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ABSTRACT

One of the key components of chemical plant operability is flexibility - the

ability to operate over a range of conditions while satisfying performance

specifications. A general framework for analyzing flexibility in chemical process

design is presented in this paper. A quantitative index is proposed which measures

the size of the parameter space over which feasible steady-state operation of the

plant can be attained. The mathematical formulation of this index and a detailed

study of its properties are presented. Application of the flexibility index in design is

illustrated with an example.
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SCOPE

The goal in chemical process design is to produce a plant design which is

optimal with respect to cost and performance. Plant performance, though, involves a

broad range of criteria. A good process design must not only exhibit an optimal

balance between capital and operating costs; it must also exhibit operability

characteristics which will allow economic performance to be realizable in a practical

operating environment. Operability considerations involve the aspects of flexibility,

controllability, reliability, and safety. Although these aspects may appear to be

similar, they actually correspond to different technical concepts. Flexibility is

concerned with the problem of ensuring feasible steady-state operation over a variety

of operating conditions, whereas controllability is concerned with the quality and

stability of the dynamic response of the process. On the other hand, reliability is

concerned with the probability of normal operation given that mechanical and

electrical failures can occur, while safety is concerned with the hazards that are

consequences of these failures. Because these operability characteristics are the

implicit results of design-stage decisions, they must be given direct attention during

the design process if the goal of producing a good design is to be achieved.

Most of the previous methods for process synthesis (see Nishida et al.,1981)

and flowsheet optimization (e.g. Edhal et al., 1983; Biegler and Hughes, 1981;

Jirapongphan et.al., 1980) consider a singte nominal operating condition in the design

of chemical processes. Although these procedures can often provide useful results,

there is still a substantial gap between the designs obtained from such procedures

and the designs, that are actually implemented in practice. The major reason for this

gap is that conventional procedures for synthesis and flowsheet optimization do not

explicitly account for those factors which relate to plant operability. Therefore, the

common practice is to introduce additional equipment and employ various types of

empirical overdesign to improve operability characteristics. However, with this

approach it is generally not possible to guarantee either optimality or feasible

operation for conditions that are different from the nominal point selected for the

design.



It is only recently that new tools are emerging to simultaneously handle both

economic and operability aspects in process design (see Grossmann et. al., 1983;

Morari, 1983; Grossmann and Morari, 1983). The purpose of this paper is to present

a systematic framework for analyzing flexibility in chemical processes. To accomplish

this objective an index of flexibility is proposed which provides a measure of the

region of feasible operation in the space of the uncertain parameters. This index also

provides bounds of the parameters within which feasible operation is guaranteed, and

it allows the identification of those "worst-case" conditions that limit the flexibility

of the process. The mathematical formulation of the proposed index and its basic

properties are presented. Application of the index in process design is illustrated

with an example. Efficient algorithms for computation of the flexibility index are

given in Part II.

CONCLUSIONS AND SIGNIFICANCE

The problem of quantitatively characterizing the flexibility of a chemical plant

design has been addressed in this paper. A flexibility index has been proposed

which provides a measure of the size of the region of feasible steady-state

operation. This index has a meaningful interpretation in that it corresponds to the

maximum scaled deviation of uncertain parameters from their nominal values for

which feasible operation can be guaranteed. Furthermore, computation of this index

can be used to identify the critical parameter combinations which limit the flexibility

of a given design. A rigorous study of the mathematical properties of the index has

been presented,, with particular emphasis on the conditions under which it can be

guaranteed that the critical points will correspond to extreme values (vertices) of the

parameters. Formulations that are useful for the computation of the index have also

been presented. Application of the flexibility index has been illustrated in the design

of a simple pipe, pump and control valve system. The example shows that the index

can be a useful tool for assessing the flexibility of a design, for comparing

alternative flowsheets and for establishing proper trade-offs between flexibility and

its cost.



INTRODUCTION

The design procedure may be viewed in two stages: 1) choosing the process

configuration, and 2) determining the values for the design parameters of the chosen

configuration. In both stages the major objective is to arrive at a design that is

both economical and operable. While most systematic design tools that have been

developed in the past are directed towards the improvement of process economics,

they usually neglect the objective of improving plant operability.

An important first step in incorporating operability considerations at the design

stage is to provide an adequate treatment of operational flexibility. Flexibility as a

design attribute represents the ability of a design to tolerate and adjust to variations

in conditions which may be encountered during operation. The sources of these

variations may be both external and internal to the process. Examples of external

sources of variations include changes in throughput, feed quality, product

requirements, battery-limit conditions, and ambient temperature, as well as

fluctuations in utilities. Internal sources include variables such as exchanger fouling

and catalyst deactivation. The presence of these variations make it the designer's

task to provide a design which will exhibit feasible steady-state operation not just

for a particular nominal operating condition, but rather for a range of varying

conditions.

The conventional procedure to provide for flexibility in a design is to choose a

"conservative" set of conditions as the design basis. Additional units are then

commonly introduced and empirical overdesign factors are applied to the individual

pieces of equipment in the process. While this practice is widely used, it has two

major disadvantages. First, since the effects of process interactions on the

equipment comprising the process may not be adequately considered, the degree of

flexibility actually achieved through this procedure is in general uncertain. Second,

since the plant is designed and optimized at a single condition, there is no guarantee

that plant performance will be economical over a range of different conditions.

Clearly more systematic procedures are desirable.

