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If K is aclass of relational systens or al gebras then H( K) ,
I (K), S(K), P(K) stands for the class of all hononorphic inmages,

I sonor phi ¢ i mages, subsystens (resp. subal gebras) and direct pro-
ducts of elenents in K
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COVMPACTNESS | N ALGEBRAI C STRUCTURES

Sem nar Not es

by dinter H* Wenzel

It is the very question whi ch has given birth to the mat he-
matical discipline called « algebra” that (in a nodified form
is underlying our topic: The question about the solvability of
certain systens of equations in certain pregiven al gebraic donains.
However, while the original interest was and is directed toward
finding solutions of finite systens of equations (or, at |east,
toward establishing the existence of such solutions) our interest
is of anore relative nature: Gven a systemof equations over
sonme al gebraic structure (the ternms will, of course, be nade
precise in the succeeding sections), it is our aimto study the
condi tions under which we can conclude the existence of a solution

of that system provided certain distinguished subsystens are

solvable. To clarify our point we will initiate our investigation
with the aid of a few sinple, informal, illustrating exanples.
(Ex. _1): If we consider the cyclic group Z of integers with

addition + then we narrow our attention to the follow ng system

L of equations:

3x0 + X.q = 1
x| = 2X2
Xo = 2X3
i
X = 2 X
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where n runs through the set N of natural nunbers. Visibly,
. 005}
if (X, X, Xa, ..., X, ...)eZ ~ is a solution of I then

0" Xy = 2an+u for every neN i.e. 2" divides X, ~0 for

every natural nunber. This being inpossible, L has no solution.

O the other hand, if L denotes fhe set of the first n
7

n
equations in L, then we choose x and x such that
3%o + 2"~\ = 1y define Xn_y = 2Xn, Xn_2 @®M2Xp_1, ..., X1 = 2X,
and have, thus, a sblution (43,x ,...,X ) of L. L is a

n Il

system of equations which is not solvable, although every finite

subsystemis. This exanple is supplenented by the next one.

(Ex._ 2): If B is a conplete Boolean algebrawith join V, meet
A conplenent ', zero O and identity 1, then every system L

of equations involving variables, constants of B and the
above operations is solvable provided every finite subsystemis.

VW delay a proof of this fact to a later section.

(Ex. 3): If we replace the Bool ean algebra in Ex. 2 by a conpl ete
lattice L with join V and nmeet A then the conclusion is no
nore true. To see this, let L = (0,a P SRR : S , 1}, n< «Q,
where O and 1 are respectively the snallest and |argest

-elenent and the el enents an are pairw se unrel ated:

A

$ v m sarpm mwaw ="
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If S is a set of cardinalityB" then the system I, =
{x"x.:I =0, )(jij =1, i ] eSS of equétions over L

Is not solvable in L, since i/ j inplies x; » x, for

]
any solution (%) ses °F S* *-efe  AX S E€SA ywould have
cardinality ~+ > |[L| . Onthe other hand, it is quite evident

that every finite subsystem £, ©S is solvable.

(Ex. 4) It is the sane basic technique that together with

Dirichle™s prine nunber theoremyields the follow ng peculiar

property of the ring Z of integers: |If o is the initial

ordinal of #Y ,, then the system £= {x* _(me z* +n) +Y>
L [ L3 &, 1

(me Zn +n =1; £r] < 09} of equations over the ring Z is

not solvable if n,m are relatively prinme natural nunbers such that

tiny 2 (Mcielski chose n=5 m=2). To see this, we

m
realize that for every choice of z% e Z the integer itr zeth

is different from + 1, hence, £/ r\ inplies z £ z* for

every sol ution (ZA)¥<wl of H which, of course, is inpossible in

Z. (n the other hand, every countable subsystem T/ of T is

solvable in Z Let 50,-ﬁr_,-fM---’i-*---*"\<_A°OAbe the

indices f, 17 actual ly occurring in S and choose z2 such
‘that me Z¥i+n =py 1is aprine nunber for every i e N
moreover we nake our choice such that i ~j inplies p., 7 Py
Vé can dothis, since n+ m n+2m n+ 3m. . . . constitutes
an infinite arithnetical progression with initial element n,
difference m and (n,m =1; thus, Drichlet's theoremassures

an infinite nunber of prine el ements in the progression. Since




therefore (pi,pﬁ) =1 if i 77 j* YCea" find integers sA.j
and t.lj such t hat Si'fﬁ + t.ljpj =1, i.e. E' is solvable.
It was Kapl ansky who in 1954 observed the inpact of this
11 equati onal behavior'' on the structure of infinite Abelian
groups and he baptized groups Wi t h the property that every
system of equations whose finite subsystens are solvable is

' al gebraically conpact groups ™ (He used an

sol vabl e as
equi val ent, but di fferent, definition). In the sequel the

concept has attracted the interest of algebraists and |ogicians
al i ke and has been studied in both a universal algebraic-

logical and classical-al gebraic framework. Qur attenpt in

the succeeding sections will be to lay down the foundations of that.
framework and to give our problemthe rigorous setting it visibly
needs. CQur approach to.the main results will be as geodesic

as necessary to justify the.tifle, as geodesic as possible

" wi thout either bypassing sone recent results on al gebraic conr-
structions (as,e.g., ultra-products) which can.be found on near by

side-tracks or neglecting results that serve the aimof a certain

degrée of sel f-contai nedness.




Chapter |* HE enents of Universal A gebra.

This chapter will contain a conci se account of the basic con-
cepts associated with universal algebras and rel ational systens.
VW confine our attention to the al gebraic aspects of things

" delaying the inpact on first order-logic to the second chapter.

§1. Universal Algebras and Relational Systens.

Uni versal al gebras are the final abstraction of al gebraic
systens as groups, rings, lattices, etc., while relational
systens play the same rBle with respect to partially ordered

sets, chains, divisibility-domains and so on.

Def. 1. A.universal algebra G=<AF> is apar of sets AF

where A is non-enpty, called carrier set of. G and F

consists of finitary operations on A (called fundanental opera-

i.i.o.ns); i.e. each f, e F is a mapping fromsone A- into
A where n" is a non-negative integer. |f one well-orders
F - (fo_>f19°°°'>fy>°°"}y<a and fy is an nv~arY operation,

then the string r = <ng np...,ny; .. is called the type

T y<a
of G K(r) stands for the class of all universal al gebras of
type T We will frequently use the same set F to denote the
operations in different algebras of a fixed type T (thus

inter preting F as set of synbols which induce operations on
the universal algebras Ge K(r)). If we want to enphasize

the algebra G we will also wite f* for f . If F'c F then

we call G = <A F'> the F -retract Hf G:<A}/F>.




(Ex.5) : A senilattice S is a universal al gebra of type <2>,

say S = <S;V>, such that a Va=a, aVb=bVa, (aVb) Vcs=
aV (bVc holds for all a,b,c e S Alattice £ is a

uni versal algebra of type <2,2> say £ = <L;VsA) such that

both <X;V> and <L;A> are seni-lattices and, in addition, the
so-cal |l ed absorption-laws a V (a Ab) =a and a Ala Vb) = a
hold for all a,b e L. In a simlar fashion, groups Q:<G;-,"1,1>

are certain universal algebras of type <2,1,0> rings & =

<R; *, +,";]L , ~,0> are certain universal algebras of type <2,2,1,1, O,

Bool ean al gebras 8 = <B; V, A,' , 1, 0> are certain universal

al gebras of type <2,2,1,0, 0>, and so we could go on enunerating
the known specific al gebraic structures. 11_st ands for a 1-
_elenment algebra in K(T) and is called "trivial algebra.'' As
the reader has doubtl| ess observed, the term™universal al gebra!
keeps comng up and is |engthy. So we agree to briefly say

11 al gebra" whenever we mean " universal al gebra.!!

Def. 2: A relational system G = <A F,R> is a triplet of sets

A F,R where <A;F> is an algebra and R is a set of finitary

relations on A i.e. the elements R of R are subsets of sone
8

m

AY where m e N Againwe well-order R={R,Reg.1.Rj, ~* . }ri.<p

-and call T = <-|:i>r2'> tII.e fCYPe of N n_f ri n_s tlle /\Ype of

S

m
<A/F> and rx = <mpmy, ...,Ms, ...>x<p Where R c A °. K(T)

r—————

stands for the class of all relational systems of type r.

Ro«(zi\-,...am:) is synonymous with (aT ,...amJ) e R@. In case

ms = 2 we also write 2iRf520 ©°° 23 2 anRg ).




(Ex_,_G): Apartially ordered set, shortly poset, P is a
relational systemof type <0;<2», say Pe« <P<J, {£}> sSuch
that (i) a£a, (ii) a<Mtb andb <>. inplies a=b, (iii) ask
and b*c inplies a<c holds for all a,b,c € P. I n case

a¢p or b*a holds for any two a b e P we call the above
poset a chain (or ordered set) . In a similar fashion we obtain

lattice-ordered groups Q = <Gi{-, 2 J}>{£}> as relational

systens of type r = «2,1,0>;<2», unigue factorization domai ns

T« =<D;{-, +,]‘ -, L0} 5 {/}> as relational systens of type
T= <2,2,1,1,0,0><2», etc. Arelational system <A $,R> is

called a strict relational system

Again we feel the notation <A”"),R> cunbersone and ag.'ree
that, in case confusion is inpossible, the strict relational
system <A (M R> wll be denoted by <A R> with simlar adjust-
nment in the type. For a simlar reason will we identify. <A;F,¢>
with the algebra <A;F>. Finally, weM use the notation _I_:_\’;_

instead . of R, whenever we feel it necessary to enphasize
0 .

the underlying relational system G thus conformng with the
correspondi ng agreenent on the operations F.
VW should point out that, of course, every algebra induces a

strict relational systemin a natural manner: @Gven the al gebra

_ . L~ <A1, F'>
G = <A Fl> we pass to the relational system G -
where F = {Fv?fye F) is defined by (al,...,a a ¥) e F7
if and only if fy:(a’\,...,a ) =a* ,p. Thus, wvhy don't ve

di spense with universal algebras ana non-strict relational systems

in favour of strict relational systens {as, e.g., S* Kochen
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has done in his paper '" Utraproducts in the theory of modul esM)?
There are two reasons: First of all a good part of our interest
is founded in al gebra, and dispensing with al gebras would, e.g.
destroy the subal gebra-lattice in favour of subsystens, a
trade that we do not like to accept. Secondly it is our deter-
mned aimto stay intuitive whenever possible, devoting ourselves
to formalismonly where necessary or advisable. Kochen's
procedure reflects his prine interest on the nodel -theoretic
aspect of ultraproducts conpared with the al gebraic inplications.

There are ot her occasions where the use of al gebras or
rel ational systens is just a matter of view point as the

foll owi ng exanpl e whose proof we omt illustrates.

(BEx._7) : Let £ = <L;<"> be a poset in which any two el enents
al,aﬁ have a greatest |ower bound, say a. A aﬁ, and a | east
upper bound, say a, V ap. Then the algebra £ = <L;V,A> is
a lattice. Vice versa, if £* = <L;V,A> is a lattice and we
define the relation <* on L by a. N a if and only if aqfazi =
a» (equivalently, 2#;Y3,7 227 then £ = <;<> is a

relational systemw th the above properties. Thus, the algebra
£ and the relatiohal system £ just introduced manifest only

di fferent approaches to the sane underlying ' object.'




82. Honmonor phi sns and Congr uences.

We start with two relational systems G = <A F*R>" P

<B;F,R> of the same type (if R= (f) we have universal al gebras)
and a mapping <p : A* B

Def. 3; (i) <p is called a " weak homonor phi snt' if

(1) <pf, (@x, ..., a.)) =f.(day,. ... (p(a,)) and
(2) R,(a., ...a ) inplies RJt<p(a), ..., <p(a )) holds for all
j L my fi A B
fy'e F, R 4G R and a. e A
(ii) <p is a " homonorphism** if (1),(2) above hold and in
addi tion (3) Ra(<o(a1) y e ,<p(rgl )) inplies the existence of
b-_,,... ,b, e A such that <p(a.) :<p(b.2L and R&b 17 - ’br§) .

(iii) <p is a " strong honormorphism! if (1),(2) above hold

and in addition (3) F;(al,...%) holds if and only if
R (cp(aq) o - - -, %a )) is true. W use the notations < Gy» B,

is a homonor phi smof type (i), (ii) or (iii). Hrn (G B),
torn (G, 8), Hrn (G,H) denote the sets of all hononorphi sns
of type (i), (ii), (iii_) , resp.

We note that in case of universal algebras the three notions
~coincide and agree visibly with the hononorphi sm concept used in
the diverse specific algebraic structures dealt with in (Ex.5).

We reserve the concepts of epi-, nono- and isonorphismfor
onto, 1-1 and bijective hononorphisns, resp.. A hononorphism

cp z G-« G is also called an endonorphism an isonorphism
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. G-+ G will bereferred to as " autonorphism ‘' The foll ow ng

remark is quite self-evident and left as exercise:
Remark 1:

(1) The composition g«f: A-¢« C of two hononorphisns
f . G-H and g : H—C s again a hononorphism
gf : G-+« C if GB,C are algebras of the same type
(To obtain the same result for relational systems we
woul d need strong homonor phisns).

(2) < End(Q;C is a semgroup with identity for al
al gebras G (where End(G = Hrn (G Q).

(3) < Aut(G);CWl,1> is a group for every relational-
system G if Aut(G is the set of all isonorphisns
in End(G) -

Closely rel ated to homonorphi sms, congruence relations play the
same basic rSle in the theory of .algebras that normal subgroups
play in the theory of groups or ideals play in the theory of

rings. To lead up to themwe recall the concept of an '’ equival ence

relation™ on a non-enpty set A

Def. 4. If A is a non-enpty set, then an equival ence relation

d on A is a subset of A (i.e. 9c A) such that (i)

(a,a) €9, (ii) (ab) €9 inplies (ba) €9, (iii) (ab), (bc) e
inplies (a,c) e 0 for all a,b,c € A It has beconme tradition
towite a =Db(0) .or a9 for (a,b) € 9 and to say that

11

a and b are equivalent modulo 9.™ More generally: a9590

stands for a9 and b9c etc.. The three postul ates are known
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as reflexivity, symetry and transitivity, resp..
We assume the reader has |earned before that a binary
relation on a non-enpty set A is a subset of A X A Thus,
equi val ence relations are nerely ref I.exi ve, symetric and transi-

tive binary relations. Let us, for convenience, also recall

2
that with any two binary relations poc € A a third binary

relation pocr ¢ A is defined by (ab) € o°CT = (ac) € p,
(c,b) € a for sone c e A This conposition obeys the

~associ ative Iaw (p*>a)*T = po(aof); hence, if R;(A) denotes

the set of all bi nary relations on A, then <R;(A) ; « > is a
sem -group. W should point out that the fact that 9- and

0 are equivalence relations on A does not necessarily inply
that 6,00, is an equivalence relation as well. As a mattter of
fact, we suggest the easy exercise to prove that 91092 is an
equi val ence relation if and only if 0.,09 = ~0*"1' i-° if and

only if 0O, and 0, are pernmutable. Let us also recall that

every p e Ro(A). determnes a so-called inverse relation _p'1€Ro(A)
via (a,b) € o~t = (b,a) e p; both the diagonal-relation ar{(asa);
a € Al and the universal relation ji*= A x A are equal to their
respective inverses. Let us not return to our equival ence-

rel ati ons before agreeing that, incase pe R"(_,_A), (f>£ Bcr A

2
p’l‘je R:( B) is defined by p 0 B .

Def. 5. If E (A denotes the set of all equival ence relations
on AL ae Aand 0 € E(A), then [a]0 = {b;beA and b=a(9)}
constitutes the so-called equival ence-block of a nodulo O. | f

jzf;é SEA then [J9 = Ua]9;a GS) is called the closure_c_)j_
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S nodulo 9.

A different view point on equivalence relations is introduced

when we speak about '!' partitions!* of a non-enpty set.

IDef. 6: If A is a non-enpty set and P is a set of nOn-

enpty subsets of A (i.e. pc 2°) then P is a partition of
A if (i) BysB, € P inplies B, =B, or B™ 0B, =%, (ii)
UB7B € P) = A The elenents of P are called blocks of the

partition. Part (A) is the set of all partitions of A

2
If P e Part(A) then we can define the subset P* of A by

the requirement that (a,b) € P* holds if and only if there
is ablock B in P containing both a_ and b. If 9 e E(A
then we can define the subset 9 of 2 as 9" = ([a]9; a € A
It is again an easy matter to check the follow ng remark.
Remark—=2. (1) If P e E(A then 9" e part(A).

(2) If P GPart(A) then P° e E(A

(3) {%$)' =9 for every 9 e E(A

(4) (p*)* = p for every P e Part(A).
Thus, partitions and equival ence relations on a non-enpty set A
are in a 1-1 correspondence given by °. This relationship pro-

fl

vides an even further identification' of the two concepts.

Def. 7t Let Qe E(A), P € Part (A), i = 1,2. W say that
9L £ 9, (RL <1 P,) if a==b~") always inplies a = b(9,)

(if every bl ock of P,l is contained in a block of P?).
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Theorem1: (1) Both <E(A) ; £> and <Part(A) ? £ > are |
lattices as partially ordered sets (see(Ex. 7)). Thus, if aVb
(aAb) denotes the |east upper bound (greatest |ower bound) of
a,b inboth lattices, thén E(A = <EA? V,A> and <Part (A;V,A>
“are lattices. Mreover: ° : E(A) - Part(A mpping 0 to 0°
Is a lattice-isonorphi sm
(2) <E(A);V,A> is a conplete lattice, i.e. every set S of
equi val ence rel ati ons ih E(A) has both.a greatest |ower and a

least upper bound, denoted by A(S;sGs) and V(S;S€S), resp. .

Proof: | The fact that the mapping * is a hononor phismin both
directions is a sinple exercise. So we confine ourselves. to
“proving that <E(A);V,A> is a conplete l|attice. |

| If Sc E(A and the greatest |ower bound (g.l.b.) eXi sts then
(foll ow ng confron usage) we .denote this g.l.b. by A(s;s€S)
which, in case of finite S = {Si,""’sn}’ can be repl aced by
s,lAs?A.. Asn. Gearly, A(s;s€S) exists always and A(s;seS =
n(s;s€S) if Sc E(A). To showthat the |east upper bound

(I .U b) V(s?seS) always exists we introduce the binary relation
tyon A as follows: a s Ki/)) holds if and only if there

exi st el enents a = ac;, a., a2,...an =b in A and equival ence
relations SESOZ...,Sne_ S - such t hat a SnanScfle, - - @ 4S5 Py
It is straight forward to verify that if) is an equivalence
relation which is larger or equal thanall s e S If 0

Is an arbitréry equi valence and 0 "> s for all s € S t hen

a = %,5x=2%2%# *¥an. | spa b A ways inplies as b(0), i.e
aHi”) inplies as b(0), or equivalently: 0 <" 0. Hence,

0 = V(s;seS). g.e.d. .
HUNT - LIBRARY
CHtIEUUfELUM  UMIVERSITY
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Note: We ought to keep in m nd the construction of A and

V for arbitrary sets S c E(A) since we use it whenever necessary.
For the purpose of studying universal al gebras, the concept of
't equival ence relation is too restricted, for it does not
“take in account the nature of the fundanental operations F. To
take care of this handicap we pass to the nore restricted set of

congruence rel ations.

Def. 8.: Let G = <A F,R be arelational system Then 6 = E(A)

is called a congruence relation of .G provided that the

11 substitution property (J9 ' holds; i.e. a.;1 =b”0), a, =b,(9),

..... , a~ sb_ (9 must inply f_(a,...,a*) s 4, (kh,...k )(0)
7 .
for all a., b. e A and f. e F. C(G denotes the set of
i® i y _x_L

all congruence relations of G

We note that we have not nmade any specifications on the

behavi our of the relations in R as far as congruence rel ations
are concerned. This leaves us with the freedomto specify these
relations in different situations in a different manner - a free-
domthat we will make use of in the sequel. By definition
C(G) T E(A): thus we can apply the binary operations V and

.A defined on E(A) according to theorem1 to any two congruence
relations 6nhnr2" !tcaneasilybe yarjified that both QiVW®~
and 05202 are not only equival ence relations on A but even
congruence relations of G Thus, <C(GQG;V,A> is itself a
lattice if V and A denote the restrictions of the respective

operations on E(A):. In this sense, we say that <C(Q;V, A>
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Is a sublattice of <E(A) ;V, A>, a concept that will be discussed
in the general setting it deserves in the next section. |If
0/ SQC(G) then we can form a = V(s;seS) and b = A(s;seS)
in E(A) as discussed before and again we easily verify that
a,be C(G. Uilizing this stronger property we use the
phrase that <C(G;V,A> is a conplete sublattice of <E(A);YV,A>.

Sunm ng up:

Remark 3; C(G. =<C(G;V,A> is a conplete lattice and as such
a conplete sublattice of t (A = <E(A);V,A> for every relational

system G

Before we proceed we illustrate the concept with a few exanpl es:

(Ex, 8):
(1) Gven the relational system G = <A;F,R>, _then both

the identity-rel ation co(defined by a = b(o0) Cif and
only if a =Db) and the universal relation i (defined
by a =Db(i) for all a,b e A) are congruence-relations.
60 is the smallest, i the largest element of C(G).
Uni versal al gebras whose only congruences are o0) and i
are known as si nmpl e al gebras. -

(2) Let Q= <G;*,~l, 1> be a group and 0 e C(Q) . Then
a =b(9) inplies together withb" *=b"*Q that

1

a‘b~~ = 1(”), and vice versa. Hence, two elenments

a,b are congruent modulo 6 if and only if a*b~l:1(0).
In other words, to know O we only need to know [1]4.
So let abe [1]Q i.e. a=1(0), b =1(0), then,
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-1 -1

as we already know, a*b = 1(8), i.e. a’b €[1]6 which shows
t hat <[I1]O;*,~ ,1> is a subgroup of Q Morreover c e G
and a € [1]6 _inplies (since ¢ s c(0), a = 1(9) c"' s c~'(6))
that c-a-c"'=1 (6), i.e. c-a-c""t € [1]0. Thus, <[1]6; ¢, % 1>
I's a normal subgfoup of Q Vice versa, given an arbitrary normal
subgioup <N;e,~ , 1> of Q then a =Db(0) if and only if
a*b~ € N defines a congruence relation on Q, such that [I]0 =
N. Therefore normal subgroups take over the role of congruence
relations in the theory of groups and one di spenses with the con-
cept 'f congruence relation.'f
(3) Let f: G-»ft be a (weak, strong) hononorphismof relational
systerrs. Then KerT T (speak; kernel of f)' defined by at _:.ag
(ker f) if and only if f(a%b =f(%) ;-Sa congruence relation
of G :

(4 If G is arelational systemand a a_, b-,.,.b_ are

S LR ¢ 3 1’ n
el ements of A such that a, " b.1 then the set S = [Q Q0O
and a.l" b.l(_O)} Is not enpty since co € S. Since V(6;AET) =
U(O;0€T) e S is visibly true for every chain Tcgs zorn's
| emma assures the exi stence of a maxi mal el ement \b, ., N In S
i=l,7..n
0, . I's a maxi ml congruence relation of G such that
izl n |

a, f b.l modul o that relation.

(5 If G is a relational systemand ai,b.l, I e |, are elenents

of A then S = {0:06C(G), a, = bi(0),iel} is a non-enpty set
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since i eS Then 0, -u\ = AO;fieS is the uni que smal | est
(,ajAj)
congruence relation such that a.t ; b nodul o that congruence
rel ation.
We take up the last kind of congruence relations in (Ex.8)
in order to describe the lattice C(G) further.
Def—9. Gven is aconplete lattice «£ = <L;V,A>. An elenent
C €L is coppast—if C <£ V(s;s€S), S< L, always inplies the

existence of s.,,...s e S such that ¢ < s,Vs,V...Vs . The
1 n -N12 n

lattice £ 1is an algebraic lattice if every <t e L can be
witten as | = V<c;ceS) where all elenents of S are conpact.
Theorem2: C(C) is an algebraic lattice for every rel ational

system G  The conpact elenents are exactly the congruence relations
of the form O, ta s bM
|:1900.on
- Proof: To show that the congruence relations 65 - ¥ are
' (&, 3i;
: . i=l _,....n
conpact can be left as exercise. Since C(G is conplete by remark

3and 0 = V(O¢atey; a s b(0)) for all 9 e (G is atriviality,

all we,need to show is that every conpact congruence rel ation
is of the form 0, 4 T YL So let O be conpact in C(G)._
I A 3'|'"n
Since 0 = V(0, ., a s b(0 we conclude that 0=0, R\ A
Oty L)) (A )

e'(aﬂ,,grrg With A_A(OQ),..., an.bn(6). Hence, 8 = B(al’bl)

V...Ve(an‘bn) = g(a.,b y ¢ g.e.d.

i=f .. .n
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The converse of theorem2 is true as well. G QWatzer and E T.
Schmdt proved that every algebraic lattice is representable as
congruence lattice of some universal algebra. However, the present

proof is deep and involved and nust therefore be omtted.
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$3. El enentary Al gebrai ¢ Constructions,

In this section we introduce the main-operations on classes of

rel ati onal systens or al gebras yielding new such systens or

al gebras whi ch we need in the succeeding discussions. Due to the
fol kl ore-character of subject matter we will pursue a slightly

sketchy style.

(1) Let 'G = <A?F,R> be a relational system (again R = <f)
settles inplicitly the case of universal algebras) then ft =
<B;F,R> is a subéystem (in case of algebras, subalgebra) of G
if (i) Bc A (ii) all operations:in fc are just the restrictions
fromthe corresponding operations in G and ', (k-i >e ek ) €8

) P B 2 : g y .
for all f_ € F h.e B, (iii) RBR=R° 0B? for all R e R

¥ Yy ¥ | Y
| f j@’\CQ.A then the set 3 = {$;$ is a subsystemof G
and D £C) contai ns G and is therefore non-errpty'. 1t is then
quite clear that G Q=< [(;F R> is the unique smallest subsystem
of G containing C if [Q = n(D;«€3), fG(-C):fGI ny(= f

Y [c]

n n

» G(c G
restricted from AY to [c]Y)s R ( ')-tc]2 nRyZ W saythat

t4

C ggng_r_aj_eus_ G(C). This definition of a subsystem though
quite'adeq:uéte for many genéral pur poses, fails to suffice in

‘a ‘nunber of instances where we are concerned with specific

al gebraic structures. Thus, e.g., one mght I|ike to discuss
groups as algebras Q= <G > of type <2> satisfying the well -
known axi omsystem A 'requi ring, a.o., the existence of an

|#

elenent 1 e G such that g=090-1=9g holds for all g e G

Visibly then <Z*; > as a subalgebra of the group <Q@; <>
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(Z* = non-zero integers, Q@ = non-zero rational nunbers), but it
IS not a subgroup. To cope with such situations we agree on the
followng termnology: If, within K(r), we single out a cer-
tain class KA“g ~n)  °f relational systems via an axi om system

A, then we define a A-subsystemto be a subsystemwhich is also

an el ement of KaA_T) .

(2) Let Gl,i € 1, be relational systens of a fixed type r.

