
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

TASK SCHEDULING ON MULTIPROCESSORS

by

R. Mehrotra & S.M. Talukdar

December, 1932

DRC-18-55-82

TASK SCHEDULING ON MULTIPROCESSORS

Ravi Mehrotra Sarosh N. Taiukdar

Department of Electrical Engineering
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

ABSTRACT

The paper describes a technique for estimating the
minimum execution time of an algorithm or a mix of
algorithms on a multiprocessor. Bottlenecks that would
have to be removed to further reduce the execution time are
identified.

The main applications are for designing special purpose.
dedicated multiprocessors. Today, a bewildering array of
computer components * processors and devices with which
to interconnect them - are available. The future will bring
even more of these components. To intelligently choose
mixes of them one needs systematic procedures.

In the procedure of this paper the multiprocessors are
modelled by P. a set of processors and R, a set of
resources that the processors can use. The algorithms are
modelled by T. an ordered set of tasks. The problem of
optimally assigning tne processors to the tasks while
meeting the resource constraints is NP-complete. A
heuristic using maximum weighted matchings on graphs has
been devised that is extremely fast and produces solutions
that are reasonably close to the optimal solutions. The
heuristic has been coded in Fortran and illustrations of its
use included.

1. INTRODUCTION

1.1 The General Form of a Distributed Multiprocessor

Most existing codes have been written for Von-
Neumann, general purpose computers with targe virtual
memories. However, it is now possible to assemble non-
Von-Neumann architectures, often using just off-the-shelf
components. The general form of one such class of
architectures is shown in Fig. 1.1. The processors may have
diverse processing, input and output characteristics and may
be physically close or geographically separated. The
communication network may use a transmission means (such
as wires.satellites and optical fibers) and a variety of
configurations (such as stars.trees and loops). We will
elaborate on these alternatives in 1.4 and 1.5.

1.2 A Very Brief Review of Previous Work [i] - [5]

Research into the use of special computers for power
system appreciations has concentrated on three limited
possibilities:

1. The exclusive use of large vector machines like
the CRAY-1

2. The combination of a host machine with an array
processor like the AP120-B.

3. Homogeneous multiprocessors (large numbers of
identical processors symmetrically interconnected)

These research efforts have met with some, but not
spectacular, success. The reason is that power system
algorithms contain a wide variety of tasks. Some work
well on vector machines and array processors, others do
not. Some work well on homogeneous multiprocessors.
others do not. Therefore, the exclusive use any one limited
hardware arrangement will inevitably lead to severe
bottlenecks.

1.3 The Design Problem

To alleviate bottlenecks we need to ask the question:
How can we assemble a computer system with the diverse
skills needed to efficiently process all the tasks in a given
power system algorithm or mix of algorithms? One •••a*' to
go about answering this question is to take the folio.-.'no
four steps:

1. Identify the computer components that are no*/
available or will soon be available.

2. Categorize the tasks or, alternately, identify a set
of primitives from which the tasks can be
synthesized.

3. Determine how effective each component is for
each primitive.

4. Devise a scheme for assembling mixes of
components to best handle given mixes of
primitives.

The result of taking these steps will be a computer of
the type shown in Fig. 1.1 and dedicated to a mix of
algorithms.

The emphasis of this paper is on step 4. We will
discuss the other steps but to considerably lesser degrees.

1.4 Network Alternatives

Computer communication networks can be divided into
three categories.

UNIVERSITY LIBRARIES
CARNEQIE-MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA 15213

M « MEMORY P « PROCESSOR

L;
• • M

1
• • P\ /

M • • M

i 1
P • • 1 P

Fig. 1.1 A General Fdrm of a Multiprocessor.

1. Large scale computer networks such as ARPANET
which is designed to interconnect dispersed and dissimilar
computers, allowing users and programs at one computer
center to access and interactively use facilities at other,
geographically remote, centers. Other examples are TYMNET
and GE networks which facilitate commercial time sharing
[63.