Recently, Grossmann and Halemane (1982,1983) have developed procedures for



designing optimal chemical plants in which the degree of flexibility is specified either

by a finite sequence of discrete operating modes, or by a bounded set of uncertain

parameters. This paper addresses the problem of flexibility from a different

viewpoint; the objective here is to provide the designer with the capability to:

1. Evaluate the flexibility characteristics of an existing or proposed design in
relation to expected operating requirements.

2. Determine the operating conditions which limit the flexibility in a design
to identify process bottlenecks.

3. Compare the degrees of flexibility offered by different design
configurations.

Since a quantitative characterization of flexibility is required to accomplish

these objectives, a scalar index for operational flexibility is proposed in this paper.

As will be shown this index provides a measure of the region of feasible operation

in the space of the uncertain parameters. This region accounts for the fact that the

process can be adjusted depending on the particular realization of parameters. The

proposed index also provides parameter bounds for guaranteed feasible operation, as

well as information on the "worst" operating conditions that limit the flexibility in a

design.

It should be noted that an interesting application of the index of flexibility is

that it could be used within a multicritefion optimization framework for minimizing

cost and maximizing flexibility as discussed in Grossmann et al. (1983). With this

approach trade-off curves for different flowsheets could be obtained as shown in Fig.

1 in order to determine "optimal" degrees of flexibility. This approach circumvents

the problem of having to assign economic penalties for infeasible operation as for

instance in the method of Weisman and Holzman (1972). Also, it should be noted that

as opposed to the resilience index for heat exchanger networks proposed by Saboo

et al. (1983), the index of flexibility presented in this paper is applicable to any

chemical processes that operate in the steady-state.

Mathematical formulations and basic properties of the index of flexibility are

presented here in Part I. The objective is to establish those conditions and properties



that can be exploited to simplify the numerical computation of the index. As will be

shown in Part II (Swaney and Grossmann, 1983), efficient algorithms can be

developed based on the properties presented in this paper.

AN INDEX OF FLEXIBILITY

Flexibility of a plant design represents the ability to accomodate variations of a

set of uncertain parameters 6. j=1,...p. Since the degree of flexibility is determined by

the range of parameter variations that the design can tolerate, a scalar index of

flexibility can be constructed to measure the size of the feasible operating region in

the space of uncertain parameters 6. The feasible region R shown in Fig. 2 gives the

complete description of the flexibility characteristics of the design. Combinations of

the uncertain parameters lying inside the region permit adjustment of the process to

achieve feasible plant operation, while those parameter values outside of the region

do not. In general the actual shape of this region could be rather complex, and since

an arbitrary geometry is difficult to treat in a meaningful way, the following

approach is proposed.

Firstly, it will be assumed that the uncertain parameters vary independently of

each other.1 It makes sense, then, to analyze the feasible region R by taking feasible

nominal parameter values as a base point, and then determining the maximum ranges

over which the parameters may vary independently of each other while still remaining

inside the feasible region. Geometrically, this approach corresponds to inscribing

within the feasible region a hyper-rectangle which is centered at the nominal point 0N

as shown in Fig. 2. The size of the feasible region is then characterized by the

lengths of the sides of the rectangle, which in turn define lower and upper bounds

for the parameters. The remaining difficulty is that the rectangle is not uniquely

determined; trade-offs can result by increasing the ranges of some parameters while

decreasing the ranges of others.

In actual practice however, each uncertain parameter 0. will not vary over

totally arbitrary ranges. For example, the temperature of cooling water typically

If the set of parameters in the original problem formulation is dependent then principal component analysis
may be employed to obtain an independent set
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varies between 290K and 305K, whereas throughput may vary by as much as ±30%

during normal plant operation. Therefore, if it is assumed that expected deviations

or range estimates A0*,A0~, are given in the positive and negative directions for

each parameter j, the sides of the rectangle can be scaled in proportion to the

expected deviations. This then yields a unique definition of the maximum hyper-

rectangle that can be inscribed within the feasible region as is shown in Fig. 3. Using

the expected deviations as scaling factors positive and negative variations in the

uncertain parameters may be expressed as scaled deviations from a given nominal

value:

o.-e** _ of-e.

j j

One may then consider the feasible region expressed in the space of the scaled

parameters as shown in Fig. 4. In the scaled space the hyper-rectangle appears as a

hypercube, centered at the nominal point (located at the origin). The dimension of

the largest hypercube which may be inscribed within the feasible region may then be

adopted as the desired measure of the size of the region. The index of flexibility, F,

is therefore defined as one-half the length of a side of that hypercube. In that way,

any set of scaled parameter deviations which do not exceed the value of F will lie

inside the hypercube and therefore permit feasible operation.

Referring back to Fig. 3, in the parameter space 6 the flexibility index

determines the maximum hyper-rectangle T that can be expanded around the nominal

point with sides proportional to the expected deviations Ad*, Ad'. This hyper-

rectangle then defines the actual lower and upper bounds

over which feasible operation can be guaranteed for the set of uncertain parameters.

It should be noted that in the proposed index of flexibility it is through the

expected deviations A0 + , AdT that the designer specifies that part of the feasible

region which is of practical interest. Grossmann et al. (1983) present a brief

discussion on the statistical interpretation of the expected deviations, and suggest



that an appropriate choice is to use range or variance estimates of the parameters. In

actual practice the design engineer could specify these range estimates based on

experience, statistical data, or rule-of-thumb target values.

