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tional compactness in algebraic structures which was underlying

a number of recent papers, it proved necessary to lay down the

foundation without which a reasonable discussion and deeper Tinder-

standing could not be achieved. So some time had to be devoted

to introducing the main concepts and results of the elements of

the theory of universal algebras (chapter I); likewise we decided

to present the elements and most important results of first order

logic as far as necessary for our investigations (chapter II).

Although the concept u compactnesst! crops up occasionally

in chapters I and II it receives its main attention in chapter

III which deals with most of the known results concerning atomic,

resp. equational compactness. It is hoped that the subject matter

incites enough enthusiasm as to encourage independent research in

the field; a possible starting point are the eleven open problems
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of a more detailed study of compactness in algebraic structures
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If K is a class of relational systems or algebras then H(K),

I(K), S(K), P(K) stands for the class of all homomorphic images,

isomorphic images, subsystems (resp. subalgebras) and direct pro-

ducts of elements in K.
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COMPACTNESS IN ALGEBRAIC STRUCTURES

Seminar Notes

by Giinter H* Wenzel

It is the very question which has given birth to the mathe-

matical discipline called « algebra" that (in a modified form)

is underlying our topic: The question about the solvability of

certain systems of equations in certain pregiven algebraic domains.

However, while the original interest was and is directed toward

finding solutions of finite systems of equations (or, at least,

toward establishing the existence of such solutions) our interest

is of a more relative nature: Given a system of equations over

some algebraic structure (the terms will, of course, be made

precise in the succeeding sections), it is our aim to study the

conditions under which we can conclude the existence of a solution

of that system provided certain distinguished subsystems are

solvable. To clarify our point we will initiate our investigation

with the aid of a few simple, informal, illustrating examples.

(Ex. 1): If we consider the cyclic group Z of integers with

addition + then we narrow our attention to the following system

L of equations:

3x + x. = 1o 1

Xl = 2 X2

x 2 = 2x3

i
xn = 2



where n runs through the set N of natural numbers. Visibly,
CO°if (x ,x.,x2,...,x , ...)eZ

n

is a solution of

n

then

0 ^ x1 = 2
nx , for every neN, i.e. 2n divides x, ^ 0 for

every natural number. This being impossible, L has no solution.

On the other hand, if L denotes the set of the first n
7 n

equations in L, then we choose x and x such that
^ * o n3xQ + = 2xn,xn_2 = 2xn_1,...,x1 = 2x2~\ = 1, define xn

and have, thus, a sblution (x ,x..,...,x ) of L . L is a

system of equations which is not solvable, although every finite

subsystem is. This example is supplemented by the next one.

(Ex. 2) : If B is a complete Boolean algebra with join V., meet

A, complement !, zero 0 and identity 1, then every system L

of equations involving variables, constants of B and the

above operations is solvable provided every finite subsystem is.

We delay a proof of this fact to a later section.

(Ex. 3): If we replace the Boolean algebra in Ex. 2 by a complete

lattice L with join V and meet A, then the conclusion is no

more true. To see this, let L = (0,a ,a ,...,a ,...,1}, n <

where O and 1 are respectively the smallest and largest

element and the elements a are pairwise unrelated:

O ,



If S is a set of cardinality O ̂  then the system I, =

{x^x. = 0, XjVx. = 1, i ̂  j e S) of equations over L

is not solvable in L, since i / j implies xi ̂  x. for

any solution ( X
S) S € S

 of s* *-•£• ^ x
s
; s € S^ would have

cardinality ̂  • > |L| . On the other hand, it is quite evident

that every finite subsystem £, c S is solvable.

(Ex. 4) It is the same basic technique that together with

Dirichle^s prime number theorem yields the following peculiar

property of the ring Z of integers: If o^ is the initial

ordinal of f) ,, then the system £ = {x* (m • z* + n) + Y> •

(m • z + n) = 1; £,rj < oo,} of equations over the ring Z is

not solvable if n,m are relatively prime natural numbers such that

- / Z (Mycielski chose n = 5, m = 2) . To see this, we
m

realize that for every choice of z^ e Z the integer itr z

is different from + 1; hence, £ / r\ implies zt £ z^ for

every solution (z^)v. of H which, of course, is impossible in

Z. On the other hand, every countable subsystem T/ of T is

solvable in Z: Let , £ - , f^^ • • • ̂ • * • • • * ̂ < ̂°o^

indices f, 17 actually occurring in Sf and choose z^ such

that m • Zv +n = p. is a prime number for every i e N;

moreover we make our choice such that i ̂  j implies p. ^ p. .

We can do this, since n + m, n + 2m, n + 3m, constitutes

an infinite arithmetical progression with initial element n,

difference m and (n,m) = 1; thus, Dirichlet's theorem assures

an infinite number of prime elements in the progression. Since
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therefore (p.,p<) =1 if i 7^ j* we c a n find integers s^.

and t. . such that si'Pi + t. .p- = 1, i.e. E1 is solvable.

It was Kaplansky who in 1954 observed the impact of this

11 equational behavior!t on the structure of infinite Abelian

groups and he baptized groups with the property that every

system of equations whose finite subsystems are solvable is

solvable as fl algebraically compact groups M (He used an

equivalent, but different, definition). In the sequel the

concept has attracted the interest of algebraists and logicians

alike and has been studied in both a universal algebraic-

logical and classical-algebraic framework. Our attempt in

the succeeding sections will be to lay down the foundations of that

framework and to give our problem the rigorous setting it visibly

needs. Our approach to the main results will be as geodesic

as necessary to justify the title, as geodesic as possible

without either bypassing some recent results on algebraic conr-

structions (as,e.g., ultra-products) which can be found on nearby

side-tracks or neglecting results that serve the aim of a certain

degree of self-containedness.
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Chapter I* Elements of Universal Algebra.

This chapter will contain a concise account of the basic con-

cepts associated with universal algebras and relational systems.

We confine our attention to the algebraic aspects of things

delaying the impact on first order-logic to the second chapter.

Universal Algebras and Relational Systems.

Universal algebras are the final abstraction of algebraic

systems as groups, rings, lattices, etc., while relational

systems play the same role with respect to partially ordered

sets, chains, divisibility-domains and so on.

Def. 1: A universal algebra G = <A;F> is a pair of sets A,F

where A is non-empty, called carrier set of G, and F

consists of finitary operations on A (called fundamental opera-

tions); i.e. each f e F is a mapping from some A into

A where n^ is a non-negative integer. If one well-orders

F - (fo>
f19 ••••>fy>••••}y<a

 a n d fy is an n
v~

arY operation,

then the string r = <nQ,np...,ny,...> _ is called the type

of G. K(r) stands for the class of all universal algebras of

type T* We will frequently use the same set F to denote the

operations in different algebras of a fixed type T (thus

interpreting F as set of symbols which induce operations on

the universal algebras G e K(r)). If we want to emphasize

the algebra G we will also write f for f . If Ffc F then
—y y —

we call G> = <A;Ff> the F'-retract of G = <AjF>.
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(Ex.5) : A semilattice S is a universal algebra of type <2>,

say S = <S;V>, such that a V a = a, a V b = b V a , ( a V b ) V c =

a V (b V c) holds for all a,b,c e S. A lattice £ is a

universal algebra of type <2,2>, say £ = <L;V5A) such that

both <X;V> and <L;A> are semi-lattices and, in addition, the

so-called absorption-laws a V (a A b) = a and a A(a V b) = a

hold for all a,b e L. In a similar fashion, groups Q = <G;•," , 1>

are certain universal algebras of type <2,l,0>, rings & =

<R; *, + ,"" , ~,0> are certain universal algebras of type <2,2,l,l,O>,

Boolean algebras 8 = <B; V, A,' , 1, 0> are certain universal

algebras of type <2,2,l,O,O>, and so we could go on enumerating

the known specific algebraic structures. 1 stands for a 1-

element algebra in K(T) and is called n trivial algebra. l! As

the reader has doubtless observed, the term M universal algebra11

keeps coming up and is lengthy. So we agree to briefly say

11 algebran whenever we mean n universal algebra.11

Def. 2: A relational system G = <A;F,R> is a triplet of sets

A,F,R where <A;F> is an algebra and R is a set of f initary

relations on A, i.e. the elements R of R are subsets of some
m 8

A y where m e N. Again we well-order R = {R , R , . . .Rfi, . • .} fi

and ca l l T = <Ti>r2> t l l e fcYPe o f ^ ^-f r i ^-s t l l e ^YPe o f

<A;F> and r2 = <mo,m]L, . . . ,m6, . . . >fi<p where Rfi c A °. K(T)

stands for the class of a l l relat ional systems of type r.

R « ( a - , . . . a ) is synonymous with (a , . . . a
0 l m f l mr

m5 = 2 we also write a iR5ao or ai a a2^R6

) e RA. In caseo
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(Ex, 6): A partially ordered set, shortly poset, P is a

relational system of type <0;<2», say P•« <P;<J, {£}>, s u c h

that (i) a £ a, (ii) a <^ b and b <>. implies a=b, (iii)

and b^c implies a<c holds for all a,b,c € P. In case

or b^a holds for any two a,b e P we call the above

poset a chain (or ordered set) . In a similar fashion we obtain

la t t ice-ordered groups Q = <G;{•, ~ ,!}>{£.}> as relational

systems of type r = «2,l,O>;<2», unique factorization domains

« = <D ;{•, + ," ,-, 1,0} ; {/}> as relational systems of type

T = <2,2,1, l,0,0>;<2», etc. A relational system <A;$,R> is

called a strict relational system.

Again we feel the notation <A;̂ ),R> cumbersome and agree

that, in case confusion is impossible, the strict relational

system <A;(̂ ,R> will be denoted by <A;R> with similar adjust-

ment in the type. For a similar reason will we identify

with the algebra <A;F>. Finally, we Ml use the notation R

instead of Ry whenever we feel it necessary to emphasize
o

the underlying relational system G, thus conforming with the

corresponding agreement on the operations F.

We should point out that, of course, every algebra induces a

strict relational system in a natural manner: Given the algebra

G = <A;F> we pass to the relational system G1 -
where F1 = {F ?f e F) is defined by (a,,...,a a .) e F

if and only if f (a^,...,a ) = a^ ». Thus, why donft ve

dispense with universal algebras ana non-strict relational syst

in favour of strict relational systems {as, e.g., S* Kochen
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has done in his paper !! Ultraproducts in the theory of modulesM )?

There are two reasons: First of all a good part of our interest

is founded in algebra, and dispensing with algebras would, e.g.,

destroy the subalgebra-lattice in favour of subsystems, a

trade that we do not like to accept. Secondly it is our deter-

mined aim to stay intuitive whenever possible, devoting ourselves

to formalism only where necessary or advisable. Kochen!s

procedure reflects his prime interest on the model-theoretic

aspect of ultraproducts compared with the algebraic implications.

There are other occasions where the use of algebras or

relational systems is just a matter of view-point as the

following example whose proof we omit illustrates.

(Ex. 7) : Let £ = <L;<^> be a poset in which any two elements

a,,a^ have a greatest lower bound, say a.. A a^, and a least

upper bound, say a.. V a2. Then the algebra £! = <L;V,A> is

a lattice. Vice versa, if £* = <L;V,A> is a lattice and we

define the relation <^ on L by a.. <^ a2 if and only if an A a2 :

â ^ (equ iva lent ly, a
1
V a

2
 = a 2 ^ then £ = <L;<̂ > is a

relational system with the above properties. Thus, the algebra

£' and the relational system £ just introduced manifest only

different approaches to the same underlying t! object. l!
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§2. Homomorphisms and Congruences.

We start with two relational systems G = <A;F^R>^ P =

<B;F,R> of the same type (if R = (f) we have universal algebras)

and a mapping <p : A *-* B.

Def. 3; (i) <p is called a u weak homomor ph i sm1I if

(1) <p(f (a ,...,a )) = f (<p(a ) ,. ..,(p(a )) and

(2) R (a , ...a ) implies R Jt<p(a-) , . . . ,<p(a )) holds for all
j -L m y fi A. J[

f y e F, R G R and a. e A.

(ii) <p is a " homomor ph i sm *1 if (1),(2) above hold and in

addition (3) R (<o(a1) , . . . ,<p(a )) implies the existence of

b -,,... ,b e A such that <p(a .) = <p(b.) and R (b . . . ,b ) .
^ x 7 y

(iii) <p is a n strong homomorphism11 if (1),(2) above hold

and in addition (3) R (a ,...a ) holds if and only if

R (cp(a ) , . . . ,<p(a )) is true. We use the notations <p: Gw-» B ,

<p: G -• H and <p: Gs-» (B respectively to indicate that <p: A -» B

is a homomorphism of type (i) , (ii) or (iii). Horn (G,B),

Horn (G,8), Horn (G ,H ) denote the sets of all homomorphisms

of type (i) , (ii) , (iii) , resp.

We note that in case of universal algebras the three notions

coincide and agree visibly with the homomorphism-concept used in

the diverse specific algebraic structures dealt with in (Ex.5).

We reserve the concepts of epi-, mono- and isomorphism for

onto, 1-1 and bijective homomorphisms, resp.. A homomorphism

cp z G -• G is also called an endomorphism, an isomorphism
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<p: G -• G will be referred to as n automorphism. tf The following

remark is quite self-evident and left as exercise:

Rema rk 1:

(1) The composition g«f: A -• C of two homomorphisms

f : G - H and g : H — C is again a homomorph ism

g«>f : G -• C if G,B,C are algebras of the same type

(To obtain the same result for relational systems we

would need strong homomorphisms).

(2) < End(G);©> is a semigroup with identity for all

algebras G (where End(G) = Horn (G,G)).

(3) < Aut(G);©7 ,1> is a group for every relational-

system G if Aut(G) is the set of all isomorphisms

in End(G)•

Closely related to homomorphisms, congruence relations play the

same basic rSle in the theory of algebras that normal subgroups

play in the theory of groups or ideals play in the theory of

rings. To lead up to them we recall the concept of an !f equivalence

relationM on a non-empty set A.

Def. 4: If A is a non-empty set, then an equivalence relation

2 2

d_ on A is a subset of A (i.e. 9 c A ) such that (i)

(a,a) € 9, (ii) (a,b) € 9 implies (b,a) € 9, (iii) (a,b), (b,c) e

implies (a,c) e 0 for all a,b,c € A. It has become tradition

to write a = b(0) or a9b for (a,b) € 9 and to say that

11 a and b are equivalent modulo 9. ft More generally: a9b9c

stands for a9b and b9c etc.. The three postulates are known
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as reflexivity, symmetry and transitivity, resp..

We assume the reader has learned before that a binary

relation on a non-empty set A is a subset of A X A. Thus,

equivalence relations are merely reflexive, symmetric and transi-

tive binary relations. Let us, for convenience, also recall

2
that with any two binary relations p,cr c A a third binary

2
relation pocr c A is defined by (a,b) € o°CT =: (a,c) € p,

(c,b) € a for some c e A. This composition obeys the

associative law (p*>a)*T = po(aof); hence, if R2(A) denotes

the set of all binary relations on A, then <R2(A) ; • > is a

semi-group. We should point out that the fact that 9- and

09 are equivalence relations on A does not necessarily imply

that 6,00 is an equivalence relation as well. As a mattter of

fact, we suggest the easy exercise to prove that 9,o92 is an

equivalence relation if and only if 0..o92
 == ^0*^1' i-e- if

only if 01 and 02 are permutable. Let us also recall that

every p e RO(A) determines a so-called inverse relation p €R0(A)

via (a,b) € o~ =: (b,a) e p; both the diagonal-relation ar{(a5a);

a € A] and the universal relation jî  = A x A are equal to their

respective inverses. Let us not return to our equivalence-

relations before agreeing that, in case p e R^(A), (f> £ B cr A,
2

p^e R2(B) is defined by p 0 B .

Def. 5: If E (A) denotes the set of all equivalence relations

on A, a e A and 0 € E(A), then [a]0 = {b;beA and b=a(9)}

constitutes the so-called equivalence-block of a modulo 0. If

S £ A then [S]9 = U([a]9;a G S) is called the closure of
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S modulo 9.

A different view-point on equivalence relations is introduced

when we speak about !t partitions11 of a non-empty set.

Def. 6: If A is a non-empty set and P is a set of nOn-

empty subsets of A (i.e. p c 2 ) then P is a partition of

A if (i) B 1 5B 2 € P implies B1 = B2 or B^^ 0 B2 = $, (ii)

U(B7B € P) = A. The elements of P are called blocks of the

partition. Part (A) is the set of all partitions of A.
2

If P e Part(A) then we can define the subset P* of A by

the requirement that (a,b) € P* holds if and only if there

is a block B in P containing both a and b. If 9 e E(A)

then we can define the subset 9' of 2 as 9' = ([a]9; a € A]

It is again an easy matter to check the following remark.

Remark 2: (1) If P e E(A) then 9' e part(A).

(2) If P G Part(A) then P5 e E(A)

(3) {$>)' = 9 for every 9 e E(A)

(4) (p*)* = p for every P e Part(A).

Thus, partitions and equivalence relations on a non-empty set A

are in a 1-1 correspondence given by 5. This relationship pro-

vides an even further f1 identificationf! of the two concepts.

Def. 7t Let Q^e E(A), Pi € Part (A), i = 1,2. We say that

9-L £ 92 (P-jL <1 P2) if a = b ^ ) always implies a = b(92)

(if every block of P, is contained in a block of P^).
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Theorem 1: (1) Both <E(A) ; £ > and <Part(A) ? £ > are

lattices as partially ordered sets (see(Ex. 7)). Thus, if aVb

(aAb) denotes the least upper bound (greatest lower bound) of

a,b in both lattices, then E(A) = <E(A)? V,A> and <Part (A);V,A>

are lattices. Moreover: 9 : E(A) - Part(A) mapping 0 to 05

is a lattice-isomorphism.

(2) <E(A);V,A> is a complete lattice, i.e. every set S of

equivalence relations in E(A) has both a greatest lower and a

least upper bound, denoted by A(S;SGS) and V(s;s€S), resp..

Proof: The fact that the mapping * is a homomorphism in both

directions is a simple exercise. So we confine ourselves to

proving that <E(A);V,A> is a complete lattice.

If S c E(A) and the greatest lower bound (g.l.b.) exists then

(following common usage) we denote this g.l.b. by A(s;s€S)

which, in case of finite S = {s-,...,s }, can be replaced by

s,As2A... As . Clearly, A(s;s€S) exists always and A(s;seS) =

n(s;s€S) if S c E(A). To show that the least upper bound

(l.u.b) V(s?seS) always exists we introduce the binary relation

ty on A as follows: a s b(i/)) holds if and only if there

exist elements a = a;,a.,a2,...a = b in A and equivalence

relations sn,so,...,s e S such that a snansoao...a .s a .L z n o l l z z n~l n n

It is straight forward to verify that if) is an equivalence

relation which is larger or equal than all s e S. If 0

is an arbitrary equivalence and 0 ̂ > s for all s € S then

a = a o
sx s2 a2 # # * #an-lsna " b al w aY s implies a s b(0), i.e.

a H i^) implies a s b(0), or equivalently: 0 <^ 0. Hence,

0 = V(s;seS). q.e.d.