Then Tr(Gl;ieI)-: <7r(Al; lel) ;F, R is defined as follows: (i)The
el ements of i_r(Al;ieI) are all functions f : | -» U(A.l;iel)

satisfying f(i)eA ; (ii) $f h.l,.'.«,h eTr(Al;ieI) t hen
1

n

y _ .
fa(hg,.eo,hn) (i) =fh(i), ..., A (i)) defines the el enment
f : y f y .
fy(hj",...’Y) € 7r(A,i€l) for all fy e F (iii) Ii’(hl,.-.,hn?)
hol ds onlyif'Ry(h,l(i-),...,hn'y(i)) is true for all 1 e |I.
The new rel ational system 'I'I'(G.l;i=€|) is called the direct
(Cartesian) product of the systens G W will use the synony-

mous-notations h, (h(i))r, (&} for herr(A}iel) if a*=

h(i). h(i) :al. is called the i-th conponent of h, the

i®-th proj ection irt - 7r(A;i€I) e A is a weak epi norphisra

0] 0]
o 1

for all” i € 1. If G =G for all i el then we also wite

G for T7T(G;i€l) .

(3) 8 =<BF,R> is a subdirect pfoduct of the relational systens

1 1 1
G =<A;FR, iel,. if it is a subsystemof 7r(G;iel) such
1
that ir~"B) = AL for all  i-th projections. In case Gl =G
for all iel we always have-two trivial subdirect products,
I ' 4

namely G itself and the dragonal System A(G ) = <A F, R> with
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A:{(a.l)I; a, =a € Al which is isonorphic to G  There are
i nstances where these are the only ones: |If, e.g., 2 =<Q+%-,0>

is the ring of rational nunbers viewed as being of type <2,2,1, 0,

2 2
t hen we suggest the exercise to prove that indeed D and £9 )

are the only subdirect products of two copies of 2.

(4 If O 1is a congruence relation on G = <A F,R> then we
define the quotient-system G0 = <A/0;F,R> as foll ows: (i) A9 =
{[a]0; a € A c 2% (ii) f. ([a*©,..., [a 10) = [f (a...,a, R
for all fy€ F, a €A (iii) R(y[a"o, ..., [am]9) holds if and
LY

only if there exist b 1 .b e A such that b. =a._ (B) and

my 1 1
R (b-.,...,b )« It is an easy exercise to verify that both

operations and relations are well-defined and GQ is a rela-

tional systemof the type of G The so-called 'Y canonical pro-

~jection" Tlp : A-+ AJO mapping-a to [a]0 is an epinorphism
As we have seen before, every honmonorphism <p determines a con-
gruence rél ation ker (p, and every congruence relation 0 deter-
m nes .a honmonor phism ir”. As will be stated nore precisely in

t he next but one section, this correspondence is bijective, thus
enabling us to deal wi th hononorphic inmages of a relational

. system conmpletely within G itself.

(5 Qur last construction introduces the so-called direct

(or inductive) limt of relational systens. To do so, let
<l; <; > be a directed poset, i.e. a poset in which any two
el enents have sone upper bound, |et Gl: <A.iF, R>, i e l, be

rel ational systens and assune the <p.1..j DA - ,g\ to be weak
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homonor phisms for every pair i,j €1 with i <*j such that
<p.. = identity and <p ... . =<P- Then we define the equival ence
11 K 1] I K

relation j£E on UA*i e l) by a s aj(9'1) (ateAra A it
there exists sone ke |, k7 i,j, such that <A, (%) = <P(QY
‘(hence? <p.|:]éa.1) = s%( (g.) for all sufficiently large

The resulting set UA ; i€l)/~l of equival ence blocks is called
1 U

the direct limit of the directed system of sets (ALll,<p) and

denoted by LI (AN, I,<p) or, shortly, I'm A Finally, Iitmm(G~", I,<p)
< I'm A.;F,R> is defined as follows:

(1) If f_ € F, a.1€Ai_, j = 1, N, N, L

: . ¥ * n_’
J J y
then (U™%i ((a. 16.., [a . 16" =
aj Y i ‘
f (<p. .(@a. ),...., <p.~-f (a. )] ft makes, as one easily
y v*' o VY *n ¥
checks, f, an operation well-defined on IiUmA,; .
N ' . 1i mG
(ii) If RYy6R b, €A, j=1..., m, then R™
i 7 4
([b. JO' — [b. ]9Y) is defined to hold true if and only
11
\ G
if there exists m>_i., .. o i such that R"Tco. (b. ) .,
(p. (b. )) holds true,
m 'm
y y :

ITmG = Iim G, l,co) , thus defined, is the direct limt of the
direct systemof relational systems (G%1,<p). If we enlarge
| to | U{I*} where i < I* for every i e | ( in case |

has a maximal element m we agree on m= |*), denote ITm G I, 0)

by ©*— and define <P™M*. : A, - A by <PM"(a) = [ael,
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t hen (Gl,l U{l*},<p) is still a direct system and the follow ng

remark is evidently true:

Remark 4: 1im (G, %) = 1imG,1 U {I*},<0).

(Ex. 9) : Associate with G = <A?F,R> the set | = {B; «= <B;F, R>
is a finitely generated subsystemof G}. Then <I;C is a
directed poset and (£-,1,<p) is a direct systemof relational

systens if <£B = £ and <PT3¢~ B -« C is the enbedding-map for

Bcc. One can easily verify that Ii__.n(EB I, = G hence,

every relational systemis a direct limt of its finitely generated-:
subsyst ens.

Let us pursue the matter a little further. Many of the results

- are due to G Grgtzer, al t hough our approach is new at tines.

If (G,D<p) is a direct systemand $,1 ¢ D are directed

sub-posets of D, then (G,J<’?,<p), where the <p.1:i are confi ned

to ij_j e9, is adirect systemas well; a simlar remark hol ds
for 1. Again it is easy to verify the next remark if 9 is
bou'nded by | (i.e. for every j'e 2 there is some i € | with
j £

Remark_5: <P, +* lILm(A., 2<p) - I"m(A.,I,<p) defined by

. 1 . .
<pft_f't_.T". ({]a.]60 :[q. ]I9 wher e a1:A>ji(%')’ | € I_‘,2 Is a ;

weak homonorphismwith kernel 0 defined by [a.J]]6' P [a.JZ] 6
(mod®), 3+72€ 2)2+34A 3; if and only if <p. Jy.@a J) =

: I
Plys”(alz) for some i € 1. The image is ([a]¥l ; i e |, axr GAa

and thereissone j €# a. "€ A 19k"i,j with <p.,(a.) =<p..(a.)}"
J J K 1 11K ]
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Assum ng that, in addition, 9 1is cofinal with | (i.e. for
every i e | thereis sone j] € £ wth i £j) we conclude that
[a. ]OMt [a. ] 6MNi.e. <. .(a) "<p. .(a.) forall j e£,

3l "2 e °2' P P
.i npl i es <p/;I ;(1a.DI) ";pZ.J l.D(Za. ) for all i €1, i.e.

[a.D ] @ jfctla. t8 (0) (see last remark). Since inthis case, as
I 2
the last remark shows, (p® ~ is also an onto-nmapping, we have

t he next renark:

- Remar k 6; | (Gl,D<p) is a di réct systemand $1 ¢ D are
mutually cofinal we have the isomorphism <pg,, -": I"'m(G.»<p} —
lim(G",!, ") - —\e recall that Gf. stands for Iim(G,I,(p). It

is natural to call two direct systens (Gil,<p) and (B;<?,*/))

~equi val ent if G*;r N3** '" this respect the next result is of

sone interest. Before starting it we recall MNeille’s enbedding

theorem stating that every poset can be enbedded in a conplete
lattice such that |east upper bounds and greatest |ower bounds are

preserved.

Remark 7; Gven the direct system (Gl,l,<p) and the McNeill e-
enbedding of | in a conplete lattice <£ we get the directed

poset J. = | UIl Wi th Ii:{$*"‘.9 Is a directed subset of |

a'nd $* its least upper bound in £) and the (by now well -defined)

direct system (G,l,<p). (G,l,<p) and (G,l,cp) are equivalent.
1 1 1

The ' proof™ is rather obvious since | U {I*} (1"el& is a
cofinal sub-poset of ]:.. Thus, "'MG %l,<p) N Iim(GZ, I I*} ,0)
by remark 6, while Im(G 3, IV I*} <9 ~ MG, |l,<p) by remark 4.

Still, the remark contains immediately the following corollary
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on double-limts a special case of which (Cor. 2) is a theorem

due to G Gatzer*

Corol | ary J. Let <l; ™~ >be a directed poset with directed
subposets <l P; N> pe P If Iy = {Ip;p e Pl £ 1" (denota-
tions as in remark 7) is a directed subposet of T cofinal with

|, then IjUp(Iig(G,lI p<p), I 2, <p)%~|"rr(G15I"o) (where, as usual,
1im (Gl g<p) =G ).

P
- W& should point out that this double-limt-theoremhas been

established in a categorical context.

Corollary 2: If (Gl,l,<p) Is a direct systemand | = U(Ip;_p € P
where <l P? <l > are directed subposets of <I; <€ > <P; € > is
a directed poset and p. " p. inplies | £i 3 then (G ,pP,0")
1 A N N
1N 2 P
(with Gp: GI’\ and <p;,q:<pl"z* ) is a direct system such
. b . P dg
that |im (6”71, 0) -=|I_‘I‘Y(G%p,<p«).

A special instance of a direct Iimt (called ultra-product)
has obtai ned such outstanding a significance that we deci ded

to give it an extra section, §4.
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§4. Int'roductiOn_gﬁf_ reduced products; _ultra-products and set-
theoretical properties.

This presentation..d reduced products is based on a little

remark due to I... Fliei scher [1] connecting up direct limts and
uItra-producté. Assune we are given a non-enpty set |, a non-
enpty set D <= 2 closed under finité i ntersection not con-
‘taining fi and a relational-system G]_: <A.1;F,R> of sone
fixedtypé r for every i € 1. Then <D; <f£ > defined by
J<EK=: J3K is adirected poset which yields a direct system
(B, D <p) int'hefollovvingfashio.n: (i) 1f j e D, then 6 =
7r((§;j € Jy (ii) if IJr_<£ZJog t hen <FA, %2 is the projegtion
mapping f to the restriction f|J2. '
Bef—420; Using the notation just introduced, liwflft,D<p) is called
t..he-lhed-ueed-p-red-tret—-of the relational systens Gai i e |, nodulo
D and is denoted by TTHBGa; | =€ ). (Ve wll slightly.rmdif.y
“this after theorem 3) e |

If we take the abov'e _di rect system (fi. D<p) and enlarge D to
D" by adding to D every set [N e ZI cont ai ni.ng sone j' € D,
then we can defi.ne the direct system (J3,D.<p) in exactly the
sane fa‘shi on as we defi ned (8D<p) . Since D is visibly |
.cofi nal with Dy remark 6 of the last section proves the hext

remar K.

Renmar k 8; If the notations are as. above, then
TTo(GY i e 1) ~vy (G;i € 1).
: - 1
Thu‘s, to study reduced products nodulo D we can confine our

attention to such DE£ 2', DE£ <f> that (i) J""*¢P inplies




27
J,l fl J, e D (ii) J\_] e D and J2_3\1 implies J, € D. Such

sets Dc 2T are known as " dual ideals" or ' filtersMof I.

If we take the nere definition of 'I‘I'gG.l;i €1) as Ii_fr{l—bD,_<p)

we get the carrier-set U’——D where U = u(IT(A e J')-; JeD

2]
3 _
and the equival ence relation D is defined by f =59 if and only if

flv~- g\, for sone Ee D and Ec KHJ (we assune f e 7r(Ay] e J) ,
ge7r(,§;k'e K, J)JK€ D). Inparticular fixed sone E € D, we |

conclude that all elenents _If'e 7r(Al;i e l) witha fixed restric-

tion f]~ to 7r(Ari € E) are equival ent anong each ot her and
. _

£J

to fj~* Thus, every equivalence class in U has a repre'senta-
tive in ir(A;i el) and two elements fsg e Tr(A;i e I)_ are
equivalent. if and only if f|g = g|lg for some E € D The
set-theoretical structure of rrb(A;i e I) r.eflect.s t herefore
in 7r(A;i e I)/_:D, and we end up with a description of

7D (&;i €.1) onthe carrier-set 7F(JA;.'i e II)7E .instead_ of- U
provi.ded we can catch the effect of the operations and rel at_ions_'
on this sinplified carrier-set. This latter task i-s, of course,
a sinple one after the foregoing discussion, and we sumit -up 'i n
the foll owing theorem |
Theorem 3: If G, i e |, are relational systems of some fixed.

type T and D is a filter over I, then f =73g(D =s fI,_,i

gl”,. for sone E e D is an equivalence relation on 7r(A;i el).

£J 1

Moreover, B = <?r(A;i € 1)/p? F,R> is (UB }\o isorrRrphisn)A t he

rel ati onal system TR (G*i € 1) if (i) f‘:f(nl-,.,.,nn.y) =n s _
equilent to [|;.f7(h’\_,.".l,my) J(I) =h(i)), e D for all hae 7r(.A_;|eI)
and n; = (hj]D,  (ii) R(I”, ..., I~) ~holds if and only if '
fIsRON (i) *-..., hn(i)) holds true) e D '

y
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Def. 11: (i) If we use the notation ~(G ri ®*) then we wl
(extending def. 10) assune it has the representation specified in

theorem 3, unless stated differently.

(ii) S(h}shz) = (i?bl(i) = 'hy(i)) for \7, e A T LE
is called the common support of h" and haj
(iii) sy(hy,...-,hyp) =
_ _ oy

{|;Ry(hl(|)5...,hm7(|)) hol ds) is the support of j% wi th respect

to Imr. ,hmy.
W can intuitively say that a filter classifies the subsets of |
into two groups: " Iarge.onesll (those in D) and M small ones™
(those in [-D . W identify any two elenents in ?(Ai;i'e 1)
whose comon support is Mlarge, ™ thus creating the carrier-
set of I1b (Gi ;1 e l). The componentw se application of the funda-
ment al operations fy is replaced by conponentw se applicatfon
on a Mlarge' comon support, and the validity of a relation is
determined by the validity on a " |l arge" support. This construction
(and this is the governing idea which led to its success) w ||
enable us to prove statenents that are not necessarily valid for
al| al gebraic structures under discussion but for " nearly all!

M

of them " nearly all™ being a neasure to be specified from

case to case.
The construction obtains its najor significance in the case of an
“ultra-filter D." To establish the necessary tools, we depart

to (distributive) lattices.
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Def. 12: Let £ = <L?V,A> be a lattice. DcL is called a
dual ideal or filter if (l)ab€D inplies aAbe D (2) aeD
and cJ_>a inplies ¢ c D-(3) D L (Thus, in case L=2% v=uy
A = fl, we get the notions introduced above) . If D is afilter
“and D<_:DL. (9’ =filter) inplies D:IB,, then we call D an

ultra-filter. If D is afilter and a Ub e D i nplies always

a€D or b€D then D is called a prine filter.

(Ex._10) @ (i) If £<L;VA> is alattice and a € L then
[a) = {b;beL _and bJ>a} is.afilter, called the principal
filter generated by a.

(i) If £=<L?V,A> is a lattice and " Hc L, then
[ = {b; b €L and b’\h’\_A.’\Ahn for sone hl""hn€ H} |

is afilter, called the filter generated by H It is the smallest

filter containing H

The following is a very inportant and basic theoremdue to M Stone.

Theorem4; If £ =<L;Vv,A> is a distributive lattice (i.e. aV(bAc)
(aw) Alavc) and, consequently, aAb\/c) = (aPAb)V(aAc) for all
a,b,celL), then every filter | not containing an elenent a

is contained in an ultra-filter of £ not containing a, and.

all ultra-filters of £ are prine.

p'rlggf: Zorn's |ema vyi el ds i rmedi at el y an ultra-filter P con-
taining | and excluding a. Assune b,c fi P but bVc e p.
Then [IUb})-*a and [IUc)] 9a, i.e. (see exanple 10) a * ilAb

cand aJ>ijAc for some 1M+, e ?. Thus,
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a=aVar (i"Ab) V (iAc) = (ij"M]j) A (3™vc) A (bVi,) A (b)) £

This contradiction proves the theorent g. e. d.

Thus, in distributive lattices.all ultra-filters are prime. The
converse is not true as the sinple case of chains shows. However,
we get the equivalence if we progress to Bool ean al gebras. Before

showing it we derive a little prelimnary remark.

Remark 9; If B = <B?V,A/,0O 1> is a Boolean algebra, then
DCB is an ultra-filter (of course, in <B:V,A» if and only

if for-all a € B the relation a e D is equivalent to a [/ D.

proof; If D is anultra-filter and a,a®/ D, then a V a® =

1 € D yields a contradiction against the fact that ultra-filters
are prine in distributive lattices, hence Bool ean al gebras. |If

a,a’ e D then a Aa°> =0e D yields D= B, another contradiction.
Thus, a € D is equivalent to a°> / D

Vice versa, if D were not an ultra-filter, then D_QD,L wer e
true for sone ultra-filter D,J_- | a€Di\ D, then a° e D

by assunption? thus, a,a' €Dl inplies a A a* :OGO,L whi ch

i's inpossible. g. e. d.
Corollary: If a =<BV,A',0,1> is a Boolean algebra then

ultra-filters and prinefilters coincide.

proof; W know already that ultra-filters are prime filters.
Assunme, vice versa, that p is aprinme filter and a/ P; then
l1=aVa €P inpliesthat a e p. Simlarly, aep inplies
a [/ P. g e d
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Stone's theoremhas an inmediate, elenentary but useful inpli-
cati on whose statenent requires our recollection of the follow ng

concept:

Def. 13; Let A be a non-enpty set and S a subset of 2A

with the property that every finite intersection of elenents in

S is non-enpty. Then S is said to have the " finite inter-

section property."

A

Corollary 1: If A is a non-enpty set and S ¢ 2 has the finite

i ntersection property, then SE = {BBc A and B3 C for sone
finite intersection C of elements in S} is a filter

Together with Stones theoremwe get the next corollary:

" Corollary 2. If Sc¢ 2 has the finite intersection property,

then S is contained in an ultra-filter S of the Bool ean
m

al gebra <2%V, A ',0, 1>,

As remarked before, the reduced products obtain particular
significance if the filters involved are ultra-filters. In
this case, our intuitive description via Ml arge™ and smal | 11

sets gets also a much nore precise formas expressed in the next
remarKk.

Renark-lo: If | is a non-enpty set thenthere is a 1-1 correspondence
between the set M of all {0,1}- valued, finitely-additive

measures on | and the ultra-filters over |

proof: 1f Dc 2% is anultra-filter, then Uy 2t - {0, 1},
defined by jjugy) =3 jI I~ £, isanelement of M
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If \L € M then [a ={y;y e 2 and julyy =1} is an ultra-

filter over 1. Mreover: D =D and ~ =\i for all ultra-
filters D and all elenents JB in M Thgtdefails are left

as exercise. ¢g. e. d.

Def. 14: If Dc 2' is an'ultra-filter over |, then ~(G"i e I)
is called an ultra-product. If all G~ =G wewite Ty(§ 2 € 1) =

Gg and call the resulting relational systeman ultra-power.
The remaining results in this section can be found in Kochen's

~ paper on ultra-products [1].

Theorem 5: Every relational system G can be enbedded in every

':of its ultra-powers. More precisely: If G the set |  and
~the ultra-filter D over | are given, then
f = 4 . G ——> gl ,
1= Ja,p,1 D
defined by j(a) = (a)Ig i's a nononor phi sm

QLQQL; If a=b then, clearly, j(a) = j(b); so the mappi ng
iswell-defined. If a”~b then S(j(a),j (b)) =(f>jLD i.e.
j(a) / j(b); sothe mapping is 1-1. The honnnnrphisn}properties
are verified in a simlar faéhion. g. e. d.

W can use this theoremto find a first instance in which our

new.construction yields no new result.

CdrOIIary: If G is afinite relational systen1(i.e.'o<|A]<H°)

t hen Gg~“ G ,holds for every non-enpty | and ultra-filter D

over l.
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proof: If £ € A, A= {a”...,a,) and A = {i;f(i) = a ]}
N 8 0

for every io- I|,....n, then | = AU ..UA,; thus, since D

is prime and | € D A, eD for some 1 < io§£ n. W concl ude

0
t hat
S(f, (a. )I) =A eD i.e. £=(a, )- =Jo- -(a ).

X0 10 | 10x UADA  Xg

Hence, |, - _ (as introduced in theoremb5) is onto and there-

u, D, 1
fore an isonorphism g. e. d.

The following remarks are results in the sane direction -

showing the limts of the ultraproduct-construction.

Remark 11: If D 1is a'princi pal ultra-filter over | then
T(G;i e l) ~ G for some i el.
S | = i o

proef:. Since, as one easily verifies, the principal ultra-

filters over | are exactly the filters [i) wth i e I, we
A A
conclude that D = [io) for sone ioel. Thus r =g is

equi v_al ent to f(i  =g(i p, and cpz ITD(Axi e l) -» A1
A 0
mapping f to f(i 9 is an isonorphism gq. e. d.

Corollary 1: Gg;(l for every principal ultra-filter over |I.

Corollary 2: If 1 is a finite non-enpty set and D an ultra-
filter then 7fD(Gl;i €1) MG for some io.

' 0
proof: If | is finite, then every ultra-filter is principal,

g. e. d.
The next remark (whose proof is essentially due to Halnos)is
a cardinal nunber-theoretical- counterpart to the corollary to

thebre_m 5.
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Remark 12: If | ={1,2,3, ..,n,....} isthe set of natural

nunbers and Gn a finite relational systemof fixed type r

for 6very n such that the set {n;|Ag £n is finite for

every natural ‘nunber m then |’™AAT n € 1) | :f‘>,1 for every
'non'-principal ultra-filter D over |I.

proof: Cearly [7rg(Apn € 1) | £ |7r(Ayn € 1| R =§.

Thus, we are done if we can construct an injection (pz {0, 1} ag"TTD(Ah;nel)
where {0, 1}09’ is the set of all countable {0,1}- valued sequences

s (or eqU| vaI ently, {0, 1}0%

consists of all functions s: 1-*{0,1})
whi ch, of course, has card| nality 2‘f° -"l - |

- Due to our assunptlons can we assune t hat [A-] <£ |A2| \ .. £ |AJ-; <DL
“and lim- |Arl -(‘*’ . Thus, if g(n) is the unique naturél nunber
.sat|s?;|ng g(n) =1 incase [A] =1 and 2°(") £ |.Al_1 < 29(m)
incase |A) "> 2, "we conclude that (i) g(n) s increasing and

limg(n) = cQ and (ii) there exists an(i{ljection Fn:{O,I}g(“)-o An
n” co '

for°every natural number n (if {0, 1}9" is the set of all .

functions from {1,2,...,9(n)} to {O0l}). Let 'us agree to denote
n .
(%, 1 fRe TS “'“é"” °f|swe‘?|{8e% ned'By Eisy(m"LE Qe oy
N g' /\/

and we claimthat <p =TT+ F: {0,1} ° -e "'(A.lri e 1) defined by

<p(s) = F(s) is an injecti on.' To see this, let s ™t, st € {01}
i . n n .

Then, for large enough. n, s ~t ? hence, for large enough n )

(say, for all n > Ng), Sq(m Y tgcn)y. Consequently -Py(agn)) ™ Pa(tgw

. holds for all n”ng i.e.  S(F(s) ,F('t):) c—{l,...,nc-’l)._ Since

D is a non-principal ultra-filter, it cannot contain finite sets;

thus, 'S(F(s),F(t)) ft D, i.e. F(s) ™ F(t) or <p(s) / <p(t) . q. e. d.-_
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$5. The Hononor phism - Theorem and the |sonorphism - Theorens.

The following is a fundamental theorem whi ch ties up congruences

and hormfmrphi sms in universal algebras.
Theor em 6 ( Homonor phi sm Theoren) : -

Let G B be algebras of type r and <. G -* (B ~a honmonorphism
then there exists a unique nononorphism 0: G ker <p -> B such that

the diagram
d —f— ®
. .” .
T Y
h'. ’
1 Cl/‘tnlf
is comutative. In particular: <p(Q = G kenp.

proof: O course, we have to define O([a}ker <p) = <p(a) . Si nce

a = b(ker <p) is equivalent to <p(a) = (p(h), the mapping 0 is

~wel |l -defined and 1-1+ The hormrmrphism property is easily verified,,
.q. e. d |

Corollary: Every homonorphismis a product of first an epinorphism
and then a monoraor phi sm

‘The hormrmrphismtheorem occurs in an overwhel ni ng nunber of
situations; in particular, it is underlying the succeeding
i somor phi smtheorens sonetimes referred to as " Lasker - Noet her
i sonor phi smtheorems. " W choose a subal gebra 1B = <B;F> of
Gac<AF, a congruence' relation 9. on G and the closure [B]O
of B mdulo O in A (see diagram. The dotted lines in the
diagramindicate 8. Evidently there is a

1-1 correspondenc'e bet ween the bl ocks of 0o
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(the restriction of 8 to B) and OrlBijQ* '™ whole and only
content of the so-called first isonorphismtheoremis the fact
that that 1-1 correspondence.constitutes indeed an isonorphism

of the relevant al gebras.
Theorem 7 (1st isonorphismtheorem:

If‘ IB = <B;F> is a subal gebra of G = <A)F> and 9 1is a con-
gruence rél ation of G then [B]9 = <[B]6?F> is a subal gebra of

G and [B] O/ Pgjo £ B/ Og. |

proof: - The fact that [B]O. is closed under the operations of F

is easily verified;, so [fo]9 is a subalgebra. | If <o B-» [B]O/O[B]9
is defined by <p(b) = [k]G:_BijQ * then it is trivially an epi nor -
phism What ab.out ker 2 b..J_S bz(_ker <p) _is equi valent to -

(pibr = <p(by), i.e.. to b, s bp(°[B]0O)® Hhenceto bj sby(Op)#
Thus, ker <p = 0., and the hononor phi smt heor em shows t hat
'[B]O/G[B]B ~ 8/93- g e. d.

Qorollary: If M=<He, "1 1> is a subgroup and h=<No, "t 1>
is a nor nal subgroup of the group Q = <G*,~1,1>, t hen

AN/ N -, "1, A S <H HIN?-, " 15| >,

Simlarly sinple is the second i sonorphismtheorem  To prepare

it we again set but with a uni versal algebra G = <A/ F>,  but

chobse two congruence rel étions 9,$e C(G. dearly, _irau.: A9 -« A/B
rrappi'r_\g [a]0 to [dd> 1is an epinorphismprovided it is well-
defined. To be well-defined,' [a] 6 = [b]O0 rust inply that

[a]$ = [b]$, i.e. 9£ & is a necessary and sufficient condition.
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Remark 13: If G is a universal algebra and 9,$ e C(G), then
TTost © A9 - A/$, defined by WQ,(t?19) = [a]$, is an epi-
- ¥ - 9 -

morphismif and only if 9 £.8.

Def. 15: The kernel of Tar> in remark 13 is denoted by

$/9 and is a congruence relation on Gfi.

Remark 14: If 9 ¢ & are congruence relations on G then

[a] 9 s [b]O ($/9) holds if and only if a = b(®#).

The last remark is, of course, an immediate corollary to the
definition of $/9. The so-called second isonorphismtheoremis
now not nore than a re-statenment of the hononorphi smtheorem for

t he speci al epinorphism 7TQ .
-

Theorem8 (2nd i sonorphi smtheorem.

If 9,$ are congruence relations on the algebra G and 9 £ $,
then G$~G9A 9- .