Mathematical Formulation

Having defined qualitatively the index of flexibility, the mathematical

formulation to determine this index will be presented. Consider the physical

performance of the chemical plant to be described by the following set of

constraints

h(d,z,x,0) = 0 (2)

g(d,z,x,0) £ 0

where h is the vector of equations (such as mass and energy balances or equilibrium

relations) which hold for steady-state operation of the process, and g is the vector

of inequalities (typically physical operating limits or product specifications) which

must be satisfied if operation is to be feasible. The set of all variables is

partitioned according to the following scheme: d is the vector of design variables

that define equipment sizes. These are fixed at the design stage and remain constant

during plant operation. 0 is the vector of uncertain parameters referred to

previously. The vector of state variables x is a subset of the remaining variables

having the same dimension as h. The vector z of control variables represents the

degrees of freedom that are available during operation, and which can therefore be

adjusted for different realizations of 8.

For a given plant design d, and for any realization of 6 during operation, the

state variables may be expressed as an implicit function of the control z using the

equalities from (2)

h(d,z,x,0) * 0 =^ x = x(d,z,0)

which allows elimination of the state variables, so that the process may be described

by the following reduced inequality constraints:
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g(d,z,x(d,z,0U) * Hd.z.6) £ 0. (3)

The inequalities in (3) determine feasibility or infeasibility of operation for a chosen

control z when d and 6 are given. However, since the control variables represent

degrees of freedom that may be adjusted during operation to suit prevailing

conditions, feasibility for a given d and 8 requires only that some z exist for which

f(d,z,0) < 0. Correspondingly, R, the region of feasibility in 0-space, is defined by

0]}. (4)

Evaluation of the flexibility index F corresponds to inscribing within region R a

scaled hyper-rectangle T (see Fig. 3) which may be expressed in terms of the non-

negative scalar variable & as

TU) - id I (6N - iAd~) £ 6 * id" * 6A0+)} (5)

The flexibility index, F, for a given design d, is then given by the maximum value of

S in the semi-infinite programming problem

F * max 6 (6)

s.t. V*GTU) { 3z I f(d,z,0) £ 0}

id I (0 N - &Ad~) * e <> (oN *

where the first constraint imposes the condition that operation be feasible for all 6

values that lie within the hyper-rectangle TU). Halemane and Grossmann (1983) have

shown that the feasibility condition is mathematically equivalent to

max min max f.(d,z,0) £ 0. . (7)
0GTU) z iGI '

Therefore, an equivalent formulation for the flexibility index is



max & (8)

s.t. max min max f.(d,z,0) £ 0
0GTU) 2 iGI '

id

The direct solution of the problem in (8) is in general very difficult since it

involves the max-min-max constraint, which as discussed in Grossmann et al. (1983)

can lead to a non-differentiable global optimization problem. Before attempting to

devise a solution procedure for this problem, it is first necessary to establish some

mathematical properties of the flexibility index. In the next three sections, two

alternate descriptions of the feasible region R are developed. The first is used to

establish conditions under which the solution to (8) will occur only at a vertex

(corner-point) of the hyper-rectangle T. The second representation provides the

foundation for the solution algorithms presented in Part II.

MATHEMATICAL PROPERTIES

Conditions for a Vertex Solution

As shown in the example of Fig. 3, the maximum hyper-rectangle that can

expanded around the nominal parameter point touches the boundary at a vertex of the

hyper-rectangle. This vertex can be regarded as a critical point (or "worst-case"

operation) for the design since it is the one that limits the maximum flexibility of

the plant (i.e. the size of the maximum hyper-rectangle). In the general case there is

the possiblity of having more than one critical point, since there may be more than

one set of conditions which will reach the flexibility limits of a design. Although

intuitively one might think that a critical point must lie at a vertex, this may not

always be the case as shown in Fig. 5, where the maximum hyper-rectangle touches

the boundary at one of the faces of the hyper-rectangle. Therefore, a crucial

question that arises is, what is the nature of the constraint functions for which the

critical points will only lie at vertices? For cases where this property holds true the

computation of the index of flexibility could be simplified considerably, as then only

the finite number of directions from the nominal point to the vertices would have to

be analyzed to determine the maximum hyper-rectangle.
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In order to answer the above question, it is convenient to define the following

function which provides a measure of feasibility for a design d at the parameter

realization 6 (see Kalemane and Grossmann, 1983):

yid.d) * min u (9)
u,z

s.L f.(d,z.0) £ u , iGI

Values of 6 for which f(d,0) £ 0 are thus feasible and lie within the region R, which

as shown in Appendix I may then also be expressed as

Note that the boundary of R is determined implicitly by the equation f(d,d) - 0(see

Fig. 3). Also, the function f(d.d) can be incorporated into problem (8) by rewriting it

as

F « max a (11)

s.t. max

f{d,0) = min max f.(d,z,0)
z i6 I '

{0 | (tfN - &Ad~) £ 6 £ (6N

One first has to determine the properties of the function f(d,0), which defines

the boundary for feasible operation in the parameter space. The following properties,

proven in Appendix II, hold for the function fid,6):

Property 1. If f.(d,z,0), i € I , are continuous functions in z and 8. then f(d,0) is

a continuous function in 6.

Property 2. If * * , d* is a bounded solution of (11), and f.(d,z0), iGI, are

continuous in z and 8. then ?(d,6*) = 0.

Although this second property is rather obvious from Figs. 3 and 5, its rigorous
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proof is important in that it shows that continuity of the constraint functions is a

sufficient condition for the solution of (11) to be at the boundary of region R,

) = 0.