2. Loca! Area Networks [7] - [11] . When the
processors connected to the communication network are
within 2-3 kilometers of one another, the network is called
a local area network. Local area networks for
minicomputers such as Xerox . Corporation's ETHERNET and
Zilog Corporation's ZNET have now been in existence for

sometime. The formats, protocols, operational sequences
and logical structures for functions needed to achieve
meaningful communication among processor units connected
to such networks are readily available. Infact the processor
interfaces will soon be available on VLSI chips and their
costs are expected to drop to the range of hundreds of
dollars.

• Bit slice processor elements (such as Texas
Instruments S481/LS480 that can be assembled
into systems for specific applications.

• Minicomputers like DEC'S VAX/780 and PDP-11/70.

• Large, general purpose machines like IBM's 3030,
Burroughs B5000, CDC's 7600. as well as large
vector machines like the CRAY-1 and STAR-100.

1.6 Goals and Organization

In the past, computer alternatives were evaluated bv
tedious benchmarking or almost as tedious simulations, in
view of the variety of alternatives now available, neither of
these approaches is practical until the very last stages of
the search for a computer system. For the early parts of
the search one needs evaluation tools that are qi»c^ and
easy to use. The rest of this paper will be devoted to the
development of one such toot and to a simple example of
its use. Specifically, the tool is an efficient, interactive
program that estimates the minimum execution time and
identifies the bottlenecks for a given mix of tasks on a
given mix of computer components. The results enable the
user to determine whether the mix of components is
promising and how to incrementally change it to improve
performance.

Section 2 gives a formal aescnpnon of tne p'OLte-r. we
shall consider. Section 3 indicates a solution metnoa after
a brief review of methods that have been used to solve
similar problems. The procedure described in section 3 has
been coded as a user friendly interactive program in
FORTRAN on DEC-20 system and is used to study a
proposed multiprocessor architecture in section 4. Section 5
summarizes the results obtained so far and lists further
work to be done.

2. MATHEMATICAL FORMULATION OF THE PROBLEM

This section establishes the basic vocabulary for the
remainder of the paper and gives a precise mathematical
formulation of the problem to be considered.

2.1 Algorithms

An algorithm A is described by A*{T . * | where T and c
are sets defined as follows:

2. Bus Structures. Processors can be interconnected
'". : ---f. * 'T-'JCT c-f s?".!Ctures is posriMe [12]-[16].
An example of a s^ple bus structure is the UNIBUS of a
PDP-11 which can be used to connect a host computer to a
number of peripheral processors. Examples of more
complicated bus structures are those used in multiprocessors
such as C.mmp, Cm* and BBN PL URI BUS.

1.5 Processor Alternatives

The number of processor alternatives is extensive and
growing. The alternatives can be categorized on the basis
of a number of factors such as speed, availability and cost.
Whatever classification scheme is used, it is difficult to
keep the categories from overlapping. One set of
categories is:

• Special purpose, dedicated VLSI processors [171-
[24] that will soon be appearing in large
numbers to do tasks like matrix multiplication
and LU factorizations very fast.

• Relatively inexpensive programmable processors
including array processors (such as the AP 12OB.
FPS 100 and FPS 164) and microprocessors (such
as the Z80 and Intel's 8086).

T is a set of tasks { T r

h il di l
. . TN) and the set

r ^ N

denotes the partial ordering relation on T such that Tp a T
implies that the execution of tasks Mcalled the successor of
T) cannot begin until the execution of T (called the
predecessor of T$) has been completed. We will represent
an algorithm A tDy a directed graph called the task graph
GA(V.E) of A so that there is one node in V for each task in
T and and one arc in E for each relation in partial order c.
When a is empty the tasks are called independent. It is
assumed that the tasks to describe A are chosen from a
finite set of tasks Tp « {T^ . T2

P. . . Tn
p) of n primitive

tasks. Each task T < T corresponds to some primitive
task Ty

p * Tp.