Corollary: |If Jtl. :<N::?*’ , 1> 1 =1,2, are normal subgroups
of Q=<G -, ~1, 1> and N, ¢ N,, then <G Ng; -, "l, 1> ~

<G/N1/N2/N17 *s .-1, 1>.

To realize the sinple content of the second isonorphismtheorem
we visualize it via diagrans: 9 is represented by the dotted, &

by the solxd |ines.

Thus, vaguely speaking, the

2nd i sonor phi sm t heorem st ates
that it does not matter whet her
we pass from G to G *

i mredi ately, or whether we pass
to it via any algebra G9 wth

9 £~
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Thus, if we go down to the bare essentials, theorem8 conveys the

"surprising” information that, if G¢£0,<f <+ <1 ft are

congruence relations on G then, in
e m A 'B,6 TN
' Y G E]
G-'Gl0,-"26/8, =23, ..., n4" /8
b -
al
Ta
n
the mappings Th and T T R T
bPIngs % Bo100n 0 MO0 200y 61,8% €,

.n
are equal. '
Bef ore we proceed we ought to nention the following little result

showi ng the r6le of the congruence relations 0/0

‘Remark 15: If 0 is a congruence relation on G then _/*o;' [0) =

{$;* € (G and $" 0) - > C(G/0), defined by IQ(* = */0
is a lattice-isomorphism /4:<[0);V,A> - <C(d9);V, A>.

pbroof: W leave the verification that /9 is a hormrmr'phisr'n as
exercise. - To see that /0 is ontow select $e C(GE0) and

conbine the two canonical projections IT' G->GQ and TT.: G/B—'G/F%b
to 7r,li\«”l?‘,2 A G/‘y/$* an epi nor phi smwi th kernel, say, $f
Since ker(7T. o TT’\)’ is evidently larger or equal to ker IT* = 0,
we conclude that *~> A i.e. & € [0). Mreover we have the

foll owi ng commutative diagram

g —e— afe —"-" alel$

'n" ——
T’;’ ' 69 isomev phism

a/e




39

The isonorphism 0 (assured by the hononorphi smtheorenm) nmaps

o]
®e = K& thus, /HZ—*):* which establishes the onto-part. /¢, is

[a]l® to [[dG]<fc. Hence, ker(7Tn ")= ker(0o7Tp ~) = ker irz i.e.

>
1-1, for ~A~2 € A and «3 A A2 implies, say, ~V $; [/ &;
i.e. ker(7ro™ )N kerffj.al. Thus, ™V <8 = /e V "/p'>/
1 2 ’ '
*4/0.  In particular, 3M0 ~ A2/70F q# en d¥

Corollary;, If Q= <C—:q-,~l, 1> is a group with normal subgroup

T = <|\I;*,"':L , 1> then there is a lattice-isonorphismfrcmthe lattice
of all normal subgroups of G containing .N to the lattice of

all normal subgroups of G N

Slightly nore conpl ex, though equally elenentary, the final iso-
rrbrphismiheorem is alternately referred to as 3rd isonorphism

t heorem respectively Zassenhaus' |lema. |In case of groups, the
result is due to Zassenhaus; its fornulation for universal al gebras
seems part of the '' folklore' on the subject matter (see Cohn [1],
Gr‘atzer.[l],. Wler [1]). To state it we need to consider one nore

congruence-rel ation.

Def. 16: If B is a subset of the non-enpty set A and p, (T are
binary relations on A/ B, resp., i.e. p e Rz_(A), ae RZ_(B),

then poOGoo € R;(A) is defined by (a,b) € poGp =: (a,c) e p,
(c,d) e a (d,b) e p for sone c,d e B (thus, conpafedvvith | 2,
the applicability of o has been slightly wi dened).

Remark 16: If- IB is a subalgebra of G ae C(8), 9 e C(G and

#p-—<L $, then ~rgiQ ~°or[B1A 'S&congrmuence ralatjon on [B1A.
L 1 o a - g .
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proof: Reflexivity and symretry are imediately clear. So let

uUs assume a ’:'b(-"[Bi-‘e ° % oO[ B]_OA and b SC,\-t B] Q° *° BIB]B)’

i.e. aec,*dOb and bOcp<fd0c with ab,ce [B O C,nd € B.
In particular, clhtﬁq-ObOCQ*dz, i.e. cl*ckIDCthg; since $J> OB,
we conclude that c-, = do($). Thus, aOc.$d,Ac shows a =c

(Mr«i A’ $ofl, - ..)re transitivity is established. To check the.

substitution property, let a s ®i(°[B]0° *°°[B]Oo~ ' A ' A "y

i.e. a0ci#di0Ob;, 1+ i" n, with anb e [B]9, inr% € B%  Then,
" since B is a subalgebra, f (c-,...c ) € B and f (d.,...,d ) € B
. y L ny y | ny
holds for all fwve F;, so f {a.p...,an)Of %C1...,cn)*f ed. L. . .dn)
' ' y Yy v Y
Ofy( b15' .. bn ) ShOVVS that fy(ar. - a.n ) A fy( br. P bn ) (O[B]DO»O»[B]O) -
_ _ Y Y Y -
q. e. d.
Appendix to remark 16: It is helpful to realize that the congruence-

bl ocks of A[I?EA° *°Anfﬁ_p &€ obtained by fixing some $-block

and adjoining all intersecting O-blocks. Thus there is a natural

1-1 correspondence between the *-blocks and ’WLE[IOAdCXBEAf

blocké, a correspondence of the type that led to the first ;sonnr-

phi smtheorem (see di agram.

The solid lines represent ft, the
dotted lines $. |If we squibble

the_ CHBJHC)$ OQ[BIA—bIocks, t hen t he
1-1 correspondence is quite clearly

reflected: Every *-block determ nes

uni quel y a squi bbl ed bl ock. So one

is kind of forced to wite down the next remark.
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Bemark 17: If 8 is a subalgebra of G $ a congruence relation

of H B a congruence relation of G such that 0r<£ $, then

(819/0yg1q° %o 81519 = B/ #

_QI’OOf.Z We define <p: B - [Ble/Oigje« *°°[Ble ™ o(b) =

[b]9r«iA° $€6,nif1; <P
- 1B3  ft IBJU
The hononor phi smtheoremthen settles the matter, q. e. d.

is quite clearly an epimorphism with kernel &.

Remark 17 is really the neat of the 3rd isonorphi smtheorem

which foll ows next.

Theorem 9 (3rd isom)rphismtheorem'or Zassenhaus® lemm): Let $
-and 6 be subalgebras of G such that DAE / (f>. Then fl.fl6 =

<DHE;F> is a subalgebra of G. If 0 € C(fi), $ € C(6) and

b = anE V % oNg: € c(xne)

[Anel6/6

® . then eDnE/\ o' *DnE/\ ° and
iorE}e®® ® Orpneya & BNE/b & [9NR1Y/® o ne b o qng

proof :. By'remark 17~ fiHt/0 is isonorphic to each of the other
two al gebras. gq. e. d.

An imediate corollary, sonetines called " Zassenhaus® |emm'f

itself, is the following:

Coroll'ary 1 Let $ and 6 be subalgebras of G with HID/ <f).

If Qfine) is comutative (i.e. £<>X= X of for all E Xe c(&n€)) |
and 0 € C(«),# € C(C), then,
[8nel16/86

ore16 ° FonE® [Dngje = [m‘?‘m/"[nnE]«b °9ne’ 3oner o
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M Since * = 9" V *pgi = G™0O *prie (due to the
comma@tativity of  C(flDe); see 82, following def. 4) we conclude
that  erpnejo« *pre<» 9(onejo = *ione;e°°*DNE® *DDE° #[pngye =
“ionE1e ® ¥ °Prpnmyee  Similarly, - Ao fone * PpnE1e T
Srpngje” N DriEl<l> o S0 the jSOLHORUASIL follows from theorem

17. q. e. cL

Corol lary 2 (Zassenhaus' lemma for groups):

Let Q be a -group with subgroups ", and Jtp such that h., is

-1
* _sl> el

a nornal subgroup of IiL-j\Ai is? normal subgroup of M. Then

-1 '

1l

<N2°.(H20H1)/N2' (HlnHZ) F%s :1>-
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| 6«  The Jor dan- Hol der - Schr ei er - Theory.

The task to deconpose al gebras of all kinds into sinpler com
ponents (be it via normal chains, direct sums, subdirect suns...)
I's one that keeps coming up in all branches of mathematics. So
we shall engage in a discussion of at |east sone of the nost

i nportant results known on the subject matter in this and the

next section.

Def» 17; If ft is a subalgebra of an algebra G then (GdG.L’
Gp¥ Qi0i,...,Q ) i°**normal chain from f{ to G _rmpdul o 6.
i f '
(i) all G are subalgebras of G
(i) . 0, is a congruence. relation on C—l1 such t hat [Al_,l}o.1 =
— f o
A _; = [a_nGQL "or every | —.I,...n and a. -,eA ..

The al gebras G,/ 0, constitute the so-called factors of the normal

chai n.

If Tj = (e=Go, Guy. .4, G=G 0o, ...,00) and T,= (G=Bq, . . . , ft 7B?* -...Qm)
are normal chains wwth 0 = ¢b, then T- + T, denotes the nor-

_ n 0 1 2

mal chain (ftG,0 .., G38 .8, 3 .. KN EBYQ N oo A TH AT xR e
Def>18; If CG(£=G .., G,G+1, . ..,G=G?0q, . . ., €:, 0j41, .. .C)
is a normal chain from 6 to G and C . - = (G.=G. ,G..,.».,
: 1,1+1 X X0 XX
Gij"""_aim = G.i_l_l?ei__: eio flir ""eij_"--'eijo) is a normal
chgln from GX to G.X_'_1 such that (i) [A.X]lﬁ_ wi1= A Xy

(ii) %41/ %E) <, e foral j =0 __m1 (C ;.1 is then
called a strongly normal chain with respect to A‘:.-FJ? , then R=
-(ezao’""Gi::aio’ail"”’ﬁim=Gi+1’ai+2"'f’an=ﬁ':eo’ ..... Bn) is




44
called a refinenent of the chain Cland is, of course, again a

normal chain).

Def. 19: The normal chains (S =G, ###' G =C?a A##xn A and

(C:B,81,...,(I§H=G *o,....’;u) are_isqonorphic if n=m and

there is a permutation ir of {l,...n} such that G.J_/&.1

"r(i)/"w(i) .

The three definitions just given contain the basic concepts
underlying the so-called Jordan-Hdl der-Schreier theorems. It is
a useful exercise torewite themin the |anguage of, e.g., groups.
Ve shoul d point out that 6, / A-+ '"“"- ' unless we have

im
thetrivial " refinement” (G,,Q. 11?0+, 8¢2, *) « The next renark

contains sone infornmati on on refinenents.

Remark 18; (1) If T=(C=Gy...G=G 9 ... 9,) 1is astrongly
normal chain from & to G with respect to 0 e (G (see def. 18),
then T. = (£/0g=Gg/0a,**-, %/ 0n =G/bs 0 /%y ,.e.,0 /Y)

n [}

(o]
is a normal chain from £/$, to G/.

« hi

(2) Vice versa: |If i'/) is a congruence relation on G and

o 1 n o L n _ _
T=(8 ,B,...,P =@F0; 6,0,,...,0) 1is anornal chain from
Boto GO then T, =(mallfigam glejn. . nog(B)=
G;v,N, .. .™H) isastrongly normal chain from 6 to G

if (1) TTAW = <7rAY(B);F>,
(2 "-Oi_ is the kernel of <. Ilwll(Bi) -+ (B./" mapping b to

[[bIpie,

Mor eover: TJ-__Z =T and T = Tgl holds for all chains T.
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Corollary: If 6 1is a subalgebra of G and 0O a congruence
relation of G then there is a one-to-one correspondence between
the normal chains from & Og "to GO0 and the strongly nornal

chains from t to G (with respect to 0) .

Note; Would we (what we don't) assume the el enents of category
theory, then we could sinply say that the 1-1 correspondence

is achieved by the pull-back with respect to O.

proof of remark 18:

(1) Since G./~. =Tr.(G), it is, of course, clear that
X A 1 Ij<). X
&/¢E EGl/AJAl C ... cG6/~). Furthernore, if a':.—i€ Ay 1-&
[ai 1} e A _ .\ then [ta; _ ] = [bl18 /0
DAL S A -IAAL 1AL VA hi0

for b € A /0. (i.e. b=1[b.]$x for sone b. e A) is equiva-
. i . 1
lent to a:. J™ s bi(0;), i.e. b e’

Hence, [[a”] "~ 9./~ = [ AAA AT ON = A0
- 1

This establishes part (1). Part (2) is established in a simlar

fashi on. g e d

W can now prove what is nost commonly known as '" Schreier's
Refi nement Theorent! , although in some cases (for obvious reasons)

Zassenhaus* nane is attached to it.

Theorem 10 (Schreier’s Refinenent Theorem;
Let G be an algebra such that Qfc) is comutative (with res-
pect to o) 'for every subal gebra (J  Then any two normal chains

from & to G have isonorphic refinenents.
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proof: Let (1) = (8=G_"G"...,G=G 9,91, ...,B) and
(2) = (6B Sﬂfl.. "Bm=0=¢b""’¢h)

be the two normal chairs in question. Then we consider the chain

di) = G;=18;,,MRg]8; 1 [Gi+1nﬁ.1]91+1’ o [@i+1nBj] 011, .. [GanBo] e

Si+i 7 141° P9 Opanscres0i41 B3 Oypnsene 8y 80 8440)

- N . o
wher e ei+1o quoei+1 = A3.5.D is an abbreviation for the nore

preci se notation

0. L] o B, .
i+l | 5] Ay By i1 [A;,1MB310, )

Since both the carriers of the algebras [G.  -0B.]©O and the
1+l 3 14l
bl ocks of the correspondi ng congruences /-\Y.l 3 are (by definition)

L

uni ons of O.1+l.-bl ocks, we knowthat (li) is a strongly normal

chain from Gl to Gl_u once we knowthat it is a normal chain.
To showthe latter point we nerely need to show t hat [a]/'1'3+1 =
L)

[AHJ-_.fI%. 101_“, for all a e A1+i'ﬂjB' But this is |rme_d| ately seen-

(see diagram:

Aiﬂ E
3,

Y

Bj (= ene block reolulo 3. )

A"'_.,,.ﬂ B

3
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(2l oy = [o% € [A;,MB 110, and By, B, db,,, x
for some c,de A 1-131' BJJ_},
whi | e

[Ai+1ﬂBj]Bi+1 = [X?X € Ai+1 and fOi +] X for some f € Ai+1ﬂBj]‘

[A:.+j.nBj] Oi+i £ [a]jg_;j .+1 Is inmmedi ately seen since fei+1x

and f e Ai:iq I—B.J. inmplies a0i+1a*j+1f €:+41 X.

Vi ce versa: a0i+1c*].+1d9i+1x and c,deAi+1nBj+1 I nplies

a *j_+| R N dejf| X With C e A L1 Bj .1 (sincCe Qi+10 Qj-i-l =
- . - * . i

°j+1° 61-1-1. on A.+,_l PI B:'l+J- ) . But then c* € A+ DE:;].# (since

BJ i s one bl ock nodul o *-J:T_IL) an(a can*+i* Proves that

; . h
x € [.A“l n Bj]0i+1/ i.e [a]/"’ 1€ [A+ OBj]Bi_H_.

5y

Ve récapitul ate: (li) 1is a strongly normal chain for every

i =0,... n- 1, which, if insertedinto chain (1), yields a
refinement. |In short (see def. 17):
(A = (100 + (1) + . + (I,n-1) is arefinenent of (1).

Simlarly one can show t hat

(B =(20) -f (21) + . = . + (2,ml) is arefinement of (2) if
(2j) = -(B';j :[GJI 'aj+1]q’j+1’ [Glmj+1]¢j+l"""[Gnnﬁj+l]q,j+1 = Bj+1:
Q.j+1° 900 q’j+1""""¢j+l° a_° a’j-l-l)'

Bbth chains (A and (B) have equal length n*m Moreover, a
typical algebra in (A is of the form [G.lmjloi and carries the

congruence rel ation 0.° $._Jf’ 0.1; also, a typical algebra in (B
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is of the form [Gﬂﬁl%]&% and carries the congruence relation
4% ° 9.° ?.. By Zassenhaus* lemra <in the formof corollary 1
to theorem9) , we know t hat

[ainaj]ei/eia ] |
i. e (A =-(B . g e d.
If a normal chain has a trivial factor G/0.. (i.e. G_ - =
1 1 1-1
Gi and 01 = 1) then, of course, every isonorphic normal chain

has such a trivial factor. Thus, if we drop all trivial factors
(whose presence or non-presence is totally up to the whimof the
person using then) isonorphic chains will be transforned into

I sonor phi ¢ chai ns,

Def. 20; A normal chain wthout trivial factors which permts
no proper refinement without trivial factors is called a com

posi tion seri es.

Corollary 1 (Jordan-kﬁlder-TheOren):

If G is an algebra all of whose subal gebras have a commutative
congruence lattice then any two conposition series from t to

G are isonorphice

Corollary 2; If G is as above and there exists a conposition

series fromt to G then every nornmal chain from t to G
can be refined to a conposition series.

In case we deal with a group Q= <G*,~1, 1> instead of an
arbitrary afgebra G we realize that all subal gebras (= subgroups)

have a comutati ve congruence |attice, since congruence relations
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are represented by normal subgroups and the conposition of con-
gruence rel ations corresponds to the usual nultiplication of

nor mal subgroups which is indeed comutative. Thus, we have the
assunptions crucial for t'he Jor dan- I—bI der - Schrei er-Theory. More-
over, a norrmal chain fromthe subgroup 6 to Q is nowsinply

a sub-group chain

8=qo_c-ql£-.00...l--sqn=q
where @Q is normal in Ql+1 (and determ nes the congruence-
rel ati on whi ch we used to denote by A-_,Liu *:" the general theory).

V¢ have the followi ng sinple special case:

Corollary 3:

Ife:Qo£Q<£...£Qn:Qandt:MQ__CAC_--. C_«m_:Q

are normal chains fromthe group t to the group Q then

there are refinenents RJ_ and R, of the two chains, say

H = e‘:Q\E E<L:Qand

JL 0o S

R2% ¢ =*on AME = A

such that s=t and Q/G . ~M v/[H/ -x -, for a suitable
1 1-1 = ‘7F. 1) mwjip-L

pernutationir.

Corollary 4; |If there exists a conposition series from t to

Q then every normal chain fromthe group t to the group Q
can'be refined to a conposition series. Mreover: Any two
composi tion-series are i sonor phi c.

To conclude the section let us point our attention to the

out standi ng i nportance of groups with conposition-series fromthe.




trivial subgroup'to t he whol e group. If the

chain are Abelian, the groups are known as '

and play the known core r8le in the classica

factors of that
sol vabl e groups*?

Gal oi s-t heory.

50
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kl . Bi rkho'ffls Subdi rect Decorrbosi tion Theorens-

F

A property of an algebra G is called a Mresidual property"
if it is true for G provided it is true for a famly {GO0" i € 1}
wher e 0'1 are congruence rel ations on G and 0(6™; 1 e l) = @
The study of residual properties of an al gebra G is cl osely
related to the deconposability of G into subdi rect products as
was shown by G Birkhoff. So assume that Gc 7r(G;i € 1) is a
subdi rect product of the algebras G'i € |I. Then the i-th projection
' 7'I; A->,g§ I's an epi norphi smw th kernel, say, ft.lo Mor eover :
i f f,g'eA then f s g(n(9;;i € 1)) 1is equivalent to ir”~f) :Tri(g)
_for all i €1, i.e. to f =g9; thus, 0(9%i e l) =to Since,

by the hononor phismtheorem G G/9.l we can say that "‘an

=
arbitrary subdirect representation of G determnes a famly 0.1
of congruences on G such that O(O.ii e |) = co and the conponents
are (up to isonorphism the al gebras G/O.l. The converse is true

as well as is summed up in the next theorem

Theorem 11; |If Gg?r(Gl;i € 1) 1is a subdirect product of the al ge-

bras G_,i€ 1, then n(ker7T_;i€ 1) = co and G, ~C/ ker7T...

T ’ JL. Lo JL
Vice versa: If {0x?i € 1} is an arbitrary fanmly of congruence
relations on G such that n(f>%i € |) = oo then G is iso-

norphic to a subdirect product of the algebras G 01 via the

i sonor phism <p(a) = ([a]0.y I,

proof: The first half of the theroemwas established before the
theorem the second half is (since <p is given) a sinple matter

of verification. g. e. d.
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Due to this internal characterization of subdirect representations
of al gebras, we can in the future assune that all subdirect

representations are given in the manner just considered.

Def. 21: G=7T (0/Q. ;i € 1) expresses the fact that the al gebra
G is expressed as subdirect product of the factor al gebras G/ei
in the sense of theorem 11. A set of congruence relations {¢é7;ieI}

on G is a separating set if O(6.ii €1) =

The task of giving an external, nore constructive characterization
of subdirect products was taken up by Fuchsfl], Fleischer[2] and
Wenzel [I] wusing an idea of Wedderburn. Since this construction
meets harsh limts in case of nore than two factors, we will not
engage in its discussion.

Thus, to find subdirect representations of universal algebras
G we need only to look for separating sets of congruence relations
on G Ve can, of course, always waste our tine by including 60
into the set of congruence relations, thus obtaining on the one
hand a separating set of congruence relations, on the other hand
a worthl ess deconposition of G... since one of the conponents
is QGco=- G If this should be the only way to obtain a separa-
ting set, then with good right we consider the algebra as ™ sub-

directly irreducible."

Def. 22: The algebra G is subdfrectLy irreducible if every

separating set of congruence relations on G contains ¢

W get inmmediately the follow ng remark.
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Remark 19: The algebra G is subdirectly irreducible if and
only if G = 11_ or the congruence-lattice'of G is atomc with

exactly one atom

Note: We recall that the element 6 of a latticewth 0 1is an

atomif 6 >0 and the only elenent | of the lattice satis-
fying | <6 is | =0. The lattice is atomc if for every
element | / O there exists an atom 6(1) such that 6(1) <E I.

proof: If G is subdirectly irreducible and |A]l > 1 then
C(G has at least one nore elenent than co so qQ\{oo} is

non-enpty and 0(0; BeC(GQ\{ o)) t 60 Cearly, 6 =fl(fl;0eqQ\{ co})

is an atomand every 0 e QQ\{co} satisfies 0"6. Vice versa:
If G = 1T then G is, of course, subdirectly irreducible. |If
G"™ 1y but C(GQ is atomc with a single atom 6, then |
0(0;0 € Q\{co}) =6 >00 i.e. every separating famly of
congruence relations on G nust contain @ In other words: G
is subdirectly irreducible. g. e. d.

We are now able to state and prove the follow ng fundanent al

and useful theoremwhich is also due to G Birkhoff.

Theorem 12: If G is a universal algebra then G is isonorphic

to a subdirect product of subdirectly irreducible uni versal

al gebr as.
Qrobf: We can assune that G " 1 . In exanple 8, £2, didwe
: T
i ntroduce the congruence relations * - for a,b € A a £ b. | f

a, b
p=_”($aj3?a’\b,a,b€A), then x s y(p) 1is equivalent to
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either x=y or x=y(0, ). The latter being inpossible,
X,y

we conclude that p =00 i.e. {0i%ea”™b, ab€ A is a

separatl ng. famly of con ruence relations on G By theorem
11, G= |fS(G/Q s ca a,be A . Sow are done if we can

show t hat G’Io-a'JD is always subdirectly irreducible, i.e. that

(G 0,,) is always atomc with a unique atom 6. By remark 15
(85) we only have to showthat [0.,.) is atomic with a unique
atom But this is clear since Ge [00, ) and A" j)- - inplies
0 ,>,\ig’6 Y gd « Thus, 6":a,OD' V‘,Q?\']SD is the uni(iqLu’eJDatom of
[Qa,'ﬁ which is <0 for every 0>O-a,'D° g. e. d.

The proof establishes a fact which is worth noticing of its own:

Remark 20: If G/ 11_ then G is subdirectly irreducible if

and ohlyif Oa-b:co for sone a,be A an”hbh.

proof: If 0,, =co then GQ , =Gco" 6, ann tlie nroof of
theorem 12 shows that G is subdirectly irreducible. If G

Is subdirectly irreduci bl'e then 0(0. >;ab e A anda”™b) = co
a, D
inplies Oa,po = co for sone abe A g e d

We remark that, although 0 s not a uniquely determ ned
a,1D
congruence relation (but rather one chosen out of a famly of
candi dates) , still 0 .-=coor O0.”co are unambiguous state-

*a,J a, Jb
ments.

(Ex.. . 11): If £=<L;V,A> is a lattice then every prime filter

D determines a congruence-rel ation 0D by defining a s b(OD)

if and only if either both a and b are in D or both are not
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in p. Thus, if we additionally assune £ to be distributive
then every ultra-filter (being prine) defines such a congruence
relation. If ab are two different elenents of L then
there are essentially two possibilities: (i) a>b or (ii) a
and b are unconparable. In both caées, St oned theorem (theorem
4) assures the existence of an ultra-filter D containing [a)
and not containing b. Thus, in both cases a ™ k(6 3 e Since
QD / 60 unless [lJ = 2, we conclude that the distributivity of
‘£ together with |L| "> 3 inplies Oa;b N @ Hence, the only
subdirectly irreducible distributive lattices are the |-and2-
el ement-lattices. This, by t he vay, inplies trivially that every
.distributive lattice is a sublattice of the Iattice-réfract of

sone Bool ean al gebra.
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4s. Free Al gebras, Polynom als, Equational Classes.

We begin our section with a rather technical construction
whose inportance, on the other hand, is so outstanding that we
recommend extrenme patience while absorbing it. The starting point
is essentially the class of all ordinals? nanely we choose a synbo

e for every ordinal a, call it a projection synbol and coll ect
(fc

all the projection synbols in the class E (Since the ordinals

do not forma set, therefore, of course, E dpes not). E is the
starting point for a wider class P(T) of synbols to be constructed
and associated with any fixed type r. P(r) is constructed

I nductively as follows:

(1) EcP(T), (2 If £.,....£ eP(r) and f e F then the
ny y

synbol 7 (g.+“..,gjn7 € P(T). (3) P(T) consists exactly of al
el ements that can be obtained using (1) and (2) in a finite nunber
of steps. Equality is formal equality.

As is clear fromthe definition, every elenment g of P(T)

(called a polynom al synbol) is conposed of a well-determned finite num

ber of operation synbols [ild and projection synbols e (each counted as
often as it appears) « These nunbers are called the operational rank (oXiky

projection symbol -rank (prk _(jy) ), respectively. The_rank of p
(rk(p,) ) is defined as the sumof the two previous ranks:

rk (j99 = o.rk (g +p.rk (p) .
It is quite clear that, if g= f,(g,...,9, ) e P(r), then rk(q) =
n =t
Y

Y
1+ S rk(Bi).
i=1
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It is the fact that these ranks are finite which makes these poly-
nom al synbols so valuable in many situations. In particular, the
finiteness of the rank is frequently used to prove statements con-
cerni ng pol ynomal synbols by induction on that rank as we wl|l

| mredi ately denonstrate in the proof of the next renark:

Remark 21: |f p € P(T) involves only projection synbols Q,y

with y<a and a is a pernutation of {0,1, ...gy, .. t hen

°}
y<a
Q_a e P(r) where pj‘ is the synbol that results from JD by consistently

repl aci ng gf‘ by g () °

proof: (i) If rk(jD =1, i.e. P=5 for sone y <a, then
Rt = e~0/t,}))< e P(r) holds by definition. (ii) Assume £, ..., B e P(T)
' Y
and we know al ready that £ G JF e P(T) ; then (ffﬁ;-f}:,.--, Bn) )& =
,

L ~T
a a y
FL(Pi*»***P ) ~ P(r) agai n by definition. q. e. d.
y
Def. 23: If ge P(r) involves actually * ,...."%e t hen
’ N

. 1 "Am
y = max{y;) is called the leader of £, say Ild{jp) .