The next point to be considered concerns the nature of the function f(d,0) for

which the solution of problem (11) will lie at a vertex of the hyper-rectangle T. Fig. 3

would suggest that a sufficient condition is that f(6.d) define a convex feasible

region. However, this condition is too stringent, since Fig. 6 shows a nonconvex

region for which the solution still lies at a vertex. On the other hand, the region

shown in,Fig. 5 is also nonconvex, but in this case the solution does not lie at a

vertex. As will be shown below, a less stringent condition than requiring convexity

of f(6. 6) is that this function be one-dimensional quasi-convex (1-DQC).

Definition 1. fid,6) is a one-dimensional quasi-convex function in 6 if and only

if for 01 , 62 G R, where 02 = 01 • Xe', X is a non-zero scalar, and ej is a

coordinate direction given by the j'th column of the identity matrix I (dim p x p), the

following condition holds:

maxif(d.e\f(d.d2)} * ?(d,*0Mi-a)02) Va€[0,1].

Qualitatively what this definition means is that one-dimensional quasi-convexity

requires that the function f(6.8) be quasi-convex only along directions parallel to the

coordinates. Therefore, this leaves the possibility that f{6,6) be not quasi-convex

along a direction different from the coordinates. To give a geometrical interpretation

of this property it is convenient to define what a one-dimensional convex region is

and how it relates to a 1-DQC function.

Definition 2. R is a one-dimensional convex region if and only if for 01 , 02 G

R, where 02 = 01 • Xej
# X # 0. the point 6 « a6f(\-a)6z G R for all a G [0,1].

Theorem 1. If f(d.6) is 1-DQC then the region R is one-dimensional convex.

In the example shown in Fig. 6 one can see that the region R is one-

dimensional convex since by taking any two points belonging to the region and that
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lie parallel to the coordinates (e.g. points A and B), the line connecting these points

also lies inside the region R. However, Fig. 5 shows an example for which some

points in the line connecting a similar pair of points A and B lie outside the region

R. Since in the former case the largest hyper-rectangle T touches the boundary at the

vertex, it would seem that 1-DQC in the function f(d,0) is a sufficient condition for

this to happen. This property is proved in the following theorem.

Theorem 2. If f(6,8) is continuous and 1-DQC in 0, then the solution 0* of

problem (11) must lie at an extreme point of the hyper-rectangle 1(6%

The significance of this theorem is that it establishes rigorous sufficient

conditions under which critical points will correspond to extreme points, or vertices,

in the parameter space. However, since this theorem is expressed in terms of

requirements for the function f(6.8), the next relevant question is, what class of

constraint functions will lead to a 1-DQC f(d.0)7 One could be tempted to think that

joint 1-DQC of the parameters 0 and controls z in the constraint functions is all that

is required. This would be a very desirable property since for instance functions that

are monotone in z and 6, whether convex or concave, are also 1-DQC.

Unfortunately, as shown in the theorem below a somewhat stronger condition must

be imposed on the constraint functions to ensure that f(d,0) is 1-DQC.

Theorem 3. If the constraint functions f.(d,z,0), iGI, are jointly quasi-convex in

z and one-dimensional quasi-convex in 0 then the function f{d,6) is one-dimensional

quasi-convex in 0.

The geometrical interpretation of this result is that the constraint functions
«

must define a convex region in the space of the controls and each parameter, taken

one at a time. If this is the case, then from Theorem 2 it can be guaranteed that

the critical point of the hyper-rectangle will lie at a vertex. If, on the other hand, a

convex region does not exist for one parameter and all the controls, then the critical

point may not lie at the vertex of the hyper-rectangle. An example of this case is

shown in Fig. 7, where for constant 0- the constraint functions define a non-convex

region in z and $ 9 and the critical point 0* does not lie at one of the extreme

points of the line defined by d" - i*A0~ £ 0^ £ 0*f + &*A0*.
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Summarizing the results of this section, the solution i* , 0* of problem (8) for

the flexibility index is located at the boundary of the feasible region R since

f(d,0*)=O. Furthermore, if the constraint functions f.(d,z,0) are jointly quasi-convex in

z and 1-DQC in 6. then d* corresponds to a vertex of the hyper-rectangle TU*).

Also, since in this case the maximization of f(d,d) in the parameter space involves a

1-DQC function, there will be in general more than one local maximum of f(d,0).

Consequently, any algorithm for determining the flexibility index in (8) which assumes

the class of functions described above will in principle have to examine all the

vertex directions. It is important to point out that the above results apply also to

the case where the constraints f.(d,z,0) are jointly convex in z and 6 (which includes,

for instance, constraints that are linear in z and 6) since joint convexity is a

particular case of one-dimensional quasi-convexity. Also, it should be mentioned that

although for practical design problems it might not be possible to establish whether

in fact the actual constraints belong to the class of functions described above, the

theoretical results presented here describe precisely the class of problems for which

the critical points for feasible operation correspond to vertices or extreme values of

the parameters.

An Alternate Formulation

In this section a parametric description of the boundary of the feasible region

R is developed which leads to an alternate formulation for the flexibility index that is

of direct use when developing the solution procedures for problem (8) presented in

Part II. The first step is to adopt the following parametric description for 0:

6 « 0H • iff (12)

The vector $ represents a direction of displacement from the nominal point 0N, With

i a non-negative scalar distance (see Fig. 8a). By substituting (12) into (5), the hyper-

rectangle T may be expressed in terms of simple bounds for &, i.e. a constant set T:

T * { y | -A0~ <> df £ A0+ } (13)

The boundary of the feasible region may then be described parametrically as
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the scaled distance &*(&) from the nominal point to the boundary in the direction V.

