

minutes the transfer function of dead times becomes

G(s)

r 6 s

-8s

.-11s

.-13 s

r 6 s

-16s (45)

and the diagonal factor is
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diag(e~6s, 1, 1) (46)

which is an improvement over (44)•

II, Right Half Plane zeros: The issues concerning the

factorization RHP zeros are discussed by Holt and Morari (1984)

for transfer matrices not involving time delays. The question here is

how to choose G+ such that G.-l is stable. Two major results were

obtained.

Result 1: Let the SISO system g(s) have a single RHP zero at s=z, then

the Integral Square Error (ISE) to a step change is 2/z and this error

is obtained from the factor g+(s) = (-s+z)/(s+z).

Result 2: Let the MIMO system G(s) have a single RHP zero at z, then,

in general, the "bad" effect of a RHP zero can be localized to any

particular output,

»s+z
s+z x

1

(47)

where all the off-diagonal elements are zero except in the row which

contains the RHP zero.

For example, consider the system

G(s) = Us

which has a zero at s = 1/2. Three possible factorizations are shown

below together with the ISE resulting from a unit step change in both

set points
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-2s+l

~zs+r

0

ISE = 8

-2s+l
zs+i

• G2

1

8s
7s+r

ISE

0

-2s+l
~7s+T

= 4

-2s+l
"Zs+r

n

u
ISE

2s
7s+

1

= 1

The optimal 6+ can be found using a very involved matrix factorization
procedure (Frank, 1974):

Gj(s)
5(l+2s)

f5-6s 8s 1
L 8s 5+6sJ ; ISE

For a different set of inputs or a different weighting of the outputs
the ISE-optimal factor G+(s) would be different. Thus striving for
ISE optimality does not appear a very practical proposition.
Factorizations of the type &+*, G+2 4 Q+3 are m c h easier to obtain
and allow the designer to clearly indicate his preference in a similar
manner as was suggested for time delays. If a decoupled response is
sought G+*(s) is the answer. If output 1 is more important 6+2 should
be selected, if output 2 is critical G+3 is the best candidate.

Again 6+ can be used directly as a measure of resiliency.
Contrary to the results obtained for systems involving time delays,
the effects of RHP zeros are structure-free, they are generally not
associated with a particular output but can be shifted around. The
closer the RHP zero is located to the imaginary axis the more
detrimental is its effect. Zeros which are far out in the RHP can
usually be disregarded in a resiliency analysis.

III. Constraints on the manipulated variables Taking
constraints into consideration makes the problem nonlinear but it is
possible to get some feeling of how the constraints affect the
resiliency even from a linear analysis. For the IMC structure (Fig.
23) with G = G and 6C * G-l

lul < IG~11 lys - pi (48)
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log

logcu

Fig. 25. Practical controller (—-) starts to deviate from
ideal controller ( ) at frequency <u*.

»y

Fig. 26. IMC structure for multiplicative model uncertainties
occurring at the model output.



-68-

Therefore, in order to satisfy the constraint

lui < iuimax (49)
we should require

iys - pi < IG-
1 i-l luimax

or iys - pi < cWG) lui^x (50)

In practice, depending on the frequency spectrum of the disturbances
it is very well possible that the bound (50) is txceeded. This does
not imply that the system will become unstable but simply that the
closed loop performance deteriorates because the *perfect" controller
cannot function properly due to the saturation of the manipulated
variable. One way to quantify this effect is to envision a
"practical" controller which deviates from the "perfect" controller
and for which the manipulated variables do not saturate. We see from
(48) that the plot of ohf !(G) shows the effective controller gain of
the "perfect" controller as a function of frequency. If G(s) is
strictly proper (this is in principle true for all physical systems)
G~l(s) is improper, which means that onfl(G) becooes infinite as
ID • •. A "practical" controller will have to depart from the perfect
controller at high frequencies as is shown in Fig. 25. The departure
point which is generally close to the corner frequency gives the band-
width w* over which perfect control is possible, w* is a simple way
to measure the effect of the manipulated variable constraints on
closed loop performance and can be used as a tool for resilience
assessment.