- P(T) serves as huge ressort of elenments which we will use
to create new al gebras of type v the so-called pol ynom al -
~synbol algebras. To do so we fix sone ordinal a” 1 and define
P{@)(T) A p(r) to consist of all polynonial-synbols involving
only projection-synbol s gy with y<a. |If fye F and
Pi*eeet2 A B¥ () thenwedefine f (p-,....p ) =
fB>ee £« > ¢ PA(T), thus turning P (1) = <P® ;R into

\Y
analgebrain K(T).
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Def. 24: The algebra P(® (r) = <y2* (T) ;E> as just constructed,

is called the al gebra of g-ar y' po| ynom al synbols. The el enents

of p(a)(r) are the a-ary polynonial symbols.

The next remark shows a nere conprehension of the definitions:

Remark 22:

(1) W have a subal gebra-c.hai n PY (Dap(? (;)c. .. dP® ()¢
if a runs through all ordinals.
(o)

(2) P ° (9 =U(p'™(r); n=l,2,3 ... ).

Let us remark that a set of subal gebras of an algebra G is
cal led'" local™Mif it is directed by inclusion and its union equals
A. A property for algebras of type T is called a |ocal property
of G if G has the property provided every al gebra of sone
| ocal set of subal gebras of G has the property. Statenent (I2)

of remark 22 then says that f ™ (r); n=1,2,3,...) is a local
(0Q)

set of subal gebras of P (r) .

These al gebr as P('a)‘(r) play the role of the suns in the sky

K(T) of algebras G of type r. Less poetically, P*%(r)

i nduces on every algebra G e K(r) an algebra P"';‘ IG).... t he
so-cal l ed al gebra of a-ary polynomals == in the follow ng fashion:
Every £ € P(-a)‘(r) i nduces a function pG'ai A - A accordi.ng

to the agreenent that (i) e"‘;' a(xm', o X "')6<oa = )gy and (ii) if
p?ga p% % are al ready defined then t\y_(*Q'X' ..,*pn) i nduces
Eygl'""'Pn e (ixo'xl' ' X6 }-6<a=: g

G,a FEEN] ’a
fy('pl {xo,xll ,xa,-'.)6<a,.'....’ Pn‘y (xo,xl,....,xo,..._)6<a).
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Then P (G =: (p®*%pe P@(T)}; noreover, if f,eF
Y G a (a) G a k1 Ay — -
and p<I><\....,pnveP (G thenfs})l,....,[}ly>—.
G' a _ . .
(fy(pl,...,pny)) makes f,y a wel | -defined operation.

Def. 25: The algebra P(®(G) = <P® (G :F> as just constructed,

Is called the algebra of g-ary polvynomals on G

Note; By definition, g  induces if:; > A" - A in PY(Q
and (if, e.g., p>a) erP: A - A in PP (r). If thereis
no possibility of confusi. on, we will frequently drop the upper
indices. Thus, e.g. p(ao aj., * . X NI yka , a: e A makes it quite
cle& that p stands for pG'a.

If we fix G e K(r) then_vve have for every epi norphism <p;
"(“)(T) o P fo ) mapping p to ?)*a a kernel which identifies

pol ynom al synbol s inducing the sane polynomal on G

Def. 26; The kernel of < p(o") (r) - p(a)(G) as introduced‘ above
is denoted by J0_ -

Corol lary; P(a) (1y1d6 AP (G).

It is nowa recommended (since sinple) exercise to verify the

next remark:

Remark 23:
(1) If pe P-.(OZ)(T) and p is built up frome ,....,0
~ ~ ~"o ~Ym |
(m) o -
then there existsa p P (r) suchthat p” (a,a’ .". .,a . ..)v«
Pi*ay,, -..., avy.)y for every Ge K(T) *

(2) if pepPr(T), a>0, then there exists som p, e P °(r)
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and 7o < 73 < <Y, < . . <Ga* n < a)y such that
o)
R . = I ,.a.,a . e
P 7 (Bgs8yseeeensy sl T Py (ayo,ayl ¥, )
for every Ge K(T). If a<60p then, of course, p (G()r)Sz?° (T).
In this sense, every polynonmial on G € K(r) is Messentially"

an cq-ary pol ynom al .

(3) If G€ K(r) and Oj *ScA then [S = (p(s PEREE *,Snh.1) ;

p € P’;”'\(T) for sone ne N, s. € S}.

(4 If <p0 G-« IB is a honmonorphismand jp € P(a)(T) t hen, for

)y</\ = p(<p(ao),.. . ,<p(ay), —) ‘y<(1

all  a. € A <p(p(ag ..., ay,

(5 If bj,aj e A 0€CG and aiab.l(O), O£ i <a, then

)icct @ q(ag .« .., ai, ...)za(e) for all ge P@(q).

We now cone to a point of extrene inportance, nanmely to the
so-called Midentities' satisfied by a given class L of
al gebras of type r. If we, e.g., inquire howthe class _ge of
groups is.si ngled out in the class K(<2,1,0» of all algebras
G = <A;*,'~l;1> of type r = <2,1,0», then we unavoidably recall
the defining Maxions™ (i) (x-y)-z = x*(yz), (ii) x*x~T = 1,
(iii) x~1*x=1, (iv) x*I =x, (v) I*x=x for all x,y,z in
the given group Q= <G *, ~1, 1>, I f we take a thorough | ook at

these axions then they really boil down to the identity of cer-

tain polynomals on the group. E.g., (i) reads that p""*" = qq’a"
if p= (HN*e.,)*e, and g =+ e (e, *e,) . (ii)-(v) canbe simlarly
£, ~O/yl w2 AO "X ~Z

reformul ated. Thus, the identities of polynom als that hold or
do not hold in a certain algebra or in a class of algebras are of

profound inportance and information. W therefore are led to
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define (and we are notivated by remark 23, (2)) the set of iden-

tities validinaclass of algebras L ¢ K(r), say Id(L), as
(to) "Go G®
{(£,3); £3e P ° (r) and p °=q ° for al GE€L). If

L = {G consists of a single algebra we just get (see Def. 26)

that 1d(Q :_%f/o‘. Since Id(L) =n(id(G;G€ L) we arrive at

the follow ng short definition:

Def. 27t If LcK(T) thenthe set Id(L) of identities of L
to (w-) (uo

is defined to be 9y = n(9 ""; aelL)cP °(T)\-X\P ° (1). More

gengral: If a is an ordinal ~ 1 then Id"® (L) =J" =

0(9"7 G€ L) is called the set of g-ary identities of L.
The di stingui shed position of G8 anong all ordinals in the
| ast definition is quite sufficiently explained by remark 2 3.
Qearlys the nore we narrowour class L the nore identities
will we in general pick up and the tighter is the algebraic struc-
~ture of the algebras subjected to those identities. .It Is this
reasoning that causes us to call an algebra G (we are still in-
tuitive) free in L (better " the free as possible in L") if
ld(L) =1d(G . But we need to be a bit nore precise. To this end
we pick sone<f>£ SE£A with G€ Lc K(T) and define what we

mean with the local identities of S

Def, 28: If 0~ ScA GelLcgK(T) and a is the initial
ordinal of |s]| then we define the ]ocal idenxilies of S 'say
1d, ~ (9, as follows:
boem (@) (<0)
ldic(S) =0 {(&<); (1)"7") eP *(T)xpP °(T), (2) td(9),
tdq) <a,. (3) if g, actually involve g, = ,e. then
. w
_ _ \ o
P(So’sl"“’sn""")n<wo" q(so,sl,...,sn,_....)n<wo for sone s e S
with |{s..,

,S.. )| = t+1}.
Yo “t
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If idioc(S) = 1d(L)n(P@()x PO (1)), the ultimtely

best we can expect, we call S a free set in L.
Def. 29t If $/ ScA GeLcK(T) and the initial ordinal of js| is a

then S iscalledfreein L if 1diec(S) = 1d(L) fI (P2 (r)xP® (T)) .

In that case, we call <L (9 — <I°L° F> 2 free_al gebra over the

basis S if J?2(9 €L
_____ j

Corollary 1; If ’\_(S) exists in Ls S:{sa...,sy_-...,}y@,
then idig(s) = id(3(s))n(P@(r)x P@(r)) = id(L)HP(r)xP@(r)).

proof. The proof of the corollary follows evidently fromthe fact

that cardinals 1h'g "?Y® initial ordinals » QQ

Corollary 1; If 3.(§ existsin L and S is aninfinite
set, then 1d(3L(9) = Id(L) .

. ()
(2) If a”a> then 1d(® (L) 21d ° (L) = 1d(L) .

In the sane nmanner as we associated with every L c K(T) a
set Id(L) cp V\‘/""(T) XP(tg)(T) one can associate with every sub-
set scp “Uyxp U871 aclass ML) cK(r), called the
nodel -cl ass of E

. (y\Q (Vio)
Def. 31; If Ecp T) X (T) then the nodel -class . ME£)

is defined as the class of all algebras G of type r such that

1d(Q = 2.
(
We therefore have the two mappings 1d: 2%~ - 2? °w8T) xP

P oty r
and M2 ° !'TIXF o"m _ 95AAT: which constitute a Gal oi s-

“lon

connection as precisely stated in the next remark:
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Renark 24; Let T be a fixed type, L. cK(T) and

S £P (C‘ng) XP (goc)( T). Then

(1) Lycl, is equivalent to Idfl”) = 1d(Ly),

() Ti £E 'S equivalent to M~) 2M(Z,),

(3) MId(L)) 3L for all Lgk(T),

(O (X0
(4 id(MCD)) £E for all Ecp ° (DxP ° (T).

The natural question is now evident: When do we have
equality in (3),(4)? The algebraist is interested in know ng when
a class of al gebras is characterized by its identities, i.e. when.
IV(Id(L)) = L. The logician wants to know the characteristics of
a set L of identities which is characterized by its nodel -set,
i.e. which satisfies I1d(ME£)) = E Ve will in this section
narrow our attention to the first of the two questions and derive
the fanous result of G Birkhoff stating that MId(L)) = L is
~equivalent to requiring that L be closed under taking sub-
al gebr as | (S(L) ¢ L), honmonorphic images (H(L)) £L), and
direcf products (P(L) cL). Since S(H(L)) £H(S(L)),
P(H(L)) EH(P(L)) and P(S(L)) £S(P(L)) can be easily veri-
fied (see, e.g., Q"atzer [1l], chapter 3,j23). for classes L which are
cl osed under taking isonorphic copies (so-called " algebraic classes" ).,
we can restate the latter condition as L = H(S(P(L))) = (shortly) =
HSP( L) .

To deduce the results we first engage in a discussion con-

cerning existence and uni queness of free al gebras.
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Theorem 13: Let Ge LCK(r), $t ScA and [§ =A G is

free in L over the basis S if and only if every mappi ng

(- S- B, Bel, canbe extended to a hononorphism <p*:. A- B.

proof: (1) If S={s,...s,...} . theneveryelenent ae A=
o] Na
[S| is of the form a = p(s. y%/ , K s,s Fforscme pGp ( (T)
XO X y<co0 ~
with <djD< a Thus if there exists an extendi ng hononor phi sm

at all thenit is necessarily givenby <p' (a =p~*s."), ...,
‘0

<p(s. ),....) . . Again: <p', thus defined, isclearlya
y o
hononor phi smextending <p provided it is well-defined. To prove
this latter point we assune that a=p(s. ,...,S..9. ..) =
( were jgn € pCEIE | Ten (v e et
q(s, ,...,S, , . .. ) 2" ere | € P T) . Then (* € % oc<
1, iy NWO

whi ch, by assunption, inplies that (p,q) € Id(a)(L) . Hence

p(<p(sio) yeea (HB(B)), - - 92% =q((<p(($io)),, s ,,<p(s1y Yseo .)7<wo.

(2) W assune nowthat every <p can be extended and have to show
N
that 1d"® (L) 3idioc(S). Assune in the contrary that

(0.9 -€1dioc(S)N1A@(L). Then ptsh,. .., s", ... )" =
O O

y

: A ]
q(so,...,s/\,...)_ .o\/\hlle p(bo,«,.,bgl,...) " q(b ..., b,.. )-,,(wo
for sone b,le B, Be L Hence, <% - B defined by qo(sy) = by
cannot be extended to a hononorphism. == whi ch yields a contradic-
tion, g. e d.

Theorem 14: if a free algebra over a basis of cardinality a

exists in Lc K(T) thenit is isonorphic to P(“)(r)/GQ- | f
MId(L)) =1J for anon-trivial class L, then indeed free

al gebras over bases of arbitrary cardinality exist in L.
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proof :
W assune that B = p"a'\(r)/f%e L where a”~ 1 is an arbitrary
but fixed ordinal nunmber. Evi dently B=[SI where S = {[e ] 8"
04 y<a]. Snce L is non-trivial we conclude that |Af1|ﬂ“"

[egl8 if y/ 6 thus s, =a If C€L and we pregive

the mapping 0 [ey] & -+ , ¢ e C from S to C then
evidently < : P® (r)/6” - C defined by ~([~pi e” P“ 2
(co, Cv- - Mcy"")rm i s a hononorphismextending <p. Thus, by
theorem13, B is free over the basis S in L. Since P(“’(-r)/e% e
M1d(L)) = L we have proved the second hal f of the theorem If

37(S) is an arbitrary free algebra in L over the basis S =

s, 83 -1Sui -ty then P PE(5) - E (S nmapping ¢ to
(ST d ' ' e
pE ‘3 has kernel e” (g = 92, i.e. PXT1)/8J5 ~(S).
g e. d.

Theorem 14 states, a.o., that a free algebra inaclass L is
uni quely determned (up to isonorphisn) by the cardinality of its
basis. W will therefore omt in the future to nention the par-
ticular basis S in 3 (S and rather use the notation 2L (a)

where a is the initial ordinal or the cardinality of S

Def. 32; 3L(a) denotes the (up to isonorphi smuni que) free al gebra

inthe class L over a basis of cardi nality a.
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" W take advantage of the preceeding theorem13 in deriving the

next basic result also due to G Birkhoff.

Theorem15: |If LcK(T) is anon-trivial class of al gebras

cl osed under the formation of subal gebras and direct products
(i.e. SP(L) = L) then 3¢(a) exists for every ordinal a. Mre-
over: If D=[Q6 e C(E’(a)(T)) and P®@(r)/e e I(L)} and

D = {8 e-e Q(P)(T)) and P (7)/9 e M(1d(L)))

then 3¢(a) &v (P®(r)/9; 6e D ~IT (P®¥(T)/6.eeD,).

XJ S S J.

pr oof-:

If it e A where G=<A?F>€ L then g P (T) - A mapping

~ _ a
@‘“Pq-rp(a) - i's an epi norphismw th kernel, say, 9—. Thus,
a 9

a

o 4 ~ <t¥awp,..., ay,...]r<al;F>6 SL) =L if a =
Aa2"8 eny andUneQ Y H9Lc% B)PuweI5nar 57 =
a runs through a set T of a-tuples of elements in

al gebras of L) .
Hences

3.(8) o P@ (T)/9ops VP2)(MIeyepie) & A€T)
(theorem8) ~ TT (P (T)/&; 3o T) .
Thus since 92 € D¢ D, we get even nore (see thm '11) that

3. (a) o Trs(PA(T)/9; 9€D) -Lrs(PP(T)/9; ft €D".

Thus, since PJG)(T)/9 e I(L) for every 9 € D, we concl ude that
iL(P®(r)/Q 9€D e SPI(L) =1(SP(L)) =1(L), i.e. 3_(a)

JLJ
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exists in L for every ordinal a. g. e. d.

We have now arrived at the crucial theorem characterizing

% equational classes:"

Theorem16 (G Birkhoff):

Let L be a non-trivial class of algebras in K(r). Then

MId(L)) =L is equivalent to L = HSP(L).

proof; It is easy to verify that MId(L)) =L inplies that
HSP(L) = L. Vice-versa: Assunme that G e MIld(L)); say, A=

{aQ,...,z;ly,;..<]y<a and a = (aq ...,a,....)y<a- Then & (a)
exists (see theorem 15) and \(a) £ 7Tg(P'® (T)70;0 ¢ DA. As we

have shown in the proof of theorem15, 0% e D, and P(® (T)/6r =G

a a
Thus, G G HSPI (L), i.e. G GHSP(L) = L. W have conpleted the
proof that MId(L)) =L and are done, 9. e. d.

Since therefore the classes of al gebras cl osed under the for-
mat i on of subal gebras, products and hononorphic inmages are exactly
the ones that are characterized by their identities, they are

frequently called'' equational classes!! (better would be: ' iden-

11) n

tity classes or "varieties!™ (the latter termbeing nost

decisively used in the theory of varieties of groups}.

Def. 34: If L._.c K(r) satisfies HSP(L) =L then we call L

an equational class of algebras.

If follows fromour results that every class L c K(T) is
contained in a smallest equational class, namely HSP(L). The

next remark is clear:
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Remark 25: The operator Equ = HSP which associates with every
class L c K(r) the class HSP(L) is a '’ closure-operator® on
k<> e
(i) Lc Equ(l)
(i) Ll_c Lo inplies Equ (L,l) c Equ (L)
(i) Equ(Equ(L)) = Equ(L).

If we conbine our results obtained so far then we get the

foll owi ng equi val ent statenents:

Remark 26:  If L ’\Lg cKaTa are @eryational cl asses then the

L

follow ng statenents are equival ent:

(1) LL =L,
(2) I;jfl") = 1d(Ly)
@ 3. o oo
proof _
(1) implies (2), (2) implies (3) are clear. It 3; (co) 2 37 (co )

i o) xysn 0O

then 1d(3_ (0)) =1d(3_ (c0)) which, by the corollary to
1 -

def. 30, inplies that Idfll") =1d(Lz), i.e. 1" =MId(L)) =
MId(Ly)) = L,. Hence, (3) inplies (1). g. e. d.

W will conclude this section with a result due to A Tarski
whi ch reveals a renarkabl e finiteness-behaviour of the operator

" EquM .

[heorem 17 ( A Tarski): Every equational class LE£K(T) is

generated by a single algebra- Ge L; i.e. L = HSP(G.
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proof: If L is trivial then every algebra 1" generates it.

If L is non-trivial then " (",) exists and 1d(L) = 1d(3.,(c0gy) =
Id(HSP(S(L(6OO))). This inplies by remark 26 that HSP(3.(t0g) = L.

g. e. d.
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J9. Equati ons. MyCi él ski's Conj ect ure.

In an absol utely anal ogous fashion as we devel oped the theory of
pol ynom al -synbol s, respectively polynom als, can the reader
devel op the theory of polynom al -synbols (respectively, poly-

nomals) with constants in S defined as follows:

Def. 35 Let E=(e.,...,e., . . ) be a class of synmbols, one
for each ordinal a. If Ge K(T) and S_c A then we take the
di sjoint union E U S. The class Py (1) of ' pol ynom al - symbol s

with constants in S" is defined as foll ows:

() EUS ¢ Py(r)

(2) If g1, ...,0n € Ps(T) then, for every fye F,
Y
Ey(Er----"En !t & PSlr).
r y

(3) P}(T) consi sts exactly of all elenents obtainable. by

steps (1) and (2) in a finite nunmber of steps.

The reader is doubtless aware of the simlarity between the
constructions of Py(r) and P(T), resp. As amtter of fact,
we have evidently that P(T) =7¥") e+ " before, P_¥T) plays the
rSle of a huge ressort of elements (it is a class rather than a
set) by neans of which we create new al gebras of type r in
t he by nowavgel | - known fashion: W fix some ordinal a ”~> 1 and

define pi (T) © P(") '°consist of all elements in Pe(T), g
involving only e wth y<a If f €F p.....p € P*7(r)

then f (BJ. ... JE«}k = : Agytg] »e s % pBfP«t) turns P;_E'a‘)( T) =

(a) T _ y r. y
<Pg (r);F> into an algebra of type T.
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Def. 36; PI O‘)( T), as just constructed, is calledthe algebra

O —g-ary potrynom al_synbols Wth constants 1n_ S

Torortary: Pr¥(r) = P(®W) . for all ordinals a.
- {a) (o
The algebras P, (r) induce an algebra P ~' (G for every

algebra G = <A F> whose car',ri_er_ A contains S in the same

(a® : (c)
fashionas P ' (r) induced P (G ; the only specification
. . . a
we ought to add concerns the elenents of S If s e P~ (T) 0S
G a
o Y y<o
then s * A -« A is the constant functionmapping (X, ... ,Xs. . *) .

to s.
Def, 37: If K(T;S contains all algebras of type T whose

carrier contains S, then Pi a)(G), as defined for every

G G K(T;s), is the so-called algehra of g-ary polynomals on G

with constants in__ S

It is a suggested exercise to verify that polynomals with
constants share nost of the properties enjoyed by pol ynom al s
wi t hout constants; in any case, we skip the trivial verifications
wi t hout depriving ourselves of the right to nake use of them .

E.g., if Lc K(T;S) we can consider the identities of L wth

constants in_S, nanmely ldg(L) = { (£ 3) Gp gr A~ for

every Ge L} cPiV(T)xPA" (1). Qearly, Id(L) = ag(r) .
Similarly 1 (L) is defined, etc.

Identities with constants constitute a certain subset of

(u) (a) )
Pg ° (r)x Pg °© (r) and are defined by inducing the sane poly-
nomals on algebras in a certainclass L. It mght so happen

that- (p,q) e P**¥(T)x pi®(T) is not an identity but still
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B CPLe - o
(xo"-t’x73'00),y<a_ q (xol"',xy’..")y<a for some * -

')y<a € A inwhich case we are in agreenent with

Q
«X

standard termnology if we say that x is a solutionin G of
(8¢) . This notivates our next definition:

Def. 38: The elenents of PA(r)x PA(T) arecalled g-ary
equations with constants in S of type T. If Ge KT;9,a e A

and p(&) = q(a) we say that a is a solution of (gcj) in G
Sol ( (p»g): G denotes the solution-set of (£<) ~" 6.

If ££ Pl:al T)XP"',""\ (r) is anon-enpty set of equati ons,
Lck(T,s) and G e L, then ae A is asolutionof £ if it
is a solution of every (&% €St |[|f the synbol Sl (S G
denotes the solutionset of S in G then evidently Sol (£, G =
N(sol({p,q):G: (po)e E) .
Corollary: If Tc lde(L), LckT;s)y and Ge L, then
Sol (r; @ = A%,

VW are now enabl ed to give the definition which is crucial

for many of our investigations.

Def» 39: (1) Let Ge K(r;S be a universal algebra of type r

with the follow ng property c(m wth respect to the cardinal

nunber m

Lt ££P (T)XPL?(T) (cardinality of £4m) is finitely
solvable (i.e. SoliTrfi) ~$ for each finite 17 £T) then S

is solvable in G "
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Then G is called S-equationally mconpact.

(2) If S=(f> in (1) we use the phrase: "G__is weakly equationally
m conpact , '
(3) In the special case S =A in (1) we call G an ecraationally

m conpact al gebr a,

(4 If, in (1), c(m holds for every cardinal m we call G

S-equationally conpact and adjust the termnology in (2),(3)

accordi ngly.

(Ex. _12): To illustrate the concepts we investigate, a.o., the
very first exanples we gave in the introductory part of this

chapter.

(a) if L is the trivial class of type r (i.e. L consists

of all 1-elenent algebras) then L is, of course, a class of

equational |y conpact al gebras.

(b) If x =<Z +> is the group of integers, then ex. 1 establishes
that z 1is not equationally f?;-conpact, hence not equationally
m conpact for any rnJ2f¥§ hence not equationally conpact. More

yet: z is not {1}-equationalIy-Ao-conpact.

(c) Ex. 2 establishes that conpl ete Bool ean al gebras are equationally

conpact (the proof is still to be given).

(d Let £ be the lattice given in ex. 3 and K(£) the class of
conplete lattices containing £ as sublattice then K(£) contains no
equationally ~-compact, not even {O,l}-equationalIy-y\i-conpact

al gebr as.
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On the other hand, £ 1is an equationally”™-compact al gebra.
Allthough the use of the word "' conpactness'’ in the pre-

ceding definition is sufficiently justified by the very defi ni-
tion, there is a much stronger reason coning fromtopology as

was observed by J. Mycielski in [1]. Let us recall that when
dealing with algebraic structures as sem -groups or groups or
rings we are not just interested in arbitrary topol ogi es that

we m ght be able to inflict on the carrier-sets of those al gebr as.

In general, we want the fundanental operations f to be con-
Nas Nas ?

tinuous functions f” :A'-*A if A' is endowed with the
Tychonof f - product - t opol ogy and we want to be able to have " small
enough nei ghborhoods to separate points, i.e. we insist on
Hausdorff-topologies. This is summed up in the next definition:
Pef—40; If GE€ K(r) is an algebra then (G"), shortly G
Is a topotogicat—atgetra of type 1 if 3* is a Hausdorff-
topology in A which makes the operations continuous. (G7)
is a Topotogrcarty conmpact—argebra if it is topological and every
cover of A with open sets has a finite subcover.

We nmust now, of course, insist on sone know edge of elenentary
poi nt-set topology to which, e.g., belongs the fact that a topo-
| ogi cal space (S,») fri.e. 7 consists of subsets of S the so-
called " open" sets of the topology] is conpact if;- and only if
every famly of closed sets which has the finite intersection
property has a non-.errpty intersection (A famly of closed sets has

the finite intersection property if each intersection of a finite
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subf amly is non-enpty). Another elenentary fact is that S(f,Q)
is closed if f: (Sfa”r) - (SAA) 2and 9f (SAA) L (S,A2)
are continuous functions, S(f,g) = {x;x e S and f(x) = g(x) }
and 37, 32 are Hausdor ff-topol ogies. This is all we need at this

time to derive the follow ng fundanmental result:

Theorem 18 (J. Mycielski):

Every topologically conpact universal algebra G is equationally

conpact .

proof; Let Ec: P (1) X Iii*a)(r) be a non-enpty set of identities
with constants in A which is finitely solvable. W well-order
the finite subsystens Es\é.,L. IR £.y, .. .,y<p, of T and denote
their (non-enpty) solution-sets in' A

by So,Sl_,...,Sy,...-,y<p,
respectively. = Since A is endowed with a conpact topol ogy, Tycho-
nof f's product-theorem assures that" A* carries a compact topo-
logy. Since S):, S'H . fAS A where SV,‘}\/: 1, . . .sI(y)e are
the solution-sets of the different single identities in 35y and
since (as we have recalled before the theorem the sets S; are
cl osed, we conclude that each Sy is a closed set and the fam I.y
{Sy;y<p} has the finite intersection property. Thus, since A?
i s conpact, (1(87; y<p) N <f>. Since Sol (I"G = fI(S,y;y<p), we are
donee ge e de

Myci el ski's observation'is really slightly stronger than
t heorem 18 inasnmuch as it states the sanme conclusion for retracts

of topol ogically conpact al gebras. It is unfortunate that the

concepts of F°-retract (see def. 1) and sinply retract are
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linguistically so close, but it is hoped that no confusion arises.