2.2 Multiprocessors

We may think of the multiprocessor architecture at a
high level as having been assembled from processors that
execute tasks in Tp with the use of certain resources such
as disk drives, tapes, memory and the interconnecting
devices including the buses and data links that form trfe
communication network of the system. The multiprocessor
system MP with M processors and L resources will be
denoted by MP{P,R> where P«{P . Pr . . PM) is a set of M
processors and R MR,. R2. . . RL) is a set of L resources.

2.3 Algorithm - Multiprocessor Interaction 2.5 A Cost Constraint

Each task T < T may be executed on anv processor in Let CP(P) represent the cost of processor P(. i«1...M.
P.We define a'function ^(TWt,.. t^. . . tM>) so that the
value rf t represents the exnecterl time it tales to evrcute
task T on processor P. Furthermore we define a function
r(T)*(r '. r.. . . r{) to represent the resource requirements of
task T such that r is equal to the amount of discrete
resource R needed while executing T and y?(RJ is the total
units of Rx

x in the system.

2.4 Execution time of A on MP(P.R).

Let r(l) represent the starting time of the execution of
task T(• T.'

Define X(k)«1(if task T is executed on processor P(at
time k and zero otherwise! It is assumed that time is
measured in terms of equal and indivisible units. Using the
notation ' introduced in this section we define a feasible
schedule to be a mapping ¥: T->l such that the following 3
conditions are satisfied. (1 is a one dimensional space of
integers representing time).

C l :

C2:

C 2 :

I f then

for j*l..H, all

U) for i,j=l..K, all

„ riy XpjU) fcr all

Cl is needed to avoid the assignment cf a task to
more than one processor. C2 is a statement of the
procedure constraints of A. C3 is needed to ensure that the
resources required by a job will be available while the job
executes.

Corresponding to each feasible schedule M': T->l we
define the execution time of the algorithm A on MP as :

LA
MP « jnjn {3r(k)«0 for i«Lm, j«UN}

Thus the problem of finding the optimal assignment of
tasks in the algorithm A on a multiprocessor MP so as to
minimize the overall execution time may be stated as GSP

£GSP] minimize LA

subject to ¥:T->I

We can find a lower bound LA°° on LA
MP as follows:

For every node n(t G(V.E) define the weight of n.,
W(n). as ' .

W<n>min (t,.. t2i. . . . t J

Define the length of a directed path from node n to
node nt to be equal to the sum of weights of all the nodes
in the directed path from ns to nt. The longest directed
path from a node with no predecessor to a node with no
successor represents a lower bound on ij*. This lower
bound LA°° is obtained.by assuming that all the tasks in

•G<V,E) are assigned to the processor on which they take
minimum execution time and there is a sufficient number of
processors and resources in the system.

If the solution to GSP gives a value of > L °°on to GSP gives a value of L. > L
then the elements of the set P and R may be modifiedAto
reduce the difference between L ** and L °°. This allows
us to reconfigure a multiprocessor system that is most
suited for executing the specific algorithm. The solution
procedure (see section 3) used to solve (2.4) enables us to
identify, what limits performance, thus suggesting a natural
modification of the set P and/or R.

A cost constraint may be added to obtain GSPC as
follows:

[GSPC]
subject to

minimize

CP(P

All processors in the set P are not necessarily used.
The solution procedure would select the particular mix of
processors that minimizes the overall execution time with
the total cost of processors in the mix being no more than
C.

3. SOLUTION PROCEDURE

GSP is a notoriously hard combinatorial analysis
problem known as the General Scheduling Problem. This
problem is MP-corr.plete. Instead of seeking po'yr.crr.io!
time optimal algorithms for NP-compiete problems, cne uses
heuristic \Ot opproAin.uie'/ algorithms wine;, t.opfc^u... ,.ci^.
"good" solutions in polynomial time. Most work done m
the area of scheduling has been devoted to the case when
all processors in the system are identical[25]-[25]. Some
enumerative and iterative techniques such as 'local search'
and 'branch and bound' have been applied to subproblems of
GSP [36] - [39] . But there are no heuristics for solving GSP
itself and branch and bound techniques are computationally
impractical for solving it.