HUNT LIBRARY
CttlEUUfELUM
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Note: We ought to keep in mind the construction of A and

V for arbitrary sets S c E(A) since we use it whenever necessary.

For the purpose of studying universal algebras, the concept of

ft equivalence relation11 is too restricted, for it does not

take in account the nature of the fundamental operations F. To

take care of this handicap we pass to the more restricted set of

congruence relations.

Def. 8.: Let G = <A;F,R> be a relational system. Then 6 = E(A)

is called a congruence relation of G. provided that the

11 substitution property (JSP) !! holds; i.e. a.1 = b ^ O ) , a2 = b 2(9),

, a^ s b (9) must imply f (a ,...,a^ ) s f (b .b )(0)

for all a., b. e A and f e F. C(G) denotes the set of
i5 i y —*—L

all congruence relations of G.

We note that we have not made any specifications on the

behaviour of the relations in R as far as congruence relations

are concerned. This leaves us with the freedom to specify these

relations in different situations in a different manner - a free-

dom that we will make use of in the sequel. By definition,

C(G) c E(A); thus we can apply the binary operations V and

A defined on E(A) according to theorem 1 to any two congruence

relations 6n^2" It c a n e a s i lY be verified that both Q-iVQ?

and 0..A02 are not only equivalence relations on A but even

congruence relations of G. Thus, <C(G);V,A> is itself a

lattice if V and A denote the restrictions of the respective

operations on E(A). In this sense, we say that <C(G);V,A>
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is a sublattice of <E(A) ;V, A>, a concept that will be discussed

in the general setting it deserves in the next section. If

0 / S c C(G) then we can form a = V(s;seS) and b = A(s;seS)

in E(A) as discussed before and again we easily verify that

a,b e C(G). Utilizing this stronger property we use the

phrase that <C(G);V,A> is a complete sublattice of <E(A);V,A>.

Summing up:

Remark 3; C(G) = <C(G);V,A> is a complete lattice and as su ch

a complete sublattice of t (A) = <E(A);V,A> for every relational

system G.

Before we proceed we illustrate the concept with a few examples:

(Ex, 8) :

(1) Given the relational system G = <A;F,R>, then both

the identity-relation co(defined by a = b(oo) if and

only if a = b) and the universal relation i (defined

by a = b(i) for all a,b e A) are congruence-relations.

60 is the smallest, i the largest element of C(G).

Universal algebras whose only congruences are o) and i

are known as simple algebras.-

(2) Let Q = <G;*,~ , 1> be a group and 0 e C(Q). Then

a = b(9) implies together with b" = b"" (Q) that

~ = l(^) and vice versa. Hence, two elements

a,b are congruent modulo 6 if and only if a*b~ =1(0).

In other words, to know 0 we only need to know

So let a,b e [1]Q, i.e. a = 1(0), b = 1(0), then,
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-1 -1

as we already know, a*b = 1(8), i.e. a^b €[1]6 which shows

that <[1]0;*,~ ,1> is a subgroup of Q. Moreover c e G

and a € [1]6 implies (since c s c(0), a = 1(9) c""1 s c~1(6))

that c-a-c"1 = 1 (6), i.e. c-a-c""1 € [l]0. Thus, <[1] 6; •, -1,1>

is a normal subgroup of Q. Vice versa, given an arbitrary normal

subgroup <N;•,~ , 1> of Q then a = b(0) if and only if

a*b~ € N defines a congruence relation on Q such that [l]0 =

N. Therefore normal subgroups take over the role of congruence

relations in the theory of groups and one dispenses with the con-

cept lf congruence relation. lf

(3) Let f: G -» ft be a (weak, strong) homomorphism of relational

systems. Then ker f(speak; kernel of f) defined by a.. = a2

(ker f) if and only if f(a,) = f(a
2) *-s a congruence relation

of G.

(4) If G is a relational system and a,,...a , b-,.,.b are

elements of A such that a. ^ b. then the set S = [Q;QeC{G)

and a. ^ b.(0)} is not empty since co € S. Since V(6;A€T) =

U(0;0€T) e S is visibly true for every chain T c g 5 zorn's

lemma assures the existence of a maximal element \b, , N in S.

i=l, 7..n

0, . . is a maximal congruence relation of G such that

i=l, . . . ,n
a. f b. modulo that relation.

(5) If G is a relational system and ai,b., i e I, are elements

of A then S = { 0 ; 0 G C ( G ) , a i = bi(0),iel} is a non-empty set
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since i e S. Then 0, -u \ = A(0;fieS) is the unique smallest

(
I
ai^i )

congruence relation such that a. = b. modulo that congruence

relation.

We take up the last kind of congruence relations in (Ex.8)

in order to describe the lattice C(G) further.

Def. 9. Given is a complete lattice «£ = <L;V,A>. An element

c € L is compact if c <£ V(s;s€S), S c L, always implies the

existence of s.,,...s e S such that c < s,VsoV...Vs . The
1 n - ^ 1 2 n

lattice £ is an algebraic lattice if every <t e L can be

written as I = V<c;ceS) where all elements of S are compact.

Theorem 2: C(C) is an algebraic lattice for every relational

system G. The compact elements are exactly the congruence relations
of the form 0, -. v

i= 19 • • . • n
Proof: To show that the congruence relations 6f -* are

(ai,i3i;

i= l _,.... n

compact can be left as exercise. Since C (G) is complete by remark

3 and 0 = V(0(a fc) ; a s b(0)) for all 9 e C(G) is a triviality,

all we,need to show is that every compact congruence relation
is of the form 0, , , . So let 0 be compact in C(G).

±̂  i'. ± ii^ 13 • • • n

Since 0 = V(0, .; a s b(0)) we conclude that 0 = 0 , - XV...V(afe) ( a b )
e(an,bn)

 w i t h ^ - ^ ( O ) , . . . , a n . b n ( 6 ) . Hence,
n,bn)

i—f, . . . n
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The converse of theorem 2 is true as well. G. Gratzer and E. T.

Schmidt proved that every algebraic lattice is representable as

congruence lattice of some universal algebra. However, the present

proof is deep and involved and must therefore be omitted.
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$3. Elementary Algebraic Constructions,

In this section we introduce the main-operations on classes of

relational systems or algebras yielding new such systems or

algebras which we need in the succeeding discussions. Due to the

folklore-character of subject matter we will pursue a slightly

sketchy style.

(1) Let G = <A?F,R> be a relational system (again R = <f)

settles implicitly the case of universal algebras) then ft =

<B;F,R> is a subsystem (in case of algebras, subalqebra) of G

if (i) B c A, (ii) all operations in fc are just the restrictions

from the corresponding operations in G and f
v(k-i > • • • jk ) € B

for all f € F, h± e B, (iii) RB = RG 0 B 2 for all R e R.

If © ^ C c A then the set 3 = {$;$ is a subsystem of G

and D £ C ) contains G and is therefore non-empty. It is then

quite clear that G(C)=< [C];F,R> is the unique smallest subsystem

of G containing C if [C] = n(D;«€3), fG(C)= fG ny( = ff y( f

restricted from A y to [c]y) 9
 R

v " t c ] 2 n Ry- We s aY t h a t

C generates G(C). This definition of a subsystem, though

quite adequate for many general purposes, fails to suffice in

a number of instances where we are concerned with specific

algebraic structures. Thus, e.g., one might like to discuss

groups as algebras Q = <G; •> of type <2> satisfying the well-

known axiom-system A requiring, a.o., the existence of an

element 1 e G such that l#g = g-1 = g holds for all g e G.

Visibly then <Z*; •> as a subalgebra of the group <Q*; •>
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(Z* = non-zero integers, Q* = non-zero rational numbers), but it

is not a subgroup. To cope with such situations we agree on the

following terminology: If, within K(r), we single out a cer-

tain class K A ( ^ ) of relational systems via an axiom-system

A, then we define a A-subsystem to be a subsystem which is also

an element of KAT) .

(2) Let G.,i € I, be relational systems of a fixed type r.

Then Tr(G.;ieI) = <7r(A. ; iel) ;F, R> is defined as follows: (i)The

elements of ir(A.;ieI) are all functions f : I -» U(A.;ieI)

satisfying f(i)eA.; (ii) $f h.,..«,h e Tr(A.;ieI) then
1 ny

f (h,,.••,h ) (i) = f (h-(i), . . ., h (i)) defines the element
f y f y

f (hj^,...^ ) € 7r(Ai,i€l) for all fy e F; (iii) R (h1,.-.,hn )

holds only if R (h,(i),...,h (i)) is true for all i e I.

The new relational system TT(G-. ;i€l) is called the direct

(Cartesian) product of the systems G.. We will use the synony-

mous notations h, (h( i) ) , (a.) for he7r(A.,ieI) if a. =

h(i). h(i) = a. is called the i-th component of h, the

i -th projection ir. : 7r(A.;i€l) -• A. is a weak epimorphisra
o o

for all i € I. If G. = G for all i e I then we also write

G1 for 7T(Gi;i€l) .

(3) 8 = <B;F,R> is a subdirect product of the relational systems

G. = <A.;F,R>, i e l , . if it is a subsystem of 7r(G.;ieI) such

that ir^B) = A. for all i-th projections. In case G. = G
for all iel we always have two trivial subdirect products,

I I
namely G itself and the diagonal system A(G ) = <A;F,R> with
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A={(a.) ; a. = a € A] which is isomorphic to G. There are

instances where these are the only ones: If, e.g., 2 = <Q;+,#,-,0>

is the ring of rational numbers viewed as being of type <2,2,l,O>,

2 2
then we suggest the exercise to prove that indeed D and £(9- )

are the only subdirect products of two copies of 2.

(4) If 0 is a congruence relation on G = <A;F,R> then we

define the quotient-system G/0 = <A/0;F,R> as follows: (i) A/9 =

{[a]0; a € A] c 2A, (ii) f ([a^©,..., [a ]0) = [f (ar...,an
 )]R

for all f € F, ai € A, (iii) R ( [a^ 0, . . ., [am ] 9) holds if and

only if there exist b , . . .b e A such that b. = a. (B) and

R (b-.,...,b )• It is an easy exercise to verify that both

operations and relations are well-defined and G/Q is a rela-

tional system of the type of G. The so-called ty canonical pro-

jection " TTp : A -• A/0 mapping a to [a]0 is an epimorphism.

As we have seen before, every homomorphism <p determines a con-

gruence relation ker (p, and every congruence relation 0 deter-

mines a homomorphism ir^. As will be stated more precisely in

the next but one section, this correspondence is bijective, thus

enabling us to deal with homomorphic images of a relational

system completely within G itself.

(5) Our last construction introduces the so-called direct

(or inductive) limit of relational systems. To do so, let

<I; <; > be a directed poset, i.e. a poset in which any two

elements have some upper bound, let G. = <A.;F,R>, i e I, be

relational systems and assume the <p. . : A. -• A. to be weak
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homomorph isms for every pair i, j € I with i <^ j such that

<p . . = identity and <p .-.<P . . = <P-V
# Then we define the equivalence

11 jK lj IK

relation j£ on UfA^ i e I) by ai s a (9
1) (a.eA^a eA ) if

there exists some k e I, k ̂  i,j, such that <^ik(
a
i) = <P^k(Q^)

(hence^ <p. (a.) = <p (a.) for all sufficiently large k) .
IJC 1 "3 3

The resulting set U(A.; i€l)/~I of equivalence blocks is called
1 U

the d i r e c t l i m i t of the d i r e c t e d system of s e t s (A.,I,<p) and

denoted by ljLm (A^, I,<p) or , s h o r t l y , lim A^ F i n a l l y , lim(G ^, I,<p)

< lim A.;F,R> is defined as fol lows:

( i) I f f € F, a. € A. , j = 1, , n , I ^ i±, . . . i ,
r j j y

t h e n f U m G i ( [ a ]6J,..., [ a 16 1 ) =

a i y i
[f (<p . . (a . ) , . . . . , <p . f (a . ) ] ft makes , as one e a s i l y
y v*' xi V xn

checks, f an operation well-defined on lim A. .
1 im G .

(ii) If Ry 6 R, b± € A± , j = 1, . . ., m , then R ""* x

([b. JO1, ,[b. ]91) is defined to hold true if and only
11 \ G

if there exists m > i., . . •, i such that R m(co . (b . )

(p. (b. )) holds true,
m m
y y

lim G^ = lim(Gi, I,co) , thus defined, is the direct limit of the

direct system of relational systems (G.,I,<p). If we enlarge

I to I U {I*} where i < I* for every i e I ( in case I

has a maximal element m we agree on m = I*), denote lim(G.,I,o)

by G^ and define <Pi^1^. : A± - A^ by <Pi^I^(ai) = [a^e 1,
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then (G.,I U {l*},<p) is still a direct system, and the following

remark is evidently true:

Remark 4: lim (G^l,^) ~ lim(Gi,I U {l*},<o).

(Ex. 9) : Associate with G = <A?F,R> the set I = {B;«= <B;F,R>

is a finitely generated subsystem of G}. Then <I;C> is a

directed poset and (£-,1,<p) is a direct system of relational

systems if «£ = £ and <PT3C* B -• C is the embedding-map for

B c c. One can easily verify that lim(£ , I,<p) ~ G; hence,

every relational system is a direct limit of its finitely generated

subsystems.

Let us pursue the matter a little further. Many of the results

are due to G. Gratzer, although our approach is new at times.

If (G-,D,<p) is a direct system and $ , I c D are directed

sub-posets of D, then (G.,<?,<p), where the <p. . are confined

to i, j e 9 , is a direct system as well; a similar remark holds

for I. Again it is easy to verify the next remark if 9 is

bounded by I (i.e. for every j e 2 there is some i € I with

j £ i) •

Remark 5: <p _ *: ljLm(A., 2,<p) - l^m(A.,I,<p) def ined by

<p tft. T̂ . ({a.]60 = [a . ] 9 where a. = ̂ >. . (a .) , i€ I, is a

•' 2 2

weak homomorphism with kernel 0 defined by [a. ]6 P [a. ]6

(mod©), 3i^2 € 2 )a • e A- * if and only if <p . .(a. ) =

<p. ^(a. ) for some i € I. The image is ([a,]fl ; i e I, a. G A .

and there is some j € #, a . ''€ A., I 9 k ̂  i, j with <p . ,(a .) = <p ..(a .) }
J J IK 1 ]]K ]
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Assuming that, in addition, 9 is cofinal with I (i.e. for

every i e I there is some j € £ with i £ j) we conclude that

[a. ]0^ t [a. ] 6 ^ i.e. <p. .(a ) ̂  <p. .(a. ) for all j e £ ,
3l ^2 Dl5:i 31 D 2 ' D D2

implies <p . .(a. ) ^ <p . . (a . ) for all i € I, i.e.
^l' 1 Dl 32 J D2

[a. ]Q* jfc [a. ]8 (0) (see last remark). Since in this case, as
Dl D2

the last remark shows, (p^ ^ is also an onto-mapping, we have

the next remark:

Remark 6; If (G.,D,<p) is a direct system and $91 c D are

mutually cofinal we have the isomorphism <p ^: l^m(G.,^,<

^,!,^) .— We recall that G ^. stands for lim (Gi,I,(p). It

is natural to call two direct systems (G.,l,<p) and (B.*<?,*/))

equivalent if GT*;r ^3**
 In this respect the next result is of

some interest. Before starting it we recall McNeilleys embedding

theorem stating that every poset can be embedded in a complete

lattice such that least upper bounds and greatest lower bounds are

preserved.

Remark 7 ; Given the direct system (G.,I,<p) and the McNeille-

embedding of I in a complete lattice <£, we get the directed

poset J. = I U I, with I_ = {$*m.9 is a directed subset of I

and $* its least upper bound in £,) and the (by now well-defined)

direct system (G.,I,<p). (G.,I,<p) and (G.,I,cp) are equivalent.
1 1 1

The tr proofM is rather obvious since I U {I*} ( I^e l^ is a

cofinal sub-poset of ]:. Thus, l̂ m(G ., l,<p) ^ lim(G ., IU{ I*} ,0)

by remark 6, while lim(G ., IU{ I*} ,<p) ^ ljLm(G ., I,<p) by remark 4.

S t i l l , the remark contains immediately the following corollary
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on double-limits a special case of which (Cor. 2) is a theorem

due to G. Gratzer*

Corollary JL: Let <l; ^ > be a directed poset with directed

subposets <I ; <^ >, p e P. If I2 =• {I ;p e P] £ 1.̂  (denota-

tions as in remark 7) is a directed subposet of I cofinal with

I, then ljLm (lim(G.,I ,<p) , I2, <p) ~ l^m(G.5I^o) (where, as usual,

lim (G±SI 3<p) = G^ ).

P
We should point out that this double-limit-theorem has been

established in a categorical context.

Corollary 2: If (G.,I,<p) is a direct system and I = U(I ;p € P)

where <I 7 <1 > are directed subposets of <I; <£ >, <P; <2• > is

a directed poset and p. ^ p implies I £ i 3 then (G'
1 ^ ^ 1 ^ 2 P

(with G' = G ^ and <p* = <p ^ T* ) is a direct system such

that lim (6^1,0) - lim(G S p,<p «) .

A special instance of a direct limit (called ultra-product)

has obtained such outstanding a significance that we decided

to give it an extra section,
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. Introduction of reduced products; ultra-products and set-
theoretical properties.

This presentation ..of reduced products is based on a little

remark due to I.... Fleischer [1] connecting up direct limits and

ultra-products. Assume we are given a non-empty set I, a non-

empty set D <= 2 closed under finite intersection not con-

taining fi and a relational-system G. = <A.;F,R> of some

fixed type r for every i € I. Then <D; <£ >, defined by

J <£ K = : J 3 K, is a directed poset which yields a direct system

(B,D,<p) in the following fashion: (i) If j e D, then 6 =
J

7r(G.;j € J) y (ii) if Jr <£ J09 then <p is the projection
3 i z j^, $2

mapping f to the restriction f |
J2

Def. 10; Using the notation just introduced, lim(lft,D,<p) is called

the reduced product of the relational systems G., i e I, modulo

D and is denoted by TT (G . ; i € I). (We will slightly modify

this after theorem 3)•

If we take the above direct system (fi. D,<p) and enlarge D to

D^ by adding to D every set j^ e 2 containing some j € D,

then we can define the direct system (J3,D1,<p) in exactly the

same fashion as we defined (8,D,<p) . Since D is visibly

cofinal with D-, remark 6 of the last section proves the next

remark.

Remark 8; If the notations are as above, then

TTD(G^;i e I) ~v (Gi;i € I).

Thus, to study reduced products modulo D we can confine our

attention to such D £ 21, D £ <f>, that (i) J"^^ € D implies
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J, fl J2 e D, (ii) J. e D and J2 3 J implies J2 € D. Such

sets D c 2 are known as n dual ideals" or fl filtersM of I.