The function &*(3) is given by

S*(&) * max 3

s.t. f(d,z,0) * 0 (14)

0 * 0N

subject to the following assumption:

Assumption 1. The solution specified by (14) is taken to be that solution 3*

with the property that

¥ S e [0,3*] (15)

This assumption provides that the entire path from the nominal point to the boundary

at distance 3* is feasible; i.e. if (14) has multiple local solutions, the solution with

the smallest value for 3 is chosen. One may note that since the nominal point (5=0)

is by definition feasible, (14) is feasible for all V, and &*(&) £ 0.

Figures 8a and 8b illustrate the use of (12) and b*(8) in describing the feasible

region. As may be seen, the function &*(&) will not necessarily provide a

description of all points on the boundary of region R. Parametric description of the

entire boundary would require convexity of R along all radial directions emanating

from the nominal point 0N, a condition which would also guarantee the validity of

Assumption 1. However, this convexity restriction is by no means neccessary for

the purpose at hand, since for any direction V 9 b*(&) will elways describe any point

on the boundary of R which could touch the surface of the inscribed hyper-rectangle

T. Consequently, the utility of the function 3*(3r) may be seen from the following

simple expression for the flexibility index:

Theorem 4. If Assumption 1 holds, then the formulation

F * min 3*(^) (16)

is equivalent to problem (6), where &*(8) is defined in (14).
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Geometrically, solving (16) consists of finding the direction 9 for which the

distance &*(&) to the boundary of R is shortest {&* in Fig. 8a). This then defines the

largest hyper-rectangle T(<5*) that can be inscribed within region R. Note that if the

properties of the previous section are met, the solution ff* will correspond to a

vertex direction, i.e. V* € {&k. k=1,...,2p}, where the components V* are particular

choices of either A0+ or -A0~.

Properties of y[d.d) and h*(8)

The functions y(6.6) and &*(8) provide two different means of analyzing the

feasible region R. Below, some properties of these functions are presented and the

relation between them is established. The objective is to determine those properties

that can be exploited to produce an efficient solution procedure.

First, for convenience fid.d) may be reformulated in terms of ff and &:

f*ii.ff) = minu (17)

u,z

s.t. f.(d,z,0) - u £ 0 , i€ I

e - eH - sdf * o.

Solving subproblem (17) corresponds to. determining feasibility at a particular 8

location (i.e. for a particular distance & in direction 9); on the other hand, subproblem

(14) defining S*(&) determines the distance S* to the boundary of region R along

direction V. In the following, the two subproblems are compared for a given

direction &=&k (e.g. a vertex direction).

In order to establish the properties of the solutions to (17) and (14), it is

convenient to formulate the following pair of problems which illustrate the close

relation between the two:
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PI:

P2:

min u

s.t. f.{d,z,0) - u £

0-0"

U
max b

0 .

* 0

s.t. f.(d.z,0) - u £ 0 , iGI

e -

Note from P1 and (17) that u*(3) * f'ii.if*). and from P2 and (14) that «*{0) = 5*{^k).

We will make the following two assumptions for problems PI and P2:

1) Joint quasi-convexity of f.(d,z,^) over the subspace spanned by z and the ray

0 * 0N * iFK

2) Linear independence of the gradients in z of the active constraints.

These assumptions provide that when a solution to P1 or P2 exists, it is

determined by the unique solution to the corresponding Kuhn-Tucker conditions

(Bazaraa and Shetty, 1979, Theorems 4.3.6 and 4.3.7). The Kuhn-Tucker conditions for

P1 may be written:



17

XTV tf
T(dA^) = 0T (18b)

V^fT(d,2,5) • vT * 0T (18c)

X Z 0 (I8d)

X.[f.(d,z,0) - u] = 0 . i€ I (I8e)

f.(d.z.0) - u £ 0 , i€I (I8f)

d - 6N - *#* = 0 (I8g)

and those for P2:

1 • v ^ = 0 (19a)

XTVzf
T(d,z,0) = 0T (19b)

XTV0fT(d,z.0) • vT * 0T (19c)

X * 0 (19d)

) - u] = 0 . i€ I (I9e)

^) - u ^ 0 . i€ I (19f).(

8 - 6U - tV = 0 * (19g)

Here X and v are vectors of multipliers for the inequality and equality constraints

respectively. Analysis of (18) and (19) provides the following conclusions:

Property 3: Let the dimensions of the vectors z and 0 be n vand n ,̂
. z *

respectively. Then n, the number of inequality constraints which are active with non-

zero multipliers at the solution to Pi or P2, is given by n • n̂  + 1.

Property 4: The solutions to both J*{0) in P2 and u*(3*(0)) in P1 are

characterized by the same set of active constraints and specify identical values for

z, 0, u, and S.

Property 3 implies that a solution to f*ii,&k) * u*(3) or &*(&k) « a*(0) is
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completely determined by solving the system of equations corresponding to the

appropriate set of n+1 active constraints for z and u or 5. Property 4 shows that

the solutions to (17) and (14) become identical at the boundary of the feasible region,

and that f*(&.ffk) = 0. These properties in the form presented depend on linear

independence of the z-gradients of the active constraints and on the assumed

uniqueness of the solution to the n +1 active set equations. Both of those

assumptions may be relaxed. In the event that there are more control variables than

linearity-independent active constraints, the excess degrees of freedom in z may be

specified arbitrarily (e.g., set z.-z^ for those z. with dependent gradients if their

values are not fixed by the stationarity requirements in (18b, 19b)). When

degeneracies occur, uniqueness of the solution may not hold, but the equivalency of

solutions to P1 and P2 remains.