We will proceed to develop a heuristic technique for
solving GSP. The technique is based on finding maximum
weighted matchings on graphs. It yields reasonably good
solutions to GSP and GSPC.

The essential steps are:

1. Input Edge List Matrix of GA(V.E). Execution Time
Matrix [t] and Resource Requirement Matrix [r]
(see Example 3.1). >J

2. Assign levels to the nodes. Tx , of the task graph
GJV.E). Intuitively, levels assigned to nodes are
distances from a node with no successor and
represent the precedence structure of GA<V.E).

3. Making use of the levels of the nodes, assign
corresponding tasks on the processors,
disregarding the resource constraints. This step
is carried out by finding maximum weighted
matchings*

4. Schedule the tasks on the processors they have
been assigned to. taking resource constraints into
account. Make a list of resource shortages if
any.

5. Repeat steps 3 and 4 until all tasks have been
scheduled.

6. Output the schedule and the list of resource
shortages (see Example XI) .

The details of steps 2-5 are given in the appendix.

The heuristic to solve GSPC is similar to the above
heuristic. The cost constraint is factored into the solution
process by including it in the objective function of the
maximum matching problem [40] - [42] .

Table ai(a). Edge List Matrix.

1 2 3 4 4 5 6 6

4 5 6 7 8 8 9 9

Table ZJ2. Resource Shortage Table.

D
R -» REPEAT FOR CONVERGENCE

Figure 3 . 1 . A task graph, G (V,E)

Table 3.1(b). Execution Tims Matrix.

Task

T4

R1

3

R2

2

PI

P2

P3

T1

2

3

1

T2

2

1

1

T3

1

1

2

T4

1

3

4

T5

1

1

3

T6

1

2

1

T7

3

1

4

TB

1

2

1

T9

1

1

3

Table &1(C). Resource Raquin rix.

R

R1

R2

A

3

2

T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9

1 1 1 3 1 0 2 0 3

0 1 1 2 2 0 1 0 0

T3

T2

T1

T5

T6

T4 T9

TB

T7

A * Amount of Resource.

PI

P2

P3

TwneUnrt 12 3 4 5

Fig&2. Pictorial Representation of the Schedule.
Example 3.1. Consider a multiprocessor system

MPt'P.R) vwiih P*{P,.P2. p,} end R«{R.,R2).
The inputs required, for task graph of Fig 3.1 are given

in Table 3.1(aHc).
Table 3.1(a) is a matrix representation of GA<V.E). The

values of [t] and [r (] are specified in Table 3.Kb) and
3.1(c) respectively. (R ,)^ units and(R2>«2 units. L ^ - 3 .

Fig 3.2 is a pictorial representation of the output of the
procedure. Note that LA

MP*5. Table 3.2 is the output which
indicates the bottlenecks which must be removed to reduce
the overall execution time. Task T4 could not be started in
parallel with T5 and T6 because of resource shortage. It
needed 3
available.ae
equal to LA°°.

units of R1

If we let
and 2 units of R- and none were

and /ft'R2)*4 then would be

4. BJJJSTRATION OF THE DESIGN PROCESS

The solution procedure outlined in the previous section
has been translated into a user friendly, interactive,
FORTRAN program called SNONUET. It allows the user to
modify the input parameters until either satisfactory
execution time is obtained, or no further improvement is
possible. SNONUET has been tested on a number of
randomly generated examples and it produced near optimal
schedules in most cases. The purpose of this section is to
illustrate some of the uses of SNONUET. To do this we
will use a simple example, chosen for explanatory purpose
rather than realism.