If we take the mere definition of TT (G . ; i € I) as lim(H9D,<p)

we get the carrier-set U/= where U = U(IT(A. ;j e J); J e D)

and the equivalence relation = is defined by f = g if and only if

f | v - g\n for some E e D and E c KPlJ (we assume f e 7r(A.yj e J) ,

g e 7r(A,;k e K), J,K € D) . In particular fixed some E € D, we

conclude that all elements f e 7r(A.;i e I) with a fixed restric-

tion f]^ to 7r(A.ri € E) are equivalent among each other and
£J 1

to fj^* Thus, every equivalence class in U has a representa-

tive in ir(A.;i e I) and two elements f5g e Tr(A.;i e I) are

equivalent if and only if f|E = g|E for some E € D. The

set-theoretical structure of rr (A.;i e I) reflects therefore

in 7r(A.;i e I)/= , and we end up with a description of

7T (G.;i € . I) on the carrier-set 7r(A.;i e I)/= instead of U

provided we can catch the effect of the operations and relations

on this simplified carrier-set. This latter task is, of course,

a simple one after the foregoing discussion, and we sum it up in

the following theorem:

Theorem 3: If G.,i e I, are relational systems of some fixed

type T and D is a filter over I, then f = g(D) = s f I _ =

gl^, for some E e D is an equivalence relation on 7r(A.;i e l ) .
£J . 1

Moreover, B = <?r(A.;i € 1)/D? F,R> is (up to isomorphism) the

relational system TT (G^i € I) if (i) f (n-,...,n ) = n is

equivalent to [i;.f (h^,.. . ,h ) (i) = h(i)) e D for all h, e 7r(A.;ieI)

and ni = (hi]D, (ii) R (l^,...,!^ ) holds if and only if

fisR
y
(hl(.i) *-...,hm (i)) holds true) e D.

y
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Def. 11: (i) If we use the notation ^(G^ri € x) then we will

(extending def. 10) assume it has the representation specified in

theorem 3, unless stated differently.

(ii) S(h15h2) = (i;h1(i) = h2(i)) for \^2
 e ^ i 7 1 £ *)

is called the common support of h^ and h2JL

(iii) sy(h1,...-,hm ) =

{i;R (h.(i)5...,h (i)) holds) is the support of R with respect

to h,, •••,h

We can intuitively say that a filter classifies the subsets of I

into two groups: n large ones11 (those in D) and M small ones11

(those in I-D) . We identify any two elements in ?(A.;i e I)

whose common support is M large, M thus creating the carrier-

set of IT (G . ; i e I). The componentwise application of the funda-

mental operations f is replaced by componentwise application

on a M large!! common support, and the validity of a relation is

determined by the validity on a n largen support. This construction

(and this is the governing idea which led to its success) will

enable us to prove statements that are not necessarily valid for

all algebraic structures under discussion but for l! nearly all11

of them M nearly allM being a measure to be specified from

case to case.

The construction obtains its major significance in the case of an

tf ultra-filter D. f! To establish the necessary tools, we depart

to (distributive) lattices.
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Def. 12: Let £ = <L?V,A> be a lattice. D c L is called a

dual ideal or filter if (l)a,b € D implies a A b e D, (2) a e D

and c J> a implies c c D,-(3) D/ L (Thus, in case L = 2 , V = U,

A = fl, we get the notions introduced above) . If D is a filter

and D <= D.. (D, = filter) implies D = D,, then we call D an

ultra-filter. If D is a filter and a U b e D implies always

a € D or b € D then D is called a prime filter.

(Ex. 10) : (i) If £ <L;V,A> is a lattice and a € L then

[a) = {b;beL and b J> a} is a filter, called the principal

filter generated by a.

(ii) If £ = <L?V,A> is a lattice and ^ ̂  H c L, then

[H) = {b; b € L and b^h^A.^Ah for some h-,...h € H}

is a filter, called the filter generated by H. It is the smallest

filter containing H.

The following is a very important and basic theorem due to M. Stone.

Theorem 4; If £ = <L;V,A> is a distributive lattice (i.e. aV(bAc) =

(aVb)A(aVc) and, consequently, aA(b\/c) = (aAb)V(aAc) for all

a,b,c e L), then every filter I not containing an element a

is contained in an ultra-filter of £ not containing a, and

all ultra-filters of £ are prime.

proof: Zornfs lemma yields immediately an ultra-filter P con-

taining I and excluding a. Assume b,c fi P but bVc e p.

Then [IU{b}) ̂ a and [IU(c)j 9a, i.e. (see example 10) a ̂  i Ab

and a J> ijAc for some i^ ±2 e ?. Thus,
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a = a V a ̂  (i^Ab) V (i2Ac) = (iĵ Vij) A (J^VC) A (bVi2) A (bVc) .€ P.

This contradiction proves the theorem* q. e. d.

Thus, in distributive lattices all ultra-filters are prime. The

converse is not true as the simple case of chains shows. However,

we get the equivalence if we progress to Boolean algebras. Before

showing it we derive a little preliminary remark.

Remark 9; If B = <B?V,A/,O,1> is a Boolean algebra, then

DC B is an ultra-filter (of course, in <B;V,A» if and only

if for all a € B the relation a e D is equivalent to a' / D.

proof; If D is an ultra-filter and a,a5 / D, then a V a3 =

1 € D yields a contradiction against the fact that ultra-filters

are prime in distributive lattices, hence Boolean algebras. If

a,a' e D then a A a5 = 0 e D yields D = B, another contradiction.

Thus, a € D is equivalent to a5 / D.

Vice versa, if D were not an ultra-filter, then D C D, were

true for some ultra-filter D, • If a € D-. \ D, then a5 e D

by assumption? thus, a,a' € D, implies a A a* = 0 6 0 , which

is impossible. q. e. d.

Corollary: If a = <B;V,A,',0,1> is a Boolean algebra then

ultra-filters and primefilters coincide.

proof; We know already that ultra-filters are prime filters.

Assume, vice versa, that p is a prime filter and a / P; then

1 = a V a* € P implies that a' e p. Similarly, a e p implies

a' / P. q. e. d.
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Stonefs theorem has an immediate, elementary but useful impli-

cation whose statement requires our recollection of the following

concept:

A
Def. 13; Let A be a non-empty set and S a subset of 2

with the property that every finite intersection of elements in

S is non-empty. Then S is said to have the n finite inter-

section property.n

A
Corollary 1: If A is a non-empty set and S c 2 has the finite

intersection property, then S-. = {B;B c A and B 3 C for some

finite intersection C of elements in S} is a filter.

Together with Stonefs theorem we get the next corollary:

Corollary 2: If S c 2 has the finite intersection property,

then S is contained in an ultra-filter S of the Boolean
m

algebra <2A;V,A,',0,1>.

As remarked before, the reduced products obtain particular

significance if the filters involved are ultra-filters. In

this case, our intuitive description via M largeM and M small11

sets gets also a much more precise form as expressed in the next
remark.

Remark 10: If I is a non-empty set then there is a 1-1 correspondence

between the set M of all {0,1}- valued, finitely-additive

measures on I and the ultra-filters over I.

proof: If D c 2 is an ultra-filter, then u : 21 - {0,1},

juD(y) =|J jdefined by juD(y) =|J j| J ̂  £ , is an element of M.
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If \L € M, then D = {y;y e 21 and ju(y) = 1} is an ultra-

filter over I. Moreover: D = D and ^ = \i for all ultra-
^ D jit

filters D and all elements JU in M. The details are left

as exercise. q. e. d.

Def. 14: If D c 21 is an ultra-filter over I, then ^ ( G ^ i e I)

is called an ultra-product. If all G. ̂  = G, we write TD(
Gj_?i € I) =

G and call the resulting relational system an ultra-power.

The remaining results in this section can be found in Kochen's

paper on ultra-products [1].

Theorem 5: Every relational system G can be embedded in every

of its ultra-powers. More precisely: If G, the set I and

the ultra-filter D over I are given, then

defined by j(a) = (a) 9 is a monomorphism.

proof: If a = b then, clearly, j(a) = j(b); so the mapping

is well-defined. If a ̂  b then S( j (a), j (b)) = (f> jL D, i.e.

j(a) / j(b); so the mapping is 1-1. The homomorphism-properties

are verified in a similar fashion. q. e. d.

We can use this theorem to find a first instance in which our

new construction yields no new result.

Corollary: If G is a finite relational system (i.e.

then GD ^ G holds for every non-empty I and ultra-filter D

over I.
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proof: If £ € A^, A= {a^ ...,an) and A± = {i;f(i) = ai

o i

o o
for every i - l,....n, then I = A1U...UAn; thus, since D

is prime and I € D, A. e D for some 1 <^ i <£ n. We conclude
o

that

S(f,(a. ) ) = A. e D, i.e. £ = (a. ) = jQ (a. ).
xo o o X U ^ D ^ xo

Hence, jr (as introduced in theorem 5) is onto and there-
u , D ,1

fore an isomorphism. q. e. d.

The following remarks are results in the same direction -

showing the limits of the ultraproduct-construction.

Remark 11: If D is a principal ultra-filter over I then

7Tn(G.;i e I) ~ G. for some i e l .
o

proof: Since, as one easily verifies, the principal ultra-

filters over I are exactly the filters [i) with i e I, we

conclude that D = [i ) for some i e l . Thus r = g is

equivalent to f(i ) = g(i ), and cpz IT (A.;i e I) -» A.
A o

mapping f to f(i ) is an isomorphism. q. e. d.

Corollary 1: G ~ (1 for every principal ultra-filter over I.

Corollary 2: If I is a finite non-empty set and D an ultra-

filter then 7fD(G.;i € I) ^ G i for some i .
o

proof: If I is finite, then every ultra-filter is principal,

q. e. d.

The next remark (whose proof is essentially due to Halmos)is

a cardinal number-theoretical counterpart to the corollary to

theorem 5.
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Remark 12: If I = {1, 2, 3, . • ., n,. . . .} is the set of natural

numbers and G a finite relational system of fixed type r
n

for 6very n such that the set {n;|A | £ m} is finite for

every natural number m, then l77"^^7 n € I) | =f> 1 for every

non-principal ultra-filter D over I.

proof: Clearly |7rD(An?n € I) | £ |7r(An;n € I) | ^ v

Thus, we are done if we can construct an injection (pz {0,1} °^TT (A ;nel)
CO

where {0,1} ° is the set of all countable {0,1}- valued sequences
co

s (or equivalently, {0,1} consists of all functions s: I-*{0,l})

which, of course, has cardinality 27° =^i-

Due to our assumptions can we assume that [A-] <£ |A2| <\ ..£ |A | <̂ .. .

and lim |A | = (* . Thus, if g(n) is the unique natural number

satisfyiHg g(n) =1 in case |A | = 1 and 2 g ( n ) £ |A | < 2 g ( n ) + 1

in case |An| ^> 2, we conclude that (i) g(n) is increasing and

lim g(n) = co and (ii) there exists an injection F :{0,l} g -• A
n^ co ( \

for°every natural number n (if {0, l } g ( n J is the set of all

functions from {1,2,...,g(n)} to {0,1}). Let us agree to denote

by s the restriction of s e {0,1} to {l,..,,n|. Then
F: {O,!}*0- 7r(A.;i € I) is well-defined by F(s)(n) = F (s - ') ,

•*• co ^ g' ̂/

and we claim that <p = TT • F: {0,1} ° -• ^ ( A . r i e I) defined by

<p(s) = F(s) is an injection. To see this, let s ^ t, s,t € {0,1}

Then, for large enough n, s ^ t ? hence, for large enough n

(say, for all n ;> n Q ) , s g ( n ) y t g ( n ) . Consequently P n ( a g ( n ) ) ^ P n ( t g W

holds for all n ^ nQ, i.e. S(F(s) ,F(t):) c {l,...,n - 1 ) . Since

D is a non-principal ultra-filter, it cannot contain finite sets;

thus, S(F(s),F(t)) ft D, i.e. F(s) ^ F(t) or <p(s) / <p(t) . q. e. d.
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$5. The Homomorphism - Theorem and the Isomorphism - Theorems.

The following is a fundamental theorem which ties up congruences

and homomorphisms in universal algebras.

Theorem 6 (Homomorphism-Theorem):

Let G,B be algebras of type r and <p: G -* (B a homomorphism

then there exists a unique monomorphism 0: G/ker <p -> IB such that

the diagram

a

is commutative. In particular: <p(G) ~ G/kenp.

proof: Of course, we have to define 0([a}ker <p) = <p(a) . Since

a = b(ker <p) is equivalent to <p(a) = (p(h), the mapping 0 is

well-defined and 1-1• The homomorphism-property is easily verified,

q. e. d.

Corollary: Every homomorphism is a product of first an epimorphism

and then a monoraorphism.

The homomorphism-theorem occurs in an overwhelming number of

situations; in particular, it is underlying the succeeding

isomorphism-theorems sometimes referred to as H Lasker-Noether

isomorphism theorems. n We choose a subalgebra IB = <B;F> of

G a <A;F>, a congruence relation 9 on G and the closure [B]0

of B modulo 0 in A (see diagram). The dotted lines in the

diagram indicate 8. Evidently there is a

1-1 correspondence between the blocks of 0O
J3
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(the restriction of 8 to B) and 0rBiQ* 'rhe whole and only

content of the so-called first isomorphism-theorem is the fact

that that 1-1 correspondence constitutes indeed an isomorphism

of the relevant algebras.

Theorem 7 (1st isomorphism theorem):

If IB = <B;F> is a subalgebra of G = <A;F> and 9 is a con-

gruence relation of G, then [B]9 = <[B]6?F> is a subalgebra of

G and [B]0/P[B]0 £ B/0 .

proof: The fact that [B]0 is closed under the operations of F

is easily verified; so [fo]9 is a subalgebra. If <p: B -» [B]0/0

is defined by <p(b) = [k]GfBi0 * then it is trivially an epimor-

phism. What about ker <p? b.. s b2(ker <p) is equivalent to

(pib^ = <p(b2), i.e. to b± s b2
(e[B]0)5 h e n c e to bi s b2 ( 0B ) #

Thus, ker <p = 0_., and the homomorph ism-theorem shows that

- q. e. d.

Corollary: If M = <H;•," ,1> is a subgroup and h = <N;•," ,1>

is a normal subgroup of the group Q = <G;*,~ ,1>, then

^•N/N;-," 1,^ S <H/HnN?-,"1>l>.

Similarly simple is the second isomorphism-theorem. To prepare

it we again set out with a universal algebra G = <A;F>, but

choose two congruence relations 9,$ e C(G). Clearly, ira .: A/9 -•

mapping [a]0 to [a]<l> is an epimorphism provided it is well-

defined. To be well-defined, [a] 6 = [b]0 must imply that

[a]$ = [b]$, i.e. 9 £ <E> is a necessary and sufficient condition.
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Remark 13: If G is a universal algebra and 9,$ e C(G), then

TT0 ft : A/9 - A/$, defined by WQ a(t
a19) = [a]$, is an epi-

morphism if and only if 9 £ $.

Def. 15: The kernel of TTA *> in remark 13 is denoted by

$/9 and is a congruence relation on G/fi.

Remark 14: If 9 are congruence relations on G, then

[a] 9 s [b]0 ($/9) holds if and only if a =

The last remark is, of course, an immediate corollary to the

definition of $/9. The so-called second isomorphism-theorem is

now not more than a re-statement of the homomorphism-theorem for

the special epimorphism 7TQ ^.

Theorem 8 (2nd isomorphism-theorem).

If 9,$ are congruence relations on the algebra G and 9 £ $,

then G/$ ~ G/9 A/9- .

Corollary: If Jt . = <N.?*, , 1>, i = 1,2, are normal subgroups

of Q = <G; •, ~ , 1> and Nn c No, then <G/NO ; •, " , 1> ~

To realize the simple content of the second isomorphism-theorem,

we visualize it via diagrams: 9 is represented by the dotted,

Thus, vaguely speaking, the

2nd isomorphism theorem states

that it does not matter whether

we pass from G to G/*

immediately, or whether we pass

to it via any algebra G/9 with

9 £ *.

by the solxd lines.
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Thus, if we go down to the bare essentials, theorem 8 conveys the

11 surprising" information that, if G« £ 02 <£ • • • <1 ft are

congruence relations on Gj then, in

7Te. 7T/ IT, 7T

G - 1 G/01 -
1 2

e .e.
n

n

the mappings TTn and TJ\
n

.• T e.
are equal.

Before we proceed we ought to mention the following little result

showing the r6le of the congruence relations 0/0'

Remark 15: If 0 is a congruence relation on G, then /*: [0) =

{$;* € C(G) and $ ̂  0) - > C(G/0), defined by /Q (*j = */0

is a lattice-isomorphism /fl:<[0);V,A> - <C(C/9);V,A>.

proof: We leave the verification that /9 is a homomorphism as

exercise. To see that /0 is onto we select $ e C(G/0) and

combine the two canonical projections IT^i G -> G/Q and TT.:

to 7rA«7rD2 ^ "* G/y$* an epimorphism with kernel, say, $.

Since ker(7T. o TT^) is evidently larger or equal to ker IT* = 0,

we conclude that * ̂ > A, i.e. <3> € [0). Moreover we have the

following commutative diagram:

a ^-^ a/e/$
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The isomorphism 0 (assured by the homomorphism-theorem) maps

to [[a]G]<fc. Hence, ker(7Tn ^)= ker(0o7Tp ^) = ker ir-* i .e .

= <&; thus, / f t (*) = * which establishes the onto-part. / f l is

1-1, for ^ ^ 2 € ^ a n d *1 ^ ^2 implies, say, ^ V $2 / & ;

i . e . ker(7r0^ v^ ) ^ k e r f f j . ) . Thus, ^ V <J>2/8 = ^ / e V ^ / p /

* /0. In particular, 3^/0 ^ ^2 / / 0 # q# e" d#

Corollary; If Q = <G;-,~ , 1> is a group with normal subgroup

Tl = <N;*,"" , 1>, then there is a lattice-isomorphism frcm the lattice

of all normal subgroups of G containing N to the lattice of

all normal subgroups of G/N.

Slightly more complex, though equally elementary, the final iso-

morphism-theorem is alternately referred to as 3rd isomorphism-

theorem, respectively Zassenhaus1 lemma. In case of groups, the

result is due to Zassenhaus; its formulation for universal algebras

seems part of the !t folklore11 on the subject matter (see Cohn [1],

Gratzer[l], Wyler [1]). To state it we need to consider one more

congruence-relation.

Def. 16: If B is a subset of the non-empty set A and p,(T are

binary relations on A,B, resp., i.e. p e R2(A), a e R2(B),

then poOoo € R2(A) is defined by (a,b) € poGop = : (a,c) e p,

(c,d) e a, (d,b) e p for some c,d e B (thus, compared with |2,

the applicability of o has been slightly widened).

Remark 16: If IB is a subalgebra of G, a e C(8), 9 e C(G) and

#B <1 $, then ^rBiQ° ^ O ^ [ B 1 A i s a c o ng r" u e n c e relation on



40

proof: Reflexivity and symmetry are immediately clear. So let

us assume a = b(^[Bie ° * ° 0[B]0^ a n d b S C^tB] 0 ° * °

i.e. aec.*d10b and b0c2<fd20c with a,b,c e [B] 0, C i^
d
i € B.