The significance of these results is that the subproblem in (14) can be used to

locate the boundary of the region R along a vertex direction to determine the

maximum feasible deviation from the nominal point. Then, assuming the solutions to

(8) lie at the vertices of T, problem (16) may be formulated more simply as

F = m\n{6*{&k}. On the other hand, problem (17) can be used to check for feasibility
k

at a given deviation 5 for any vertex k. These subproblems form the basis of the

direct search procedure presented in Part II. The example in the next section

demonstrates the application of the -flexibility index, and provides geometric

illustration of the mathematical properties established in this paper.

EXAMPLE

Illustration of the flexibility index is provided by the simple example shown in

Fig. 9. There a centrifugal pump must transport liquid at a flowrate m from its

source at pressure P1 through a pipe run to its destination at pressure P*2 Both the

flowrate m and the pressure P* are expected to vary significantly during operation.

The actual pressure ?2 must remain within a tolerance e of the desired pressure P!L

and is controlled with a valve on the pump discharge. The design variables to be

selected are the pipe diameter D, the pump head H, the driver power W, and the

control valve size C ^ ^ . The control variable z is the valve coefficient C , the

uncertain parameters 6 y and $2 are P* and m respectively, and P2 is a state variable.
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The nominal value for P* is 800 kPa with expected deviations of +200 and -550 kPa.

The nominal value of m is 10 kg/s with expected deviations of +2 and -5 kg/s. Py is

fixed at 100 kPa. The problem consists then of determining the flexibility index for

different designs that could be proposed for this system, as well as developing the

trade-off curve of cost versus flexibility.

The equations and constraints describing the above system are as follows:

a) Energy balance

P, • pH - • km 1 - 8 4 D~ 5 * 1 6 - P = 0 (20)
1 />cv

2 2

b) Outlet pressure tolerance

P* - € £ P2 £ P* • € (21,22)

c) Pump driver power limit

— £ W (23)
f

d) Control valve range

MAX MAX 2 5 )

where the constant k describes pressure drop in the pipe, the ratio r describes the

control valve range, and the liquid density /> and pump efficiency rj are treated as

constants. The values of the constants in (20) - (25) are given in Table 1.

The reduced inequalities f(d,z,0)£O may be obtained by elimination of the state

variable P2 from (20), yielding

m2

1 8 4D~5 '1 6) - P* - « * 0 (26)
2/>c2

m

v

2
m

-<pi * PH 5" * km1-84D~5'16) + P! - c £ 0 (27)

mH - VW £ 0 (28)

Cy - C j * ^ ̂  0 (29)

rCMAX _ c ^ 0 ( 3 0 )

For a given design d * (W,H,D,C^AX). these inequalities may be rewritten in terms of

z • Cy, $f P j . 0 2 * m. and constants at - aQ:
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e2

a. - - 4 - - a , ^ 8 4 - 6, £ 0 (31)
/>z

-a. + -Ar • a , * ' 8 4 * 0. £ 0 (32)
/>Z

* 2 - a4 £ 0 (33)

z - a_ £ 0 (34)

a6 - 2 ^ 0 (35)

Since Property 3 applies for this problem, the boundary of the feasible region

f(d,0)=O may be constructed by considering the appropriate pairs of constraints in (9)

with u=0 and eliminating z between each pair to yield contours in 0-space. Region R

is then the intersection of the individual feasible regions for each pair as shown in

Fig. 10, where the boundary is determined by the constraint pairs (27),(29); (26),(30);

and (26),(28) or (27),(28). It is interesting to note that in this example the conditions

of Theorem 3 are not met, since the constraint function in (31) is not jointly

quasiconvex in z and each 6.. However, for this problem the function f(6.6) is one-

dimensional convex in 6 in spite of this. Theorems 1 and 2 apply, so that the

region R is one-dimensional convex as seen in Fig. 10.

Also depicted in Fig. 10 is the rectangle T(<5*) inscribed within R around the

nominal point. As shown, the one-dimensional convexity of region R provides that

TU*), the solution to problem (8), touches the boundary of R at a vertex. Note that

Property 3 applies, and therefore n s n̂ +1 * 2, since 6*(&k) at the limiting vertex 1 is

determined by the combination of constraints (27) and (29). Vertex 2 illustrates a

case of degeneracy. Since &*{Vk) for vertex 2 is determined by constraint (28), which

has a zero z-gradient, linear independence of the gradients is lost. The consequence

here is that z is not uniquely determined, and may vary between the limits implied

by (26) and (27). However, a valid solution to (14) may still be characterized by a set

of n +1 active constraints by choosing either (26) or (27) in conjunction with (28).