IV. Model uncertainty In the previous analysis the availability
of a perfect model was assumed (G = G). If this is indeed the case
and if measurement noise is negligible, as we have assumed throughout,
the resilience analysis carried out to this point is all that is
needed. In practice model uncertainties and noniinearities will
always be present. In the following we will investigate the effect of
model/piant mismatch on control quality.

In Fig. 26 use was made of (32) to redraw tht IMC diagram of Fig.
24. Assuming the uncertainty description (33) it can be shown that a
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necessary and sufficient condition for "robustness", (i.e. closed loop
stability under plant variations), is that the loop gain must always
be less than 1:

) (51)

If we select Gc = G*
1 (51) becomes

(52)

This implies that the system is only closed loop stable if the
uncertainty radius £(a>) never exceeds 1. For any practical process
control problem £(u>) will grow beyond 1 for high frequencies. This
forces us to detune the controller and to give up performance for
robustness. Therefore let the controller have the form

6c(s) = e^ ts jFU) (53)

with F(0) = I

where F(s) is a dynamic compensator, a " f i l ter" . I ts purpose is to

lower the iGci at high frequencies to make the system robust against

model uncertainties. The function of the f i l t e r is best understood by

substituting (53) into (51)

, oM(G) 1
Y U ) S i G M i w ) ! I G ( 1 « ) I « — < (54)

om(G) o M ( F H M

Note that Y(O>) > 1 and that this ratio can be either unbounded or

bounded as ID ^ ». Ideally we want for good closed loop performance

F(s) = I because for G = G, y - FG+(ys - p) + p. The robustness

requirement (54) forces F(s) to be "small" especially at high

frequencies when £(UJ) is large.

For SI SO systems Y = 1 always and (54) becomes
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(55)

Thus for SISO systems the restriction on the filter norm depends only

on the model uncertainty Jt(w) but not on the model itself. In the MV

case the restriction becomes tighter (y > 1) and depends on properties

of the model. y(0) is a measure of singularity of G(0) and is usually

called the condition number. In the extreme case that G does not have

full row rank y becomes infinity and system stability can only be

guaranteed when F(s) =0 or in other words, by opening the feedback

loop. The larger y, the more sensitive the control performance is to

a possible model/pi ant mismatch. Therefore we will call Y(<D) the

sensitivity function of the system, y is a system inherent property

which limits control quality independent of the employed controller.

It is therefore a convenient tool to judge the dynamic resilience of

alternate designs. If we assume that £(CD) is similar for the systems

under comparison, those where y{u) is small over a wider range of

frequencies are preferable.

One objection commonly invoked against the use of the condition

number is that it is strongly scale dependent. That is, if inputs and

outputs are measured in different physical units, an entirely

different y can result. This argument is correct. However, it does

not invalidate y as a sensitivity measure. Rather, it points out that

y becomes only meaningful after scaling. G should be scaled to

minimize y such that the bound (54) on the filter gain is least

conservative. Though a optimum scaling procedure is not available,

simple suboptimal rules are available in the numerical analysis

literature.

Example

The main purpose here is to demonstrate that the theoretical

developments have practical significance. The last one of the

motivating examples discussed in the introduction, the thermally

coupled distillation columns, still awaits an explanation. When

equipped with two different control structures they displayed a

strikingly different performance sensitivity to modelling errors. It

would be hoped that this kind of behavior is detectable by the newly
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introduced techniques. The models were found not to contain
time-delays or RHP zeros. The singular values and the sensitivity
functions obtained after scaling (Figs. 27 & 28) are quite revealing.
Y(0) is about three orders of magnitude larger for Structure 1 than
for Structure 2; thus the high sensitivity is not surprising.
Furthermore onrin(0) for Structure 1 is larger than for Structure 2 by
a factor of 30. This is reflected in the smaller steady state
excursion of the manipulated variables shown in F1g. 29. In
conclusion, the singular values and the sensitivity function are good
indicators of closed loop sensitivity and of the effects of
constraints on closed loop performance. Therefore they can form an
important tool in dynamic resilience analysis.