In particular, c. tfd-0b0c2*d2, i.e. c.*d-Pc2*d2; since $ J> 0 ,

we conclude that c- = do($). Thus, a0c.$doAc shows a = c

(^r«iAo $oflr . . ) • transitivity is established. To check the

s u b s t i t u t i o n proper ty , l e t a i s b i ( e [ B ] 0 ° * O 0 [ B ] 0 ^ 1 ^ i ^ n

i . e . a i 0 c i # d i 0 b i , 1 ± i ^ n , w i th a
i ^ b

i e [B]9 , c i ^ d i € B #

s i n c e B is a subalgebra, f ( c - , . . . c ) € B and f ( d . , . . . , d ) € B
y L ny y l ny

holds for all f e F; so f (a., ...,a )0f (c ,...,c )*f (d., . . .dn )
' y y v y

0fy(b15...bn ) shows that f y(a r...a n ) ^ fy(br...bn ) (0 [ B ] po»o»[B] 0)

q. e. d.

Appendix to remark 16: It is helpful to realize that the congruence-

blocks of ^fT3iA° * o^rRi0 a r e obtained by fixing some $-block

and adjoining all intersecting 0-blocks. Thus there is a natural

1-1 correspondence between the ^-blocks and r̂iDifl0 ̂  d®rRiA~

blocks, a correspondence of the type that led to the first isomor-

phism theorem (see diagram).

The solid lines represent ft, the

dotted lines $. If we squibble

the Or ,fio $ oQ ^-blocks, then the

1-1 correspondence is quite clearly

reflected: Every *-block determines

uniquely a squibbled block. So one

is kind of forced to write down the next remark.
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17: If 8 is a subalgebra of G, $ a congruence relation

H, B a congruence relation of G such that 0A <£ $, then

~ B/#.

p r o o f : We d e f i n e <p: B - [ B ] e / 0 [ B ] e « $ ° e [ B ] e b y

[b]9r«iA° $ e 6 r n l f l ; <p is qui te c l ea r ly an epimorphism with kernel
IBJ ft IBJ tJ

The homomorphism theorem then settles the matter, q. e. d.

Remark 17 is really the meat of the 3rd isomorphism-theorem

which follows next.

Theorem 9 (3rd isomorphism-theorem or Zassenhaus1 lemma): Let $

and 6 be subalgebras of G such tha t DflE / (f>. Then fl.fl6 =

<DHE;F> is a subalgebra of G. If 0 € C(fi), $ € C(6) and

v *DnE
 € c (*n e ) • t h e n eDnE ^ •' *DnE ^ • and

proof: By remark 17^ fiHft/0 is isomorphic to each of the other

two algebras. q. e. d.

An immediate corollary, sometimes called n Zassenhaus1 lemma!f

itself, is the following:

Corollary 1: Let $ and 6 be subalgebras of G with EflD / <f).

If C(fine) is commutative (i.e. £<>X= X o£ for all E, X

and 0 € C(«),# € C(C), then,

e[DnE]e =



4 2

Proof: Since * = 9^ V *Dfff i = G ^ o *D f i E (due to the

atativity of C(flDe); see §2, following def. 4) we concludecommut

that e [ D n E ] 0 « *DnE<» 9 [ D n E ] 9 - e
[ D n E ] e° e DnE o *DDE°

° ^ °*fDriEl<I> • So t h e i30111017?11^3111 f o l l o w s from theorem

17. q. e . cL

Corollary 2 (Zassenhausr lemma for groups):

Let Q be a group with subgroups Jt̂. and Jt2 such that h. is

a normal subgroup of li-jVu is a normal subgroup of M^. Then
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|6« The Jordan-Holder-Schreier-Theory.

The task to decompose algebras of all kinds into simpler com-

ponents (be it via normal chains, direct sums, subdirect sums...)

is one that keeps coming up in all branches of mathematics. So

we shall engage in a discussion of at least some of the most

important results known on the subject matter in this and the

next section.

Def» 17; If ft is a subalgebra of an algebra G, then (G ,G-, ...

G * 0 i0-i,...,0 ) is a normal chain from ft to G modulo 6.

if

(i) all Gi are subalgebras of G

(ii) 0. is a congruence relation on G. such that [A. ,}0. =

A. - = [a. nlGjL for every i = l,...n and a. - e A. ..

The algebras G./0. constitute the so-called factors of the normal

chain.

If Tj = (e=Go,G1J..#,Gn=G;0o, ...,0n) and T 2 = (G=B Q, . . . ,ftm=B?*o* •

,

are normal chains with 0 = cb then T- + To denotes the nor-
n o 1 2

mal chain (ft=G , . ..,G =8 ,B , . .. *^m
=B*9o^ • • • ̂ n

=* o^
 # * #*m^ -

Def> 18; If C= (£=GQ, . . ,Gi,Gi+1, . . . ,Gn=G ?0Q, . . ., e±, 0 i + 1, . . . ©n)

is a normal chain from 6 to G and C. . - = (G .=G . ,G ..,.».,
1,1+1 X XO XX

e i = e i o ' f l i r • • • ' e i j " - - ' e i j o ) i s a n o r m a l

chain from G. to G . _ such that (i) [A..1G. - = A. .,x x+1 x]J x+1 xy

(ii) 0
i + 1/

A£j <, e±j for all j = O, m-1 (C^ i + 1 is then

called a strongly normal chain with respect to A. -) , then R

is
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called a refinement of the chain C(and is, of course, again a

normal chain).

Def. 19: The normal chains (S = G o'
# # #' Gn = G ?^ o^

# #*^ n^
 a n d

(C = B , 8,,...,(B = G; * , ...* ) are isomorphic if n = m and

there is a permutation ir of {l,...n} such that G ./&. ~

The three definitions just given contain the basic concepts

underlying the so-called Jordan-Holder-Schreier theorems. It is

a useful exercise to rewrite them in the language of, e.g., groups.

We should point out that 6. / ^-+i in def- 18 unless we have

the trivial ff refinement" (G ,,Q .+1?0 •, 8 • , •,) • The next remark

contains some information on refinements.

Remark 18; (1) If T = (C = GQ,...Gn=G;9Q,... 9n) is a strongly

normal chain from & to G with respect to 0 e C(G) (see def. 18),

then T± = (£/0E = GQ/0A ,••-,
G
n/0A =

is a normal chain from £/$„ to

• hi

(2) Vice versa: If i/) is a congruence relation on G and

T = (8 ,B-,...,P = G/0; 6 ,0,,...,0 ) is a normal chain from

B Q to G/0 then T 2 =
 (e==7r^1(fio

) ̂ " J ( e i ^ - - ^ % 1 ( B
n
) =

G ;¥ ,^ , . . .,H ) is a strongly normal chain from 6 to G

if (1) T T ^ V j = <7r^1(Bi);F>,

(2) "0. is the kernel of <p. : TTT (B.) -• (B ./^. mapping b to

Moreover: T-2 = T and T = T 2 1 holds for all chains T.
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Corollary: If 6 is a subalgebra of G and 0 a congruence

relation of G, then there is a one-to-one correspondence between

the normal chains from &/0E "to G/0 and the strongly normal

chains from t to G (with respect to 0) .

Note; Would we (what we donft) assume the elements of category

theory, then we could simply say that the 1-1 correspondence

is achieved by the pull-back with respect to 0.

proof of remark 18;

(1) Since G ./^ = 7r.(G.), it is, of course, clear that
X A, • lj) X

c G /̂ j c ... C G / ^ ) . Furthermore, if a. -€ A. -, i.e.

[ai-l}*A e Ai-1^A ' t h e n [tai-l^A ] V A ilAi-1 i-1 i-1 i i

for b € A./0. (i.e. b = [b.]$A for some b. e A.) is equiva

lent to a± j^ s b i(0 i), i.e. bi e
 A

it-1-

Hence, [ [ a ^ ] ̂ ^ 9 . / ^ = [ A ^ ^ ^ I O ^ = A./0A_ .

This establishes part (1). Part (2) is established in a similar

fashion. q. e. d.

We can now prove what is most commonly known as
 lf Schreierfs

Refinement Theorem11 , although in some cases (for obvious reasons)

Zassenhaus* name is attached to it.

Theorem 10 (Schreierf s Refinement Theorem);

Let G be an algebra such that C(fc) is commutative (with res-

pect to o) for every subalgebra (J. Then any two normal chains

from & to G have isomorphic refinements.
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proof: Let (1) =

(2) = (6=fB «ft-, . . . ,

^G.^ . . .,Gn=G;9o,91, . . . ,Bn) and

be the two normal chairs in question. Then we consider the chain

di) =

Gi+i7

where

precise notation

,...,[ai+1nBj]o1+1,...,[GianBn]eM-

m

is an abbreviation for the more: A • •
3-5 D

Since both the carriers of the algebras [G . -OB.]©. . and the

blocks of the corresponding congruences /\. . are (by definition)

unions of 0. ..-blocks, we know that (li) is a strongly normal

chain from G. to G. . once we know that it is a normal chain.

To show the latter point we merely need to show that [a]/. . , =

[A. -flB.10. , for all a e A. ..flB.. But this is immediately seen

(see diagram):

block rneo/u/o 3/. )
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while

for some c,d e A. -flB. j},

a n d f0i+lx f o r s o m e f

[A. ,nB.]0. . £ [a]j(. .+1 is immediately seen since

and f e A ± + 1 HB.. implies a 0 i + 1 a *.+1 f e ± + 1 x.

Vice versa: a 0 i + 1 c *.+1 d 9 i + 1 x and c,d e A i + 1 n B .+1 implies

a *j+l C' ®i+l
 d eifl X W i t h C' e Ai+1

 n Bj+1
 ( s i n C e

6. - on Ai+, PI B. - ) . But then c* € A i + 1 D B.# (since

B. is one block modulo *-.i) an(^ c^^*+ix Proves that

x € [A±+1 n B.]0i+1/ i.e [a]/^ .+1 c [Ai+1 0

We recapitulate: (li) is a strongly normal chain for every

i = 0,. . . n - 1, which, if inserted into chain (1), yields a

refinement. In short (see def. 17):

(A) = (10) + (11) + + (l,n-l) is a refinement of (1).

Similarly one can show that

(B) = (20) -f (21) + + (2,m-l) is a refinement of (2) if

(2j) = (B. =[G fl
~j o

Both chains (A) and (B) have equal length n*m. Moreover, a

typical algebra in (A) is of the form [G.D6.10. and carries the

congruence relation 0.° $.° 0.; also, a typical algebra in (B)
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is of the form [G.niB.]$. and carries the congruence relation

<£. ° 0. ° $.. By Zassenhaus* lemma <in the form of corollary 1

to theorem 9) , we know that

i. e. (A) ~ (B) . q. e. d.

If a normal chain has a trivial factor G./0. (i.e. G. - =

G . and 0. = i) then, of course, every isomorphic normal chain

has such a trivial factor. Thus, if we drop all trivial factors

(whose presence or non-presence is totally up to the whim of the

person using them) isomorphic chains will be transformed into

isomorphic chains,

Def. 20; A normal chain without trivial factors which permits

no proper refinement without trivial factors is called a com-

position series.

Corollary 1 (Jordan-Holder-Theorem):

If G is an algebra all of whose subalgebras have a commutative

congruence lattice then any two composition series from t to

G are isomorphic•

Corollary 2; If G is as above and there exists a composition

series from t to G, then every normal chain from t to G

can be refined to a composition series.

In case we deal with a group Q = <G;*,~ , 1> instead of an

arbitrary algebra G, we realize that all subalgebras (= subgroups)

have a commutative congruence lattice, since congruence relations
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are represented by normal subgroups and the composition of con-

gruence relations corresponds to the usual multiplication of

normal subgroups which is indeed commutative. Thus, we have the

assumptions crucial for the Jordan-Holder-Schreier-Theory. More-

over, a normal chain from the subgroup 6 to Q is now simply

a sub-group chain

where Qi is normal in Q-+1 (and determines the congruence-

relation which we used to denote by -̂.i *-n the general theory)

We have the following simple special case:

Corollary 3:

If e = Qo £ Qx £ • • • £ Qn = Q
 and t = M Q C ̂  C ... c « m = Q

are normal chains from the group t to the group Q, then

there are refinements R, and R2 of the two chains, say

Ri • e = Q^ £ £ <L = Q a n d

JL O S

R 2 S e = * o ^ ^ M t = ^

such that s = t and Q./G. . ~ M ( .v/H / -x -, for a suitable

permutation ir.

Corollary 4; If there exists a composition series from t to

Q, then every normal chain from the group t to the group Q

can be refined to a composition series. Moreover: Any two

composition-series are isomorphic.

To conclude the section let us point our attention to the

outstanding importance of groups with composition-series from the
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trivial subgroup to the whole group. If the factors of that

chain are Abelian, the groups are known as lf solvable groups11

and play the known core role in the classical Galois-theory.
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kl. Birkhoff1s Subdirect Decomposition Theorems-

A property of an algebra G is called a M residual property"

if it is true for G provided it is true for a family {G/0^;i € 1}

where 0. are congruence relations on G and 0(6^; i e I) = co.

The study of residual properties of an algebra G is closely

related to the decomposability of G into subdirect products as

was shown by G. Birkhoff. So assume that G c 7r(Gi;i € I) is a

subdirect product of the algebras G^ i € I. Then the i-th projection

7T.: A -> A. is an epimorphism with kernel, say, ft. • Moreover:

if f,g e A then f s g(n(9i;i € I)) is equivalent to ir^f) = Tr

for all i € I, i.e. to f = g; thus, 0(9^ i e I) = to. Since,

by the homomorphism theorem, G. ~ G/9. we can say that an

arbitrary subdirect representation of G determines a family 0.

of congruences on G such that 0(0.;i e I) = co and the components

are (up to isomorphism) the algebras G/0.. The converse is true

as well as is summed up in the next theorem.

Theorem 11; If G c 7r(G.;i € I) is a subdirect product of the alge-

bras G.,i€ I, then n(ker7T.;i€ I) = co and G. ~G/ker7T..
1 JL. "L """ JL

Vice versa: If {0.?i € 1} is an arbitrary family of congruence

relations on G such that n(f>. ;i € I) = co, then G is iso-

morphic to a subdirect product of the algebras G/0. via the

isomorphism <p(a) = ([a]0.) .

proof: The first half of the theroem was established before the

theorem, the second half is (since <p is given) a simple matter

of verification. q. e. d.
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Due to this internal characterization of subdirect representations

of algebras, we can in the future assume that all subdirect

representations are given in the manner just considered.

Def. 21: G = 7T (0/0. ;i € I) expresses the fact that the algebra

G is expressed as subdirect product of the factor algebras

in the sense of theorem 11. A set of congruence relations ^

on G is a separating set if 0(6. ;i € I) = co.

The task of giving an external, more constructive characterization

of subdirect products was taken up by Fuchsfl], Fleischer[2] and

Wenzel[l] using an idea of Wedderburn. Since this construction

meets harsh limits in case of more than two factors, we will not

engage in its discussion.

Thus, to find subdirect representations of universal algebras

G we need only to look for separating sets of congruence relations

on G. We can, of course, always waste our time by including 60

into the set of congruence relations, thus obtaining on the one

hand a separating set of congruence relations, on the other hand

a worthless decomposition of G.... since one of the components

is G/co ~ G. If this should be the only way to obtain a separa-

ting set, then with good right we consider the algebra as M sub-

directly irreducible. !l

Def. 22: The algebra G is subdirectly irreducible if every

separating set of congruence relations on G contains co.

We get immediately the following remark.
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Remark 19: The algebra G is subdirectly irreducible if and

only if G = 1 or the congruence-lattice of G is atomic with

exactly one atom.

Note: We recall that the element 6 of a lattice with 0 is an

atom if 6 > 0 and the only element I of the lattice satis-

fying I < 6 is I = 0. The lattice is atomic if for every

element I / 0 there exists an atom 6(1) such that 6(1) <£ I.

proof: If G is subdirectly irreducible and |A| > 1 then

C(G) has at least one more element than co, so C(G)\{oo} is

non-empty and 0(0 ; BeC(G)\{ o>)) t 60. Clearly, 6 = fl( fl;0eC(G)\{ co})

is an atom and every 0 e C(G)\{co} satisfies 0 ^ 6 . Vice versa:

If G = 1 then G is, of course, subdirectly irreducible. If
T

G ^ 1 but C(G) is atomic with a single atom 6, then

0(0 ;0 € C(G)\{co}) = 6 > co, i.e. every separating family of

congruence relations on G must contain oo. In other words: G

is subdirectly irreducible. q. e. d.

We are now able to state and prove the following fundamental

and useful theorem which is also due to G. Birkhoff.

Theorem 12: If G is a universal algebra then G is isomorphic

to a subdirect product of subdirectly irreducible universal

algebras.

proof: We can assume that G ^ 1 . In example 8, £ 2, did we
T

introduce the congruence relations * - for a,b € A, a £ b. If
a, JD

p = n($ a ]3?
a ^ b,a,b € A ) , then x s y(p) is equivalent to
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either x = y or x = y ( 0 v ). The latter being impossible,
x,y

we conclude that p = co, i.e. {0a fe;a ̂  b, a,b € A] is a

separating family of congruence relations on G. By theorem
11, G = if (G/0 , ;a / b,a,b e A) . So we are done if we cans a, JD

show that G/0 -, is always subdirectly irreducible, i.e. thata, JD

C(G/0 n ) is always atomic with a unique atom 6. By remark 15

(§5) we only have to show that [0 , ) is atomic with a unique

atom. But this is clear since G e [0^ , ) and A ̂  j/) . implies
a , JD cL , JD

0 > ib i v 6 I. • Thus, 6 = 0 . V 0 is the unique atom of•̂  ra,b a,b ^a,D a,JD

[0 - ) which is < 0 for every 0 > 0 . • q. e. d.x a , JD a, D

The proof establishes a fact which is worth noticing of its own:

Remark 20: If G / 1 then G is subdirectly irreducible if

and only if 0 - = co for some a,b e A, a ^ b.

proof: If 0 , = co then G/0 - = G/co ̂  6, a n^ t1ie proof of

theorem 12 shows that G is subdirectly irreducible. If G

is subdirectly irreducible then 0(0 >,;a,b e A and a ^ b) = co
a, D

implies 0 , = co for some a,b e A. q. e. d.

We remark that, although 0 , is not a uniquely determined
a,ID

congruence relation (but rather one chosen out of a family of

candidates) , still 0 - = c o o r 0 . ^ c o are unambiguous state-
• a , JD a , JD

ments.

(Ex. 11): If £ = <L;V,A> is a lattice then every prime filter

D determines a congruence-relation 0 by defining a s b(0 )

if and only if either both a and b are in D or both are not
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in p. Thus, if we additionally assume £ to be distributive

then every ultra-filter (being prime) defines such a congruence

relation. If a,b are two different elements of L then

there are essentially two possibilities: (i) a > b or (ii) a

and b are uncomparable. In both cases, Stoned theorem (theorem

4) assures the existence of an ultra-filter D containing [a)

and not containing b. Thus, in both cases a ̂  k(6 ) • Since

0 / 60 unless |L| = 2, we conclude that the distributivity of

£ together with |L| ^> 3 implies 0 - ^ 60. Hence, the only

subdirectly irreducible distributive lattices are the l-and2-

element-lattices. This, by the way, implies trivially that every

distributive lattice is a sublattice of the lattice-retract of

some Boolean algebra .
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4s. Free Algebras, Polynomials, Equational Classes.