Def. 41 If G B are algebras of type r, ¢ G*B is an epi-

norphi.sjn, B is a subalgebra of G and <p\ is the identity then
- '= | B
(p is called a—+etraetion and fc is called a+etraet of G (In
2
ot her -words: |If '<p: G*© is an endonor phi smsuch that <p = <p

then <p is a retraction < :G_*<p(G) and <p(Q is a retract of

G) .
Corollary 1: Every finite algebra is equationally conpact.

Corollary 2 (J. Mycielski):

Every retract of a topologically conpact universal algebra is
equationally conpact.

proof; Let < G»(p(GQ be the retraction and choose

E£p("()A) (T>X'P<J)’%(A)(f> S PA(T)x PA(T) as finitely solvable
in cp(@ ¢cG. Then, by theorem18, E is solvable in G |If
" e A is a solution then evidently <p(a) is a solution and
<p(a)€ <p(A)>2. q. e. d.

An unsol ved question is whether or not the converse of
Corollary 2 is true. The converse is true in case of Abelian
groups, Bool ean al gebras and vector-spaces as we shall see. W

state the general problem

Problem1 (Myci el ski's Conjecture): |s every equationally com
pact universal algebra retract of a topologically conpact universal

al gebra?
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It has come to the attention of the author that there seens

to exist sone counter-exanpl e agai nst Myci el sks conjecture in
the general form Its details are not yet published and unknown
to the author at the tine. Even sot The conjecture renains to
be investigated in special classes of algebras, a task which is

as interesting as the original one.
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Chapt er II', El enents of First O der Logi c

il. The Ianguage of first order' | ogi c.

Let K(r) =[G =<AF, R} be the class of all relational systens
of.type r = "T;JTE)" talen we: can form P(O")(T,L) for every ordinal
a, as discussed in chapter I. As it happens quite frequently

if the sanme object is approached fromdifferent directions,

di fferent notations confront each other where the two approaches
nmerge. So it is quite conventional in logic to denote the

' projection synbol s EyM fromwhi ch p"":" \(f'i;) is built up by

H >%,“ and to call them" variables, "' a convention we will go
U |
along with since no confusion seens possible. If R (r,) denotes
the set of all symbols R(x. ,...,x. ), ReROE,, ... i <ag>o0,
7 iy im Y [ m* 0
y r

then we define the '' algebra of a-ary first order formulas’ by
£{ = @@ (rpx 2 (1) R (7)) 15 ((Ex ) sy<aluEI UV, a
: Y
uni versal al gebra of type 7\ =<1,1, ... .1,1,2> (i.e. all operations
but V are unary) which is generated by (p~~r~Ax P {rr) LIR? (r,)
via formal .application of the operations. Equality is fornal

equality. We conbine this and further definitions as follows:

Def. 1: If a is alint ordinal j_>€% and r is a fixed type
of relational systens then <£(u‘)_g as just defined, is the alge-

bra of g-ary first order fornul aé. The el enents of

(P (1) x PIOLT]))UR™ (r,) are called atonig formulas, The

operations ( S)S) are called existential quantifiers, -the opera-

tion-y is.referred to as negat‘ionj the operation V as di sj unction.
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W read (3xQ (€r) as: " There exists X, such that $ holds!-f
and denote $ to be the scope of (3x ) . Simlarly; —% (9)
reads "$ is not true;" M<K*) reads '"$ or 0O is true"
and is frequently_mnitten as * Vo0 YA U(LAa; f aJ>_0q is

t he | anquage of tvoe' [e

O course, we feel that our list of quantifiers and connectives

(-4V) is still rather poor.i So we pass on to PAo)(7O wher e
A is the type <{17; %, = |,y<a},l,2> of our |anguage and find

a fewnore of the standard quantifiers and connectives there:

. <00
Def. 2: The follow ng el ements of P( )(/» are endowed with

particular inportance:

(1) (Wxy) =: "'7(Exy) (—7 (x'y+l)))

(2) A=t =7(7{x )VT7(x))

L~
w
~
1
1

D -T(xQ Vi

M= (xe-t X)A(XjL - Xo)

—~~
SN
~—
AN
>
|

' (gl .la) : -
If we pass to P (£+ ) Wwe get the follow ng operations:
(1) the unary operation (ny)(ﬁﬁ reading: " For all Xﬁ
$

A> holds true. " (V&y) is called the universal quantifier,

Its scope.

(2) the binary operation A$t/)), also * A0, reading:
“Both $ and 0 hold true.™ A is called the conjunction of
$ and O.

(3) the binary operation ->($,0), also $->0, reading:

W inplies 0"--> is called inplication
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(4) the binary operation «-* {*> $), also $->0, reading:
1'<& and if) are equivalent''t . *->is called the equival ence-

oper ati on.

We have thus ‘special nanmes for the existential quantifiers
(3xy) and the uni versal quantifiers (ka) and for the so-called
connectives—=*,V and A In addition we named the inplication-
processes. These, together with parentheses, commas and the
vari abl es X constitute the building blocks of the so-called
first order logic with identity? for instead of the |ess confusing
notation (£5<f) €.Pﬁ”kT.l)x wa\(Ti) it is also a (nore suggestive)

convention to use the notation g = g.

Def. 3: The occurrence of a variable Xan 1S called bound if
y

x? occurs in (3x7) or in the scope of an exi stenti al quantifier

-(3x7). “If it is not bound it is called free. A formula in which

every occurrence of every variable is bound (resp., free) is called

a sentence (resp., open formula).

'115r—'r372' If K(rl is the class of all relational systens G =
<A?{+,-}{ £> of type T = «2,2>;2> then

(i) (3xo) ((Vx1) (x@*-*~ = 37)) 'S2 sentence,

(ii) (XO+X1 = Xo) Vv (x1 §£>%) is an open formul a

(1) ((Xo= xx) A (Xx"x2)) V (axs) ((Vxg (Xo " X3-x))

is neither -a sentence nor an open formula. Every occurrence

of x" is bound, the first occurrence of x, is free, the second
and third are bound, all occu}fences.of X are free, so.is the

only occurrence of Xo.
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Al though equality of formulas is formal equality, we feel
that in applications a nodified equality-concept should be used.
Thus, e. g the sentences (VXg) ((VX™ ((WX2) ((XAXN*Xy =
Xg (X1-x2)))) and (Vx™ (((Vx2) ( (Vxs) ((X"X""xg N (XN X AM-T (X"xl))))l
are clearly equally good to characterize associativity of a binary

ft

operation ' e In order to make the idea preci se, we have to

di scuss the concept of ' satisfiability of a formla. "

Def. 4: If tj) is aformula in the |anguage l;/a), GE K(r)

and a e A* then we say that a_satisfies ij) in G if it

follows fromthe following rules constituting an inductive defini-

tion:

(i) ij) is atomc of the form (JB,<J), or p=g, where
£ 9 G‘p"‘""‘J(rl): Then "a satisfies 0 in G if and only

if a is a solution of the equation (£*3)e

(it) \j> is atomc of the form R(x. ,..., X. ): Then a
satisfies 0 in G if and only if

R(a ,..., a. ) is true.
VAN n

(iii) 0 is of the form (3x,) (B : Then a satisfies 0
in G if and only if a(y/b) satisfies 0 for sone
a(y/.b) e A’ where g(y/b) equal s a inall but the
y-th conmponent the l|atter one being replaced by b.

(iv) O ‘is of the form"7,(*): '.then "a satisfies 0 in G

if and only if @ does not satisfy $e
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(v 0 is of the form *,V *,> Then a_satisfies 0O in

G if and only if 3L satisfies ~ or $,.

Corollary: If 0 e LS_“) is a sentence, then 0 is satisfied
either by all "a € A* or by none. Accordingly, we say that ib

is either a true or false sentence in G

Every formula 0 in L* induces an a-ary relation JL °n
every relational system G € K(r) : 0*(a) holds true if and only
if "a satisfies 0 in G |If 0O is a sentence then either
00‘ = <A or 0° = A®. W can now |l oosen our tight requirenent on
formal equality of formulas and replace it by a nore natural

speci fication.

Def. 5 |If O‘l and 0, are fornulas in Iis_a).thenwe say t hat

OJ. and \j), are eqUivaI ent (") if ""‘=O‘§ for every

Ge K(T). If ?Oi EGOZ forevery GE€KArn  then we say that

0; is_weaker than 0, an<n write: lblaaplbz-

Corollary; OlAZAOZ holds if and only if 0;«”~0, and "2=;,qb1-

The rel ati on "«="M is an equival ence relation on the set I/.1°” .
O course, instead of taking a single formula 0 we can

take any set E of fornulas which again induces an a-ary relation

_zﬁ on every Ge K(r), nanely: Zf:(l(O'C;OeV).

Def> 6t If F and T, are sets of fornulas in I/f‘r) t hen II1

~and T, ?%"e equival ent sets if 2° = TA for every G € K(r);

V\BWI‘.Ite: £Ai:£ILz. Simlarly, Dl=>T>2 is defined. |If a€z,'i

then we say that a_ satisfieg T.
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The notations => just introduced are applied in one nore

si tuation:

Def. 7: If 0 e %a and ¢ = A* then we say that G inplies
00 andwite G=»i]). Simlarly, G=»S is defined for a set of
formulas. If G=* £ holds for all Ge K(r) we call £ a set

of universally true formulas and wite sinply r_=» £» |If d =3

for every Ge K(r), thenw call 0 a uhiversallv false formila

and wite T =-=( #).

Corollary: (1) If (p,q €1d(G then G=* iy, % .

(2) If ij) isuniversally false then —" is uni-

versally true, and vice versa.

Bypassing the less interesting formal equality of fornulas
and narrow ng the attention to the equival ence 4fr of formulas one
can (using sinple induction) prove the follow ng so-called prenex

_ nofﬁal fbrn}theoren1(me skip the proof):

Theorem 1: If 0 e Lgm) is a formula then there exists al ways
a formula * of the form QM"QOQM"Qs (... (QL™))))))) [where Q n |
is either sone (3x ) or sone (W ) and $ contains neither

of the two quantifié4s] such t hat X«SAOL

Def* 8:. Afornmula O of the formdescribed in theorem1 is

said to be in prenex nornal fofhl $ is called the matri x of

rbrQ-L(ee<(Q itsprefix.
Thus, the theorem states that every formula can be assuned to
'be (up to equival ence) in prenex normal form This may end our

introduction into the |anguage to be used.
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£2. _Utra-products and the GConpactness- Theorem

Qur aimin this section is to discuss the preservation of
formul as under the formation of ultraproducts and to give its
nost outstanding application: Tarski's proof of the conpactness-
theorem To do this we derive an easy, though basic, theoremfor

whose proper formul ati on we can conveniently use the next definition:

Def. 9: |If Gi, Il el, arerelational systens of type r, G-=

7r(C£.L;i €1), Disanultra-filter over I, g:(g,go, 'J..*g*ju...)ég(("a

e A and 4) € '® then the support of g with respect to ih

is defined to be S0 g) = {i;iel and g(i) = (go(i)s...50i(i),...)e <a
satisfies $ in G:;}
Theorem 2: |If G:'I‘B(Cf;i€l) Is an ultra-product of the

rel ati onal systens G, of type r and O e L;O/\ t hen @: '

(@o*---@. 98> o e0) 5_.¢ (TTjjtA%Ni €1))?2 satisfies 0 in G if and
onlyif §O0,9) eD where g= (9o .. .50g, - - .) 00 -
MNete~ See theorem 1.3 for the termnol ogy.

proet Ve proceed by induction beginning with the atomc fornul as:
(i) 1f 0- (sa e PP¥(n)x P (s) then p®?h - g%?%J)

Is (as follows imrediately fromtheorem 1.3) equivalent to
GMa G,a

{i;p (g(i)) =g (g(i))} € D which (by def. 4) proves our

poi nt .

(it) If O e R"\‘;"(T2)> theorem 1.3 applies inmrediately.

(iti) Assume that 0 =-77" where 1" satisfies the theorem

Then 6 satisfies 0 in G if and only if 5 does not satisfy
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A in G i.e. if and only if SU,L, -g“) 4 D which (since D is
1 — -
an ultra-filter) is equivalent to As”~"g) = Sij[),9 € D.

(iv) Assune that if) =9, V" where if)" and 0, satisfy the

"A A
theorem Then ¢ satisfies if) in G if and only4f g satis-
fies ...j'/jL, or. )), in G i.e. if andonly if & O}, g) or
i t‘U S 7° contained in D which (since D is-an ultra-, hence,
prime-filter) is equivalent to Sd/j”~g) U S(0,,9) = S(0,9) e D

(v) Agsunme that if) = (3x )(*/)-,) where if)” satisfAhes the theorem
_ y 1 J —

_ A
Then g satisfies 0 in G if and only if n = g(y*b) satisfies
il - — -
0- ;,in G for some De Agwhich, inturn, is equivalent to

gi/),,n e D (*) Si nce* g*/),/R c: S(0,g) we conclude that - SgO0,g) € D

Vice versa: |If -S_(O,g)-e D then gi) satisfies pf) in G

for all i e $(0,9),, i.ey g(i) (y/b.) satisfies 0. in G for all

e — A ————

i e S(0,g) with b. e A.-.- Thus, if we define h e A* by I(_a) h(i) =
g(i)_(-y/b.) 'for i e S(A,g), (b)) h(i)=g(i) for 1 € I\g>ft,gy then
SM-,h) € D ar-ﬁj we can take up th.e proof at (*) and go backward to
conclude that g satisfies tb in G g. e. d.

We can, thus, say that a fornmula is satisfied by an a-tuple
of elements in an ultra-product if and only if it is satisfied on
% nearly all conponents™or 'f on a component-set of nmeasure 1 .

to keep with the term nol ogy of chapter I. W have imediately

a few corollaries:

Cor ol bar;i 1.
IE_ 7r (G;i € 1) is an ultra-product of the relational systems

G then it is of finite cardinality n if and only if {i;|]A,|] =n} e D
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proof: We consider the sentence 0 defined as follows:
(Hxl)(Exz)....(ﬂxn)(Vxn+l)((Xlez)A(Xleg)A___A(X“ﬁXQ A(X2"Xx3) A ..

oo AN X)) A(Xel Xa) AL AT XA XAAL LA AR

((Rpp1 =XV, " XDV, Vxp,1 = V)
Evi dently, the .sentence On holds in G if and only if |A = n.
Thus, the corollary follows fromtheorem 2. g. e. d.

Corollary 2s A sentence $ holds in 7ry(Q;i€l) if and only

if {i;iel and % holds in Gﬂ» e D

Corollary 3s A sentence if) holds in the ultrapower (% i f and
only if it holds in G

We ought to nmention that our new results yield a new proof
for the corollary of theoreml;5? for
I f |AJ] - | A

We now turn our attention to the nost inportant application

' is, of course, onto
Je p,1 .

of all, the so-called conpactness-theorem | nstead of giving

the theorem and Tarski's proof thereof inmediately we derive a
useful generalization inspired by a result due to Mycielski, Ryll-
Nar dzewski and Wegl orz (see Weglorz [1]) whose proof is essentially
t he same Tarski gave for the weaker conpactness-theorem  For

its formulation we need to give a short discussion of the ideas
that lead to the so-called " di agram | anguage of Robinson

If r =<ng ...,Ny,...>, a-= <rfb,...,ms-,..->5<p are 2 types

of universél al gebr as then we can conbi ne the tmo.types to the new

type R = <no*-..,ny,....,rbr.. .u,né,...>e£ <a Wi th Noye = My
aLola+p
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S mlarly one can proceed with the types of relational systens.

Def. 10; (1) |If T and a are types of algebras as above then
T@a is definedtobe p. Sinlarly, if r = <"j’T2> and
a = <cry,*g~> are types of relational-systens then r ®0 1is

defined to be <T-IL@T’\]_ a, (2 o3>

(2) If G=<A?F,R> is of type r, or is any type and
ft =<B,GS> is of type o, then one can (by suitable defining
G and S on A turn ‘G into a relational system G =

<A,FUG RUS> of type T@. In particular, one can well-order

A={aqg ...,as ...)6<p, takethetype a=<0,0,...,0,..%>

‘for e<*p andturn G into G = <A FUYa t’,c,...,a Vi 3 hed R
of type T®or where we interpret a as O-ary operati.on in
the natural fashion. 1f we choose e = p and a; = ax then

we cal l LTA|<\§0 the diagramlanguage of type T over G and
wite LT(Q . mgeneral if we add the type o(B = <0,0,.. - >4
represented by B = {avo,.. ..6\1/6 ,.o.}oa_<(.3 as nullary operations with

the natural interpretation in G we speak of the |anqguage of type
T with constants in B and wite L (B?G .

| e

Corollary: L.(AGQ =L (G and L (0;G =1L .

Theorem3; If L is a set of formulas in |i (B?G each of
: T

whose finite subsets 8 is satisfiable in sonme relational system

A of type -r@cr(a then there is an ultra-product ~{AI'71)

inwhich E is satisfiable.
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proof: Let | = {0;PE£ and |6]<") and I(p = (070el and
<p e 0} for all <p e £ Then DQ:(I(p;<pe1}__c 2' has the

finite intersection-property and is therefore (corollary 2 to

def. I.l)contained in an ultra-filter D of 2T ve will
showthat Tf is satisfiable in ~p(®0:°€1): If L involves
t he vari abl es xo,..',,xy,..., y <a, then for every 0 e |

there exists some a(9) = (aa(0))a. € A satisfying 0 in G..

Ve ttention to th Ta(0)) A -
narrow our attention to the sequence ((ao( ) Uef g<a =

at€ (TT{A;03)) » If (pe T then a satisfies <p in ~ * Q8e1)

if andonly if U= {6;(a6(‘.\)_)sé\a:a(05 satisfies <p in GQ} €D

(we use theorem?2). Since visibly every 0 containing <p ‘is in

\3s we conclude that U3 i¢, which, since | e D CD, inplies

©
that u € D. Thus a satisfies E in "y(%1°€1). q. e. d.

An imediate corollary is the conpactness-theorem W recall
that a sentence either holds true in a relational system G or
it does not (if it is satisfiable by sone string of el enents,

then it is satisfiable by every string; hence the sentence hol ds).

Def. 11: If £ is a set of sentences in L then the madel-class
— T :

M(D of £ is the class of all relational systens of type T

i n which every sentence of T holds.
Corollary 1. (Conpactness-theoren): |If T> is a set of sentences

in LT each finite subset of which has a nodel then L has a

nodel .

Cor ol | arv'2'(RyII-I\IardzeV\ski),: Let £ be a set of formulas in

LT(G). If each finite subset of L is satisfiable in G then

there is an ultrapower of G inwhich I! is satisfiable.




89

13. El enentary Extensions*

Closely related to the concept ™ ultra-power," the concepts of

" el ementary extension*! play

I el enentary enbedding, ! resp.
an inportant rdle.in the first order logice The relevant defini-

tions, as given by A Tarski, are as follows:

Def. 11: If G and IB are relational systens of the same type
with Ac B then B is called an el enentary extension of G

(notation: G*' B) if for each formula 0 e L‘E,“? an coo* and

each a e A* the formula & is satisfiedby a in B if and

only if it is satisfiedby @ in G G is then an elenentary
subsyst em |
It is useful to realize immediately the follow ng equival ent

formul ati ons:

Remark 1. If. G and B are relational systens of type T wth

-Ac_B- then the followi ng statements are equivalent:

(1) G'B

(009 @ . . _
(2) If $.€ Lr and a e A then 0 1is satisfiedby a 1in
B if and only if 0 is satisfiedby a in G

(cg _ <cog>
(3) If 0e L and a € A ~ (= set of all <o,-tuples of

el ements. of A which become stagnant from sone point on) then

ij) is satisfied by“a in G if andonly if . 0O is satisfied by
a in B

proof: Clearly, (1) inplies (2) and (2) inplies (3). To see that

(3) inplies (1) we choose a My O0e I;[a" and ¥ e A% 0

depends (by definition) only on finitely many variables, say
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X. ,....,%X. 3 0£1i_, <a we indicate this by witing & =
:I.O 1 Y
O(Xg ,....,Xg ). Then 0 = jl’ (Xqs...,Xs), obtained by con-
on -
sistently replacing xX. by Xy- O£V £n, is a foomula in
(D} -\t

LT . Moreover: a e A satisfi(es $ in B if and only if

J— < OO>

a>=(a ,...,a. ,a. ,a. ,...) eA satisfies 0° in 8 which
1o *n *n A _ :

holds (by(3)) if and only if a satisfies 0 in G g, e. d.

If we apply the definition of G* B to the special for-
milas R/(*x5e+.,*y) and (3y) (fy(ree-2%) =Y) Toratt
R‘y€ R ‘fy € F, t_h’én we deduce irﬁredi ately t’r’le fol | owi ng renark:
Remark 2. If G is an elenentary subsystemof 6 then G is
a subsystemof - B.

Anot her obvious corollary of the definition is the fact that,
if G~ B then a sentence holds in G if and only if it holds
in B; ~one calls this relationship between G and B an-

el enentary equi val ence.

Def« 12: The rel ational-sy.stem; G and B of type r are

called Melementarily equivalent," G =B.. if every sentence t hat

holds in G al .so holds in B, and vice versa.

Remark 3: G B inplies G s B. |
The attenpt to really understand the concept of ' elenentary
extension™ |eads to the recognition of the fact that it puts
really conditions only on formulas involving the existential
quantifier. So the following result, as useful as it is, proves

to be not too surprising.
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Theorem4 (Tarski): If G is a subsystemof B then B is

an elenmentary extension of G if and only if the follow ng con-
()

dition is satisfied: For every *€L,°, 0"y<0), and

- . SB2> - L .

a' € A ° (= set of stagnant cogtuples), if a satisfies (3&)('1’)

in B then there exists sone b e A such that a_(y/b) sati s-

fies $ in B.

proof: To see that the condition in theorem4 inplies G ft
(0) o)

we verify condition (3) of remark 1. So let % € L'r and

- <w,> .

a € A : If ™ is an atomc faornmula then the fact that G is
a subsystemof 6 inplies that a satisfies > in G if and

only if it does so in B. W proceed by induction and assune t hat

T

0-1,"2 are two formulas in L which are satisfied by C in

G if and only if they are satisfied by ¢ in IB for every

c €A . Then, clearly,-70~ and 3+ Vifi are formulas with
that property. Finally, if (3x'y) (d‘-)_ is satisfied by a in B
then (by the condition in theorem4) a(y/b) satisfies \b1 in

B hence in & for sone b € A vi"eVers""Sx‘de.bl) is satisfied
. )

by a in G then a(y/b) satisfies i_f_ti in G for sone b e A

) ) <a) 9>
i.e. ¢ = a(y/b) € A satisfies rf;n in G hence (by assunp-
tion on >/t) in ~. Therefore a satisfies (3x13(ibl_) in IB
The converse statenent is quite evident. g. e. d.

We shoul d pause at this point to see a few exanpl es:
(Ex...14): W suggest a rigorous proof of the follow ng sinple

fact: If O: P. -« fi is an isonorphismof relational systens, "c e C?
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tyc§ D the a-tuple resulting from c by conponentw se
application of */), $e|§_a), then ¢ satisfies $ in C if
and only if 0(c) satisfies ft. in fs.

Thus, C~™ fl inplies always C s A

(Ex. 15) : W have seen that the free algebra ~(a) exists for

arbitrary a if K is an equational class. |If 0Q < ou ™ a
are ordinals and {c ,c.,...,C ,eeee}* o is a basis of ?,(al

O JL y ©YACL N £
then, as one easily checks, <[{c,...,C,....}ag ]:FP> &3g(ay and

0 y BRATE
we can therefore assune that 3r(a,) ¢ 37 (a,). As was shown by
X 1 — K [/
K : oo !

R Vaught, 3 (az) is an elenentary extension of ~¢(°h) * i"

particular: Ax~j) S3Knagax W prove thigs statement using
Iarskilg criterion in theorem4: Let G=3 (a,)s IB=3 (aj and
«*>> K 2
a €

K 1
sorre b €8B sucﬁ ﬁat'sé*(;‘??b)(if‘ﬁqw slar%isl?fiéshe%tqer{elgmSts

Remar k 1.23 irrplies the existence of natural numbers n, m such

— Wi >
that a € [{co .. . .,Cn)] and be [Cq, .. .>>, M- M "]
1 m
(of course, we assune that we listed only pairwise different <c¢'s.)
Thus, if we choose a bijection < {¢c } .*— [c }y Wi th
y y"Qe ¥y

<p(c5) =C¢, OEBGEN and <plc" ) = cn+<y, 1 £y £m, which we
extend to an autonor phism < #T’(a') -> 3 (a0)5 t hen cp(a(y/b)) =

<cQ,>

a /<(b)) eA® (see exanple 14) satisfies $> in B g. e. d.
a(yl <p

(Ex._16): In theorem 1.5 we introduced the mapping j = j; a -

G - Gg whi ch erabedded the relational system G into an arbitrary

of its ultrapowers. W can now say even nore: | is an elenentary
enbeddi ng, i.e. G:: Is an elenmentary extension of G To see

this we use again theorem4 and assume that (3x)j($) is satisfied
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by@ —((&)6)16<GE(A)§< n GD]E 1;‘(:1 %« s satisfied
by "Th (yT(bhre) 1Mo forsore (ojgp € g nwous
(see theorem?2), S($,T§T. (y/(bi);)) €D Since

S(*, TaT? (y/(bi)i€|) £S(*,(a), (y/tbjj)) for an arbitrary
fixed b€A, Weconcludethat S($5(-7_(y/(b) 1)) €D i.e.
(again by theorem 2) ttet (a) (y/(b);D) satlsfles <& Iin Gp .

This concludes the proof.

The conclusion of the last exanple is so inportant that we

decide to give it a special enphasis:

Theorem5; If G is a relational-systemthen it can be el enentarily

| n |

enbedded in each of its ultrapowers GL_): Hence, GG, and
G |

The theorem coul d be essenti al ly sharpened such as to give
a characterization of elenentary equivalence in terns of ultra-
power s. V‘é prefer to only nention the relevant result due to
T. Frayne wi thout giving the proof:
Renmark 4 (T. Frayne): Two relational systens GB of the same
type r are elenentarily equivalent if and only if B can be
elementarily enbedded in sone ultrapower of G

' application' of theorem4 is a sinple

Anot her out st andi_ng
proof of the famed Loweri hei m Skol em Tar ski -t heorem
TheoremsG (Lgvuanhei'm Skol em Tarski ) : -
Let G be a relational systemwith m fuhdamant al relations
and fundanental operations. |If Be-A has cardinality J#— nax {mfk)

then there exists CeA suchthat Bc-C |Bl =|c|] and G
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is an elenmentary extension of C

pr oof ;
W well-order A= (ay;y<a] and define for every ne Ny the
set C inductively as follows: C = B, Copl = (b;b e A and
<(0n>
0

there exists sone & e L , 770 and & e ¢, s>uch t hat

b is the least element in the well-ordering of A making a(y/b)
n o L
to satisfy S in G). |If we choose some ce C, $=(x=x),

y =0 and a = (c,c,c5 ... ) thenvisibly c¢ satisfies the
n+1

requi rements to belong to C - . W concl ude that
cC ~¢g n EC c
o— 1 — n —
and set C = U(CG;i=0,1,2,*..).
If ¢c-,...,c eC sayin C, and f €F then b=f (c® ...,C
i ny y m \V/ N \5 ny)

I's the unique, hence smallest el enent which nakes a(ny+|/b)

satisfy f}(xl,..."n) =X, 1, in G if a:—(<*,-1..,c § S g )
y y : _ y

Thus, fy(c%,...,cny) e %Jri: £ C this proves that C = <¥:F¥z>

Is a subsystemof G = <A F,R>. Sincethe criterion of theorem4

is inmediately applicable to the subsystem C of G we concl ude

that G is an elenentary extension of C and, of course, B cC.