CONCLUSIONS

The main motivation behind the work presented in this paper lies
in recognizing the fact that designing chemical plants for optimum
economic performance or energy efficiency at nominal design conditions
is usually not sufficient for guaranteeing successful designs. The
objective of ensuring good operability characteristics is often of
equal or greater importance due to uncertainties and changing
conditions that are normally faced during plant operation.

The fact that it is not always a trivial problem to incorporate
properly the objective of operability in design has been demonstrated
clearly with several example problems in which intuition and
heuristics failed miserably. The common ideas of oversizing for
flexibility, identifying "obvious" worst conditions for feasible
operation, and avpiding long dead times for dynamic resiliency proved
to be all incorrect in these example problems. Furthermore, the
importance of selecting proper process configurations and equipment
sizes to achieve flexibility, as well as the impact of design changes
on the sensitivity of dynamic resilience were also established.

This paper has presented a rigorous framework for handling
systematically the objectives of flexibility and dynamic resilience
which are major components in plant operability. On flexibility the
following fundamental concepts were introduced:
- Definition of parametric region of feasible operation
- An index of flexibility that provides a scalar measure of this
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region

- Definition and properties of critical parameter points for

feasible operation

These concepts provide useful insights and a clear basis for under-

standing the nature of the problems involved in flexibility.

Three major subproblems were also formulated for incorporating

flexibility in design: flexibility analysis, optimal design with

fixed degree of flexibility and design with optimal degree of

flexibility. It was shown that the solution of these subproblems can

be simplified considerably for the case when critical points

correspond to vertices of the uncertain parameters. The rigorous

conditions under which this property holds true have been established.

In recent years considerable progress has been made in the

development of efficient algorithms and procedures for solving various

types of flexibility problems; these include,

- Computation of flexibility index through efficient vertex enumera-

tion schemes

- Projection-restriction strategy for designing plants under multi-

period operation

- Iterative multi-period method for optimal design with fixed degree

of flexibility

- Synthesis of resilient heat exchanger networks

It is clear, however, that a number of important issues still

remain to be answered. Among the more challenging questions, we can

cite the following:

- Location of critical points. Ideally one would like to develop

procedures that do not necessarily assume the critical points to

be vertices. However, even when this assumption is made it would

be desirable to develop procedures that only need to examine a small

number of vertices for finding critical points.

- Synthesis of flexible processes. Most of the work so far has been

directed to designs with fixed flowsheet configurations. However,

as has been shown in resilient heat exchanger networks the selec-

tion of proper configurations has a great impact on the flexibility
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of these networks. Therefore, 1t is clear that for other types of

processes there is a great incentive to develop procedures that can

account for flexibility at the synthesis stage.

- Trade-offs for cost versus flexibility. Very often increased flex-

ibility in a process implies larger capital investment. Although

this trade-off problem can be formulated conceptually as a bi-

criterion optimization problem, efficient and meaningful strategies

are still required to establish these trade-offs, both at the

synthesis stage and at the stage of equipment sizing.

On the objective of dynamic resilience, it was shown that this

property can be attributed to three characteristics inherent in the

system:

- Nonminimum phase elements

- Constraints on the control action

- Sensitivity/Robustness

Methods for assessing the effect of each one of these quantitatively

were presented. Depending on the system and the expected set point

changes and/or disturbances one or the other can dominate. No

attempts were made to combine these characteristics into a scalar

objective function. The philosophy of the approach is to provide the

design and control engineers with a more rigorous basis for their

decision making rather than to take the decisions out of their hands.

For a variety of reasons the new framework presented shows high

promise to become a standard industrial tool in the near future:

- Modelling:

For the assessment of the sensitivity and the effect of the

manipulated variable constraints on the performance only frequency

response data are needed. These data can be easily obtained from

complex dynamic models by pulse testing. On the other hand, the

steady state gains calculated from an available static model could

be augmented by time constants and delays estimated from experience.

Yes, even the steady state data themselves are clearly sufficient to

obtain Y(0) and om(0), good initial indicators of dynamic

resilience. Thus the modelling requirements are very flexible.