We begin our section with a rather technical construction

whose importance, on the other hand, is so outstanding that we

recommend extreme patience while absorbing it. The starting point

is essentially the class of all ordinals? namely we choose a symbol

e for every ordinal a, call it a projection symbol and collect
Cfc

all the projection symbols in the class E (Since the ordinals

do not form a set, therefore, of course, E does not). E is the

starting point for a wider class P(T) of symbols to be constructed

and associated with any fixed type r. P(r) is constructed

inductively as follows:

(1) E c P ( T ) , (2) If £..,...,£ e P(r) and f e F then the
ny y

symbol ^ (g..,...,g ) € P(T). (3) P(T) consists exactly of all

elements that can be obtained using (1) and (2) in a finite number

of steps. Equality is formal equality.

As is clear from the definition, every element g of P(T)

(called a polynomial symbol) is composed of a well-determined finite num-

ber of operation symbols f and projection symbols e (each counted as
often as it appears) • These numbers are called the operational rank (o* ik,
(p.)) and,

projection symbol-rank (p.rk. (jy) ) , respectively. The rank of p

(rk(p,) ) is defined as the sum of the two previous ranks:

rk (jo) = o.rk (g) + p.rk (p) .

I t i s q u i t e c l e a r t h a t , i f g= f y ( g r . . . , g n ) e P ( r ) , then rk(q) =

1 + S
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It is the fact that these ranks are finite which makes these poly-

nomial symbols so valuable in many situations. In particular, the

finiteness of the rank is frequently used to prove statements con-

cerning polynomial symbols by induction on that rank as we will

immediately demonstrate in the proof of the next remark:

Remark 21: If p € P(T) involves only projection symbols e

with y < a and a is a permutation of {0,1, ... 9y, .. •} then

pa e P(r) where pa is the symbol that results from JD by consistently

replacing e^ by %

proof: (i) If rk(jD) = 1 , i.e. p = e for some y < a, then

pa = e / x e P(r) holds by definition. (ii) Assume £,,..., P e P(T)

fand we know already that £..,... ,JD e P(T) ; then (f (•£*,.••, P ) )a =
a a y 7

f (Pi*»***P ) ^ P(r) again by definition. q. e. d.
y

Def. 23: If g e P(r) involves actually ^ ,....^e then
^ 1 "^m

y = max{yi) is called the leader of £, say ld(jp) .

P(T) serves as huge ressort of elements which we will use

to create new algebras of type r the so-called polynomial-

symbol algebras. To do so we fix some ordinal a ̂  1 and define

P (T) ^ p(r) to consist of all polynomial-symbols involving

only projection-symbols e with y < a. If f e F and

Pi* •••*?„ ^ P (r) then we def ine f (p-,...,p ) =:

-fv(Bl> ••"£« >•
 e P(a)(T), thus turnimg P(a)(T) = <P

(a) ;F> into
V

an algebra in K(T) .
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Def. 24: The algebra P (a) (r) = <y a* (T) ;E>, as just constructed,

is called the algebra of g-ary polynomial symbols. The elements

of p (r) are the a-ary polynomial symbols.

The next remark shows a mere comprehension of the definitions:

Remark 22:

(1) We have a subalgebra-chain P ( 1 ) (T)ap(2) (r)c dP ( a ) (r)c

if a runs through all ordinals.

°(2) P ° (T) = U(p
(n)(r); n=l,2,3,(n)

Let us remark that a set of subalgebras of an algebra G is

cal led l! localM if it is directed by inclusion and its union equals

A. A property for algebras of type T is called a local property

of G if G has the property provided every algebra of some

local set of subalgebras of G has the property. Statement (2)

of remark 22 then says that f ( n )(r); n = 1,2,3,...) is a local
(co )

set of subalgebras of P (r) .

These algebras P (a)(r) play the role of the suns in the sky

K(T) of algebras G of type r. Less poetically, P *a)(r)

induces on every algebra G e K(r) an algebra P 'a (G).... the

so-called algebra of a-ary polynomials in the following fashion:

Every £ € P(a)(r) induces a function p 'ai Aa - A according

to the agreement that (i) e 'a(x , ...,x , ...) = x and (ii) if

p1
9 ,...., pV are already defined then f (p-,. .., p ) inducesi n ^y ** x ** n

* i y\a>a i y
E y p l ' " " ' P n ' (xo'xl' ' X6' }6<a = :
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Then P(a)(G) = : (pG'a;p e P(a)(T)}; moreover, if fy e F

and p<f><\....,pG'a e P(a).(G) then f <pG',a, . .. . ,p*'a> = :
v y

(f (p ,...,p ) ) G ' a makes f a well-defined operation.

Def. 25; The algebra P (a)(G) = <P(a)(G);F>, as just constructed,

is called the algebra of g-ary polynomials on G.

Note; By definition, e induces e >a
: A

a - A in PW (G)

and (if, e.g., p > a) e ^ p : Ap - A in P (p) (r) . If there is

no possibility of confusion, we will frequently drop the upper

indices. Thus, e.g. p(ao,a]L, • . .a , . . .) , a± e A, makes it quite

cle&r that p stands for p 'a.

If we fix G e K(r) then we have for every epimorphism <p;

^ (T) -• iP fo ) mapping p to p *a a kernel which identifies

polynomial symbols inducing the same polynomial on G.

Def. 26; The kernel of <p; p (r) - p (G) as introduced above

is denoted by JU_ •

Corollary; P ( a ) (T)/8G ^ P ( a ) ( G ) .

It is now a recommended (since simple) exercise to verify the

next remark:

Remark 23;

(1) If p e P ( C X )(T) and p is built up from e ,....,©
~ ro ~ym-l

then there exists a p e P (r) such that p ^ (a ,a , . . . ,a , . . .)

P(?5m(a ,-..., a ) for every G e K(T) *

(2) if p e P ^ ( T ) , a > co , then there exists some pn e P °(r)
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and 7O < 71 < < Yn < < a* n < a)QJ such that

for every G e K(T) . If a < 60Q then, of course, p (r)Sz? ° ( T ) .

In this sense, every polynomial on G € K(r) is M essentiallyM

an co -ary polynomial.

(3) If G € K(r) and O j ^ S c A then [S] = (p(s ,. . . •,sn-1) ;

p € P* n'(T) for some n e N, s. € S}.

(4) If <p: G -• IB is a homomorphism and jp € P (T) then, for

all a± € A, <p(p(aQ, ...,ay, ) y<^ = p(<p(aQ),.. . ,<p(ay), ) .

(5) If b i,a i e A, 0 € C(G) and a± a b.(0), 0 £ i < a, then

p(aQ,... ,a±, ) ± < c t a q(aQ,...,ai, ...)±<a(e) for all g e P ( a ) ( T ) .

We now come to a point of extreme importance, namely to the

so-called M identities11 satisfied by a given class L of

algebras of type r. If we, e.g., inquire how the class Qp of

groups is singled out in the class K(<2,l,0» of all algebras

G = <A;*,~ ,1> of type r = <2,l,0», then we unavoidably recall

the defining M axioms11 (i) (x-y)-z = x*(yz), (ii) x*x~ = 1,

(iii) x~ *x = 1, (iv) x*l = x, (v) l*x = x for all x,y, z in

the given group Q = <G;#,~ ,1>. If we take a thorough look at

these axioms then they really boil down to the identity of cer-

tain polynomials on the group. E.g., (i) reads that p ^ * ^ = q a^

if p= (e^*e.,)*eo and q =• e • (e, *eo) . (ii)-(v) can be similarly
£, ~O /yl A/2 A'O ^X ~Z

reformulated. Thus, the identities of polynomials that hold or

do not hold in a certain algebra or in a class of algebras are of

profound importance and information. We therefore are led to
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define (and we are motivated by remark 23, (2)) the set of iden-

tities valid in a class of algebras L c K(r), say Id(L), as
(to ) " G, <o G, CO

{(£,3); £.3 e P ° (r) and p ° = q ° for all G € L). If

= {G} consists of a single algebra we just get (see Def. 26)
<o

V
the following short definition:

that Id(G) = 9r°. Since Id(L) = n(id(G);G € L) we arrive at

Def. 27t If L c K(T) then the set Id(L) of identities of L
to (w ) (uO

is d e f i n e d to be 9T = n(9 °; a e L) c P ° ( T ) X P ° ( T ) . More

general: If a is an ordinal ^ 1 then Id'a' (L) = J^ =:

0(9^7 G € L) is called the set of g-ary identities of L.

The distinguished position of CO among all ordinals in the

last definition is quite sufficiently explained by remark 2 3.

Clearly3 the more we narrow our class L the more identities

will we in general pick up and the tighter is the algebraic struc-

ture of the algebras subjected to those identities. It is this

reasoning that causes us to call an algebra G (we are still in-

tuitive) free in L (better f! the free as possible in Ln ) if

Id(L) = Id(G) . But we need to be a bit more precise. To this end

we pick some <f> £ S £ A with G €• L c K(T) and define what we

mean with the local identities of S.

Def. 28: If 0 ̂  S c A, G e L c K(T) and a is the initial

ordinal of |s| then we define the local identities of S, say

Idn .̂(S) , as follows:
l o c " ^ (CO ) (<o )

IdlQC(S) =: {(£,<£); (l)^^^) e P ° ( T ) X P ° ( T ) , (2) td(g) ,
<td(<j) < a, (3) if g,^ actually involve e^ , ,e then

for some s e S

with |{s , ,s )| = t+1}.
yo 7t
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If idloc(S) = ld(L)n(P
(a)(T)x P

(a)(T)), the ultimately

best we can expect, we call S a free set in L.

Def. 29t If $ / S c A, G e L c K(T) and the initial ordinal of js| is a

then S is called free in L if Idloc(S) = ld(L) fl(P
(a) (r)xP(a) (T) ) .

In that case, we call <* (S) - <ls] 'F> a free algebra over the

basis S if J?_(S) € L.
_ _ _ _ _ j

Corollary 1; If ^(S) exists in L5 S = {s, ..., s •...,} ,

then idlQC(s) = id(3L(s))n(P
(a)(r)x P(a)(r)) = id(L)H(P(a)(r)xP(a)(r))

proof. The proof of the corollary follows evidently from the fact

that cardinals lhJQ
 h a v e initial ordinals ^ COQ.

Corollary 1; If 3\.(S) exists in L and S is an infinite

set, then Id(3L(S)) = Id(L) .

(2) If a ̂  a> then Id(a) (L) 2 Id ° (L) = Id(L) .

In the same manner as we associated with every L c K(T) a
(w.) (to)

set Id(L) c p (T)XP (T) one can associate with every sub-
(«) (to)

set Sc p ° (T)xP (T) a class M(L) c K(r), called the

model-class of E.

(w.) (wo)
Def. 31; If E c p ° (T)XP (T) then the model-class M(£)

is defined as the class of all algebras G of type r such that

Id(G) = ?.

We therefore have the two mappings Id: 2 K ^ - 2? ° ( T) xP o (T)

and M:2 ° l T j X F ° m - 2^^r; which constitute a Galois-

connection as precisely stated in the next remark:
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Remark 24; Let T be a fixed type, L. c K(T) and
(co) (coQ)

Si £ P (T)XP ° (T). Then

(1) Lx c L2 is equivalent to Idfl^) = Id(L2),

(2) Ti £ E2
 is equivalent to M ^ ) 2

(3) M(ld(L)) 3 L for all L C K ( T ) ,

(CO) (CO)
(4) id(MCD)) £E for all E c p ° (T)xP ° (T) .

The natural question is now evident: When do we have

equality in (3),(4)? The algebraist is interested in knowing when

a class of algebras is characterized by its identities, i.e. when

M(Id(L)) = L. The logician wants to know the characteristics of

a set L of identities which is characterized by its model-set,

i.e. which satisfies Id(M(£)) = E. We will in this section

narrow our attention to the first of the two questions and derive

the famous result of G. Birkhoff stating that M(Id(L)) = L is

equivalent to requiring that L be closed under taking sub-

algebras (S(L) c L ) , homomorphic images (H(L)) £ L), and

direct products (P(L) c L ) . Since S(H(L)) £H(S(L)),

P(H(L)) C H ( P ( L ) ) and P(S(L)) £S(P(L)) can be easily veri-

fied (see, e.g., Gr'atzer [1], chapter 3,j23) for classes L which are

closed under taking isomorphic copies (so-called " algebraic classes" ).

we can restate the latter condition as L = H(S(P(L))) = (shortly) =

HSP(L).

To deduce the results we first engage in a discussion con-

cerning existence and uniqueness of free algebras.
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Theorem 13: Let G e L C K ( r ) , $ t S c A and [S] = A. G is

free in L over the basis S if and only if every mapping

(p: S - B, B e L, can be extended to a homomorphism <p* : A - B.

proof: (1) If S = { s , . .. s , . . .} . then every element a e A =
o y y^a (

[S] is of the form a = p(s. ,...,s. , K,s,s f o r scme P G p (T)
xo xy y<coo

with <td(jD)< a. Thus if there exists an extending homomorphism

at all then it is necessarily given by <p' (a) = p^s.^ ) , . . .,
o

<p(s. ),....) . . Again: <p', thus defined, is clearly a

y O
homomorphism extending <p provided it is well-defined. To prove
this latter point we assume that a = p(s. ,...,s. 9 . ..)

(co T"o y
q(s. ,...,s. , . . . ) v ^ where jĝfl € P (T) . Then (̂ 5q) €

 Id
loc<

s)
o y 7 V Wo

which, by assumption, implies that (p,q) € Id (L) . Hence

) ,...,(p(s • ) , . . .) . = q(<p(s. ), ...,<
y r o o

p(<p(s. ) ,...,(p(s ),. . .) . q(<p(s. ), ...,p(s.
o y r o o y

(2) We assume now that every <p can be extended and have to show

that Id'a'(L) 3 id1 (S). Assume in the contrary that

(p,q) .€ Idloc(S)\ld
(a)(L). Then pts^ ,. . ., s^ ,. . .) y<^ =

q(s ,...,s ,...) . while p(b ,«,.,b ,...) . ^ q(b ,...,b ,..-)
o ^ o o y o o y

for some b, e B, B e L. Hence, <p: S - B defined by <p(s ) = b

cannot be extended to a homomorph ism, which yields a contradic-

tion, q. e. d.

Theorem 14: if a free algebra over a basis of cardinality a

exists in L c K(T) then it is isomorphic to P (r)/6T • If

M(Id(L)) = IJ for a non-trivial class L, then indeed free

algebras over bases of arbitrary cardinality exist in L.
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proof:

We assume that B = p'a' (r)/f% e L where a ̂  1 is an arbitrary

but fixed ordinal number. Evidently B=[Sl where S = {[e ] 8^

0 <[ y < a]. Since L is non-trivial we conclude that I^A/I^T ^

[ee]8^ if y / 6; thus Isl = a. If C € L and we pregive
o L

the mapping <p: [e ] 6^ -• c , c e C, from S to C then

evidently <p̂  : P(a) (r)/6^ - C defined by ^ ( [ p i e ^ PC'a

(c ,c v.. Mc ,...) is a homomorphism extending <p. Thus, by
o J. y /\Ct

theorem 13, B is free over the basis S in L. Since P

M(Id(L)) = L we have proved the second half of the theorem. If

3T(S) is an arbitrary free algebra in L over the basis S =

{s ,s3,...,s ,...} then <P: P(a)(T) - F (S) mapping E to, s 3 , .
F (ST ot '
pL ' has kernel e^ (g) = 9°, i.e. P(a) J ^

q. e. d.

Theorem 14 states, a.o., that a free algebra in a class L is

uniquely determined (up to isomorphism) by the cardinality of its

basis. We will therefore omit in the future to mention the par-

ticular basis S in 3_(S) and rather use the notation 2L (a)

where a is the initial ordinal or the cardinality of S.

Def. 32; 3 (a) denotes the (up to isomorphism unique) free algebra

in the class L over a basis of cardinality a.
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We take advantage of the preceeding theorem 13 in deriving the

next basic result also due to G. Birkhoff.

Theorem 15: If L c K(T) is a non-trivial class of algebras

closed under the formation of subalgebras and direct products

(i.e. SP(L) = L) then 3T(a) exists for every ordinal a. More
LJ

: If D = [Q;6 e C(P(a)(T)) and P(a)(r)/e e I(L)} and

Dx = {8je-e C(P
(ot)(T)) and P (ot) (T)/9 e

over

then 3T(a) & v (P
(a)(r)/9; 6 e D) ~ IT (P(a)(T)/6;e e D,).

XJ S S J.

proof:

If it e Aa where G = <A?F> € L then <p: P*0^ (T) - A mapping
_ a

p to p(a) is an epimorphism with kernel, say, 9— . Thus,
a a -
^ ~ < t (a o , . . . , a y , . . . ] r < a ] ;F> 6 S(L) = L if a =

(a , . . . ,a. ,...) . We conclude that 9^ e D. Since 9^ =
n ( # ? "a e Aa) and since 9? = 0(9 ;̂G e L) we get that 9? =

a Li u L

^ ; a runs through a set T of a-tuples of elements ina

algebras of L) .

Hence3

3L(a) e P
(a)

 (T)/9° s V P ( a ) (T)/eyet/eL ; ̂  € T)

(theorem 8) ^ TT (P(a)(T)/# ; a e T) .s a

Thus since 9^ € D c D, we get even more (see thm. 11) that
a •—•* JL

3L(a) a Trs(P
(a)(T)/9; 9 € D) - irs(P

(a) (T)/9 ; ft € D^ .

Thus, since Pv (T)/9 e I(L) for every 9 € D, we conclude that

ir(P(a) (r)/Q; 9 € D) e SPI(L) = I(SP(L)) = I(L), i.e. 3_ (a)
53 . JLJ
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exists in L for every ordinal a. q. e. d.

We have now arrived at the crucial theorem characterizing

11 equational classes: t!

Theorem 16 (G. Birkhoff):

Let L be a non-trivial class of algebras in K(r). Then

M(Id(L)) = L is equivalent to L = HSP(L).

proof; It is easy to verify that M(Id(L)) = L implies that

HSP(L) = L. Vice-versa: Assume that G e M(Id(L)); say, A=

{a Q,...,a y,...] y < a and a = (aQ,...,ay,....)y<a- Then
y y <

exists (see theorem 15) and \(a) £ 7Tg(P
(a) (T)/0;0 G D ^ . As we

have shown in the proof of theorem 15, 0^ e Dx and P ( a ) (T)/6^ * G
a a

Thus, G G HSPI(L), i.e. G G HSP(L) = L. We have completed the
proof that M(Id(L)) = L and are done, q. e. d.