The resulting feasible regions R corresponding to three different proposed

designs are depicted in Fig. 11. The first design d° is a "minimal" design, which has

been optimized at the nominal operating point. Since the nominal point lies at the
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boundary of the feasible region R for d°, no rectangle of finite size can be

expanded, and therefore the flexibility index for this design is zero. Design d1 is

more conventional; pump head />H has been increased by 230 kPa to reflect the

expected 200 kPa increase in P* and to provide an extra 30 kPa for flexibility in the

control valve. Driver power W is sized at the resulting head and the expected high

value for m of 12 kg/s. The index of flexibility for d1 is illustrated in Fig. 11 by the

rectangle inscribed within the d1 region. The critical point for this design lies at the

vertex which simultaneously maximizes P* and m, for which 5k=0.62. Thus d1 has a

flexibility index of F-0.62 which implies that the maximum variations this design can

handle are +1.24 and -3.1 kg/s for the flowrate, and +124 and -341 kPa for the

delivery pressure. Therefore, in spite of the chosen overdesign allowances the

condition P*=1000 kPa, m=12 kg/s remains infeasible. Nor is d1 the least expensive

design possessing a flexibility index of 0.62, since the driver size could be reduced

somewhat without influencing F. Design d2 shown in Fig. 11 is one for which the

flexibility targets are exactly met, i.e. F=1.0, at minimum cost as given by the data in

Table 1. Note that in this case the region R is modified in such a way so as to

exactly contain the rectangle whose sides correspond to the specified expected

deviations, +2 and -5 kg/s for the flowrate and +200 and -550 kPa for the delivery

pressure. Also note that in this design, three vertices of the rectangle are critical

points. This behavior results because the design optimization tries to include the

desired rectangle within the smallest possible feasible region, which causes as many

vertices to touch the boundary as possible.

As illustrated in Fig. 11, the proposed flexibility index provides a systematic

measure of the size of that region of feasible steady-state operation which is of

interest to the design engineer. Furthermore, this index is very easy to interpret

since values that lie between 0 and 1 denote the fraction of the range of expected

deviations which can be handled. Values of the index greater than 1 denote designs

for which it is possible to exceed the expected deviations and still have feasible

operation.

Finally, Fig. 12 shows the trade-off curve between cost and flexibility for this
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system. This curve was generated by optimizing the system for various levels of

flexibility (i.e. €-constraint method as in Haimes et al., 1975). The cost function

considered is the annualized investment and operating cost which was evaluated at

the nominal point condition. As can be seen from this curve, for values of

flexibility that lie within 0 and 1.3 only a moderate linear increase is experienced in

the cost function. However, for flexibility values greater than 1.3 a rather sharp

increase in the cost is experienced since the system becomes more inefficient to

operate. Analysis of this trade-off curve will permit the designer to select an

appropriate point in the curve, and so establish the degree of flexibility considered

to be optimal.
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APPENDIX 1 - Equivalence for Region Representation

Theorem. The regions R= \d | [ 3Z | ttd.z.O) £ Ojj and

R*= {# I fid.6) ^ 0 j are equivalent.

Proof. Firstly, by definition

R« {0 I [ 3* I f(d.z.*) * 0]} = {d I [ 3z I V 161. VdAW * 0]}

By applying global max and min operators, the following equivalences hold:

3* I V 16I. fjfo.z.0) ^ 0]}

I [ 3* I ^x f.(d,z.0) < 0]}
161

I min max f.(d.z,0) <> 0}
z i€I

I [ min u I u ^f.(dfz^) ] ^ 0}
z

) * 0} = R"

which then proves that R=R*. QED.

APPENDIX II - Proofs of Properties and Theorems

Proof of Property 1.

The proof of this property can be found in Evans and Gould (1970) and in Polak

and Sangiovanni (1979). In Theorem 4.13 of Evans and Gould it is shown that if

f[d.z,0) = max f.(d,z,0), then the function ?{d.z,8) is continuous in z and 8. Polak and

Sangiovanni show that if ^(d,z,0) is continuous in z and 6 then f{d,6) - min f(d,z,O)

is continuous in 0.

Proof of Property 2.

Assume that 3*, d* is a solution of (11) but that fid.d*) < 0. Since for any &

> i*. T(&*) C T(&) it follows that



max fid.0) * f(6.e*) £ max fid.O) * fid.d) (A1)

U") a')
Since from property 1, fid.6) is a continuous function in 6 this implies that there

exists c > 0 and a s" in the neighborhood of 3* such that

| f(d.6*) - f{d.e') | < *

where fid.ff") = max fid,d). The above inequality and the hypothesis imply

eeiu")
fid.e') - € < f(d.e*) < o

which for an arbitrarily small selection of < yields

") < 0 (A2)

But since S can be selected arbitrarily close to i*, and such that i > 5*, (A1) and

(A2) would imply that S~ is a feasible solution of (11) for which

f(d.O*) £ f(d,6m) < 0

which in turn contradicts the assumption that 3* is the solution to problem (11).

Hence y{d,d*) * 0 at the solution of problem (10). QEP

Proof of Theorem 1.

Consider 0\ 02
m 62 * 0 1 • Xej, X * 0 and such that d\ 62 G R. Assume that

f{d,8) is 1-DQC, but that the region R is not one-dimensional convex. This then

implies that there exists an a G (0,1) such that for 0=a01+(1-5)02,

f(6,6) > 0. But since f(d,0) is 1-DQC we have fid.d) £ max{f(d,01), f(d,02)}.

Furthermore, since 01 , 0 2 G R implies p(d,01) ^ 0, f(d,^2) £ 0, it follows from

the above inequality that f{d,6) £ 0, which is a contradiction. Therefore, if f(d,0) is

1-DQC then the region R is one-dimensional convex. QED.

Proof of Theorem 2.

Assume that the solution 0* is a non-extreme point, in which case we can

select 0\ 02. 62 = 0x + Xej. X # 0, e\ 02 G T(i\ and a scalar a G (0,1) such that



0* * S0Mi-S)0 2 . Since f[d,0) is 1-DQC this implies that f{6.0*) £ max{f[d,O*).

f(d,02)}. But from property 2, yid.O*) = 0, which would imply that n\axlf{d.dy).

f[d.62)) * 0.