- Fundamental Rigor:
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The methodology presented here assesses only the fundamental

limitations to control quality which are inherent in the system

itself and not those imposed by the control system.

- Intuitive Appeal:
All the results derived for MIMO systems are natural extensions of

the heuristics which have been available for SISO systems for years.

Despite all the progress quite a few questions remain unresolved:
- The accurate computation of the RHP zeros is a problem for which no

reliable numerical procedure exists at present in particular when
the system contains time delays.

— The type of G+ factorization employed affects the condition number.
It 1s not clear how G should be factored from the point of view of
sensitivity.

- All the results were derived assuming that the open loop system is
stable. An extension to open-loop unstable systems appears non-
trivial.

- The method used for describing model uncertainty leads to "clear"
theoretical results but might be overly conservative when
information on the structure of the uncertainty is available.

- The new technique for dynamic resilience revolves around the idea
of a "perfect" controller and the performance will deteriorate from
that predicted if, for example, a set of single loop PI controllers
is implemented instead. A way has to be found to establish the
performance deterioration associated with a controller
simplification.

- It is also important to point out that the linear analysis is
somewhat restrictive because we know from experience the problems
caused by nonlinearities which are typical for chemical processes.
Though a complete nonlinear analysis lies far away in the future, a
better — namely nonlinear ~ method to assess the effect of
constraints on dynamic resilience would be desirable.

Finally, to conclude this paper, we have attempted to present
here a unified treatment for operability as a process design
objective. We realize that this effort marks only the beginning of a
research area which is both intellectually challenging and of
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practical significance. We hope that this paper will motivate

researchers in academia and industry to work on many of the problems

that still remain to be solved in this area.

Acknowledgement: Support from the National Science Foundation

(CPE-8115022 and CPE-8121665) and the Department of Energy (DOE

contract DE-AC02-80ER10645) is gratefully acknowledged.



-79-

References

Avidan, A. I . f and I. E. Grossmann, "FLEXPACK - * Computer Package for
Optimal Multiperiod Design11, Proceedings for the 3rd
International Congress on Computers and Cherncal Engineering
(Par is ) , Vol . I I , C-158 (1983).

Avr ie l , M., and D. J. Wilde, "Engineering Design under Uncertainty",
Ind. Eng. Chenu (Proc. Des. Dev.) , £, 124-131 (1969).

Dittmar, R., and K. Hartmann, "Calculation of Optimal Design Margins
for Compensation of Parameter Uncertainty", Chem. Eng. S c i . , 3 1 ,
563-568 (1976). ~~

Fiacco, A. V . , and K. 0. Kortanek (Eds), Semi-Infinite Programming
and Applications, Springer-Verlag, Heidelberg (1983).

Frank, P. M., "Entwurf von Regelkreisen mit vorgeschriebenem
Verhalten", G. Braun Verlag, Karlsruhe (1974).

Freeman, R. A. , and J. L. Gaddy, "Quantitative Overdesign of Chemical
Processes", A. I .Ch.E. J . , 2 1 , 436-440 (1975).

Grossmann, I. E. , and K. P. Halemane, "A Decomposition Strategy for
Designing Flexible Chemical Plants", A.I.Ch.£. J . , 28 f 686 (1982).

Grossmann, I. E. , K. P. Halemane and R. E. Swaney, "Optimization
Strategies for Flexible Chemical Processes", Proceedings
of t h e International Symposium on Process Systems Engineering
(Kyoto), 239 (1982).

Grossmann, I. E, and R. W. H. Sargent, "Optimum Design of Chemical
Plants with Uncertain Parameters", A. I .Ch.E. J . , 24, 1021-1028
(1978).

Halemane, K. P. , and I. E. Grossmann, "Optimal Process Design under
Uncertainty", A. I .Ch.E. J . , 2£, 425 (1983).

Holt , B. R., and M. Morari, "Design of Resil ient Processing Plants -
The Effect of Deadtime on Dynamic Resilience1, Chem. Eng. S c i . ,
submitted (1983).

Hol t , B. R., and M. Morari, "Design of Resil ient Processing Plants -
The Effect ot Mght-Half-Plane Zeros on Dynaoic Resilience",
in preparation (1984).