Since therefore the classes of algebras closed under the for-

mation of subalgebras, products and homomorphic images are exactly

the ones that are characterized by their identities, they are

frequently called !l equational classes11 (better would be: t! iden-

tity classes11 ) or n varieties11 (the latter term being most

decisively used in the theory of varieties of groups}.

Def. 34: If L c K(r) satisfies HSP(L) = L then we call L

an equational class of algebras.

If follows from our results that every class L c K(T) is

contained in a smallest equational class, namely HSP(L). The

next remark is clear:
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Remark 25: The operator Equ = HSP which associates with every

class L c K(r) the class HSP(L) is a lf closure-operator11 on

2K<'>, i.e.

(i) L c Equ(L)

(ii) L, c L2 implies Equ (L,) c Equ (L2)

(iii) Equ(Equ(L)) = Equ(L).

If we combine our results obtained so far then we get the

following equivalent statements:

Remark 26: If Li^Lo — K^T^ a r e ©cruational classes then the

following statements are equivalent:

(1) L-L = L2

(2) Idfl^) = Id(L2)

(3)
Li-* O JJ^ O

proof:

( 1 ) i m p l i e s ( 2 ) , ( 2 ) i m p l i e s ( 3 ) a r e c l e a r . I f 3 T ( c o ) ^ 3 T ( c o )
J-j-j O XJ*^ O

then Id(3_ (co )) = Id(3_ (co )) which, by the corollary to

def. 30, implies that Idfl^) = Id(L2), i.e. 1^ = M(Id(LL)) =

M(Id(L2)) = L2. Hence, (3) implies (1). q. e. d.

We will conclude this section with a result due to A. Tarski

which reveals a remarkable finiteness-behaviour of the operator

" EquM .

Theorem 17 ( A. Tarski): Every equational class L £ K(T) is

generated by a single algebra G e L; i.e. L = HSP(G).
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proof: If L is trivial then every algebra 1^ generates it.

If L is non-trivial then ^L(^o) exists and Id(L) = Id(3L(c0Q))

Id(HSP(3(L(60 ))). This implies by remark 26 that HSP(3L(t0Q)) = L.

q. e. d.
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J9. Equations. Mycielskits Conjecture.

In an absolutely analogous fashion as we developed the theory of

polynomial-symbols, respectively polynomials, can the reader

develop the theory of polynomial-symbols (respectively, poly-

nomials) with constants in S defined as follows:

Def. 35: Let E = (e ,...,e , ) be a class of symbols, one

for each ordinal a. If G e K(T) and S c A then we take the

disjoint union E U S. The class Pg (T) of
 !t polynomial-symbols

with constants in Sn is defined as follows:

(1) E U S c Pg(r)

(2) If g1, ...,gn e P S ( T ) then, for every f e F,

£y(Er----'En } € P S ( r ) -
r y

(3) Pq(T) consists exactly of all elements obtainable by

steps (1) and (2) in a finite number of steps.

The reader is doubtless aware of the similarity between the

constructions of Po(r) and P ( T ) , resp. As a matter of fact,

we have evidently that P(T) = P//(r) • As before, P_(T) plays the

rSle of a huge ressort of elements (it is a class rather than a

set) by means of which we create new algebras of type r in

the by now well-known fashion: We fix some ordinal a ^> 1 and

define pi (T) C: Pc(
r) to consist of all elements in P C ( T )

...
(a) ^

then f (PT,...,E« ) = : ^ < E T »• • • »P« ) turns P; (T) =

involving only e with y < a. If f € F, p.,...,p € P^ ;(r)

v 1 n ) = : £y(Bi'---*En }

r y r y

<Pg (r);F> into an algebra of type T.
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Def. 36; PI (T), as just constructed, is called the algebra
J •' • S

of g-ary polynomial symbols with constants in S.

Corollary: P^a)(r) = P ( aW) for all ordinals a.

The algebras Po (r) induce an algebra P ^'(G) for every

algebra G = <A;F> whose carrier A contains S in the same

fashion as P ' (r) induced P (G) ; the only specification

we ought to add concerns the elements of S: If s e P* (T) 0 S

o

then s *a: A -• A is the constant function mapping (x , .. . ,x s . . •) .
to s.

Def, 37: If K(T;S) contains all algebras of type T whose

carrier contains S, then p i a (G), as defined for every

G G K(T;S), is the so-called algebra of g-ary polynomials on G

with constants in S.

It is a suggested exercise to verify that polynomials with

constants share most of the properties enjoyed by polynomials

without constants; in any case, we skip the trivial verifications

without depriving ourselves of the right to make use of them.

E.g., if L c: K(T;S) we can consider the identities of L with

constants in S, namely Idg(L) = { (£,3) ; P ' ̂  q^
5 ̂  for

every G e L} C P J V ( T ) X P ^ ' (T) . Clearly, Id(L) = I

Similarly Idy*' (L) is defined, etc.

Identities with constants constitute a certain subset of
(u ) (a) )

Pg ° (r)x Pg ° (r) and are defined by inducing the same poly-

nomials on algebras in a certain class L. It might so happen

that (p,q) e P^a)(T)x pia)(T) is not an identity but still
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f o r s o m e * =

(x , ...x ....) „ € Aa in which case we are in agreement withv o* y y<a

standard terminology if we say that x is a solution in G of

(£jCj) . This motivates our next definition:

Def. 38: The elements of P^(r)x P ^ ( T ) are called g-ary

equations with constants in S of type T. If G e K(T;S),a e A

and p(â ) = q(a) we say that a is a solution of (g5cj) in G.

Sol( (p»q);G) denotes the solution-set of (£*<£) ^n 6.

If £ £ PI (T)X P̂ ,a' (r) is a non-empty set of equations,

L c K(T,S) and G e L, then a e A is a solution of £ if it

is a solution of every (&%) € s* If the symbol Sol(S;G)

denotes the solutionset of S in G then evidently Sol(£;G) =

G q)e E) .

Corollary: If T c Ido(L), L c K(T;S) and G e L, then

Sol(r;G) = Aa.

We are now enabled to give the definition which is crucial

for many of our investigations.

Def» 39: (1) Let G e K(r;S) be a universal algebra of type r

with the following property c(m) with respect to the cardinal

number m :

11 If £ £ P^a) (T)X P̂ ,a) (T) (cardinality of £^ m) is finitely

solvable (i.e. SoliT^fi) ^ $ for each finite 1^ £ T) then S

is solvable in G. "
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Then G is called S-equationally m-compact.

(2) If S = (f> in (1) we use the phrase: "G is weakly equationally

m-compact, !t

(3) In the special case S = A in (1) we call G an ecraationally

m-compact algebra,

(4) If, in (1), c(m) holds for every cardinal m, we call G

S-equationally compact and adjust the terminology in (2),(3)

accordingly.

(Ex. 12): To illustrate the concepts we investigate, a.o., the

very first examples we gave in the introductory part of this

chapter.

(a) if L is the trivial class of type r (i.e. L consists

of all 1-element algebras) then L is, of course, a class of

equationally compact algebras.

(b) If x = <Z;+> is the group of integers, then ex. 1 establishes

that z is not equationally ft -compact, hence not equationally

m-compact for any m J> fy 3 hence not equationally compact. More

yet: z is not {1}-equationally-^ -compact.

(c) Ex. 2 establishes that complete Boolean algebras are equationally

compact (the proof is still to be given).

(d) Let £ be the lattice given in ex. 3 and K(£) the class of

complete lattices containing £ as sublattice then K(£) contains no

equationally ^-compact, not even {0,1}-equationally-yV -compact

algebras.
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On the other hand, £ is an equationally ̂ -compact algebra.

Although the use of the word l! compactness!f in the pre-

ceding definition is sufficiently justified by the very defini-

tion, there is a much stronger reason coming from topology as

was observed by J. Mycielski in [1]. Let us recall that when

dealing with algebraic structures as semi-groups or groups or

rings we are not just interested in arbitrary topologies that

we might be able to inflict on the carrier-sets of those algebras.

In general, we want the fundamental operations f to be con-
n n ?

tinuous functions f : A ' - * A if A ' is endowed with the

Tychonoff-product-topology and we want to be able to have n small

enough11 neighborhoods to separate points, i.e. we insist on

Hausdorff-topologies. This is summed up in the next definition:

Def. 40; If G € K(r) is an algebra then ( G ^ ) , shortly G,

is a topological algebra of type T if 3* is a Hausdorff-

topology in A which makes the operations continuous. (G,7)

is a topologically compact algebra if it is topological and every

cover of A with open sets has a finite subcover.

We must now, of course, insist on some knowledge of elementary

point-set topology to which, e.g., belongs the fact that a topo-

logical space (S,^) fri.e. 7 consists of subsets of S, the so-

called u openn sets of the topology] is compact if; and only if

every family of closed sets which has the finite intersection

property has a non-empty intersection (A family of closed sets has

the finite intersection property if each intersection of a finite
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subfamily is non-empty). Another elementary fact is that S(f,g)

is closed if f: (S^a^) - ( S ^ ^ ) a n d 9: ( S ^ ^ ) - (s2^2
)

are continuous functions, S(f,g) = {x;x e S1 and f(x) = g(x) }

and 3~,32 a r e Hausdorff-topologies. This is all we need at this

time to derive the following fundamental result:

Theorem 18 (J. Mycielski):

Every topologically compact universal algebra G is equationally

compact.

proof; Let E c: p^a'(r)x P*a (r) be a non-empty set of identities

with constants in A which is finitely solvable. We well-order

the finite subsystems E SV.., . . • , £ , . . . , y<p, of T and denote

their (non-empty) solution-sets in A by S ,S1,...,S ,...•,y<p,

respectively. Since A is endowed with a compact topology, Tycho-

noffTs product-theorem assures that" Aa carries a compact topo-

logy. Since S= S^H. . .f\St^ where SV,v= 1, . . . 51 (y) 9 are

the solution-sets of the different single identities in 35 and

since (as we have recalled before the theorem) the sets S are

closed, we conclude that each S is a closed set and the family

{S ;y<p} has the finite intersection property. Thus, since Aa

is compact, (1(S ;y<p) ^ <f>. Since Sol(I^G) = fl(S ;y<p), we are

done• q• e• d•

Mycielski1s observation is really slightly stronger than

theorem 18 inasmuch as it states the same conclusion for retracts

of topologically compact algebras. It is unfortunate that the

concepts of F9-retract (see def. 1) and simply retract are
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linguistically so close, but it is hoped that no confusion arises.

Def. 41: If G,B are algebras of type r, <p: G-*B is an epi-

morphi.sjn, B is a subalgebra of G and <p\ is the identity then

IB
(p is called a retraction and fc is called a retract of G. (In

2

other words: If <p: G-*© is an endomorphism such that <p = <p

then <p is a retraction <p: G-*<p(G) and <p(G) is a retract of

G ) .
Corollary 1: Every finite algebra is equationally compact.

Corollary 2 (J. Mycielski):

Every retract of a topologically compact universal algebra is

equationally compact.

proof; Let <p: G~»(p(G) be the retraction and choose

E£ p ( ^ ( A ) ( T ) x P<J)C(A)(r) - p^a)(T)x P^a)(T) as finitely solvable

in cp(G) c G . Then, by theorem 18, E is solvable in G. If

"a e Aa is a solution then evidently <p(a) is a solution and

<p(a)€ <p(A)a. q. e. d.

An unsolved question is whether or not the converse of

Corollary 2 is true. The converse is true in case of Abelian

groups, Boolean algebras and vector-spaces as we shall see. We

state the general problem:

Problem 1 (Mycielski1s Conjecture): Is every equationally com-

pact universal algebra retract of a topologically compact universal

algebra?
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It has come to the attention of the author that there seems

to exist some counter-example against Mycielsk^s conjecture in

the general form. Its details are not yet published and unknown

to the author at the time. Even sot The conjecture remains to

be investigated in special classes of algebras, a task which is

as interesting as the original one.



78

Chapter II, Elements of First Order Logic

il. The language of first order logic.

Let K(r) = [G = <A;F,R>} be the class of all relational systems

of type r = ^ T J T O ^
 t^ien we: can form P (T,) for every ordinal

a, as discussed in chapter I. As it happens quite frequently

if the same object is approached from different directions,

different notations confront each other where the two approaches

merge. So it is quite conventional in logic to denote the

ft projection symbols e M from which p^a' (f-i) is built up by

!! x u and to call them n variables, ft a convention we will go

along with since no confusion seems possible. If R^a' (r2) denotes

the set of all symbols R (x. ,...,x. ), R e R, 0£i,, . . . i <a,aj>co
7 ix i v i m o

y r

then we define the !l algebra of a-ary first order formulasft by

, a

universal algebra of type 7\ =<1,1, . . . . 1,1,2> (i.e. all operations

but V are unary) which is generated by ( p ^ ^ r ^ x P ( a ) {r^ ) LIR(a) (r2)

via formal application of the operations. Equality is formal

equality. We combine this and further definitions as follows:

Def. 1: If a is a limit ordinal j>60 and r is a fixed type

of relational systems then <£ • 9 as just defined, is the alge-

bra of g-ary first order formulas. The elements of

(P(a)(Tl)x P
(a){Tj))UR(a)(r2) are called atomic formulas. The

operations (Sx) are called existential quantifiers, the opera-

tion -y is referred to as negation, the operation V as disjunction.
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We read (3x ) (<fr) as: " There exists x such that $ holds!f

and denote $ to be the scope of (3x ) . Similarly3 —7 ($)

reads n $ is not true;" V(<&,*[)) reads tf $ or 0 is true"

and is frequently written as * V 0. L
T ^ U(L^

a' ; a J> 0)Q) is

the language of type r•

Of course, we feel that our list of quantifiers and connectives

(—7,V) is still rather poor. So we pass on to P^o (70 where

A is the type <{1 ;1 = l,y<a},l,2> of our language and find

a few more of the standard quantifiers and connectives there:

(<0o)
Def. 2: The following elements of P (A) are endowed with

particular importance:

(1) (Vxy

(2) A =:

(3) - =: -T (xQ) V X][

(4)<_^ =: (XQ -+ x1)A(x]L - X Q )

(a)o} la)If we pass to P (£ ) we get the following operations:

(1) the unary operation (Vx ) (<$>) reading: n For all x 3

^> holds true. u (Vx ) is called the universal quantifier, $

its scope.

(2) the binary operation A($,t/)), also * A 0, reading:

u Both $ and 0 hold true. ff A is called the conjunction of

$ and 0.

(3) the binary operation ->($,0), also $ -> 0, reading:

11 * implies 0"--> is called implication.
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(4) the binary operation «-* {*>,$), also $*->0, reading:

11 <& and if) are equivalent!t . *-> is called the equivalence-

operation.

We have thus special names for the existential quantifiers

(3x ) and the universal quantifiers (Vx ) and for the so-called

connectives—*,V and A. In addition we named the implication-

processes. These, together with parentheses, commas and the

variables x constitute the building blocks of the so-called

first order logic with identity? for instead of the less confusing

notation (£><£) € P*a'(T..)x P^a' (T,) it is also a (more suggestive)

convention to use the notation g = <j.

Def. 3: The occurrence of a variable xA, is called bound if
y

x occurs in (3x ) or in the scope of an existential quantifier

(3x ). If it is not bound it is called free. A formula in which

every occurrence of every variable is bound (resp., free) is called

a sentence (resp., open formula).

(Ex. 13): If K(rl is the class of all relational systems G =

<A?{+,-}, £ > of type T = «2,2>;2> then

(i) (3xo) ((Vx1) (XQ"*-*^
 == 3^)) i s a sentence,

(ii) (x +x. = x ) V (x <£ x ) is an open formula,

(iii) ((xQ= xx) A ( x x ^ x 2 ) ) V (ax3)((VxQ)(xo ^ x3-Xl))

is neither a sentence nor an open formula. Every occurrence

of x^ is bound, the first occurrence of x is free, the second

and third are bound, all occurrences of x̂ ^ are free, so is the

only occurrence of x2.
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Although equality of formulas is formal equality, we feel

that in applications a modified equality-concept should be used.

Thus, e.g., the sentences (VXQ) ((Vx^ ((Vx2) ((x^x^ *x2 =

xQ- (x1-x2)))) and (Vx^ ( (Vx2) ( (Vx3) ((x^x^ 'x3 ̂ ( x ^ x ^ V(-r (x^x

are clearly equally good to characterize associativity of a binary

operation fl • ft . In order to make the idea precise, we have to

discuss the concept of fl satisfiability of a formula. fl

Def. 4: If tj) is a formula in the language 1/ , G £ K(r)

and a e A then we say that a satisfies ij) in G if it

follows from the following rules constituting an inductive defini-

t ion:

(i) ij) is atomic of the form (JD, <J) , or p = g, where

£,<j G p^aJ (r1) : Then a satisfies 0 in G if and only

if a is a solution of the equation (£*3)•

(ii) \j> is atomic of the form R (x. ,...,x. ): Then a

satisfies 0 in G if and only if '

R (a. ,...,a. ) is true.
' y l n 1y 1 m

y _
(iii) 0 is of the form (3x ) (<£) : Then a satisfies 0

in G if and only if a(y/b) satisfies 0 for some

a(y/b) e Aa where a(y/b) equals a in all but the

y-th component the latter one being replaced by b.

(iv) 0 is of the form-"7,(*): then a satisfies 0 in G

if and only if a does not satisfy $•
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(v) 0 is of the form *x
 v * 2

: T h e n a satisfies 0 in

G if and only if 3L satisfies ^ or $2.

Corollary: If 0 e L is a sentence, then 0 is satisfied

either by all "a € Aa or by none. Accordingly, we say that ib

is either a true or false sentence in G.

Every formula 0 in La induces an a-ary relation JL on

every relational system G € K(r) : 0 (a) holds true if and only

if "a satisfies 0 in G, If 0 is a sentence then either

0 = <A or 0G = Aa. We can now loosen our tight requirement on

formal equality of formulas and replace it by a more natural

spec if icat ion.

Def. 5: If 0., and 02 are formulas in Ii . then we say that

0. and \j)2 are equivalent (^j^^2) if ^ = 02 for every

G e K ( T ) . If 0i £ 02
 f o r e v e rY G € K^r^ then we say that

0- is weaker than 02
 an<^

Corollary; 0-^=^02 holds if and only if 0 1«^0 2 and ^

The relation n «=^ M is an equivalence relation on the set l/.

Of course, instead of taking a single formula 0 we can

take any set E of formulas which again induces an a-ary relation

2J on every G e K(r), namely: 27 = (1(0l ;0 e V) .

Def> 6t If F;, and T2 are sets of formulas in l/a) then IL

and T2
 a^e equivalent sets if 2^ = T^ for every G € K(r);

we write: £A=£IL . Similarly, D- => T>2 is defined. If a €

then we say that a satisfieg T.
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The notations => just introduced are applied in one more

situation:

Def. 7: If 0 e La and 0 = Aa then we say that G implies

0' and write G =» i|). Similarly, G =» S is defined for a set of

formulas. If G =* £ holds for all G e K(r) we call £ a set

of universally true formulas and write simply r =» £» If 0 = $

for every G e K(r) , then we call 0 a universally false formula

and write T

Corollary: (1) If (p,q) € Id(G) then G =* iv,%) .