NOP * NO OPERATION
FLF « FULL LOAD FLOW
HU » HESSIAN UPDATE (BFGS FORMULA)
OPP * QUADRATIC PROGRAMMING PROBLEM SOLUTION
FE .FUNCTIONEVALUATION
MVO « SOME MATRIX AND VECTOR OPERATIONS
SFE * FUNCTION EVALUATION AND SEARCH

Fig 4.1 (a) Task Graph of mn Optimum Power Flow

using high level primitives.

4.1 Algorithmic Primitives

The first step in preparing the input data for SNONUET
is to identify a set of primitive tasks, Tp, in terms of which
to describe the algorithm^) in question.

The primitives can be at various levels. Very high level
primitives result in simple task graphs with a few nodes.
For instance, an optimum power flow [43] can be described
in terms of high level primitives by the task graph in Fig
4.1(a). Or. using the primitives given in Tatle A.",, v.c could
expand each node of the task graph. The task graph
corresponding to FLF is shown in Fig 4.Kb).*

A reasonable way to proceed is to use high level
primitives for the initial design and then refine the design
with lower level primitives.

4.2 Processor arid Communication Network Alternatives

The ?frnr.1 r.ter. in p»ep?''»nc :
SNONUET is to choose the processor
network alternatives to be considered.

We start with a unibus multiprocessor system shown in
Fig 4>2.,**which is a special case of the general

TABLE 4.1

Set of Primitive Tasks Mnemonic

No operation (used for synch- T0
ronlzatlon)

Tl

T2

T3

T4

T5

T6

T7

T8

Vector Add (C* • a±+ bifi«l..n) VA
n

Vector Inner Product (C - I tt^ b±) VP

«Ca.t 1-1. .a) . VSVector Scale (b.

Vector Divide (b.-a^C, 1*1..n)

Vector Multiply (C± - a±bit 1-1..a)

Vector Sort (arrange elements in
an increasing order)

LU Pactorzation

Back Substitution (used to solve
a set of linear equations).

* Page 5
** Page 6

VD

VM

V Sort

LOT

BS

Fig 4 .1 . (b) . The task graph corresponding to node
FLF (Full loud flow) of Fig. * l . l (a) .
(T)n denotes that n of (T) may be done
in paral le l .

R-#>Repeat for Convergence

multiprocessor system of Fig 1.1 - the communication
network is now the data channel of the host computer. The
motivation for using the common data bus is the simplicity
of the interconnection, also if the communication over the
bus does not limit performance there would be no need to
consider more sophisticated interconnection schemes. Each
special purpose device is a processor/multiprocessor realized
in VLSI, with its own private memory. The unibus of the
system is considered to be a resource of the system. If
the total time needed for all data transfers over the bus of
all tasks in G <V.E) at any level is found to be more than
10H of L °° then the bus is considered to be a bottleneck.
The details of the bus modelling procedure are described in
[42]. SNONUET finds the latest finishing time of all tasks
and identifies bottlenecks. If the unibus of the system is
not a bottleneck, the number of special processors of a
given type may be increased to check if further reduction in
the overall execution time is possible. On the other hand if
the unibus turns out to be a bottleneck, we introduce
another bus amongst the processors sharing the congested
bus. to relieve the congestion and improve speedup. The
above steps are repeated until no further reduction in
execution time results.

4.3 Cost and Time Data

The third and the major step in preparing the input data
for SNONUET is to estimate the cost of the processors and
the task running times.

We consider the execution of the GJtV.E) of FLF shown
in Fig 4.Kb) on the multiprocessor of Fig 4.2. Three
different types of processors are considered, an array
processor AP (such as AP 1208) and two special purpose
VLSI peripheral processors SPl and SP2. The estimates of
the execution time of the host and the three types of
processors considered are listed in Table 4.3.1. The per unit
cost of the three types of processors is shown in Table
4.3.2.

4.4 Results

The output of SNONUET when no cost constraint was
placed indicated that overall execution time could be
reduced by increasing the number of APs to 5. The overall
execution time obtained by SNONUET has been plotted vs
the number of APs in Fie 4.3.1, after sca«inq it so that the
stand alone host could sequentially execute FLF in 100 units
of time.