Ve are left vg'éh)show’ngthat | Bl = ]c|; but this follows from
| Gt =G °71 . ||I(_(T’°?5I|:rrax(/m"|1:|cj:| CJ. Hence,
|d =rSq - |B = |BH. g. e d.

Corollary: Every infinite relational system G = <A F,R> wth
171517 < ft ~%° 2 countable el enentary subsystem In particular,
this holds for all Mclassical" structures, as semi-groups,

groups, rings, etc.
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| VW want to conclude this section with a short di scussion of
Y pure subsystens, ' a concept closely related to el ementary

subsystens and retracts, as we shall see.

Def. 13: Arelational system G is called a pure subsystem of

IB (or IB a pure ext ensi on of G if G is a subsystemof B

and any finite set of atomc formulas in LT(Q (see def. 10)
which is satisfiable in B is also satisfiable in G If the

sanme condition holds only for all finite sets of atomc for-

mulas in L'r then we call G a weakly pure subsystem

Let us assune for a mnute that G is an elenentary sub-

systemof B and let £ be a finite set of atomc fornmulas with

constants in A say S= [o"L,---,on}- | f X Xy are the
free variables occurring in® Ch..,..., 8, t hen we consi der the
sentence $s (3x-) (3Xo) .... (3x ) (cry Aa- A .... Aa) €L (Q

- 1 z m 1 z n T

which holds in G if and only if it holds in B;, thus [or’i,...5orn}
is satisfiable in G if and only if it is satisfiable in B.
In other words: G is a pure subsystemof B. W sumup:
Rerark—5: Each el enentary subsystemof a relational system B
Is a pure subsystemof B.
_Let'us assune that G is not only a pure subsystemof <R

but that all sets of atomc formulas in L (G which are satis-
- . *y
fiable in B are satisfiable in G Then we wite down the set

. . . c Y y<a
of all possible correct polynomal equalities p(b ,...b ,:..) =

o <
atb, .6 "% and all true relations Re(b. L....sb.mg)
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where B =fb ,...,b ,ee¢} | ¢ W associate with each such
14 Fooe
equality (resp. relation) the atomc formula PC* Aou"XjD*----"‘y/\a
o v :
Xy, »ooevn X, ...) . (resp. R~ T ™s A e LG as
®0 be y <@ -, i - g
- o
follows: If b GB\A then x* is a free variable; if be A

t hen Xy = b. Then the set £ of all these fornulas is satis-
fiable in 8 by construction. So, by our assunmption, £ is
satisfiable in G Let us assume that (¢ k®® is a solution

o

in G (i.e. if be B\A then a.b€A has to be substituted for

the free variable x; ; if b e A then a_ =Db): Then we can
r> b

define the mapping < B-*A by <p(b) = ap. If fy(b_",...,my):b
for fye F then <o(£y(brl,3,..,bn3):a.gf(ZyL,bX.>.,a,bn) =
fy(<p(t11""'bny))' | f R‘y(bl' Co ’87 ) holds true then ~
R(ap ,...,ap ) nust hold true. So <p 1is a weak epinorphism
A 1 i

y

Visibly, <p restrictedto A is the identity. Thus, via the
next definition (which extends def. 1.41) we showed that every

retract of a relational system 8 1is pure in B.

Def 14: If G B are relational systenms, then a weak epi nor-
2

phism <o B» > (1 is called aretractton if <p =< G is then

a retract of B.

Remark 6: If G is a retract of the relational system 6 then

G is pure in B.

(Ex. _17): Apart fromour approach one knows in the theory of
Abel i an groups the concept of a “ pure subgroup.” W recall:
<H;+,-,0> is a pure subgroup of the Abelian group <G +,-,0> if

every equation n*x =h, ne N heH is solvable in H if-
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and only if it is solvable in G (As a matter of fact, one can
easily see that it already suffices to require the last property
of equations p *x = h where p iIs a prime power). Since
n«x = h, as just introduced, is an atomc formula in the Ianguagé
of Abelian groups, it is quite clear that every pure subsystem
<H;, +,-,0> of the Abelian group <G +,-,0> (in the sense of
definition 13) is a pure subgroup. But the converse is true too

as was shown by Gacsciflyi [1]. Thus, in case. of Abelian groups

the notions of a '' pure subsystem” and a ' pure subgroup®

coi nci de.
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Chapter Il1l1. Conpactness in Relational Systens and Al gebras.

Now that we are famliar with the basic concepts underlying
our theory we intend to collect in this chapter the essenti al
results known so-far on the inpact of the diverse kinds of com
pact ness (introduced in chapter 1) on the properties of diverse
al gebraic structures. Questions as MIs Mcielski's conjecture
true for Bool ean Al gebras?'’" or " What exactly are the equationally
conpact Abelian groups?'’ or 'TIf a relational systemhas an
equat i onal conpactificat{on does it have one in the sane equa-
tional class?' and the like will be answered as far as known,
unsol ved probl ens stated, general connections between concepts
like '" equational conpactness™, Melenmentary extension!'y " pure
subsystenf , " ultrapower'" will be established. Many of the
core results .are due to the Polish mathematici ans Wegl orz,

Pachol ski, Ryll-Nardzewski and Myciel ski. W begin our chapter
with a characterization of equationally conpact sem -lattices, a
result that does not require any further theory at this point.
W agree towite equat i ons (£?§3 i"t~r® form £=q and to

replace e by x

| 1. Equational |l y conpact sem | attices.

We recall that a sem-lattice is a universal algebra S = <S;V>
of type <2> with a commutative, idenpotent and associative binary
operatbn V.. One defines a partial order on S by specifying

sy £ s, i f SVS'Z = S».
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Theorem 1 (G 4tzer and Lakser [2]): The sem-lattice S = <S;V>
is equationally conpact if and only if the follow ng three con-

ditions are satisfied:

(1) Every subset Tc¢ S has a |east upper bound V(t;tGT).
(2) Every chain C in 8 has a greatest |ower bound A(C;cCGC)
(3) If acS and C is achainin S then aV( A(C,CGC)) =
A(aVc; CGC) .

proof:

To prove the result we have to study systems of equations in
Pi @ (<2»x P*¥(<2» (see def. 1.39). Utilizing the identities
on sem|attices we see imediately that every such equation is of

the type sVx. —V....Vx. =t Vx. V _ _ VX. wher e
0 n- 1 o °m 1
s,t GS and n,mJ>0 (wth the usual convention that

s Vi V....v X, = s incase n=20).
0 in-1

(a) We first showthe easier inplication, namely the fact that
equational |y conpact sem -lattices satisfy the conditions (1)-(3):

To see (1) we consider the set of equations

Y = {tWw=x; t GT}YxVu =u; uGU if U is the set of
upper bounds of T. Since every finite subset [t_ VX =X ....3
tm V x = x}Ux v ug= uo,....,xVun::tJJ has the solution x =
tyg Viq V...Vt e concl ude that Ey has a solution which is
evidently V(t?tGT) . To verify (2) we choose the chain C and

the set of equations EQ = {cVx = C CGCU{X\Al = X*t G L} where
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L is the set of lower bounds of C Since every finite subset
(CQVX = C g - - . ] SmV™ - SpufxVag=xe xxXVepg = XA of T has
the solution x =mn{cy, .. *,Ccj we conclude that 7~ has a
solution which is evidently A(c;c e © . Finally, to show (3)
we take s € S, a chain CO and put Co™ Al(c;c eCo). 0]
course, if Cy is achainthen sois GC; = {cVs; c e Gy} and we
put c, = A(c;c € G) . W have to showthat sVcy, ™ i* i.e.
(since s Vcgy<Ec, isclear) that s Vcy,lI>c”. To see this we

consider the set IL = {sW = cW}Uxvd =d; de C,. Since the

finite subset fsWw=c¢,W. xvMd =d, ...sxvVd =d } has the
solution x = mnfdgd,, ...,dp} we conclude that T3 has a solu-
tion e. Hence sVe = c"Ve, i.e. sVe J> ¢, which (since eWd = d,
i.e. e£cy for all de C,) inplies that sVcg "~ sVe ™ c?,

i.e. SVCo " ¢

(b) To prove the converse direction of the theoremwe refer to
the standard argunent which shows that (2) inplies that every
downward directed set D has a greatest |ower bound A(d;d e D)
and (3) inplies that sV(A(d;dED)) = A(sVd;d e D) for every such
set (Recall: D is downward directed if “T*%9 ¢P° inplies the

exi stence of sone d e D such that d. , *d, d; *>d) . W sumup:

(2¢*) if D is downward directed then A(d;d e D  exists.
(3) If D is dowward directed and s e S then s(Ad,d e D) ==
A(svd;de D .-

W are now in a position to state the two | emmas crucial for

our proof:
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Lemma 1: Let sWw. V VvV X. = rvw. V....V Xx. be an
1o Si -1 Po °m 1

equation in PA3(<2»x P*® (<2» whose solution-set Ke S?
is downward directed (8* = <S%; V> is the direct product). Then

t = A(k;k € K)Y is a solution of that equation.

proof; Let K=[cy;Ae AA with c, = (c. (i))~.. . . Then t(i) =
A A A UeX<j CK
A(c}\(i);Ae A); hence, s Vit(i )V—Vit(i ,) =s V(Ac™(in ;A€ A)
(e} n—X A O

V_V(A(ca(in™1) ;A6 A) = (we apply (3')) = MsVcr(ig V. . . Ve (i

Ae A . Smlarly, r Vt(jgyV Vi(jmi) = A(rVea(joV .. .

Ver(j -);Ae A . Since, by assunption, sVev(i )V . Vec. (i -) =
A m+ A o A n-1
rvt(GOV ve (™Y for all A€ A we conclude that
S Vt(igV—Vit(ini1) =r1r Vt(jgV—Vit(jm1), i.e. t is a
solution of our equation. g. e. d.
Simlarly one proves the next |emmma:
Lemma 2; Let p(x) = sW. V....W. , g(x) = rvx. V.o..sWx!
0 n-1 Yo ‘m 1
and g(x) = g(x) an equation with solution set Ko S?  Then
t = V(k;k e KN is a solution for p(x) = q(x) .
proof; As above, we get p(t) = avt(io)v....\/t(in_l) n st(io)V...

Vk(in_x) = rvk(j O)V....Vk(j m_i) = qg(k) for every k e K
Thus, p(t) » V(q(k);k € K)Y =q(t). Symmetrically, qg(t) ~p(t);
i.e. g(t) =p(t). g e. d.

Wth these two | emmas at our disposal we can now settle the
claimthat (1),(2),(3) inply the equational conpactness of the sem -

lattice £. To this end we choose a set of equations 75¢c P;\a;'(<.2>)x

P§*) (<25) which is finitely solvable; i.e. every finite subset
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J? of Yi ~2°2 non-enpty solution set K(T") . By lemm 2,
t(T*) = V(k;k € K(r*)) e K(r*) . Moreover, the set K(JQ = g) =
(t(P);Pc T, |™|<V?ed p=q9g¢€ T} is dowward directed
for every p=q€ T, since E* ¢ T** inplies t(T*) =>t(T**).
Si nce K(R = g) j.s the solution-set of p =9 we get (by | emma
1) that wu(g = g) = A(k;k e K(g=2" is a solution for Pp=gq .
Moreover, since K(£"= (§) and K(£; = Az) are nutual |l y downwar d
cofinal in S we obtain the fact that MP = i) ~ w(Po~ Qo)
for any two g” = " g, = ", e T. Thus, M = 7) s a

solution for £, i.e. £ is solvable in 8. q. e. d.

Now t hat we have characterized equationally conpact sem -
lattices it is natural to ask for the solution of the follow ng

speci fic open problem

Probl em Zi Is every equationally conpact semlattice the
al gebraic retract of sone topologically conpact semlattice?
(or enbeddable in one?).

A trivial application of theorem11l yields the follow ng

corol lary concerning equationally conpact |attices:

Corollary: If <£ =<L;V, A~ is an equationally conpact lattice
t hen

(1) £ is conplete

(2) If DcL is a dowmward [upward] directed set then
s V(A(d;d e D)) = A(svd;d e D [s Alv(d;d e D)) = v(sAd;d € D].

(3) If a>b are tw elenents in L and {Cdii € 1} is a set

of elements in L such that 1/ j inplies c¢c.Vc. = a, c.Ac. =Db
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then |I] <A§.

proof: Wile (1) and (2) followimediately fromtheorem 1,

(3) follows fromthe set of equations T = [x’\xj =ai /I j,

i,j] e I)u{x.le.J =b;i/j, i,] €1] [see exanple 3, chapter I] .

Problem3; Find necessary and sufficient conditions for a lattice
"to be equationally conpact. .

Remark: | do not know a lattice satisfying conditions (1), (2),(3)

of the above corollary which is not equationally conpact.

Al though the characterization of equationally conpact |attices
Is open at the tinme, sone results have been obtained on |attice-
rel ated systens. But before discussing these results and thus
rounding up the picture on the situation in lattices it wll prove
useful to have sone nore general results at our disposal which

we wi Il now study in section 2.
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J2. Equival ence of different kinds of alqgebraic conpactnesses.

In definition 1.39 we got acquainted with the concept of
S-equational mconpactness. Equational conpactness of an al gebra
G was the special case of A-equational mconpactness for all
cardinals m W now extend the real mof these definitions as

foll ows:

Def. 1: (a) Let Kc L be aclass of fornmulas in the |anguage

— 7
LT' A relational system G e K(r) is called weakly K-conpact

if every set Te K is satisfiable in G provided every

finite subset of E is (we then call £ finitely satisfiable in
G). If KGO =KOLr(G and every set EeK(G) whichis
finitely satisfiable in G is satisfiable in G then we call

G K-coupact.

(b) If K is the class of all equations with constants in A

(W thout constants) then we call [of course, in agreenent with def.
1.39] the algebra Q(weakly) eguationally conpact.

(c) If K is the class of all atomc fornmulas with constants in

A (without constants in A) then we call the K-conpactness (weak

K- conpact ness) .atomic conpaciness (weak atom ¢ conpact ness).
(d) If K is the set of all positive fornulas [i.e. the set of
all fornulas whose matrix in the prenex normal formcontains
not the negation sign-?-] with constants in A (wthout constants
in A then K-conpactness (weak K-conpactness) is called posi-
I-LV%—GQMS. (weak positive conpactness).

In this section we derive a fewresults centered around a

characterization of atom c conpactness. Anal ogous results for
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the " weak!* case are collected in the next section.

In remark 6 of chapter Il we established the fact that every
retract G of a relational system (B is pure in IB It is
ihteresting to notice that if G is atomc conpact then G

is pure in IB if and only if it is a retract of IB

Remark 1. |If G is an atomc conpact relational systemthen G

is a pure subsystemof (B if and only if G is a retract of IB

proof; For the one half of the proof see remark I1.6. So assune
that G is pure in <B and let £ be a set of atomc fornulas

with constants in A which is satisfiable in (B Then E is
finitely satisfiable in iIB hence (since G is purein IB finitely
satisfiable in G Thus (since G is atomc conmpact), S is
satisfiéble in. G which (remark I1.6) proves that G is a re-

tract of IR g e d.

We have now all the pieces we need to put together a funda-

mental result due to Wegl or z:

Thebrenlz (V%glorz): If G is a relational systemof type r
then the follow ng conditions are equivalent:
(1) G is positively conpact.
(2) G is atom c conpact.
(3) G is aretract of every algebraic systemin which G
I's pure.
(4 G is aretract of every elenentary extension of G

(5) G is a retract of every ultrapower of G
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proof: (1) inplies (2) since every atomic formula is positive.
(2) inplies (3) by remark 1. (3) inplies (4) because of remark 11.5.
(4) inmplies (5 because of theoremll.5. To prove that (5) inplies
(1) we pick a set of positive fornmulas T>_c¢ LT(Q which is
finitely solvable in G  Then corollary 2 of theoremIl.3 assures

that £ is solvable in sonme ultrapower GhIof G If < G]-]):-G

is the retraction which exists by (5 and (c ) . is a solution
f T in GZI th i (utdoh of T in G
0 in Gp t hen (<p(cy))y<¢t is a soluti'on o in as

is assured by Marczewski’s wel | -known theoremstating the invariance
of positive formulas under honmonorphi sms (see Marczewski [1] or
Gr(;tzer [1], chapter 7). Thus, T is solvable in G which proves
our point. qg. e. d.

To state one inportant corollary we need the follow ng con-
cept: |
Def. 2: If G is a relational systemin the class L of

rel ational systenms then G is an absolute retract in L if it

is a retract of every extension in L.

(Ex._18): W recall that a relational system G is injective in
aclass L if every weak honmonorphism <0 B-» G B e L canbe
extended to a weak homonmorphism <o C-» G if C is an extension
of B in L. Thus, if G is injectivein L and Ce L con-
tains G as subsystemthen the identity-mapping 1_.: G- G can

be extended to a weak hononor phi sm hence retract <p: C-+G

Hence: Every relational system G which is injective in the class

L is an absolute retract in L.
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Corollary 1 to theorem?2: If L is a class of relational systens

of type r which is closed under the formation of ultrapowers
(as, e.g., equational classes of algebras) then every absolute

retract G in K 1is atomc conpact.

proof; This is clear since G is retract of each of its ultra-

power s, g. e. d.

Corollary 2: If L is as above then every injective relationa

systemin L is atom c conpact.

proof: This, of course, is clear fromexanple 18 and corollary 1.

g. e. d.

Let us conclude with a trivial remark concerning the pre-
servation of atom c conpactness under al gebraic construction (we

skip the proof):

Renark 2: Direct products and retracts of atom c conpact al gebras

are atom c conpact.

Before we switch to }2a which contains parallel results on
weakl y K?conpact rel ati onal systens we should bring to mnd the
obvi ous fact that atom c conpactness and equati onal conpactness,
al though different concepts in relational systems G = <A F, R>
with R/ <f), coincide for universal algebras. Thus, every result
we obtained and will obtain on atonmic (resp. positive) conpactness
has direct relevance towards questions concerning equational com

pact ness of al gebras.
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$2a. Weak atomc conmct ness.

Usi ng once nore Marczewski's theorem stating the invariance
of positive formulas under hononor phi smone proves easily the

next useful renark:

Renark 3: If B G are relational systens of the sane type r,
BcG and h: G-» B 'a weak hononor phi smthen the weak atomc
conpactness of any one of the three systens h(GQ or B or G

inplies the sane property for the renmaining two systens.

Q_r_g)_f_: Assune that G is weakly atonmic conpact and Tc L,

a set of atomc formilas finitely solvable in B(h(G); then D
is solvable in G If a € A* is a solutionthen h(a) € B*h(GQ?
is asolutionof T in B(h(G); hence, B(h(G).) is weakly

atomc corrpact.- The remai ning two proofs are anal ogous. g. e d.

Corresponding to renmark 2 (up to the point that we skip its proof)
we have renark 4:

Re'r_rark 4: The direct product of weakly atom c conpact relational
systens is 'agai n weakl y atom c conpact.

Before we proceed | et us give an exanpl e:

(Ex. 19_)_: Every lattice £ =<L;V,A> is weakly atomc (i.e.
weakly equationally) conpact. This is clear since every el enent
aelL forns a one-elenment-sublattice £ = <[a];V,A> which is a
hononorphic image of £ Z° is, of course, weakly equationally
conmpact; thus, remark 3 settles the matter. For the sane reason
are all groups @Q@=<<G *, ~1, 1> and rings, ft = <R +,-,0,*> weakly
equational |y conpact . |
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A basic theorem (corresponding to theorem 2) concerning
characterizations of weakly .atom c. conpact relational systens

is the follow ng:

Theorem 3 (Weglorz) ;. If G is a relational systemof type T

then the followi ng conditions are equivalent:

(1) G is weakly positively conpact.

(2) G is weakly atom c conpact.

(3) Gl-contains.a homonor phic image of every al gebraic
system ft in \Aich G is weakly pure.

(4 G contains a homonorphic imge of every elenentary
extension of G

(5) G contains a homonorphic imge of every ultrapower of
G

proof: (1) inplies (2), (3) inplies (4), (4) inplies (5) aﬁd

(5) inpfies_(l) for exactly the same reasons as mere.valid in the
corresponding inplications of theorem2. Thus, let us prove

-thét (2) implies (3)! To do so we choose the system £ of

atomc formulas in L as follows: W take the set S of al-

T
possi bl e expressions 4(b.s....,bn where $ = $(x.11....,x,1J is
an atomc formula in the free variables x.- ..., Xx. and the
’ . X I X
substitution bj -» Xy satisfies € in B For each such
3

expression we introduce free variables x.. ,.... ,X and define

| P ity
E= ($(x™ ,..., % ), $(b-,...;k)& e S). '"Evidently E is solvable,

hence finitely solvable in ft. Therefore, T is finitely
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solvable in G since G is wakly pure in B. Due to the
weak atomc conpactness of G we conclude that S is solvable
in G by, say, a system "Q-HGE_; (i«e. we have to substitute

, )+ Then h: B-» A mapping b to a, is a honmonorphism

o ox

A4
Q. e
W now go on to continue our discussionof .$1 and to coll ect
all results we know so far on conpactness in lattice-rel ated

structures. -




$3. Lattice-related structures.

If Z=<L;V,A> is a lattice, i.e. an algebra in the class L

of all latices, then Z{<i) denotes the associated poset <L;<>

and Z% = <L;V,A O 1> denotes the smallest lattice with smallest
element 0 and largest element 1 containing £ If (<

denotes the class of all posets £(£) then IL<l) <= (Qwhere O

is the class of all posets. il (<) consists of the so-called |attice-
i nduced posets. W have the following main-result on these (see
Weglorz [3]):

Theor em 4: [f £ = <L?V, A> is_a | attice then the follow ng
statements are equival ent: _

(1) &£) is atomc conpact.

(2) £ is conplete.

(3) Z(£) is injective in O

(4) Z2(£) isinjectivein |L(£) s

(5) £(jE) is an absolute retract in I"L (L.

(6) Z(£) is an absolute retract in ®

proof :
(1) inplies (2)i Let ~~ TclL and

D= (x"t; teT U{x*u?2uel U{yrt?2t €T U[y*LLel)
£ LT(<£(§)) where U is the set of upper bounds of T, L 1is the
set of lower bounds of T. Then T< is finitely satisfiable in
£(<1) 9 hence satisfiable in £(<f) » The solution x«a, y=»b
provides clearly a |east upper bound a and a greatest |ower

bound b of T.




112

(2) inmplies (3):

Let G = <A?<>, B = <B; <> eEL Gc B and h: A- L a weak
homonorphismof G in £(<!). W have to showthat h can be
extended to B. .To that end we apply the standard pattern:

Nanely we take the set S of all pairs (Cf) where Gc Ccft,
CeO, f is a weak hononorphism f : C-« L and t% = h. Since
(Gh) e S, S is not enpty and Zorn's | emm assures the existence

of a maxi mal el ement (Bo,hc}'e S.  Assuni ng Boc: B, say

c e-B\Bo, we can form u = U(h éb) b e Bo and b<£c), v =

n(ho(b) b € %) ahd_ b J>c), choose an arbitrary element a wth
uf£?®<Lv and define h;: Bg Wc) -+ L by h-~ =hg and h”c) =
a, then (as easily verified) (<BjU{c); " >, hlf e § contradicting

the maximality of (B >h ) . W conclude that B =B, and h :
0O O 0 o]

B-*L is the desired weak hononor phi sm extendi ng h.

(3)'inplies (4) is, of course, obvious. So is the fact that (4)

inplies (5) (see exanple 18, this chapter).

(5) inplies (6) ; We recall the McNeille-enibedding of arbitrary
posets in posets induced by conplete lattices (see chapter I,
preceding remark 7). Thus, if P e O contains Z{£) then we
McNeilie-enbed it in p\ By assunption, there exists a retraction
@ P -mE(<€)* hence a retraction cp T: P -+ £<) which was to

be shown. -

(6) inplies (1) by corollary 1 to theorem2 since (U is closed
under the formation of ultrapowers. g. e. d.
Looki ng at the theoremone feels inclined to conjecture

that possibly the atom c conpact posets are exactly the absolute
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retracts in O (since this after all holds for posets of the form
£(£)). This is not only not true (see next exanple) but we have
even the nice result that P e(;is an absolute retract in (b i f
and only if P = £<f) for sone conplete lattice £ (see next

remarl O.

(Ex, 20) : The poset G = <{a,b,c}; £> with a<¢c¢, b<c and
unrelated a,b is evidently atom c conmpact [ a short rigorous
reason woul d be the fact that G = <{a,b,c};V> with a Vb=
c 1Is an equationally conpact sem -lattice]. Equally evidently
G is not an absollute retract in G [e.g. G is not a retract
of IB=<{a,b,c,d}; <€ > where d < a,bsc and <{a,b,c}; £>-=
6.

Remark 5: If the poset P = <P,<f> is an absolute retract in

then there is a lattice Z such that £(£) = P.

QL_Q_(gj_: Again we can assunme tint P is MNeille-enbedded in a
(conplete) lattice ft = <K?V,A) such that P cft(<f). By assunp-
tion there exists a retraction <ft(f -> P Al we have to
show is that any two elenments a, be P have a greatest |ower
bound a A b and a |least upper bound a v b in P. W know
that we have a greatest lower bound ¢ of a and b in R("),
i.e. (1) ¢ £a,b, hence, <p(c) £<p(a) =a, <p(b) =b and (2) if
x € P and x <_ a,b then x;>c, 1i.e. x=<(x) J><p(c). (1)
and (2) establish that <p(c) = a Ab in 5? Dually we can prove
that <p(d) = aVvVhb in P if d is the |east upper bound of a
and b in R(E£). q e. d.

HUNT LIBRARY
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To go back to theorem4 we recollect that the atomc com
'pact ness of the lattice-induced poset £(<) 1is equivalent to
t he conpl eteness of £. As remarked inf 1 (see protieem3) a
characterization of equationally conpact lattices is not known
at the tine, although we know that the nere requirenent of com
pl eteness is surely not enough (see the corollary to theorem1).
A counter-exanple is the frequently quoted exanple 3 which viol ates
condition 3 of the corollary to théor em 1. Another counter-exanple

violating condition (2) of the sane corollary is the next one:

Ex, 21): Let £:<L;V,A> be the conplete |lattice defined
as follows: L = {0} O{%; neN U{x} 'Ut(X>;11)? n € N [J{X,O}

Uy} U{A U{B} wiere x,y,AB are nutually different synbols,

B is the largest, A the snallest el engnt @ln the lattice and
n n

th t det db 1 OvV—=1— = 0
oD Z B ol 9 = (x 0), ok Ly ez O T ey
11, 1 _ .10 1 1 1L \

max(=hhp - VX S (X'n')n "V Q=g Vg = a\ll

B, --Vy—B xV(x,—) (x ,“), XV (x,0) = (x,0), § s
xVy=y, (i) V(xi) = (x max{i, [}), (X’in) Vy = /.61.‘0)3\\.3
(x,") and (2) om =0, OX=A oa(x,") = 0A(x,0) = \ /*o
0, oy =0, 2 = minl i), | Ax=A Iax,j) =0=

~A(x 0), —-Ay = 0, xA(x, |) :1; xA(x,O) =X, XAy = X, (x,;)/\(x,a) =
(X, m:m[-ﬁ,é y, (x-,—r-;)/\(x,o) = (x,0), (53 Ay =y, (X, 0)AY= (x,0).
Thus, XMA%:: ne N) =xV0= (x,0) £y =A (x5 in€N

A(xv’l; neN wiich (inviewof the corollary to theorem1) shows |

that Z is not equationally conpact.
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We know much about atomic conpactness in £(<?), little
about equationally conpact lattices £, but we know every-
thing in another lattice-related structure, namely in Bool ean
algebras 1S=<B2V, A *,0,1> The follow ng two theorens contain

the crucial information (see Weglorz [1]).