Clearly, if the equality holds we have a degenerate solution. If the strict

inequality holds this would imply that either f{d,dy) > 0 or f{d,62) > 0, which leads

to a contradiction. Therefore, 0* must be an extreme point. QED.

Proof of Theorem 3.

a) In the first part, it will be proved that f(6.z,d) = max f.(d,z,0) is jointly quasi-

convex in z and 1-DQC in 0. Assume the negation of this statement, which would

then imply that there exists an 5 6 (0,1) such that for z\ z2, and 01 , 62. d2 = 01 +

XeJ, X * 0, the following inequality applies:

^(d,SyMi-S)y2) > max {f>(d,y1), f>(d,y2)} where y *

This in turn implies that there exists a constraint T, f{d,z,d) = tAd,z,8) such that

y^d-SJy2) > max { max f.td.y1), max f.(d,y2)} ^ max ( f ^ y 1 ) , f ^ y 2 ) }

But this contradicts the assumption that the function U is jointly quasi-convex

in z and 1-DQC in 6. Therefore, f(d.z,d) is jointly quasi-convex in z, and 1-DQC in

e.

b) It will be proved that fkd.d) is 1-DQC. Let 63= S0Mi -2 )0 2 where 5 6 (0,1)

and e\ 02 are defined as above. Also let f{d,0k) = min ^(d,z,0k) - ^(d,zk,0k), k= 1,2,3.

Since f(d.z.ff) is jointly quasi-convex in z, and 1-DQC in B. and z3 is the global

minimizer of f(d,z,03)

5z1*(1-5)z2, 03) Z f(d,z3.e3)

or equivalently,

maxif(d.0\ f(d.d2)} * f{d,03)

which proves that f(6,0) is 1-DQC in 6. QED.



Proof of Theorem 4.

Consider that (6) may be rewritten as

F s max i

s.t. TU) C R (A3)

Let V* be the solution to (16) with &*$*) = S. For all i > i. 1(5) will contain the

point 6 = 0N + b$*. which is infeasible for (14) and thus outside of region

R. Consequently, F £ 3. Next, consider that all points contained in T(<5) may be

expressed as

T(3) = { e | e * eN •

Assumption 1 provides that 6 = 0N • bV is feasible for all &E[0.&*{&)]. and the

minimization in (16) provides that 5 - 3*(^*) ^ &*(&) for all 9^€T. Consequently,

TU) C R, j is the maximizer for (A3), and F=3 may be determined by solving (16).

QED.

Proof of Property 3.

Since the gradients in z are assumed to be linearly independent, this implies

from (18b) that the number of non-zero multipliers X. in P1 is n > n , since (18a)

provides that there exists at least one non-zero multiplier. Similarly, from (19b) the

number of non-zero multipliers X. in P2 is n > n , since from (19a) v # 0, which

implies in (19c) the existence of at least one non-zero multiplier. Furthermore, since

the complete set of active constraints contained in (18f),d8g) and (19f),(19g) form a

system of (n + n )̂ equations in (n^ + 1 + n )̂ variables, for this sytem to have a

solution in general will require n £ n + 1. Therefore, n « n • 1. QED.

Proof of Property 4.

Let (z*, 6*. u\ b*. X<2>, v(2)) denote the solution to P2, where u* is a specified



value. Also let c = ^ x!2). Since (z*. d*. u\ i*. X(2>. vl2)) is a solution to the

i
system (19a) - (19g), it can be shown by algebraic substitution that (z*, 6*. u*, &*.

X(1). v(1>) will be a solution to (18a) - (I8g) by letting X(1) = X(2)/c and v<1> = v(2)/c.

Since solutions to P2 and P1 are unique, their values for z*, 0*. u*, and b* are thus

identical. Futhermore, since X(1) = X(2)/c and c > 0, both solutions are characterized

by the same active set. The proof of this property is completed by setting u* = 0

in P2. and b* - 3*(0) in PI. QED.



Table 1. Data for example

Pump efficiency

Liquid density

Control valve range

Pressure drop constant

Inlet Pressure

Outlet pressure control tolerance

^ = 0.50

p s 1000 kg/nr

r * 0.05

k * 9.101x10"° (kPa)<kg/s)~lo"{m)=

P1 = 100 kPa

< = 20 kPa

Annualized cost c2W 8 6

mNH

5.6x105 $/m

482.84 $/(kW)86

c 3 * 500 $/kW



[Captions for Figures]

Fig. 1: Trade-off curves of cost vs. degree of flexibility for alternative design
configurations.

Fig. 2: Feasible region in 0-space and inscribed hyper-rectangles.

Fig. 3: Maximum scaled hyper-rectangle T inscribed within feasible region.

Fig. 4: Feasible region and inscribed hypercube in scaled parameter space.

Fig. 5: Region with non-vertex critical point.

Fig. 6: One-dimensional convex region.

Fig. 7: Non-convex subspace for 2 and parameter 0y.

Fig. 8a: Parametric description of region R using i and V.

Fig. 8b: Corresponding function S*{ff).

Fig. 9: Pump and pipe run example.

Fig. 10: Construction of region R and rectangle TU*) for pump example.

Fig. 11: Feasible regions and flexibility indices for designs d°, d\ d2.

Fig. 12: Cost vs. flexibility for pump example.
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