The overall running time vs cost is plotted in Fig 4.3.2.
It is important to note that SNONUET with a cost constraint

TABLE 4.3.1.

Istlatt* of Execution Tlae

Prlaltlv* Task

T#
TA
*P
VS
TO
*H
• sort
UJF1

»* J

BOST

0
100
1100
1000
1000
1000
4§50

4000

AP

0
35
410
340
340
340
5000

3000

SPl

0

oa
at
00
00
00
700

•

SP2

0
ei
mOf
00
00

m
400

KLAXIVE TIME
50. f

30.

20.

10.

0.

- A •
- • -

- c •
- D •

> SPl
> SPl
> SPl
> Botn

«nd SP2 not uMd -
ix—C, SP2 not U M O -
not \x—6. SP2 O M 6 -

SP1 and SP2 u—4 -

1.0 2.0

rig. 4.3.1.

5.0

obtained by UOKVET.

4.3.2

AP

SPl

50

10

20

0

generates only the points on the broken line. The other
points correspond to mixes of processors that should not
considered because they provide lesser speedups for the
same cost.

DISK | | TAPS | | CPU | JMGM]

DC fat the 0CV1CE CONTROLLER

SPD is the SPECIAL DEVICE

Rg4.2. A Unfeus multiprocessor system.

RELATIVE TIKE

30.-

20.*

B

0. 60. 340. 300.120. lfO.

COST

Fig. 4.3.2. Plot of relative tlae vs cost. Points

on the Broken line are oBtauned By SBOVUET.

5. CONCLUSIONS

This paper has described a systematic procedure that is
useful in the selection and design of dedicated
multiprocessors. The procedure has been coded into an
interactive FORTRAN program called SNONUET.

Before SNONUET can be used one must break the
algorithm^) into ordered tasks, select a set of processors
for consideration and select a set of resources for the
processors to use. One must also estimate the time and
resource requirements for each primitive task. SNONUET
will then schedule the tasks on the processors and identify
bottlenecks that are must be removed if further decreases in
the overall execution time are to be obtained. One may
include the cost of the processors and an upper limit on
what the system is to cost. SNONUET will select a subset
of processors and schedule them so as to minimize the
execution time of the algorithm(s) and satisfy the cost
constraint. This procedure enables us to plot the optimal
speedup vs cost for a fixed communication network. It
would be very useful when selecting a set of processors
from those commercially available, when a local area
network is used as the communication netork of the system.

The example in Section 4 was chosen to illustrate the
use of SNONUET, and not as a realistic design exercise. It
could however be used for designing multiprocessors if they
were to be dedicated to solving load flow problems.

Some further work needs to be done to obtain a better
way to model the communication network when its
architecture is specified and queueing delays are involved as
a result of packet switching. In the present model, for each
task requiring the communication network, expected queuing
delays are added to the message transit times. The sum is

treated as a deterministic time for which the resource
corresponding to the communication network may not be
used by another task. This is a major drawback of the
procedure and we are working towards a remedy.

6. ACKNOWLEDGEMENT

This work was supported in part by the Electric Po.ver
Research Institute under project RP1764-3.

OMigx.. CE£. 197S. pp. 345 350

Podmo*. tLjnmnon, ULwangM. Britten. .Land \finnant S.. "Appacafcons of an Array
wnpmafcom." 1979 flMWr taOustry Computf

EEE.T979. pp. 32*330.

e.

7.

a

a.

10.

11.

12.

Happ. K K. PMte. C and Wbgan. K. A.. ~An nt of Cowpmor Tactmotogy tor Large

• a n * . F. M-, van Nam J. E-. Kane and Seng-Caul. -Tha uat of a

PMdiard, ft and Petaa. C "High-Spaad Fewer Fieae Lawg
Pfrawr to+tmy Cam*v*r ***cmam Canfimwic*.. CEE. fcfay 54 1981

Dan-. Lomam. G«e.. Bi l l ion. PML. H a * * * . CaroL and Jain
*.." «£ kUC/tO. Attgust

Thurbar. Kmmm J.. Fmoawt and Harvey A.. "JtachaactMral Conaidaraaont tor Lpcat

fca." «nx. Hm M7 Com.