Theorem5: If B = <B;V,A',0 1> is a Boolean algebra then the
follow ng conditions are equival ent:
(1) B is conplete.
(2) B is injective in the class j% of all Bool ean al gebras.
(3 B is an.absolute retract in the class JD of all Bool ean
al gebr as.

(4 B is equationally conpact.

proof; The fact that (1) inplies (2) follows froma standard
argument as it was displayed in the proof of theorem4 when we
showed that (2) inplies (3) [besides, the result is well-known].
(2) implies (3) and (3) inplies (4) was established before [see
exanple 18 and corollary 1 to theorem?2] since Tb as an equational
class is closed under the formation of ultrapowers. If IB is
équationally conpact then so is the lattice B = <B;V, A> which
because of the corollary to theorem1 in section 1 inplies that

B is a-conplete Bool ean al gebr a. g. e. d.

The next theorem establishes that Mycielski's conjecture is true

in the class .

Theorem 6: The Bool ean algebra B is equationally conpact if

and only if it is a retract of some topologically conpact
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Bool ean al gebra (%

proof: O course, we only need to show one direction and assume
that B is equationally conpact. Then we knowthat B is com

pl ete and can be enbedded in a conplete atom c Bool ean al gebra

C (nore concretely: C can be choosen to be the conpl ete Bool ean
al gebra of all subsets of the Stone space of B). Since, as

wel | -known, C is the direct product of 2-elenment Bool ean al gebras
B% it carries the conpact Tychonoff-topology resulting fromthe

di screte topology on B,* Thus, C is topologically conpact.

Since Hc C 2*d B is an absolute retract in J5 we proved the

result. g e. d.

The question concerning weak equational conpactness of Bool ean
algebras B is, of course, easily decided. Since B‘JE_G% =
<{0,1} ;VVA',0,1> and B, is a retract of (B we know that every
Bool ean al gebra is weakly equationally conpact because of remark

3 in section 2a. W conclude our section with this obvious

remarK:

Remar k 6: Every Bool ean al gebra is weakly equationally conpact.
So is every lattice and, of course, senmlattice. Sois, in
general, every universal algebra with a finite honmonorphic inage

as subal gebra.
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N4, A gebras with a single unary gperation,

In this section we apply sone of the results obtained in
section 2 in order to investigate the questions centered around
the concept of equational conpactness in algebras G = <A f>
of type T ==<1> (i.e. f is a single unary operation on A).
The results are essentially taken fromWnzel [2] and Pachol ski
and Weglorz [1]. First we characterize those algebras G = <A f>
that are equationally conpact. W recall: G 1is connected if
for any two a,b e A there exist n,me No such that f"(a) =
f®(b). it proves useful to introduce a few suggestive concepts

i n addi ti on.

Def. 3: If G=<Af> is aunary algebra then a e A is called

a stagnant _element if f(a) =a st(Q is the set of all stag-

nant elements in A If ne NO and a € A then the n-periphery
neg(a) is the set of all elenents b e A such that f"(b) = a and
fn'l(b) j4a (provided n-1J>0). Incase ae A satisfies

a”™ f(b) for all be A wecall a amninal _elenent. |If

aeA is an elenent such that (l1)f"(a) / a for all m€ N and
(2) ryfa) contains a mninmal element then a is said to have order
ri in G i.e. °Q?% 2™ Finally, if ae A satisfies (1)
fm(a) JEa for all me N and (2) there is an infinite chain ao,
Qg, - * B - such t hat aa . /3a, for i ~j and a =
f(a,.y), then a is an elenent of infinite order.

(Ex._22) : The algebra_;1 =<g;f> with n elenents Cn:

{a_*a,....,a_ .} whose indices are
[ n-1
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determ ned modulo n and whose operation f ;>
Is defined by f(ax) = ax+1 1is called the }' \ 4
chlic'alqebra with n elenents. It has no al* A
B 4
4
stagnant elements unless n = 1. None of its RAPY T
el ements has an order (be it finite, be it infinite). If nJ>2

t hen m. (aw) Ap{ for all m€ N and a. e qn. O course,

m (a ) / of is equivalent to m= 0. '

(Ex. 23) ; The algebra & = <J*;f> whose carrier set

)
I's, say, the set of integers and whose operation f o
Is defined by f(n) = n+l has neither stagnant nor '&

m ni mal el ements, n}(n) consi sts of the one el ement
n-m for all neA me No. The arbitrary el ement ;
n € Z has no finite order but is, on the other hand, of infinite
order.

We will now state the characterization-theoreniof.equationally
conpact unary algebras G = <A;f>; it wll be followed by a couple

of lemmas that serve its proof.

Theorem 7; The unary algebra G = <A;f> is equationally com
pact if and only if |
(1)\'Every el ement whose finite orders approach infinity
I s of infinite order .
(2) G contains either sone subal gebra m,n(n A; 1) or the
subal gebra j.
As we have indicated before we will prepare the proof mith

sonme | emmBs:
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Lemma 1: If 1B is an elementary extension of G = <A;f> then
we have the follow ng relationships:
(1) st(Q =7 is equivalent to st(fl) =&
(2) For every a € A "g(?) =$ '® equivalent to "ft(3) T &
(3) ft contains a subalgebra isonmorphic to r*, if and only

if G contains such an al gebra.

proof:
(1) follows fromthe fact that (3x) (f(x) = x) 1is a sentence it)
L<1> which is true in G if and only if it is true in ft. To

see (2) we take the formila & (3XQ) (f"(Xq) = Xx A f"~1(x,) " x*.
[/
If we assume that ~(a) /jtf then a = (asa,a . . .. ) e A°

satisfies $ in (B hence a satisfies $ in & i.e. there

exi sts a, eA such that f”(aiz = a, f”~1(a1) A a. In short:
A( a) ~pf. (3) follows sinply fromthe sentence (3x) (fn(x) =
X Afn'l(x) /I x) . q, e. d.

Using an al gorithm due to Novotny one can prove the next

| emma:

Lenma 2: Cn 'S retract of every extension <R = <B;f> that con-

tains no subal gebra (isonorphic to) dm unless n divides m

proof: As in exanple 22, we assune that Cn = {ao,al,...,an_.l}
and f(a") = ax+: (all indices are determned nodulo n). If

B is connected then for every b € B there exists a unique smallest
mb) € Ng such that f™®(b) e C,, say f™P)b) =72 ;) "

define <p(b) = a e % and easily verify that < B-» C,

1ib)-m{by ;
IS a retraction. If B 1is not connected and B—l is a maxi mal
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connected subal gebra of 8 not containing any subal gebra

C,™>1* then we pick sone b. e B and map it via (p~ to
1

a, G % . Then we have for every b € B a unique nm(b) e Ng such
that ™) (b) e [17], say f™P) (p) = %P (pr  We conplete
the definition of <p“:l by requiring that <p, 1(b) = ak(b)-m(b)

1
(where the index of a is again determned nodulo n) « If (ft,

1
is a naxi mal connected subal gebra of B which contains a sub-

al gebra Cm with n/m then we can, of course, assune that (R
does not contain the pregiven Cn (otherw se, see the first part

of the proof)e As we have just seen, there exists a retraction

0: 8,1-* T since n/m there exists a homonorphism }&i Cm~* Cn-
W define in this case <pg : 8-. -« C by (p. =0~ 0.

L L

H X n w- X

Since IB is the disjoint union of its maxi mal connected
b
subal gebras B., i € I, _we can Mfoatch qu” t he honmonor phi sns
I b e

<%1.: 8).( - % (more precisely: then there exists a unique

'maxi mal connected subal gebra B such that b e B, and we
define <p(b) = (p 4(b) . 9 e d

Lemma 3: If G = <A f> contains sone cyclic subal gebra c’:
d~ 1, then G 1is retract of every extension B = <B?f> which

enjoys the foll ow ng properties:

(1)) ~ (™73~ ~* equivalent to "g(?) :jo/ forag a e A and
n € N
(2) cm: B inplies the existence of g, E® such that n

divides m
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(3) Every elenent a e A whose finite orders approach infinity

is of infinite order.

proof: Lemm 2 inplies that every maxi mal connected subal gebra

(shortly, connected conponent) §'1 of *? which is disjoint

from G can be mapped into p o via a honmonor phi sm <P, So if
[[A] = <[[A]]?f> is the unique maxi mal subal gebra of B each
of whose components intersects A, then we only need to show that

we have a retraction < [[G] -« G Since ~(a) = ny,.12(a) holds
w I lujj
true for every a e A and n € No we conclude that [[A] =

Une(a);ne N, a € A). Even nore can be said:
IB o %
If we call an elenent a € A a branch elenment if ‘%
lg(a)\lola) ~/ and call U(ng(a)\ng(a) ;n € N) 'a\.
the braneh of 'a, say br(a) (see diagram, then A”/l_' T\.
[[A]] = U(br(a) ; a runs through all branch el ements /
* Mvanch element
o o [ o At = bv(a)
o . . ¢ parvt € A
ghgt Adg A 7vOdrj bRt i Byt 0 Afdd d&rae ROFUEHBRSS BY 1(iRsi es: ﬁl)
A U br@f - A for every branch element a such dolle® ot
<[a];f>=¢cp "°"%°™ me N, say [a] = Ch= {a=a,,a,..., 8"~

If then b e br(a) Dry(a) then we define <Pb) = a (i ndi ces,

in a —nN
recall, count nodulo n . (2) f"a) ~a for all m~ 1 but

there exists some n e N such that n.(a) » of while k (a) = of

, I n. n Hi
for all k™ n+l. Then, by assunption, nQa) ?£jzf; say 2% ¢ n"a).
In this case we define <p on br(a) as follows: If Qs<£ k"n
a
and b e br(a) nkp(a then <P(b) =™Kz ) (3) For every n there
ii* a o
exists n >n such that a is of order n in G Inthis
o -" ' o

case our assunption inplies that a 1is of ‘infinite order? i.e.

there exists a sequence ¢ = Cco>%g...., Cny. . . of elenents
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in A such that c,="(%~+1) (equivalently c, e n*a)). W
then map every b e br(a) nng(a) via <ps to <P(t> = c,. Thus,
in each of the possible three cases we defined <p, on A Ubr(a)
as.h_on”om)rphisminto A which is the identity on A If we do
this for every branch element a e A in the manner just described
then It is amtter of sinple verification that the locally defined

hononor phisnms < : AUbr(a) - A patch up to a retraction
' a

@ [[d] -G g e d
In a quite simlar fashion one proves the next result:

Lemm 4'; If G = <A f> contains some subal gebra isonorphic to
c9 then G is retract of ever'y extension (B wthout cyclic sub-

al gebras enjoying properties (1) and (3) of the preceding | enma.

proof of theorem 7:

W first assunme that G = <A;f> has properties (1) and (2) of
theorem7. Then lemmas 1,3,4 showthat G is retract of every

el ementary extension? this result shows that G is equationally
compact (see theorem2 inJ*2) . Vice versa, we assume G to be

an equationally conpact algebra. [If then a e A is an element.
whose finite orders approach infinity then the infinite set of
equations £ = {a = f(x", N = f(xX2),.*.., Xg= f(*s1)>0e0e¢) s
finitely solvable, hence solvable. Thus, a is of infinite order
verifying (1). To verify (2) we assunme that G contains no cyclic

subal gebra c,- Then | {f"(a), fit""1n) ,f(a),a}| =n+1 for

every ne N and a e A Thus, the infinite systemof equations

T<=[Xo=f(xx) , Xx =F(X2), ..., Xn="Ff(Xns1) ,——} is finitely
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1

a’l
o .
sol vabl e, hence sol vabl e. | f (ao,al,...sqn,...) € A isS a

solution of F< then evidently <(23,5"¢N))y U ("''(3)?""- No) *>

is isonorphic to ,9. g. e. d.

In order to attack the naturally next questiomnanely the test

of Mycielski's conjecture in the class K(<1>) we recall that
V
t he Stone-Cech conpactification $A of a locally conpact topol o-

gi cal Fhusdorff-space#tisthe (up to honmeonor phi smuni que) conpact
Hausdorff space that contains A as a dense subspace and to

whi ch every continuous mapping from A into a conpact Hausdorff
space B can be continuously extended. So if G = <A f> is a
unary al gebra then we can endow A with the discrete topol ogy
under which f becomes a continuous napping. If we now extend

f: A->A to f: pA-* pA then "G = <pA;f> beconmes a unary al gebra.
V
Def. 4. pG as just defined, is the _Stone-Cech conpactification

of the unary algebra G = <A f>,

Thus, the weaker part of problem 2's question is obvious in
this case: Every unary algebra G = <A;f> (even G = <A j*> wth
an arbitrary set F of unary operations, for that matter) can
be enbedded in a topologically conpact algebra, nanmely G c pG
O course, not every one of these enbedded unary algebras G is
also a retract of pG since not every unary algebra G = <A/ f>
is equationally conmpact. It is true, however, that every equationally
conpact unary algebra G = <A;f> is retract of pG W wll
prove in the sequel this result which answers problem1l in the

affirmative for the type r = <1>.
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By theorem 7 every equationally conpact algebra G = <A;f> contains
either some GCgcl"J> 1, or | as subalgebra. Thus, in view of
lenmas 3 and 4 to theorem7, we need only to showthat (1) ng(a) =
(f> is equivalent to rgG(a) =<f) for all ae A and n€ N (2

r» ¢ pC inplies the existence of C ©“ G such that n divides
m — ¢ n —
m The next two remarks serve that purpose:

Remark 7. If Q= <A?f> is a unary algebra then ng(a) = () 1is

equi valent to ng(a) = (> for every a € A n € N

proof: Let x e (pAlA) O nBG( a) for sone a € A Then there

is a convergent net (a,,D") in A such that x = Iimad
a : d€D
[i.e. <D A>> is adirected poset, a* e A for all d e Ds

and for every open set Ox containing x there.is sone do €D
—_ n —_ H n

such t hat ay e OX for all d~d ]0 Hence, a = f"(x) = Id|€nsf (a.& o

Since a € A is an isolated point in pA there exists dqo € D

such that f"(gj.- = a for all d” do This settles the matter

if at least one of the ay is in ng(a) which, of course, is

always true if a 1is not a stagnant elenent (Since then a" € "g(?)

n -

when f (a%) = a) .if a were stagnant and none of the ag was

_ _ -1

in ~(a) we would conclude that " (aq) = a for all d* dg,

i.e. a=limf"Ya.) =f"™Ylima,) =f™x) ~ a. This contra-
d€D a deD @

di ction Corrpl etes the proof.

& subal gebra

Remark 8; If G = <A;f> is a unary allgebra and rjfm is

of pG then there exists a subalgebra c. of G such that n
~n

divides m -
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proof: W begin the proof with the recollection of a well-known

t opol ogi cal fact: If A,L,A cA and A 0 A = 0 then A. n?z:

N (where XT, is the closure of A~ in pA), for A* £~ s
open and closed set in A thus A and A-A, are conplenentary

open and cl osed sets in PpA(see, e.g., GIllmn and Jerison [1],

chapter 6.9). Thus, if y =1I1lima for sone net (au,D,’\z) in A
dGD
£={ay;d€D and £0f A =16 for some m*> 1, then
&n f(£) =y inplies that y ft f"™(A), i.e. y/ fMy) :Iimf’"(ad)[of
m m d GD

course, f (A =[f (ay) ; as G A}].
d
So assune that o» ~ G for every divisor d mof some me N

and let x e pA\ A W then have to showthat f (x) ~ x to end

1
our proof. Let G,i e |, be the connected conponents of G The
1
carrier set of every G, since, by assgkrrptio"n, it has no stagnant
el.ement, can be represented as Al = AT UA* UAT such that
A2 nAf =/ for j /k and f(A?)in Ax=1p, i,j =1,2,3. If

Gr is inthe class IK of unary al gebras wi thout cyclic subal gebra

then this is a lemma by Ryll-Nardzewski (see Pachol ski and Wegl orz

[1]). [If, on the other hand, @G has a cyclic subalgebra nn¢ip, n(i)
N2, say Cntay = {a,d ...,an{1y-0)* then we first subdivide

CYL“._*) as follows: If n(i) 1is even, we take Cl...nAi:) {a yBgy -+, @ h(‘l)—z]
Cﬁi(i) = napjagd« o 'an(i)-l-'J-Cn(ij_ :,&. if n is oddj V\Etake3

°n(i) T f%0'%2'---"%n(i)-3" Cn(i) :fal'a3"“*an(i).-2"/ °n(i) ~

{an(>12<)-'¢) . Ineither of the two cases we define A—?lz CAn(' 1) U

{a;a e AA C AT and a e (2k) An(i) (c) for sorre' c e Csﬁ(.i,)},

j =1,2,3. It is an easy matter to check that A}, | = 1,23,

t hus defined, satisfies the conditions stated at the begi nning.
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) L. 1* 2* 3
Thus, the carrier set A of <& satisfies A=A UA UA,

AlnAP=An A=A nA =/, AlnfV!) =AnfTA) =
A 0 f(AY) =f£ if A*= UAW el), | =123 Hence, &A=

_ . '-—é * —-;‘-;-) ¥

A" UA UA, andwe can now assume that x e A’ for some

1£) £ 3. 1In other words: x:dlima’\ where (a3, D"™>) is a
. . . eD

net in A. Since A? 0 f~A%) =X we conclude that f x) =

limf™aj e pAVA®, i.e. f"x) / x. q. e. d.

d€D a

Appenctx: The triple-division of A which we used in the |ast proof
was stated as Ryl - Nardzewski 's lemma in Pachol ski and Vgl orz [1]
for the case Ge \f{. It should be noted that in case G e Kthere
are actual ly already two subsets AAAA2 s>l that A=A |) AAM i
A =)6 and f(AI AL=f(A) DA =pf. The proof, of course,
remai ns el enentary.

The next theoremis now easily established. W should note
that part of it follows froma result of Pachol ski and Weglorz [1]
stating that pG is an elenmentary extension of G = <A f> in
case G e K.

Ih.e.or.emﬁ: 'I_f G = <Af> is an equationally conpact unary al gebra
then it is a retract of pG |
proof: Remarks 7 and 8 inply the result because of |enmas 3 and

4 to theorem?7 and, of cqurse, theorem7 itself. g. e. d.

Al though we wi Il not give the proof of Pachol ski and Wglorz's
result that pG is an elenmentary extension of every G = <A f>
with the property fX(x) / x for all nJ>1 x €A we feel

notivated to ask for a characterization of the elenentary extensions
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of arbitrary unary algebras n purely in terns of the algebraic
structure of 0. More specifically: W would like to expand
the list of necessary conditions for 8 to be an elenentary
extension of G begun in lemma 1 to theorem7 such as to end up

with necessary and sufficient conditions.

Problem4: G ven a unary algebra G = <A?f> give a set of
structural criteria that are necessary and sufficient for an

extension IB of G to be an el enentary extension.

Problemb5: Characterize the equationally conpact algebras G =
<Af~r> where F is an arbitrary set of unary operations. Test
Myci el ski's conjecture for that class of algebras (of course,
G can again be enbedded in the topologically conmpact al gebra

gG).
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£ 5. ft-Mdul es.

In this short section we collect what we know about our
questions concerning equational conmpactness in case of unital
(left) nmodules over rings with identity. Mre precisely: W
make only a few r.errar ks on the general case of such R-nodul es
since not too nuch is known at the tinme. Then we turn our
attention to vector-spaces (i.e. ft-nodules where ft is a
field), realize that they are always equationally conpact and verify
the truth of Mycielski’s conjecture in their case. W ignore in
this section the special case of nodules over the ring of integers
I.e. the case of Abelian groups, which we wll deal with inthe
next section in a bit nore detail. For the results of this
section see Weglorz [1].

So let ft = <R+,-,0,+,1> be aringwth identity and
ftv=<M{+}UY- )Y O Uf,;r e R >a unital Rnodule; i.e. flI" =
<M ¥,-,O> Is an Abelian group each fr an endonor phi smon the

Abelian group ftu, f, = identity on M and f of =f . Then,
XX r S r*s

of course, the class uiM of all ft-modules is an equational class
and as such closed under the formation of ul trapowers. Thus, by
corollary 2 to theorem2 in section -2, we know that every injective
R-modul e is equationally compact (W call ft Minjective' if it

IS injective in _ﬂM) . Since, as well-known, every R-nodule

can be enbedded in an injective R-nobdule, we can enbed every ft-
modul e in an equationally conpact one, i.e. it can be " equationally
conpactified” ( a concept which will still be studied in a later

section). W sum up:
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Remark 9: Every ft-nodule tn can be enbedded in an equationally
conmpact ft-nodule (as, e.g., inthe injective hull of tn .
Fromthe well-known fact that a ft-nodule tn is injective
if and only if every ft-nodule homonmorphism <p: J -* tn froma
left ideal j of ft to tn is of the form <p(j) ="M, °f

sone  m € M one concludes that vector spaces are always injective,

hence equationally conpact:

Remark 10: Every vector space is equationally conpact.

So to show that IMycielski's conjecture is true in case of
vect or - spaces mé néed to show that every vector-space tn is retract
of a topologically conpact vector-space. This and a little nore
follows fromthe Bohr-conpactification for Abelian groups. To this
end we recall that every locally conpact Abelian group Q can be
densely enbedded in a topol ogically conpact Abel i an group Q
(its Bohr-conpactification) such that in particul ar conti nuous
endonor phisns on Q can be extended to continuous endonor phi sns
on Q. That is all we need to know in order to establish the

next result:

Theorem 9: (1) Every ft-nodulo tn can be enbedded in a topol ogical ly
conpact ft-nodule tn .
(2)° Every vector space tn over the field ft is a retract of

some topol ogically conpact vector space tn  over ft.

proof: If tn=<M{+M]JU{O}U{f,;r e Rk> is a ft-nodule and
N = <*4,-¢, 0> the associated Abelian group then we can endow

M with the discrete topology thus transform ng tnh in a
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| ocal |y conpact Abelian group. Since the unary operations
fr are conti nuous endonorphi sns on 'F>f we can extend them
to continuous endonor phi sns fi on the Bohr-conpactification

f&' of ftl' It follows fromthe unique extendability of con-
ti nuous mappings that f* of® = f°,. and f', = identity are
r s rs 1

still true. Therefore ft® = <M; (+}U-I}U{O] UTfE r<= R > s

an R-nodule which is topologically conpact and contains ft. This

settles (1). (2) follows then imediately fromthe fact that

the vector-space ft is injective, hence an absolute retract in

oM Thus, the vector-space ft is a retract of ft'. g. e. d.
As nentioned before, the special case of Abelian groups wll

be treated in the next section. Before doing so we nmention the

foll ow ng open problem

Propotem6: One investigates the structure of equationally com

pact R-nobdules aimng at their characterization and a test of

Myci el ski's conjecture in 5M
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$6. Abelian G oups,

Al t hough our mastery of ft-nodules with respect to the
study of equational conpactness is (as we have realized ini5)
rather unsatisfactory at the time, the situation is quite different
in case of unital nodules over the ring Z of integers, alias
Abel i an groups. Both the algebraic structure of equationally
conmpact Abelian groups Q= <G +,-,0> has been extensively studied
and Myci el ski's conjecture has been verified in the class A
of Abelian groups. For references see, e.g., Kaplansky [1], Lo
[1], Bal cerzyk [1], Gacsalyi [1].

Let us set out with a folklore result (of course we assune
famliarity with elementary concepts and results in A and

confine our attention to our very questions).

Remark 11: The subgroup Jt of the Abelian group Q is a direct

sunmand of Q if and only if M is a retract of Q

proof: The converse being obvious we assune that <p. Q-» H is

a retraction. If then g e G then g = <p(g) + g° w th unique
2

¢° e G since <p(g) =<p (g) + "v(g*) we conclude that cp{g® = 0,
l.e. @ e ker <p (in accordance with exanple 8 we denote

{x;x e G<p(x) = 0} as ker <) . Thus, every elenent g e G

is the sumof an element in H and an element in ker <. |If
g = hj/\_g/\ :|I24-92 wher e Ili/\ZGH and g|v92€ker A tllen
(pCh™ + (pig]) = (oChy) +<p(gz), i.e. " =<p(h) = (p(h) =h,
and, consequently, g = g,- Thus, every elenent ge G is

in a unique way the sumof an elenent in H and an elenent in
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ker in, a fact which is comonly expressed by witing Q=

M@ <ker <p; +, ~50>; in other words: H is a direct summand of
Q q. e. d.
If we take in account exanple 18, chapter 11, w ch el aborates

on the fact that pure subgroups and pure subsystens coincide in
case of Abelian groups and conbine this with the above rdnark
and theorem 2 then we conclude imediately the follow ng characteri --

zation of equationally conpact Abelian groups.

Theorem 10: An Abelian group is equationally conpact if and only

if it is a direct summand of every extendi ng Abelian group in

which it is pure.

Bal cerzyk [1] showed that the class of all Abelian groups
which are direct summands of every extending Abelian group in
whi ch they are pure coincides with the class of all algebraically

conpact Abelian groups in the sense of Kaplansky [1].

Def. 5 (Kaplansky [1]): An Abelian group Q is algebraically

conpact if- (} = S@P, i.e. Q is the direct sumof a divisible

group fi and an Abelian group P which is the direct product of

Abel i an groups Pp(p e set of prime nunbers ¢ z) where Pp i's

a nodul e over the ring of p-adic integers ;p bot h wi t hout

el enents of infinite height and conplete in its p-adic topology.
W nentioned Bal cerzyk®s result at this point since it illum-

nates the fact that theorem 10 is indeed a val uable characteri -

zation of eduationally conpact Abelian groups? for the class of

al gebraically conpact Abelian groups has been intensively studied
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and their structure is satisfactorily discerned. However we Wl |
del ay a proof of Bal cerzyk's theoremuntil the end of this section
for two reasons: Firstly, its pfoof presupposes famliarity with
p-adic integers and p-adic topologies, results that we can
not derive although we have to use it wthin the present
framework; secondly, while verifying the truth of Mycielski's
conjecture for the class A we have to establish a | erma whi ch
we al so need to establish Bal czerzyk's result. So we decide to
aimnext at a verification of the fact that every equationally
conpact Abelian group is direct summand ( = retract) of a topo-
| ogi cal |y conpact Abelian group. A crucial step in that direction

is the follow ng renark of Los/[l] ;

Remark 12; |If Ch denotes the cyclic.group with p" elenents
P i
(p = prine nunber) and Cff’ the Prufer-group over the prine
nunber p then each Abelian group Q can be enbedded in a direct
product M. of groups of the type C ” (a=1,23,....,«) such
' P
that (1) ,Q is a pure subgroup of M and (2) Q is a sub-

direct product of the groups EQG occurring in U
P

proof; The proof is a sharpening of Birkhoff's subdirect representa-
tion theorem (theorem 12, chapter 1) if applied to our situation .
Agroup Q is subdirectly irreducible (of course, we assune

|G| >1) if andonly if the set of all non-trivial subgroups of

Q intersects in a non-trivial subgroup £ which then, of coUrse,_
is finite of prinme order p(see remark 1.19). If ge G\ E

then [g) DE=E shows that n*g e E for sone n e N? hence
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(pn)»g = 0 and g is of finite order. Thus, @ is a torsibn
group and as such a direct sumof primary groups. Since Q@ can
have no proper deconposition as direct sumwe conclude that Q

is p-primary. If then @ is of bounded order then it is a

di rect sumof cyclic groups, hence a cyclic group itself: Q =

C, for sone n€N If @ is not of bounded order then it

iz either a divisible group or a reduced group (since every Abelian
group is the direct sum of its divisible and its reduced part).