(2) If ij) is universally false then — 7 ^ is uni-

versally true, and vice versa.

Bypassing the less interesting formal equality of formulas

and narrowing the attention to the equivalence 4fr of formulas one

can (using simple induction) prove the following so-called prenex

normal form-theorem (we skip the proof):

Theorem 1: If 0 e L is a formula then there exists always

a formula ^ of the form Q ̂ Q ^ Q 3 ( . . . (Qm(*)))))))) [where Q ,

is either some (3x ) or some (Vx ) and $ contains neither

v y
of the two quantifiers] such that 0«s^0-.

Def* 8: A formula 0^ of the form described in theorem 1 is

said to be in prenex normal form. $ is called the matrix of

rb^Q -L (• • • (Q m. its prefix.

Thus, the theorem states that every formula can be assumed to

be (up to equivalence) in prenex normal form. This may end our

introduction into the language to be used.
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£2. Ultra-products and the Compactness-Theorem.

Our aim in this section is to discuss the preservation of

formulas under the formation of ultraproducts and to give its

most outstanding application: Tarski's proof of the compactness-

theorem. To do this we derive an easy, though basic, theorem for

whose proper formulation we can conveniently use the next definition:

Def. 9: If G ., i e I, are relational systems of type r, G =

7r(G.;i € I) , D is an ultra-filter over I, g = (g ,g., . • *g*j • • •) &.

e Aa and *|) € L then the support of g with respect to ih
T •

is def ined to be S(0,"g) = { i ; i e l and g(i) = (gQ(i) 5 . . . 5gfi( i ) , . . .) &

sa t i s f ies $ in G.}..}

Theorem 2: If G = TT (G.;i€l) is an ultra-product of the

relational systems G. of type r and 0 e L,'0^ then g =

(9O* • • •>.9§> • • ••) 5<a
 € (TTjjtAĵ ji € I))a satisfies 0 in G if and

only if S(0,g) e D where g = (gQ, . . . 5gg, . . .) . .

Note: See theorem 1.3 for the terminology.

proof: We proceed by induction beginning with the atomic formulas:

(i) If 0 - (B,a) e P
(a)(Tl)x P

(a)(Tl) then pG'a{h - qG'a(J)
is (as follows immediately from theorem 1.3) equivalent to

G^a G.,a
{i;p (g(i)) = g (g(i))} € D which (by def. 4) proves our

point.

(ii) If 0 e R^aJ(T2)> theorem 1.3 applies immediately.

(iii) Assume that 0 = -7 ̂  where 1/̂  satisfies the theorem.

Then g satisfies 0 in G if and only if g does not satisfy
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A in G, i.e. if and only if SU,,g) 4 D which (since D is
1

an ultra-filter) is equivalent to A s ^ ^ g ) = S(ij[),g) € D.

(iv) Assume that if) = 0, V ̂  where if)^ and 02 satisfy the

"A A

theorem. Then g satisfies if) in G if and only if g satis-

fies i/j, or )1)2 in G, i.e. if and only if S(0-,g) or

S(itU'S) ^s contained in D which (since D is an ultra-, hence,

prime-filter) is equivalent to Sd/j^g) U S(02,g) = S(0,g) e D.

(v) Assume that if) = (3x )(*/)-,) where if)^ satisfies the theorem.
_ y 1 J- — _.

Then g satisfies 0 in G if and only if n = g(y^b) satisfies

0- in G for some D e A which, in turn, is equivalent to

S(i/),,n) e D. (*) Since S(*/),/R) c: S(0,g) we conclude that S(0,g) € D.

Vice versa: If S(0,g) e D then g(i) satisfies if) in G .

for all i e S(0,g), i.e. g( i) (y/b.) satisfies 0. in G. for all

i e S(0,g) with b. e A.. Thus, if we define h e Aa by (a) h(i) =

g(i) (y/b.) for i e S(A,g), (b) h(i)=g(i) for i € I\S(>ft,g)y then

S(^)-,h) € D and we can take up the proof at (*) and go backward to

conclude that g satisfies tb in G. q. e. d.

We can, thus, say that a formula is satisfied by an a-tuple

of elements in an ultra-product if and only if it is satisfied on

11 nearly all componentsM or tf on a component-set of measure 1, l!

to keep with the terminology of chapter I. We have immediately

a few corollaries:

Corollary 1:

If 7r (G.;i € I) is an ultra-product of the relational systems

G. then it is of finite cardinality n if and only if {i;|A., | = n} e D
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proof: We consider the sentence 0 defined as follows:

((x1^x2)A(x1^x3)A A(x]L^xn) A(x2^x3) A. ..

^Xn) A(X3/X4) A. . . . Afx^X^ A. . . -
A(X

n_l^
X
n)

 A

= Xo)V(xn+l "
 X1 ) V V(xn+1 = V

 ) '

Evidently, the sentence 0 holds in G if and only if |A| = n.

Thus, the corollary follows from theorem 2. q. e. d.

Corollary 2 s A sentence $ holds in 7rD(G^;i€l) if and only

if {i;iel and */> holds in G.} e D.

Corollary 3 s A sentence if) holds in the ultrapower G if and

only if it holds in G.

We ought to mention that our new results yield a new proof

for the corollary of theorem I#5? for jQ is, of course, onto

if |AJ| - |A|.

We now turn our attention to the most important application

of all, the so-called compactness-theorem. Instead of giving

the theorem and Tarskifs proof thereof immediately we derive a

useful generalization inspired by a result due to Mycielski, Ryll-

Nardzewski and Weglorz (see Weglorz [1]) whose proof is essentially

the same Tarski gave for the weaker compactness-theorem. For

its formulation we need to give a short discussion of the ideas

that lead to the so-called u diagram-language1' of Robinson.

If r = <nQ,...,ny,...>y<a, a = <mQ,...,m5,..->5<p are 2 types

of universal algebras then we can combine the two types to the new

type p = <n ,•..,n ,....,n ,...•,nA,...>_. with n = m .
^ o* y or * o' 0£y<a a+€ e
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Similarly one can proceed with the types of relational systems.

Def. 10; (1) If T and a are types of algebras as above then

T @ a is defined to be p. Similarly, if r = <ri7T2> a n d

a = <cr1 *o~> are types of relational-systems then r ® o is

defined to be <T-I @ T̂ J or, (?) o~>.

(2) If G = <A?F,R> is of type r, or is any type and

ft = <B;G,S> is of type o, then one can (by suitable defining

G and S on A) turn G into a relational system G* =

<A;FUG,RUS> of type T@O. In particular, one can well-order

A = {aQ,...,a6,...)6<p, take the type a = <0,0,...,0,..*>y<€

for e <^ p and turn G into G5 = <A;FU{a , ...,a 9 . . .} * 9 R>

of type T ® or where we interpret a as 0-ary operation in

the natural fashion. If we choose e = p and a#j = aA then

we call L ^\ the diagram-language of type T over G and
T K& o —

write L (G) . m general if we add the type or(B) = <0,0,.. ->6<€

represented by B = {a ,...a , . • . } . as nullary operations with
vo V6 0<G

the natural interpretation in G we speak of the language of type

T with constants in B and write L (B?G) .
jr

Corollary: L.(A;G) = L (G) and L (0;G) = L .

Theorem 3; If L is a set of formulas in Ii (B?G) each of
T

whose finite subsets 8 is satisfiable in some relational system

GA of type r@ cr(B) then there is an ultra-product ^(^fl'^)

in which E is satisfiable.
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proof: Let I = {0;P££ and |6|<^) and I = (070el and

<p e 0} for all <p e £. Then DQ = (I ;<p e 1} c 2
1 has the

finite intersection-property and is therefore (corollary 2 to

def. I.I)contained in an ultra-filter D of 2 . We will

show that Tf is satisfiable in ^ D(
G0' 0 € I) : If L involves

the variables x ,..,,x ,..., y < a, then for every 0 e I

there exists some a(9) = (aA(0))A . e A satisfying 0 in G .

We narrow our attention to the sequence ((a*(0))A ) g =

a1 € (TTD(Aft;0Gl)) • If (p e T then a satisfies <p in ^ ^ Q

if and only if U = {6;(a6(
A))s. = a(0) satisfies <p in GQ} € D

(we use theorem 2). Since visibly every 0 containing <p is in

\3S we conclude that U 3 i which, since I e D C D , implies

that u € D. Thus a satisfies E in 7r
D(

Gfl;0 € I) . q. e. d.

An immediate corollary is the compactness-theorem. We recall

that a sentence either holds true in a relational system G or

it does not (if it is satisfiable by some string of elements,

then it is satisfiable by every string; hence the sentence holds).

Def. 11: If £ is a set of sentences in L then the model-class
— T :

M(D of £ is the class of all relational systems of type T

in which every sentence of T holds.
Corollary 1: (Compactness-theorem): If T> is a set of sentences

in L each finite subset of which has a model then L has a
T

model.

Corollary 2 (Ryll-Nardzewski): Let £ be a set of formulas in

L (G). If each finite subset of L is satisfiable in G thenT
there is an ultrapower of G in which I! is satisfiable.
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13. Elementary Extensions*

Closely related to the concept ft ultra-power,n the concepts of

11 elementary embedding, fl resp. ff elementary extension*1 play

an important rdle in the first order logic• The relevant defini-

tions, as given by A. Tarski, are as follows:

Def. 11: If G and IB are relational systems of the same type

with A c B then B is called an elementary extension of G

(notation: G^ B) if for each formula 0 e L , a ̂  co * and

each a e Aa the formula & is satisfied by a in B if and

only if it is satisfied by a in G. G is then an elementary

subsystem.

It is useful to realize immediately the following equivalent

formulations:

Remark 1: If G and B are relational systems of type T with

Ac B then the following statements are equivalent:

(1) G^B
(C0Q) _ CO _

(2) If $.€ L and a e A then 0 is satisfied by a in

B if and only if 0 is satisfied by a in G.
(co) _ <coQ>

(3) If 0 e L and a € A (= set of all <oo-tuples of

elements of A which become stagnant from sojne point on) then

ij) is satisfied by a in G if and only if . 0 is satisfied by

a in B.

proof: Clearly, (1) implies (2) and (2) implies (3). To see that

(3) implies (1) we choose a ^ C0Q, 0 e l/a' and ¥ e Aa. 0

depends (by definition) only on finitely many variables, say
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x. ,....,x. 3 0 £ i < a; we indicate this by writing & =
o n

0 ( x . , . . . . , x . ). Then 0' = jljJ (X Q J . . . , x n ) , obtained by con-
o n

sistently replacing x. by x . 0 £ V £ n, is a formula in
( a ) o } - \t

L . Moreover: a e A satisfies $ in B if and only if
— <(0o>

a5 = (a. ,...,a. ,a. ,a. , ...) e A satisfies 05 in 8 which
1o xn xn ^ —

holds (by(3)) if and only if a satisfies 0 in G. q, e. d.
If we apply the definition of G^ B to the special for-

mulas Ry(
x
X5 • • .,*m ) and (3y) (f y(^ • • -^

x
n ) = Y)

 fo r a 1 1

R € R, f € F, then we deduce immediately the following remark:

Remark 2: If G is an elementary subsystem of 6 then G is

a subsystem of B.

Another obvious corollary of the definition is the fact that,

if G"^ B5 then a sentence holds in G if and only if it holds

in B; one calls this relationship between G and B an

elementary equivalence.

Def« 12: The relational systems G and B of type r are

called M elementarily equivalent,n G = B, if every sentence that

holds in G also holds in B, and vice versa.

Remark 3: G^ B implies G s B.

The attempt to really understand the concept of f1 elementary

extension1' leads to the recognition of the fact that it puts

really conditions only on formulas involving the existential

quantifier. So the following result, as useful as it is, proves

to be not too surprising.
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Theorem 4 (Tarski): If G is a subsystem of B then B is

an elementary extension of G if and only if the following con-

dition is satisfied: For every * € L r ° , 0 ^ y < 0 ) o and

a" € A ° (= set of stagnant coQ-tuples) , if a satisfies (3

in B then there exists some b e A such that a(y/b) satis-

fies $ in B.

proof: To see that the condition in theorem 4 implies G ̂  ft
(0)o)

we verify condition (3) of remark 1. So let */> € L and

<

a € A : If ^ is an atomic formula then the fact that G is

a subsystem of 6 implies that a satisfies >* in G if and

only if it does so in B. We proceed by induction and assume that

0-,^2 are two formulas in L which are satisfied by C in

G if and only if they are satisfied by c in IB for every

c € A . Then, clearly,-70^ and >!)- V i/u are formulas with

that property. Finally, if (3x ) (0-) is satisfied by a in B

then (by the condition in theorem 4) a(y/b) satisfies \b in
<B, hence in G5 for some b € A; vi^eVers^^Sx Jd.b,) is satisfied

by a in G then a(y/b) satisfies ifu in G for some b e A,

- - <a)o>

i.e. c = a(y/b) € A satisfies rf>n in G, hence (by assump-

tion on >/u) in ^. Therefore a satisfies (3x )(ib1) in IB.

The converse statement is quite evident. q. e. d.

We should pause at this point to see a few examples:
(Ex. 14): We suggest a rigorous proof of the following simple

fact: If 0: P. -• fi is an isomorphism of relational systems, "c e Ca,
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ty € Da the a-tuple resulting from c by componentwise

application of */), $ e L , then c satisfies $ in C, if

and only if 0(c) satisfies ft in fs.

Thus, C ^ fl implies always C. s A.

(Ex. 15) : We have seen that the free algebra ^(a) exists for

arbitrary a if K is an equational class. If CO < ou ^ a2

are ordinals and {c ,c.,...,c ,• • • • } * , • is a basis of ?v(aJ
O JL y Y^CLj J\ £

then, as one easily checks, <[{c,...,c ,....} ];F> & 3 (an) and
o y '^ 1

we can therefore assume that 3T,(a,) c 3 (ao). As was shown by
JK. 1 — K /

R. Vaught, 3 (a2) is an elementary extension of ^K(°h) * in

particular: ^x^i) s 3K^ a2^ * We P r o v e this statement using

Tarski1s criterion in theorem 4: Let G = 3__(a.,)5 IB = 3 (aj and
«*>> « K 1 K 2

a € A . If a satisfies (ax ) (<&) in B then there exists
y

<0 >
some b € B such that a(y/b) € B satisfies $ in IB.

Remark 1.23 implies the existence of natural numbers n,m such
<wi >

that a € [{cQ,.. . .,cn)] and b e [C Q, . . . >
c
n>

c
v M - M ^ ]
1 m

(of course, we assume that we listed only pairwise different c!s.)

Thus, if we choose a bijection <p: {c } *—> [c } with
y y^Qo *y 2

<p(c5) = c 6 , 0 £ 6 £ n, and <p(c^ ) = cn+<y, 1 £ y £ m, which we

extend to an automorphism <p: #T,(ao) -> 3 (ao) 5 then cp(a(y/b)) =
<co > K 2 K 2

a(y/<p(b)) € A (see example 14) satisfies $> in B. q. e. d.

(Ex. 16): In theorem 1.5 we introduced the mapping j = jr :

G - G which erabedded the relational system G into an arbitrary

of its ultrapowers. We can now say even more: j is an elementary

embedding, i.e. Gi: is an elementary extension of G. To see

this we use again theorem 4 and assume that (3x )($) is satisfied
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( ) ) ( A ) C X i n GD ' T h e n * i s s a t i s f i e d

by 'T^1 (y/(b^i€l)
 in GD for some (bi)i€l € £ h

(see theorem 2), S($, (a)I (y/(bi)][)) € D. Since

S(*,TaT^ (y/(bi)i€l) £ S(*,(a)I (y/tbjj)) for an arbitrary

fixed b € A, we conclude that S($5 (a) (y/ (b) )) € D, i.e.
7 \ X

(again by theorem 2) t t e t (a)I(y/(b)][) satisfies <& in GD .

This concludes the proof.

The conclusion of the last example is so important that we

decide to give it a special emphasis:

Theorem 5; If G is a relational-system then it can be elementarily

I -̂  I

embedded in each of its ultrapowers G_: Hence, G^G n and

G ̂ G*.

The theorem could be essentially sharpened such as to give

a characterization of elementary equivalence in terms of ultra-

powers. We prefer to only mention the relevant result due to

T. Frayne without giving the proof:

Remark 4 (T. Frayne): Two relational systems G5B of the same

type r are elementarily equivalent if and only if B can be

elementarily embedded in some ultrapower of G•

Another outstanding 1f application11 of theorem 4 is a simple

proof of the famed Loweriheim-Skolem-Tarski-theorem:

Theorem 6 (Lowenheim-Skolem-Tarski) :

Let G be a relational system with m fundamental relations

and fundamental operations. If Be A has cardinality J> max {m, ft )

then there exists C c A such that B c C, |B| = |c| and G
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is an elementary extension of C.

proof;

We we 11-order A = (a ;y<a] and define for every n e NQ the

set C inductively as follows: C = B, c = (b;b e A and
n <<°J ° - < ( 0o >

there exists some & e L , 7 ^ 0 and a e cn
 s>uch that

b is the least element in the well-ordering of A making a(y/b)

to satisfy S> in G). If we choose some c e C , $ = (x =x_) ,

y = 0 and a = (c,c,c5 ) then visibly c satisfies the

requirements to belong to C - . We conclude that
C ^ C1 ^ EC c
o — 1 — n —

and set C = U(C.;i= 0,1,2,*..).

If c-,..., c e C, say in C , and f € F, then b = f (c^, ...,c )
ny V ^ V y

is the unique, hence smallest element which makes a(n +l/b)

satisfy f (x.,...^ ) = x 1 in G if a = (<*, ...,c ,c ,c , . . ) .
7 y y y y y

Thus, f (cn,...,c ) e C . c C; this proves that C = <C;F,R>y x n n+i.

is a subsystem of G = <A;F,R>. Since the criterion of theorem 4

is immediately applicable to the subsystem C of G, we conclude

that G is an elementary extension of C and, of course, B c c.

We are left with showing that |B| = |c|; but this follows from
(00 )

| ° I ^ H J | J|Cn+1| = |Cn ° I . |LT ° I = max (m^HcJ = | CJ . Hence,

|C| =rS>Q • |B| = |B|. q. e. d.

Corollary: Every infinite relational system G = <A;F,R> with

lFl5lRl < ft ^ a s a countable elementary subsystem. In particular,

this holds for all M classicaln structures, as semi-groups,

groups, rings, etc.
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We want to conclude this section with a short discussion of

t! pure subsystems, t! a concept closely related to elementary

subsystems and retracts, as we shall see.

Def. 13: A relational system G is called a pure subsystem of

IB (or IB a pure extension of G) if G is a subsystem of B

and any finite set of atomic formulas in L (G) (see def. 10)

which is satisfiable in B is also satisfiable in G. If the

same condition holds only for all finite sets of atomic for-

mulas in L then we call G a weakly pure subsystem.