Afat Map Land Von, OBMJ.. The Chmgfmg
i — ' »—"—r ^* «-^*°**

OaM. Vegan IC. IJao of aMioto IniliiBitii in *e Xonx Moftaorii Syatam." Computm.
OcU* t r i9K .pp .«91

and Proapactr," Compvm Seiane* m*
Cnoga. J.M.. a*.. Puc 01 *• 3rd CASE Conf. on Saanaae

, J. J^ "
. toonmmraea^aOaiaB

Fanao. Cdw^d P.. Ghaw, W. and Ji • ! • • • •" , PH*p C, "A Concu
and a Ring Boatd liiUmimaiion.," Teen, report. Cawpming L

JO.

21.

•uric Mnha Hand Maad. Carwar A.. -MSarta l amar Product

CALTECH Conf. on

VW.1t.1M0.

ao.

31.

32.

•runo. J-. Cofciw. E. J. an* Safe I t .
finaNag Taw.." CAOML1t?4. pp. 3tt » 7 .

. J.R. aad rwweoi, M n i H Q , -CowpHiiHj «f

Uoytf. E.L-. Se»i#M>m T M * S I I W I • # * l i i i m i i .
« «f Btttnat Eia*Mmg i

k. M. I. TM May 1W0.

JL Appl « • » ta 1.1W2.P*. itS-210.

E. and StfMi. S.K..-CMd wd A
P»0fMWI.,~ JMCtf2X2. tVr*. pp.317-327.

iwt. C o * on Como j
~ Froc al ** C*9*f

APPENDIX

The nodes, Tx> of the task graph GA(V,E) of an algorithm A .
assigned two levels LB(Tx) and L*(TJ by the algorithm below

AlQorithm Asstan Levels:

1. If T has no successors, then LB (T)«1; otherwise, LB(T)«1 •
L^Ivy

2. Let LB(Tmajr) represent the smallest integer
L 8 ^ for all tasks TK.

s no predecessor, then LF(T) « LB(T v otherwise,
^ l Ty a T-MM-

a If TK has I
LFfTK) » min{ LF

We present an intuitively obvious elementary theorem. Theorem.
AM tasks TE with L ^ ^ o r L^] may be started in
parallel as independent tasks if all tasks T with L^T) - L V j + 1 [or
LF(Ty) « L^fT^ + 1] have completed execution, without violating the
precedence constraints imposed by GA(V,E).

The tasks Tx e T are first assigned to processors P eP without
regard to the resource constraints of R^ e R and then scheduled on
them taking into account the resource constraints. If resource
constraints are violated, the starting time of the task is delayed untM
sufficient amount of resources are released by tasks which have already
been scheduled. The tasks in T are scheduled in the decreasing order
of thair levels LB(T).

In order to understand how the scheduling procedure works it is
convenient to assume that all tasks T with L^T J > I have already been
assigned to processors and scheduled on them: Consider the set • of

tasks T¥ such that LB(T) « I. Let • - {J% , Tn , . . . T . .and define
the set J - {1,2,...|+|} so that the elements & J are to I one to one
correspondence with tasks in •. Let PI -{1,2... M} represent the set of
processor indices to which tasks are to be assigned without regard to
the resource requirements. This assignment problem may be
formulated as an NP-complete integer linear program (ILP)

[ILP] • i n i a i z e COMP TIME

subject to £ j t , j z^COMP TIME, a l l icPI

) - 1 . a l l jeJ

z^ « 0 or 1. t i l icPI and a l l jeJ

Solution of ILP gives the optimal processor assignment that
minimizes the latest finish time COMP TIME of the independent task set
4*. z .»1 if TK is assigned to processor 9t and z^ * 0. otherwise. ILP
can be soWed*by a general ILP algorithm such as cutting- plana method
or branch and bound but such solution procedures arc NP-complete.
We solve ILP by transforming it to another problem ILP'.

