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A b s t r a c t

In this paper we discuss the statement of Yield Maximization
problem and the choice of design parameters when considering
statistical design of monolithic ICs. Specifically, yield maximization
cannot be carried out in terms of the nominal values of the
eiecxncai parameiers oc iw s eminents. MI extension to me exisong
methods and a new formulation of the Yield Maximization problem
for monolithic ICs is proposed. The necessity of employing a
SNiHjlator of the manufacturing process • which retafess a circuit
eiecxncat oenavtor to tne pnyscaiiy oseignanie parameters , is
shown.

1. Introduction

A number of statistical design aids for yield estimation and
optimization and worst case analysis have been developed (1.2.3.
4) to help the circuit designer wherever the random fluctuations
inherent in the manufacturing process have to be considered.
Specifically, for the case of the statistical design of monolithic ICs,
me YleW MaxtmizatK^ (YM) is the cemrml issue. Usuafty the yield
maximization problem was formalized in the following manner.

Let the circuit to be designed be described by a set of algebraic
and differential equations:

(D

is a vector of voltages and currents
Is time

is a vector of the circuit parameters which can be ;
to be constant

is a vector of random variables3representing circuit
parameters which are randomly varying due to imperfections
and distrubances in the manufacturing process, (typically
resistances and capacitances, threshold voltage of MOS

tS etc./

y-
t-

X-

Let the constraints of the circuit performance be described by a
set of inequalities:
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3 An random variables are denoted by capital letters.

4For normally distributed random variables X me jpdf is fully characterized by ma-
first and second order moments, i.e. by vector of mean values m .̂ and covariance
matrix £v

* k (x )» r epk(y,y,t,ajc)dt<0 for k »1,2, nc (2)

where x is a particular value of X. Thus the set

1^ » {x:*k (x)<0 for k -1 A ^ n c } (3)

which is called the acegotabilitv or feasible reoion. represents the
set of realizations of the random variable X (i.e~ all particular
values of circuit parameters) for which the circuit meets the desired
requirements. Assuming that X is described by a joint probability
density function4 (jpdf). f

x ( x ^ $• " " * * Px »
 a vector of mean

l f X d £ i t f h ihe oder moments of X the
y x ^ $ x

values of X and p£ is a vector of higher order moments of X, the
yield, Y can be denned as:

/ (4)

In order to state the yield max
existing methods, it is necessary
assumptions:

tion problem and solve it by the
to make the following two

A1:

A2:

It is possible to obtain any desired value of p^ by means of
adjusting the process parameters and/or the layout of the IC

The vector of higher order moments, p| is independent of
the circuit and the process parameters.

Under these assumptions, the yield maximization problem should
be stated as the following optimization problem:

Y _ (5)[
Unfortunately, assumptions A1 and A2 are not necessarily valid for
monolithic IC applications. In particular

0 Some components of p^, which are the optimization variables,
are not designable in the sense that they are not necessarily
adjustable to any given solution of (5). For example, the mean
value of the threshold voltage of an MCS transistor cannot be
arbitrarily adjusted to any desired value but can only be determined
for a particular process and then only slightly modified.

it) In general, the components of pj are not independent of one
another. Therefore, it is not always physically possible to obtain a
specified combination of values amongst the components of p .̂
For example, the mean values of & of two n-p-n integrated
transistors are strongly related to one another.

iit) The higher order moments, denoted by p^ are not
independent of p^ For example, the mean and variance of the
resistance of a monolithic resistor are dependent on its geometry.

In this paper we show that by judicious choice of truly
independent designable parameters and an alternate formulation
of the yield maximization problem we can develop a method which
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is more suitable for the design of monolithic iC's than those
previously reported. Furthermore, we show that a key step in the
yield maximization problem is the simulation of the manufacturing
process. In particular we introduce the use of a process simulator
(5) into the design procedure.

2 . I n d e p e n d e n t l y Desicmable P a r a m e t e r s in
Yie ld Max imiza t ion of Monol i th ic IC 's

We wish to determine under what conditions the solution of (5),
is technologically reatfrable Assume that the manufacturing
process can be characterized by a vector of deterministic ,
physically independent and controllable quantities (e.g.
temperatures, diffusion times, mask dimensions. etc.),denoted by
z and called primary design variables. Further let 0 denote the set
of uncontrollable disturbances, inherent in the manufacturing
process. Hence the parameters of the jpdf of X are dependent
upon both z and 0. Observe that while the values of p£ can be
controlled by changing z . the set of technotogicairy realfrahki
combinations is restricted due, in part .to the existence of 0. Thus
there may exist the solutions of (5) which cannot be obtained by
means of changes of z only. Specifically, the solution of (5) . p ^ 0 *
, is technologically realizable only if there exists a z 0 * such that

it wifl always be possible to find a i00* which satisfies (6) if the
components of the vector p£ » {p£ r p^, -} are independent and
strictly monotontc functions of components of the vector z . We
call the random variable X, which is a component of X, whose
mean, p^ is a strictly monothonic function of a primary design
variable z. a deskmable random variable. Furthermore, if we can
change the value of p̂ . while keeping the other components of p£
constant then X. is said to be an independently dasjonable random
variable. Hence, a solution of (5) will be technologically realizable
if every component of X is an independently designable random
variable.