Johns, W. R., G. Marketos and D. W. T. Rippin, "TSe Optimal
Design of Chemical Plant to Meet Time-Varying Demands
in the Presence of Technical and Commercial Uncertainty",
Trans. Inst . Chem. Eng., 5£, 249-257 (1978).

K i t t r e l , J. R., and C. C. Watson, "Don't Overdesifn Process
Equipment11, Chem. Eng. Prog., 62, 79-83 (196§).

Klema, V. C, and A. J. Laub, "The Singular Value Decomposition:
I t s Computation and Some Applications11, IEEE Trans. Autom. Contr.,
AC-25, 164 (1980). :

Lee, K. F . , A. H. Masso and D. F. Rudd, "Branch aid Bound Synthesis of
Integrated Process Designs", Ind. Eng. Chem. Proc. Des. Dev., 13,
209 (1974). ~"



-80-

Lenhoff, A. M., and M. Morari, "Design of Resilient Processing Plants.
I. Process Design under Consideration of Dynamic Aspects",
Chem. Eng. Sci., 37_, 245 (1982).

MacFarlane, A. 6. J., and D. F. A. Scott-Jones, "Vector Gain", Int.
J. Contr., 29, 65 (1979).

Malik, R. K., and R. R. Hughes, "Optimal Design of Flexible Chemical
Processes", Comp. Chem. Eng., 3^ 473-485 (1979).

Marselle, D. F., M. Morari, and D. F. Rudd, "Design of Resilient
Processing Plants II: Design and Control of Energy Management
Systems", Chem, Eng. Sci., 37̂ , 259 (1982).

Morari, M., "Flexibility and Resiliency of Process Systems",
Proceedings of the International Symposium on Process Systems
Engineering (Kyoto), 223 (1982). ~"~:

Nishida, N., A. Ichikawa and E. Tazaki, "Synthesis of Optimal Process
Systems with Uncertainty", Ind. Eng. Chem, Proc. Des. Dev., 13,
209-214 (1974). ~

Papoulias, S. A., and I.E. Grossmann, "Optimal Synthesis of Flexible
Utility Systems", Proceedings of the 18th Intersociety of Energy
Conversion Conference (Orlando)

Polak, E., "An Implementable Algorithm for Optimal Design Centering,
Tolerancing, and Tuning Problem", JOTA, 37» 45 (1982).

Saboo, A. K., ChE 770 Term Project, Chemical Eng. Dept., U. of
Wisconsin (1982).

Saboo, A. K., and M. Morari, "Design of Resilient Processing Plants -
III. Some New Results on Heat Exchanger Network Synthesis",
Chem. Eng. Sci., in press (1983).

Swaney, R. E., and I. E. Grossmann, "An Index for Operational
Flexibility in Chemical Process Design. Part I: Formulation
and Theory11, submitted for publication (1983).

Swaney, R. E., and I.E. Grossmann, "An Index for Operational
Flexibility in Chemical Process Design. Part II: An Efficient
Ventex Enumeration Algorithm", manuscript in preparation (1983).

Takamatsu, T., I. Hashimoto and S. Shioya, "On the Design Margin for
Process System with Parameter Uncertainty", J» of Chem. Eng, of
Japan, £, 453-457 (1973).

Watanabe, N., Y. Nishimura and M. Matsubara, "Optimal Design of
Chemical Processes Involving Parameter Uncertainty", Chem.
Eng. Sci., 28, 905-913 (1973).

Weisman, J., and A. G. Holzman, "Optimal Process System Design under
Conditions of Risk", Ind. Eng. Chem, Proc. Des. Dev., 11, 386-397
(1972).

Wen, C. Y., and T. M. Chang, "Optimal Design of Systems Involving
Parameter Uncertainty11, Ind. Eng, Chem. Proc- Des. Dev., 7,
49-53 (1968). ~

Wood, R. K., and W. M. Berry, Terminal Composition Control of Binary
Distillation Column", Chem. Eng. Sci., 28, 1707 (1973).