If Q@ is divisible then it is, as well-known, isonorphic to a
direct sumof copies of the additive group of rational nunbers

and of ¢ » where £ are prinme nunbers. Since @ is p-primry
we conclugé that @ is isonorphic to a direct sumof copies of
Ca, only. [If, onthe other hand, @ is reduced, then Q is
aPreduce§ t orsion group and has as such a finite cyclic non-trivial

direct summand; in other words: Q = £ n for sone n e N

. P
Tte conclude: The Abelian groups ¢ «* 27 j*2x3%xxxx00

are

exactly

all subdirectly irreducible Abelianpbroups and, according to
BirkhoffVS:theoren1 every Abelian group Q is isonorphic to a

subdi rect product of sone of these. Thus, we have an enbeddi ng

of Q in adirect product It> of Abelian groups c a> &~ N2, ..., =3

this nuch we are assured of by nerely using Birkhoff*s theorem

Ve will now show that by addi ng some nore suitable groups Q

a

~

as direct factors to U then we get an Abelian group M containing
Q both as subdirect product and pure subgroup, a claimthat
wi || be proved in the next three paragraphs. The very next para-

graph serves nerely as a refresher of our nenory for sone el enentary
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connecti ons:

1 If A-(c T? is a factor in the direct product H }
then each 6 € A isaisgsmrphic to some quotient group Q Q?
Of-i € C(G). For the purpose of this proof we identify 6 =
G/fg- - Thus, QgWS(Q/ OcTs e JS) and an isonorphismis given
by <P(g) ~ (tgl"fi_"@_\ (see £7, chapter |I) s O course, if we add
any new congruence rel ations Oy,y e T, from C(Q then we
have even nore that Q:”irS(Q’OB;G e AUT), and isonorphism
being given by 0(g) = ([gl Og)”™ « ill If g€ G and p is

a prinme nunber then the p-height h (g of. g is defined
Py

to be either ne N if g€ p"G\p"" G or » if such n does

not exist. If g e G then P(g) denotes the set of all prine
nunbers p with hEg) < °°.

Let us now assune we can add to {0"7" e A} sone nobre con-
gruence relations from C(Q), say (97;v € T) with the follow ng

t wo properti_es
(Fi) Q 8A" Cy feralp Ae gJ~F (P~ prine nunber)

(P2) For every g € G and p e P(g) there exists 06(9\,’6@) €

AT, such that I gi €6(g) / O and Q/Ofi(g) = cn (g) +1)
P
Then (see above paragraph) we have an isonorphism 0: Q- irs(Q/ﬁﬁ:

6 € AUD via 0(g) = (tg]Oe)ge ~jp. We claimthat then j/)(Q
[which we identify with @ is a pure subgroup of & = TT(0/ ©C?

6 e AUF) . Because of exanple 17 we only need to showtlat p%x =
g (p=prime nunber, ke N g = ([91’:)56&._;35 AN(Q) is solvable
in ¥ if and only if it is solvable in tf)(Q. Thus, let p~h" =
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g h eH If hp(g) =» thenit is clear that p -g&* =g
for sone g e #(G. |If hp(g) =n€N then p € P(g) and,

'}

by (P2), there exists Oq/g) such that [qg] 96(9’\ A0 and Q°5()
Ch+s1. Since pr[Qg'lesq - [9l«sgi * O is true in Q 6y =

p
P, ptp We conclude that k <A n [otherwise k = (n+tl) +v and

/;20 inplies p*e« [g']06g =p"" (p" 19 1%(g) > =Pr%="°1.
Thus, k_<2f113(g) . i.e. there exists ¢g°> e 0(Q suchthat p -¢’ =
g. Hence, $(Q is a pure subgroup of M which (because of (Pi))
settles the matter. W are left with proving that {"5? € A
can be extended to [Qiy € ZDF} such that properties (P) and
(P2) are satisfied? th'is task wi || be taken care of in the next
and | ast paragraph of this proof:

let g€ G p€Pg and h (g =n€N 'Then ge p"G\ p""G
i.e., if Q is the group Qp‘"“EQ then Q is a group of bounded

drder I n which every el enent has an order dividing p2”+1 and g =

n+l

'[g]pz""b has order p"* L Thus, Q is a direct sumof cyclic

groups c> with at least one direct sumand C, wth y_ "
Pr - P’o

n+tl. dearly c .+ =<9 ?+7-20> is a hononorphic inmage of

. P : _

CcY which® inturn, is a hononorphic image of Q In short:

o

(1) cpn+1sj Q9Ps9 "02: sone congruence relation 9P:9 and (2)
'[g]OP>9 A0. If we add all these congruence. rel ations %*<3 for

arbitrary ge G and p € P(g) we have a set of congruence rela-
tions, nanely [B";6 e AA U {G,g;90 € G and p € P(g)), satis-
fying properties (P) and (P2). g. . d.

" now can easi | y prove the next theorem
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Theorem 11: An Abelian group is equationally conpact if and only

If it is adirect sunmmand (retract) of a topol ogically conpact

Abel i an group.

proof: O course, we need only to prove one direction. So
we assune that the Abelian group Q is equationally conpact and

enbed it in a direct product M of groups c _ in such a manner

P
that Q is pure in M (see remark 12). If a 1is a natura
nunber then ¢ is finite, hence a topologically cenpact group
P
in the discrete topology. If a = "°° we have the Prufer group

fr,,n Wwhich is divisible and isonmorphic to the nultiplicative

group of pn-th roots of unity anong the conpl ex nunbers, n =

0,1,2,3, ... .. , Thus, Ca, 1is adrect sumand of £, the nul -
P

tiplicative group of conplex nunbers z wth absolute value |z| =
1 which, as closed and bounded subset of the conpl ex pIanef S
a topol ogi cal |y conpact group. Thus, if M= 7(%(c =/ \ ?a(p) € I);

i
p€~7), then Jt is aretract of #* = Tr(7r(cpy w«(p) c1); pe
vvhere CAa(p) = C a(p) incase a(p) < ©0° and c*a(p).= C incase

P P P
a(p) = o since W is a topologically conpact group via the

Tychonof f - product-topology, Q is a retract of M (Q is
equationally conpact and pure in M and Ji is a retract of M

we conclude that Q is a retract of the topologically conpact group

W . g. e. d.
Before we proceed we take time out for a little illustration:
(Ex. 24):

(1) An Abelian group which is the direct product of Abelian groups

Q* 1 €1, is equationally conpact if and only if every Ql I S.
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(2) If Q is equationally conpact then so is n-Q for every
neN Toseethis w use theorem11l: There is a topologically
conpact group M such that tt = @QQ for some Q< Hence,
n*tt = n*Qon*Q .. Since mJt is closed in M it is topologically
conpact itself, n*Q is direct suranand of thetopologically com
~pact group mJdt and hence, n*Q is equationally conpact.
(3) If Q is equationally conpact and n~n”..., are natura
nurbers then O( (n, *nj-<<+»p, ). G k=12...) isequationally

conpact: As in (2) we see this by realizing that M= Q0 Q
k : k k N
implies (irn.). It =(irn.).Q0(r n.)Q and therefore
k =1 n i=1 n k i=1 X

== Kk
mUTmyMkzljp“):mUrn}Q k:LZM..)QMGrQyQ;
i =l _ i =l ' i =l
k=12,....). Since the left side is topologically conpact pro-
vided M is, the claimfollows again fromtheorem 11
(4 If Q is equationally conpact, p is a prinme nunber and

CF Is the subgroup of elenents of infinite p-height then

xT

b
Q is equationally conmpact: This follows from (3) and Q =
n(p*-$7 k = 1,2, ).

(5 It follows, of course, fromour considerations that every

group c¢ Is equationally conpact. So is the additive group
+ p?

D s=<Q+,-,0> of rational numbers. So is, in short, every divi-
si bl e group. _

W conclude our investigations with a proof of the equivalence
of the concepts " equational conpactness!' and ' al gebraic conpact -
ness" (see definition 5). As indicated before me presuppose
famliarity with p-adfc integers and p-adic topol ogies in nodul es

over these rings.
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Theorem 12: An Abelian group is algebraically conpact if and

only if it is equationallyconpact.

proof: If Q is equationally conpact then (by remark 12) we
can enbed Q in a direct product M of groups C ~ such that

&
P
Q ispurein W i.e. Q is adirect suranand (= retract) of
& If we wite Ji =fi QP where & 1is the direct product of all

direct factors C _ of M and P is the direct product of all
direct factors CPn of TA with n € N then & is a divisible
group and P is z di rect product of finite cyclic groups ¢c ,
whi ch, as mell-kndwn, are conplete in their p-adic topologypand,
of course, contain no elenments of infinite p-height. Thus, .T&
is algebraically conpact, and so is every retract (as was shown by
Kapl ansky); in particular, Q is algebraically conpact.

Vice versa, let Q be an algebraically conpact Abelian
group? i.e. Q= &@ (see definition 5) where P :'ﬁanP;P =
2,3,5,7,...) and the fig are Zp-nodules wi t hout el ements of
infinite height that are conplete in their p-adic topology. Since
& is divisible it is-direct suranand of every extendi ng Abelian
gfoup and is therefore equationally conpact. So to showthat Q
is equationally conpact we are left with showing that P = TRF{P?
p=22357,11,13,....) is equationally conpact, i.e. that each
\¥y is equationally conpact. To this end we utilize the fact that
every conplete ZP-nDduIe (compl eteness refers always to the p-adic
t opol ogy) is the conpletion of a direct sumof cyclic Z_-nodules;

t hus \% = (@Ktyl;i e 1))* where each H, is acyclic
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hence conpact, ;p-nDduIe and * indicates conpletion in the
p- adi ¢ topol ogy. @ifti;i e |l) is then (up to isonorphisn con-
tained in the topologically conpact ZE;nDduIe r(yini € 1) and
(as Abelian group) pure in irfh*i e I) [we say that (] h"i e I)
is a pure subnodule of irth® e I)] . Thus, ((-~M"i € 1)*
can be considered to be the topol ogical closure of 0 (H;i e 1)
in ﬂ(f&;i el). It is well-known that the pureness of (¥ (U,;i € I)
in 'ﬁ(ka?i e I) inplies the pureness of ((E)(hjfi €1))* in
7FU}}i e l). Since therefore ((Ej(hi;i e l))* = &} is a pure
subnodul e of 'ﬁ(hi;i e 1) which is conplete and has no el enents
of infinite p-height it follows fromanother known result that
((M(h.; iel))* isadirect summand of TT(H,;i el); i.e. tn,
is direct summand of the topol ogically conpact Abelian group

ir(I&;i € 1)« In other words: féy is equationally conpact. g. e.

Wth the results at our disposal it is an easy exercise to
verify the clains made in the next exanple; the clains can be found

as exercises 62-65 in Kaplansky [1].

(Ex. 25):

(1) Atorsion group is equationally conpact if and only if it is
a direct sumof a divisible group and a group of bounded order.

(2) No free Abelian group is equationally conmpact. |In particular,
neither the group of integers nor any direct product thereof is
equational ly conpact.

(3) Acountable torsion-free group is equationally conpact if and

only if it is divisible.
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Before leaving this section we go one step beyond the necessary
and sumup the different characterizations of equationally com

pact Abelian groups established so far.

Theorem 13: The followi ng statenents are equivalent for an

Abel i an group (3

(1) Q is equationally conpact,

(2) Q is direct summand of every extendi ng Abelian group which
contains Q as pure subgroup.

(3) Q is direct sunmand of sone topol ogically conpact Abelian
gr oup.

(4 Q is algebraically conpact in the sense of Kapl ansky.

In the introductory remarks to theorem 13 we announced to state
al | characterizations established " so far.'" O course, other
interesting characterizations are conceivable and, as a matter of
fact, available. So Bal cerzyk [2] proved the follow ng remark whose

proof we skip:

Remark 13: The Abelian group Q is equationally conpact if and

only if every finitely solvable set of equations £e= {xo-gn =

nixn; n=123,...} wth 9, € G is solvable in Q
Apart fromnerely providing a different (although quite interesting);
characterization of equational |y conpact Abelian groups, renmark

13 has the followi ng noteworthy corollary.

Corollary: An Abelian group is equationally conmpact if and only

if it is equationally“o-conpact.
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Finally we nention three open problenms, two of themon the
rat her obscure situation in non-Abelian groups, which were suggested

in Mycielski [1].

Problem7: |In exanple 4 preceeding 1, chapter |, we constructed
a set 7° with 0x equations over the ring of integers which was
unsol vabl e al t hough every count abl e subset was sol vable. Does
such a set T still exist if we replace the ring of integers by

the additive group of integers?

Problem8;, As H Freudenthal showed, the group of |inear substi-
tutions ax +b with rational numbers a,b, aj4 0, 1is not em
beddabl e in a conpact topol ogical group. I s that group enbeddabl e
.in an equationally conpact group? (If the answer was Myes" then
this woul d, of course negate the Myci el ski Conjecture inits

general form.

Problem9: Study equational conpactness, respectively equationa
m conpact ness in non-Abelian connected |ocally conpact topol ogical

groups.
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§ Equat i onal Conpactificatibns.

After our investigations concerning the influence of
equational conpactness on specific algebraic structures as per-
formed in the preceeding sections we now turn our attention to a fina
gener al problen1Which comes up quite naturally: If G is a
uni versal al gebra which is not equationally conpact itself can we
al ways enbed it in an equationally conpact universal algebra or, at
| east, in an equationally \Wconpact one where 4Wis sone fixed
cardinal nunber? |If the answers were yes could we always remain
within the equational class HSP(G determined by G? It is
questions of this sort that this section is devoted to. W refer
to Weglorz [2] and Mycielski [1] as far as the questions and

results of this |ast section are concerned.

Def. 6;: An algebra (B = <B:F> is called a (wak) equationa

N N-conmpactification of G if G is a subalgebra of B and 8

I's (weakly) equationally ~-conpact (>'= infinite cardinal). The
class of all (weak) equational .”-conpactificati ons of G is

denot ed by C4{\C/-:-) (resp., &'f"'( G). We then define C(Q =
HC (O ; *n"runs over the class of infinite cardinals) and know,

of course, that the elenments of C(G are exactly the equationally
conpact .al gebras containing G called equational conpactifica-

; HE We ak o Weak . *
tions of G Simlarly, C®*™(G = (1(G* (G ; 4*4/runs

through the class of infinite cardinals) contains the weak equa-

t i onal codpactifications of G

It is quite clear that not every al gebra has an equati onal

(or even only a weakly equational) conpactification. As exanple
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of such an al gebra we could take the lattice in exanple 3 (pré-
ceding section I.l1) which is not equatiottaily conpact and has
visibly no equational conpactification. If we add the two
elements 0,1 as nullary operations in that lattice then we
have already an exanple of an al gebra w thout a weak equati onal
conpactification. W shall see, however, that every algebra G
has a (weak) equational /~"-conpactification for every infini te
cardi nal nunber 4fy* Before pursuing these matters further we
i ntroduce cl asses of al gebras fel ated to the ones introduced in

definition 5 but weaker in their requirenents.

Def. 7: If 44Vis an infinite cardinal and G = <A;F> is a

uni versal ~algebra then (B = <B;F> is a_quasi-equational A

cdrrpa_c't'i”f'i'éati onof G if |IB contains. G as subal gebra and

every set of £ i nequations with constants in A is solvable

in IB provided it is finitely solvable in G The class (imgG)

contains all quasi-equational "-conpactifications of G Again

ch) = 0(c (G: fWruns through all infinite cardinal number s)

consists of the so-called quasi-equational conpactifications of

G

Corollary: If G is a universal algebra and /0%an infinite
inal th : :

cardi nal then C’”’((G) 9_045’(;) and C(GQ cc(G)
Here we face immediately a quite interesting open problem

(see Weglorz [2]):

Problem 10: Does C(G =J2f .always inply c(G = p*
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Before we go on we list a fewnore el enentary properties of

the operators C, C ¢ and c.

Fienmark 141

(a) If G cG, then, for eachm ¢ (G) cc (G,) and

C(G) cC(G). This, of course, inplies ctG,) ¢ c(G and
54 G) €C (8 P L) £ e(G)

Q Q) SUC%>-

(b) Sharpening part of (a) we get that Cm(GA = %GQ) 0 BGA)
I f Go’Gl are arbitrary al gebras and EfG;l) is the class of all
extensions of G.
(c) Both ¢ (G and c(G are classes of al gebras closed under

ext ensi ons. | This, of course, is not true for CI(G) and C(G).
4
(d) If W Wthen both C,,(,;G) £CnGy and CM(G-) c C4G).

The statenments of remark 14 are quite evident and require no

proof. So is, as a matter of fact, the next renark:

Remark 15: The followi ng statenents are equival ent for an al gebra
G_.

(1) G is equationally ~-conpact

(2) G€0(chB)-BcG =c (G

(3) E(Q c c,mgQ where E(G is the class of extensions of

G

(4) G€ HC (fo;Bc G =C (0.
A& Ary

Apperdgi¢. Remark 15 renains valid if we consistently drop the

car di nal nunber 4y/.
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We noww || derive the follow ng theoremdue to Myci el ski.
W will, however, give a different proof based on a | enma of
Ryl | - Nardzewski (see corollary 2 to theoremll. 3).

Theorem 14: For ‘an arbitrary algebra G and a'fixed infinite

cardinal nunmber M it is always true that C (G £ dg although
there are algebras © with C(Q = ftf.
In preparation of the proof we first prove the follow ng

remar K:

Remark 16: For each algebra G and each infinite cardinal num
ber 47?/ there is a set XL, p of equations with constants in A
which is finitely solvable in G and has t.he property that B €
c (G holds if and only if Gc¢c B and S , is solvable in B.

proof: W define an equival ence relation on the class of all
finitely solvable sets of equations E wth constants in A
satisfying | X|_<£ O*as follows: J£_,": S; holds if and only if
there is a bijection <p fromthe variables actually occurring in
TH to those occurring in XY such that <p(SJf<) = B wher e
<p{Tj) Is the set of equations resulting from X_I[ after having
repl aced every vari abl e xy by (p(x_}). We then take a conplete

and irredundant system of representatives of the equival ence classes,

say E.l, i € 1, and can-without |oss of generality assune that
i/ j inplies X.lPI )% = o where >§_ Is the set of variables
occurring in £.. Then the set T> , = UE ?i e l) is visibly
finitely satisfiable in G? noreover. E ~ s satisfiable in

an algebra IBA G if and only if, for' each i e |, the set S.l
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is satisfiable in 0. The remainder of the proof is now clear

and remark 16 proved. g. e. d.

proof of theorem 14;

The fact that C(G = 0 (even C"?2%(Q) = 0) can happen was

poi nted out before. So let G be an arbitrary universal al gebra
and /Ws a fixed infinite cardinal nunber. W denote the initial
ordi nal nunber of 4Wby \Il, <choose a limt ordinal p > M

such that u 1is not confinal with p (i.e. | y. <p if each

Yy < p) and define Gy,y < p, recursively as follows:

(1) G =G? (20 if y = 6+1 then we choose E ; accordi ng
0 nVig\x g

to remark 16. By Ryll-Nardzewski's Iemma (corollary 2 to theorem
1. 3) there exists an algebra, say &, containing G> in which
ENGE IS solv.a.bl e. So G e cJgyr7 (3) if y =llia (6;6<y)
is alimt ordinal then we define G = U(Gs; 6<y). Finally, we

define IB= UG ;7<p) and claimthat ft € C (G . To see this we
y M

choose a set S of equations with constants in B which is
finitely solvable in B such that \T\ .<*y\* Then the nunber of
constants involved is, of course, “Hv* |ikew se both the nunber
of variables involved is <£ 4Wand the number of finite subsets of
T is A;lft- So if we take one solution in |IB for each finite
subset of S and 'put themfogether to a set S then the set of
conponents occurring in the solutions of S can be assuned to be

.2 - .
6PNELADE RaPFEY API dAy T Y GBYtRASHTG [ARE iR acRolnfYPhEM Of

equations with constants in B (B ¢ B) which is finitel'y sol vabl e
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in <[B];F> and |B'| <JMtW=4ft- Assume B = (bg bi, ..

and b'y € Av('y)’ vi~) < g, .Then R’ EAv(O)+u(l)+...+
v(y) + ) y<u Since fi is not cofinal with p we know that

S il(v =P <P, hence <[B'];F>cc; . ,. Since G, .,.~ac (G,)

' n

p p "rX p

by construction we conclude that T is solvable in Sg>,i £ >
i.e. £ is solvable in 8 Hence, ' (Re C (G and C¥(Qg [ X
g. e. d.

We ought to re-read the open problem 10 in light of this |ast

theorem because it shows it in newlight. W recollect:
CAVSG) ~ | (hence, even nore CL‘}N\‘:V‘"}"(G) / tf and cf(G) A p) holds

for every G and4”~. On the other hand, C(G =/6 1is a
definite possibility. It is an interesting result however to

note that C(G ~ 0 is equivalent to QriHSP(GQ [/ &

Theorem 15: If 8 € C(G then every maxi mal subal gebra of fl

containing G and belonging to HSP(G [and such subal gebras
exist! ] belongs to C(G) OHSP(G).

proof; First of all it is a sinple application of Zorn's |enmm
to conclude the existence of nmaxi mal subal gebras of 8 containing
G and belonging to HSP(G). W assune G to be such an al ge-
bra and associate with every infinite cardinal nunber "z~the set

of equations Tf>n It of remark 16. W have to showthat G e gtK( CM

for every 4*v or, equivalently, that each T,, is solvable

in G. To this end we fix some infinite cardi nal nunber #% and

assune that a is an ordinal nunber such that y < a for every

X,, occurring in E_,, . If, finally, A>=1d", (HSP(G))
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[see def. 1.37 for the notation] then AU XL, ,, I's evidently
solvable in B by, say, (b.L,x.* Assune we could show that
G' = <[A Ub j;,y <a}]; F>e HSP(G) then the maximality
of G would inmply that G' = G, hence EW’Q was solvable in
Gs ise. G G % G*) which would finish our proof. So we are left
with showing that G = <[A Ub,;y <a}];F>e HSP(G) = HSP(G).

To see the last point we select an arbitrary cogtuple

e O . . . .
('I'II'q )n<co e A where each |IT is a certain polynom al expression
0
involving a finite nunber of c/s and of elenents a* e A ;) say
ATVAST ]t V)l A (n) t W gpCetOean
If £=9g e Id(HSP(G) = |d(HSP(GM) then we have evidently that

Q O
p(PO(al"""am(O)’ xil(o)’..'.’xit(o)(O)), ...... ,

n n . -
N *%m(n)’ xil(n)"“”’xit(n)(n))"#*\/. . ..].n<coQ
o o
q(PO_(al,.””"am.(O)’ Mo @) e NNy (o)l !
n n
pn(ao,--con,a.m(n)’_ A (Q\'n))"””o/(') N (n)},-oooo)n<wo

e Id}(\c,‘) (HSP(G')). Hence (-t} %’<Cf- is a solution of that equation

and therefore p(ir ’g‘r,l... . ,irn,....) :q(7T&TT-J_,.-.. N 1 R K

I'n short: g = g e ld( G ). qg. e. d.
In a simlar fashion one can prove the follow ng anal ogous

result:

Theorem 16: If B € c(G then there exists sone f. ¢ B such that

C€ HSP(G nc(G) .
To conplete the list of results in that direction we nention
that continuity consi derations assure inmedi ately that every

al gebra G which can be enbedded in a topologically conpact
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algebra IB (say B e &o (@) can also be enbedded in one of

the sane equational class. W sumup:

Theorem 17: | f B€Cfop(Q then Ge HSP(Q 0 Co (G if
(2 =<AF> istheclosure of G in B

It is interesting to note that the obvious question concerning

weak equational conpactifications is open at the tine:

Problem11l: Does C"3(G) ~ j# always inply that C"¥(G 0
HSP( G) *£/ft

V¢ concl ude both chapter and semnar wwth a nice application

of our results |eadi ng to an extension and el egant proof of a

| emma of Numakura [1] stating that topologically conpact sem -
groups Wi th cancel lation are groups. W can indeed repl ace the
requi rement of. topol ogi cal conpactness in that | enmma by equati onal
conpact ness. The techni que used in the proof due to Wglorz and
Hul ani cki is noteworthy since it indeed suggests itself to further

appl i cati on.

Theorem18 (Numakura, Wegl orz, Hul anicki) :

Every equational |y conpact semgroup with cancellation is a group.

proof: W split the proof intwo parts, first settling the case
of Abelian sem groups.

(1) Let S =<S*> be an equationaliyconpact Abelian sem group

and consider the set of equations E= {x=s*x ; s € § . The
s '
finite subset {X =5s.-X , X =S,-Xo ,..... ,X='S -x } has
. 1 S| 2 82 n Sn
evidently the solution x= s”?s. . S ,X =S..S_...S.. _.S. ,
; 12 ns.* 12 i-1 i+
Sn® thus, L is finitely solvable, hence solvable in S if x

d;
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xS:c,SseS, is a solution then in particular d:d#c,d Thus,
i f cQ-s:t for an arbitrary elenent s e S we get d*cé*s:dt,
i.e. d»s = d*t, i.e. (because of cancellation) t = s, hence

cd*s = s. W therefore have an identity 1 =cg in S To

assure the existence of inverses we choose s e S and know t hat

(s*d)*c - = d? hence, cancellation inplies s*¢ , =1, i.e.
_ SR S*d

Cs*d = S .

(2) if g=<S;»> is a non-Abelian equationally conpact sem -

group with cancellation then S = U([s];s e S and each <[s];">
is an Abelian sem"group with cancellation. Since S e C(<[s];*>
for each s e S we use theorem 15 to assure for every s the
~existence of some 9 £ HSP(<[s] ; *> n C(<[s];-> with » 3%,

S . . m s
Each such *Sg of course, is an equationally conpact Abelian

sem -group with cancell ation, hence (by part (1)) a group. Thus,
8o :_U(§ 'S GS) represents S as union of Abelian groups,

If we can show that the identity elenents 1 of all the groups
s

§° coincide then we are done. To see the |ast poi nt we choose

s,t eS (i) 18°Fe s*t = s«t inplies 18°% 5 = s, i.e.
IS't = 15* (ii) Suta ls_t = st imPIies t#ls-t = tf i % ex
log = 1t' Thus, 1 . =1_=1.. q. e. d.
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