We now wish to illustrate the above general considerations and
determine which parameters are the primary design variables and
which parameters are the independently designable random
variables for the case of monolithic integrated circuits. In order to
motivate this discussion consider me following simple example.
Let w and I be the width and length of a rectangular window in a
photolithographic mask used to fabricate an integrated resistor.
They constitute the primary design variables in this example. Due
to imperfections in the photolithographic process the dimensions
of this window in SiO2 are described by random variables L and W,
respectively. Assume for simplicity that W » w + IF and L « I •
AF, where AF is a zero mean normally distributed random variable
with standard deviation a^ which represents the disturbance in
the photolithographic process. One can show that if both I and w
are much greater than 3 * ^ then F«L/W is a normally distributed
random variable with mean ny » l/w and variance

Furthermore, it can be shown that the actual resistance of the
integrated resistor is also a normally distributed random variable R
suchthatR * F*Rs with mean m^ and variance <r£ given by

(8)

(9)

because the mean values of the resistance of the different resistors
in the circuit can be chosen independently of one another. Hence,
it would appear that the nominal resistance values of integrated
resistors could be used as optimization variables .p^ for solving the
YM problem (5). However, since m^ and <x R are dependent on
each other this choice of variables would violate assumption A2.

Note that this observation can be extended to all electrical
parameters of monolithic elements because both the nominal
values and higher order moments of these electrical parameters
are related to the mean and variances of the mask dimensions, as
weM as their ratios or window areas. (The moments of dimension
ratios or areas are dependent of each other (e.g. see (7)). Hence
none of the moments of electrical parameters of monolithic
elements can be used as the optimization variable in the YM
problem (5).

Note that for the examples discussed above, we can choose as
optimization variables, instead of p̂ , the means of L and W. (L and
W are independently designable random* variables because mL » I
and m^ » w and their variances are independent of m^ and nry,
respectively). In general, since any IC design can be described In
terms of the mask dimensions, then the mean of the random
variable Z. » r + AF, pi , representing the dimensions of the IC
elements, which are related to the mask dimensions z and
disturbances in the photolithographic process AF, can be chosen
tobetr»optin«zatk>nvanablerntrmYMpro61eni(5).

3 . Y ie ld Max imiza t ion Using t h e Process
S imula t ion T e c h n i q u e

Since the components of X cannot represent the electrical
parameters of the IC the yield maximization problem (5), for case
of monotiihic ICs, has to be modified. Towards this end we replace
the circuit equations (1) by:

(10)gk(y,y.t*x)-»Q.

where Rs is a normally distributed random variable with mean ^
and standard deviation <rRs which represents the sheet resistance.
Thus R is a d^Hanabte random variable because any specific mean
of its resistance can be obtained by adjusting the ratio l/w.
Moreover, it is an independently desionable random variable

j

where expression (11) models the manufacturing process. Using
(10) , (11) and (2) one can define the feasible region &z in the
space defined by 2. We can now formally state the yield
maximization problem as

where Uz . p* pS. pi-and pfare the ipdf. means and higher order
moments of t respectively. Thus by adding constraints describing
the manufacturing process to the previous statement of the YM
problem, and properly choosing elements of Z. the YM problem of
monolithic lCs can be solved by the methods proposed previously
d).

Observe that in general, the dimension of Z is much larger than
the dimension of X.(For instance, the number of variables
describing the layout coordinates of the zigzag resistor is much
larger than the number of its electrical parameters). Thus, the
computational expense of approximation to the feasible region Rr

in the space of independently designable parameters Z could be
much larger than the computational expense of approximating R x

in the space of circuit electrical parameters X. Thus we we propose
the following approach.

Assume that we have an •approximation, Hx, to the feasible
region R x. Since the random variable X is dependent on Z. wntch
is an independently designable random variable related to the
primary design variable z. then at feast some moments of X are also
dependent on z. Let p^ and p£ denote those moments of X which
are dependent on z. and let 0X and p* denote those moments which
are independent of z. Hence pi»{Px • ffj) **<* P x a ^ x • $* T h e

YM orcblem can now be stated in the following way:



-(•"
(13)

Note that any solution of (13) is technologically realizable and
because we are in a lower dimensional space, the cost of the
solution of (13) should be less than cost of the solution of (12). Of
course, a key step in being able to solve (10) is the simulation of p i

We now consider the process simulation technique we need for
generating p^and p£. As we stated earlier

X«P<Z£) (14)

where P ( ) is a model of the manufacturing process relating the
etctrical circuit parameters X to £ and 0. The disturbance, 0, is
most easily simulated using an appropriate random number
generator. The advantage of such an approach is that the
disturbances of th* process are characteristic of a given
technology and manufacturing facility, but are independent of the
particular circuit to be designed. Hence, the jpdf describing 0,
Ud) , needs to be identified only once for each process. Hence,
employing (14) we can estimate moments of X in terms of z and
therefore solve (13). In the next sections we describe the process
simulator which has the capabilities we need.