subject to for a l l iePI

y i j * 0 or 1, a l l icPI & a l l jcJ

ILP1 is known as the Maximum Weighted Matching problem, y '̂s
have the same interpretation as z..fs. cJs and b.s are defined by me
algorithm Assign Tasks. Solution to (ILP') yields an upper bound, UB,
for the solution to (ILP). The inequality constraints and the objective
function of »LPf are modified to improve UB and bring it closer to the
solution of ILP.

Airekin Tasks:

1. Initialize : b ^ M . for all iePI.
£M tu)/ tt|_ for all icPI and jcJ.

2. Solve (ILP') .

3. tp, • Jj t 1 j y i r for t i l iePI

i* • {x| tpK ^ tpt for a l l iePI}

if (MTC is TRUE) Go to step 6.

if «ax (tp, > UB) Go to step 5.

4. b1 for all

for

UB « tp/ 4 6o to step 2.

6. b1 iePI

MTC • TRUE

and

Go to step 2.

6- " (tp,* >

UBf « tp f*

Go to step

7- *Pi • fa

COMP TINE -

US) go

for a

5.

* U

J

f tPi

ll lllA/Y

Z U

for

•

to step 7.

11 iePI. jeJ

for a l l iePI

al l 1ePI.

aceinnaH task* •#* *%****• ^^^*^m

Each time a task which has been assigned cannot be scheduled
because of insufficient resource, an entry is mad** in a Resource
Shortage Table indicating the particular task which could not be
scheduled together with units of the particular resource/resources
which were needed but were not available. Once all tasks Tx with
LB(TX) * I have been scheduled, tasks T with LBOy » 1-1 are assigned
to processors and then scheduled. The steps are repeated until ail
tasks Tz with L 8 ^ » 1 have been scheduled. The specific details and
the rules for breaking ties while forming the different sets are described
in [43].

g p
following 2 sets

^.Hz^ (output of algorithm assign task) is 1, task T& has been
assigned to processor P.. For each jePI, form a set

i „ . for
-1} Set * is

- f T \ z -
a I * of ttaskTkhat have beenJ

assigned to processor P. in increasing order of their total
resource requirements.

2. For each set Jjt iePI, tp. (output cf algorithm assign task)
represents the total time taken on processor P. assuming ail
tasks assigned to it could be executed on it in succession
without violation of resource constraints. Form a set
TP « {tPj # 0. for all icPlJtp: < tp u , } . Note that the set TP
may have fewer than n elements.

The tasks on a processor are scheduled in the increasing order of
their total resource requirements. Let V^r .. r*L] represent the total
resource requirement of all tasks T such that LB(Ty)-l +1 or LF(TJ -I
and task T has been scheduled . The remaining tasks are scheduled
by the following algorithm:

Algorithm Schedule Tasks

1. While TP is not empty perform the step

a. Lets » 1* • ttp J 1*1}

b. For each v, 1 < v < L , l e t r / * £ r^ where x is such
that LB(TX)»U1 or L 8 ^ - ! and Tx has been

c. Let tp(be the first element in TP. While ¥ is not empty
perform the step

i. let Tx be the first elementin*.. *

it. if for each v. 1<v<L, ry' • r^<fiirj then let
r(Tx) * s, for each v, let r/ J r/ • r^ and
remive Tx from •. . Task T is scheduled on
processor' P. and Xta *« 1 for k«

j

d. Remove tp. from TP.

2. Form a set <* of all tasks T which have not been scheduled
^) L

a Repeat this step until + is empty. If for each v, 1<v<L, ry*
+ r <)5(r^ and if for some i.t^^idte time of processor p,,
then schedule T on P, and remove T from <*>. Else remove
Tyfrom^.