4 . E x a m p l e s

In our investigation the statistical process simulator FABRICS
(FABRicatJon Process of Bipolar Integrated Qircmts Simulator )
was employed for simulating (14). A detailed description of this
simulator is beyond the scope of this paper (see (5,6,7)). Suffice it
to say that FABRICS was used to generate the data samples
composed of electrical parameters of typical bipolar IC elements
(i.e., samples of random variable X).

In this section we examine three examples which serve to
illustrate the following observations. The first example illustrates
the a^pendenca of p^ and p§ on one another. The second example
exhibits the fact that even if the nominal values, p^ are constant
the higher moments, p£ can be modified by means of layout
changes . The third example demonstrates the computational
efficiency of the proposed process simulation technique for solving
the YM problem (13).

In each of the examples we have assumed that all of the process
parameters are constant and the design variables are mask
dimensions. Note that the results reported below were obtained
using FABRICS tuned to a real manufacturing process, thus the
data presented is physically meaningful.

Example 1.

Consider the following elements xrf a bipolar integrated circuit
three base diffusion resistors, R r R2, R3. and one n-p-n transistor.
We assumed a fixed layout for the two resistors R1 and R2 and for
the n-p-n transistor. The length of resistor R. was also assumed to
be constant while its width, w y was treated as a primary design
variables. The question was whether the changes of w3 would
affect all of the parameters of the jpdf describing the random
variables R r R y R3 and 0 of the transistor. Using FABRICS we
generated 900 samples (each sample was composed of values for
R r R y ft. and £ ) for three values of w r The protections of four
dimensional scatterplots onto the planes (R, x R3), (R2xR3) and (fi
x R-) are shown in Rg. 1. We can conclude that the changes of w.
notonty affect m— and a ^ (according to formulas (7).(8) and (9))
but also the correlation factors of R3 with the other resistors and

v-
Example 2.
We now consider an IC which contains among other two

resistors, R, and R2 and an n-p-n bipolar transistor. The primary

design variable.*, in this example is the layout scaling factor.X .
which is a quantity by which all element dimensions are multiplied.
In Fig. 2 the scatterplots of Rt and R2. and R? and fi. for \ » 1.0
are shown. Similar plots for X * .5 are shown in Rg. 3. Comparing
these two figures we observe that the means of R r R2 and £
remain almost unchanged while standard deviations increase and
correlation factors decrease if X decreases. Thus, we see that
yield can be affected by holding the nominal values of the
designable parameters constant and change the higher order
moments which depend upon the scaling factor X.

Example 3.

We wish to determine the dependence of the yield of the
Motorola MC1530 operational amplifier (8) on the layout scaling
factor X. Towards this end we define acceptable performance in
terms of the following inequalities:

where v\ft ^ is the dc input offset voltage. Ig ,^ is the input bias
current and Ad is the'differential mode gain.

The yield estimators for several values of X(X - .2, .3, .5, .8, 1.0,
1.5. and 2.0) went found by means of the Monte Carlo method
.using FABRICS and BIAS-0 (9), to evaluate V.̂  - AmAS and A and
then computing the yield. The relation obtained between yield and
\ is shown in fig. 4. We found that the yield drop for X<1 was due
to an increase of 9 ^ which was caused by an increase of
variances of element parameters. Observe that for increased
values of X. the yield never reaches 100%. This means that the Op
Amp yield is determined not only by the designable part of X Thus,-
as we have pointed out in the YM problem (13), the designable part
ofX should be distinguished from its undesignabie part We found
also that the CPU time required for process simulation was less
than 10% of the tune required for circuit simulation.

5. Conclusions

In this paper we have discussed two formulations of the YM
problem suitable for the design of monolithic ICs. We have defined
the conditions under which the method proposed in (1) can be
used for monolithic ICs. We have also proposed a different
statement of the YM problem which seems to be suitable when
large number of the ICs elements must be taken into account

We have found thatin general, in order to solve the YM problem
for monolithic ICs it is necessary:

0 to define the set of independently designable variables

ii)to use a process simulator to relate the layout of the circuit and
process parameters to the circuit parameters.

We have also found that the optimization technique employed for
• solving the YM problem for the monolithic ICs has to take into
account the fact that the space of randomly varying parameters
determining circuit yield contains elements which cannot be
designed and must be treated as a disturbance only.
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