Let us assume for a minute that G is an elementary sub-

system of B and let £ be a finite set of atomic formulas with

constants in A, say S = [o^,•••,o } • If x-,...,x are the

free variables occurring in% cr..,...,a then we consider the

sentence $ s (3x-) (3xo) .... (3x ) (crr A a A. .... A a ) € L (G)
JL z m JL z n T

which holds in G if and only if it holds in B; thus [or-,...5or }

is satisf iable in G if and only if it is satisf iable in B.

In other words: G is a pure subsystem of B. We sum up:

Remark 5: Each elementary subsystem of a relational system B

is a pure subsystem of B.

Let us assume that G is not only a pure subsystem of <R

but that all sets of atomic formulas in L (G) which are satis-
———— *y

f iable in B are satisf iable in G. Then we write down the set

of all possible correct polynomial equalities p(b ,...b ,...) =

q(b ,...,b ,....) and all true relations Re(b. ,....5b. )m6
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where B = fb ,...,b ,•••} , • We associate with each such

equality (resp. relation) the atomic formula P C ^ ^ • • • ^ x j D * • • • • ̂  y/a

q(x, ,...., x: , ...) . (resp. R/^^u ' ' ' m 9\s ^ e L (G) as
o v y i-, i

follows: If b G B\A then x^ is a free variable; if b e A

then x, = b. Then the set £ of all these formulas is satis-

f iable in 8 by construction. So, by our assumption, £ is

satisf iable in G. Let us assume that (a-u'k G B) is a solution

in G (i.e. if be B\A then a. € A has to be substituted for

the free variable x, ; if b e A then a_ = b) : Then we can
r> b

define the mapping <p: B-*A by <p(b) = a_ . If f (b^,...,b )= b

for f e F then <o(£ (bn,...,b ) ) = a . = f ( 2 L , . . . , a , ) =
y ' y I3 n y b y bx> b n

f (<p(b1,...,b )). If R (b-, . .. ,b ) holds true then ^
y 7

R (a ,...,a ) must hold true. So <p is a weak epimorphism.
^ 1 m*

y

Visibly, <p restricted to A is the identity. Thus, via the

next definition (which extends def. 1.41) we showed that every

retract of a relational system 8 is pure in B.
Def. 14: If G c B are relational systems, then a weak epimor-

2
phism <p: B > (1 is called a retraction if <p = <p. G is then

a retract of B.

Remark 6: If G is a retract of the relational system 6 then

G is pure in B.

(Ex. 17): Apart from our approach one knows in the theory of

Abelian groups the concept of a u pure subgroup. fl We recall:

<H;+,-,0> is a pure subgroup of the Abelian group <G;+,-,0> if

every equation n*x = h, n e N, h e H is solvable in H if-
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and only if it is solvable in G (As a matter of fact, one can

easily see that it already suffices to require the last property

of equations p *x = h where p is a prime power). Since

n«x = h, as just introduced, is an atomic formula in the language

of Abelian groups, it is quite clear that every pure subsystem

<H;+,-,0> of the Abelian group <G;+,-,0> (in the sense of

definition 13) is a pure subgroup. But the converse is true too

as was shown by Gacscilyi [1]. Thus, in case of Abelian groups

the notions of a !l pure subsystemM and a fl pure subgroup11

coincide.
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Chapter III. Compactness in Relational Systems and Algebras.

Now that we are familiar with the basic concepts underlying

our theory we intend to collect in this chapter the essential

results known so far on the impact of the diverse kinds of com-

pactness (introduced in chapter I) on the properties of diverse

algebraic structures. Questions as M Is Mycielski!s conjecture

true for Boolean Algebras? tf or ff What exactly are the equationally

compact Abelian groups? !f or fT If a relational system has an

equational compactification does it have one in the same equa-

tional class? ff and the like will be answered as far as known,

unsolved problems stated, general connections between concepts

like ff equational compactnessM , M elementary extension11 9
 n pure

subsystemn , n ultrapowertf will be established. Many of the

core results are due to the Polish mathematicians Weglorz,

Pacholski, Ryll-Nardzewski and Mycielski. We begin our chapter

with a characterization of equationally compact semi-lattices, a

result that does not require any further theory at this point.

We agree to write equations (£*<£) in t^e form £ = q and to

replace e by x .

|1. Equationally compact semilattices.

We recall that a semi-lattice is a universal algebra S = <S;V>

of type <2> with a commutative, idempotent and associative binary

operatbn V. One defines a partial order on S by specifying

s1 £ s2 if SjVs-2 = s2.
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Theorem 1 (Gratzer and Lakser [2]): The semi-lattice S = <S;V>

is equationally compact if and only if the following three con-

ditions are satisfied:

(1) Every subset T c S has a least upper bound V(t;tGT).

(2) Every chain C in 8 has a greatest lower bound A ( C ; C G C ) .

(3) If a G S and C is a chain in S then aV( A(C;CGC)) =

A(aVC;CGC).

proof:

To prove the result we have to study systems of equations in

Pi a )(<2»x P*a)(<2» (see def. 1.39). Utilizing the identities

on semilattices we see immediately that every such equation is of

the type s V x . V....Vx. = t V x . V V x . where
o xn-l Do Dm-1

s,t G S and n,m J> 0 (with the usual convention that

s V xi V....v x, = s in case n = 0) .
o n-1

(a) We first show the easier implication, namely the fact that

equationally compact semi-lattices satisfy the conditions (l)-(3):

To see (1) we consider the set of equations

YL = {tVx = x; t G T}U{xVu = u; u G U) if U is the set of

upper bounds of T. Since every finite subset [t V x = x,....3

t V x = x}U{x v uQ = u ,....,xVu = u ) has the solution x =

t V t- V....V t we conclude that En has a solution which iso 1 m l

evidently V(t?tGT) . To verify (2) we choose the chain C and

the set of equations Eo = {cVx = C;CGC}U{X\AI = x;*t G L} where
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L is the set of lower bounds of C. Since every finite subset

(cQVx = c , . . . j
c
m
V x - cm^

uf x V^ o
 = x' *xV*n = x^ °f T2 h a s

the solution x = min{co, . . • ,cj we conclude that 7^ has a

solution which is evidently A(c;c e C) . Finally, to show (3)

we take s € S. a chain C and put c = A(c;c e C ). Ofy o o o

course, if C is a chain then so is C- = {cVs; c e C } and we

put c, = A(c;c € C,) . We have to show that s V c = ci* i.e.

(since s V c <£ c, is clear) that s V c J> c^. To see this we

consider the set IL = {sVx = c-Vx}U{xVd = d; d e C ). Since the

finite subset f sVx = c,Vx. xVd = d , ...5xVd = d } has the

solution x = minfd ,d., ...,d } we conclude that T~ has a solu-

tion e. Hence sVe = c^Ve, i.e. sVe J> c. which (since eVd = d,

i.e. e £ c 9 for all d e C ) implies that sVc ^ sVe ^ c^,

i.e. S V C Q ^ cv

(b) To prove the converse direction of the theorem we refer to

the standard argument which shows that (2) implies that every

downward directed set D has a greatest lower bound A(d;d e D)

and (3) implies that sV(A(d;d£D)) = A(sVd;d e D) for every such

set (Recall: D is downward directed if dT*d9 € D implies the

existence of some d e D such that d.. ^ d, d2 ^> d) . We sum up:

(2*) if D is downward directed then A(d;d e D) exists.

(3^) If D is downward directed and s e S then sV((A(d;d e D)) =

A(sVd;d e D) .-

We are now in a position to state the two lemmas crucial for

our proof:
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Lemma 1: Let sVx. V v x. = rVx. V....V x. be an
1o Si-l Do Dm-1

equation in P^a)(<2»x P^a) (<2» whose solution-set K c Sa

is downward directed (§a = <Sa;V> is the direct product). Then

t = A(k;k € K) is a solution of that equation.

proof; Let K= [cy ;A e A} with c, = (c. (i) ) ̂  .. . . Then t(i) =
A A A U<^X<jOk

i);A e A); hence, s V t(i )V V t(i ,) = s V(A(c^(in) ;A € A))
O n— X A O

V V(A(cA(in^1) ;A 6 A)) = (we apply (3')) = M sVc^ ( iQ) V. . . Vc^ ( i^^ ;

A e A) . Similarly, r V t(jQ)v V t(jm-1) = A(rVcA(jQ)V

V c^ ( j -) ; A e A) . Since, by assumption, s V c-v ( i ) V V c. ( i -) =
A m~± A o A n-1

r v t(j )V V c (j ^.) for all A € A we conclude that

s V t(iQ)V V t(in_1) = r V t(jQ)V V t(j m - 1), i.e. t is a

solution of our equation. q. e. d.

Similarly one proves the next lemma:

Lemma 2; Let p(x) = sVx. V....Vx. , q(x) = rVx. V...#Vx.
o n-1 Jo Jm-1

and g(x) = g(x) an equation with solution set K c Sa. Then

t = V(k;k e K) is a solution for p(x) = q(x) .

proof; As above, we get p(t) = avt(i )V....Vt(i ) ^ sVk(i )V...

V k(i x) = rvk(j )V V k(j m i) = q(k) for every k e K.

Thus, p(t) ^ V(q(k);k € K) = q(t). Symmetrically, q(t) ^ p(t);

i.e. q(t) = p(t). q. e. d.

With these two lemmas at our disposal we can now settle the

claim that (1),(2),(3) imply the equational compactness of the semi-

lattice £ . To this end we choose a set of equations 75 c P^a'

Pg (<2>) which is finitely solvable; i.e. every finite subset
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J? of Yi ^ a s a non-empty solution set K(T^) . By lemma 2,

t(T*) = V(k;k € K(r*)) e K(r*) . Moreover, the set K(JD = q) =

( t ( P ) ; P c T, |^*|</V and p = q € T*} is downward directed

for every p = q € T, since E* c T** implies t(T*) => t(T**).

Since K(p = q) j.s the solution-set of p = q we get (by lemma

1) that u(g = cj) = A(k;k e K(g = 2 ^ is a solution for p = q .

Moreover, since K(£^= (j-j) and K(£2 = ^ ) are mutually downward

cofinal in S we obtain the fact that M(Pi = -̂i) ^ w(Po = Qo)

for any two g^ = ^^ g2 = ^2 e T. Thus, M^ = ^) is a

solution for £, i.e. £ is solvable in §. q. e. d.

Now that we have characterized equationally compact semi-

lattices it is natural to ask for the solution of the following

specific open problem:

Problem Zi Is every equationally compact semilattice the

algebraic retract of some topologically compact semilattice?

(or embeddable in one?).

A trivial application of theorem 1 yields the following

corollary concerning equationally compact lattices:

Corollary: If <£ = <L;V, A> is an equationally compact lattice

then

(1) £ is complete

(2) If D c L is a downward [upward] directed set then

s V(A(d;d e D)) = A(sVd;d e D) [s A(v(d;d e D)) = v(sAd;d € D)]

(3) If a > b are two elements in L and {c.;i € 1} is a set

of elements in L such that i / j implies c.Vc. = a, c.Ac. = b.
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then |l| <^ o.

proof: While (1) and (2) follow immediately from theorem 1,

(3) follows from the set of equations T = [x^x = a;i / j,

i,j e l)u{x.Ax. = b;i / j, i, j € I] [see example 3, chapter I] .

Problem 3; Find necessary and sufficient conditions for a lattice

to be equationally compact.

Remark: I do not know a lattice satisfying conditions (1),(2),(3)

of the above corollary which is not equationally compact.

Although the characterization of equationally compact lattices

is open at the time, some results have been obtained on lattice-

related systems. But before discussing these results and thus

rounding up the picture on the situation in lattices it will prove

useful to have some more general results at our disposal which

we will now study in section 2.
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J2. Equivalence of different kinds of algebraic compactnesses.

In definition 1.39 we got acquainted with the concept of

S-equational m-compactness. Equational compactness of an algebra

G was the special case of A-equational m-compactness for all

cardinals m. We now extend the realm of these definitions as

follows:

Def. 1: (a) Let K c L be a class of formulas in the language
—. 7.

L . A relational system G e K(r) is called weakly K-compact
T

if every set T c K is satisfiable in G provided every

finite subset of E is (we then call £ finitely satisfiable in

G ) . If K(G) = K 0 L (G) and every set E c K(G) which is

finitely satisfiable in G is satisfiable in G then we call

G K-compact.

(b) If K is the class of all equations with constants in A

(without constants) then we call [of course, in agreement with def.

1.39] the algebra G(weakly) equationally compact.

(c) If K is the class of all atomic formulas with constants in

A (without constants in A) then we call the K-compactness (weak

K-compactness) atomic compactness (weak atomic compactness).

(d) If K is the set of all positive formulas [i.e. the set of

all formulas whose matrix in the prenex normal form contains

not the negation sign-?-] with constants in A (without constants

in A) then K-compactness (weak K-compactness) is called posi-

tive compactness (weak positive compactness).

In this section we derive a few results centered around a

characterization of atomic compactness. Analogous results for
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the ff weak11 case are collected in the next section.

In remark 6 of chapter II we established the fact that every

retract G of a relational system (B is pure in IB. It is

interesting to notice that if G is atomic compact then G

is pure in IB if and only if it is a retract of IB.

Remark 1: If G is an atomic compact relational system then G

is a pure subsystem of (B if and only if G is a retract of IB.

proof; For the one half of the proof see remark II.6. So assume

that G is pure in <B and let £ be a set of atomic formulas

with constants in A which is satisf iable in (B. Then E is

finitely satisf iable in iB, hence (since G is pure in IB) finitely

satisf iable in G. Thus (since G is atomic compact), S is

satisfiable in G which (remark II.6) proves that G is a re-

tract of iR. q. e. d.

We have now all the pieces we need to put together a funda-

mental result due to Weglorz:

Theorem 2 (Weglorz): If G is a relational system of type r

then the following conditions are equivalent:

(1) G is positively compact.

(2) G is atomic compact.

(3) G is a retract of every algebraic system in which G

is pure.

(4) G is a retract of every elementary extension of G.

(5) G is a retract of every ultrapower of G.
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proof: (1) implies (2) since every atomic formula is positive.

(2) implies (3) by remark 1. (3) implies (4) because of remark 11.5.

(4) implies (5) because of theorem II.5. To prove that (5) implies

(1) we pick a set of positive formulas T> c L (G) which is

finitely solvable in G. Then corollary 2 of theorem II.3 assures

that £ is solvable in some ultrapower Gn of G. If <p: G -• G

is the retraction which exists by (5) and (c ) is a solution
y y^s^

of T in G_ then (<p(c )) . is a solution of T in G as
D y y<ct

is assured by Marczewskifs well-known theorem stating the invariance

of positive formulas under homomorphisms (see Marczewski [1] or

Gratzer [1], chapter 7). Thus, T is solvable in G which proves

our point. q. e. d.

To state one important corollary we need the following con-

cept:

Def. 2: If G is a relational system in the class L of

relational systems then G is an absolute retract in L if it

is a retract of every extension in L.

(Ex. 18): We recall that a relational system G is injective in

a class L if every weak homomorphism <p: B -» G, B e L can be

extended to a weak homomorphism <p: C -» G if C is an extension

of B in L. Thus, if G is injective in L and C e L con-

tains G as subsystem then the identity-mapping 1 : G - G can

be extended to a weak homomorphism, hence retract <p: C -• G.

Hence: Every relational system G which is injective in the class

L is an absolute retract in L.
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Corollary 1 to theorem 2: If L is a class of relational systems

of type r which is closed under the formation of ultrapowers

(as, e.g., equational classes of algebras) then every absolute

retract G in K is atomic compact.

proof; This is clear since G is retract of each of its ultra-

powers, q. e. d.

Corollary 2: If L is as above then every injective relational

system in L is atomic compact.

proof: This, of course, is clear from example 18 and corollary 1.

q. e. d.

Let us conclude with a trivial remark concerning the pre-

servation of atomic compactness under algebraic construction (we

skip the proof):

Remark 2: Direct products and retracts of atomic compact algebras

are atomic compact.

Before we switch to }2a which contains parallel results on

weakly K-compact relational systems we should bring to mind the

obvious fact that atomic compactness and equational compactness,

although different concepts in relational systems G = <A;F,R>

with R / <f), coincide for universal algebras. Thus, every result

we obtained and will obtain on atomic (resp. positive) compactness

has direct relevance towards questions concerning equational com-

pactness of algebras.
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$2a. Weak atomic compactness.

Using once more Marczewskifs theorem stating the invariance

of positive formulas under homomorphism one proves easily the

next useful remark:

Remark 3: If B,G are relational systems of the same type r,

B c G and h: G -» B 'a weak homomorphism then the weak atomic

compactness of any one of the three systems h(G) or B or G

implies the same property for the remaining two systems.

proof: Assume that G is weakly atomic compact and T c L

a set of atomic formulas finitely solvable in B(h(G)); then D

is solvable in G. If a € Aa is a solution then h(a) € Ba(h(G)a)

is a solution of T in B(h(G)); hence, B(h(G)) is weakly

atomic compact. The remaining two proofs are analogous. q. e. d.

Corresponding to remark 2 (up to the point that we skip its proof)

we have remark 4:

Remark 4: The direct product of weakly atomic compact relational

systems is again weakly atomic compact.

Before we proceed let us give an example:

(Ex. 19): Every lattice £ = <L;V,A> is weakly atomic (i.e.

weakly equationally) compact. This is clear since every element

a e L forms a one-element-sublattice £'= <[a];V,A> which is a

homomorphic image of £. Z3 is, of course, weakly equationally

compact; thus, remark 3 settles the matter. For the same reason

are all groups Q = <<

equationally compact.

are all groups Q = <G;*,~ ,1> and rings, ft = <R;+,-,0,•> weakly
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A basic theorem (corresponding to theorem 2) concerning

characterizations of weakly atomic compact relational systems

is the following:

Theorem 3 (Weglorz) : If G is a relational system of type T

then the following conditions are equivalent:

(1) G is weakly positively compact.

(2) G is weakly atomic compact.

(3) G contains a homomorphic image of every algebraic

system ft in \Aiich G is weakly pure.

(4) G contains a homomorphic image of every elementary

extension of G.

(5) G contains a homomorphic image of every ultrapower of

G.

proof: (1) implies (2), (3) implies (4), (4) implies (5) and

(5) implies (1) for exactly the same reasons as were valid in the

corresponding implications of theorem 2. Thus, let us prove

that (2) implies (3)! To do so we choose the system £ of

atomic formulas in L as follows: We take the set S of all
T

possible expressions 4(b.5....,b ) where $ = $(x. ,....,x. ) is

an atomic formula in the free variables x. ,...,x. and the
xl xn

substitution b. -» x. satisfies <E> in B. For each such

expression we introduce free variables x. ,.... ,x_ and define
1 n

£= ($(x^ ,...,x, ); $(b-,...,b ) e S). Evidently E is solvable,
In

hence finitely solvable in ft. Therefore, T is finitely
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solvable in G, since G is weakly pure in B. Due to the

weak atomic compactness of G we conclude that S is solvable

in G by, say, a system ^O-u B (i«e. we have to substitute

a. -• x, ) • Then h: B -» A mapping b to a, is a homomorphism.

q. e« d.

We now go on to continue our discussion of $ 1 and to collect

all results we know so far on compactness in lattice-related

structures.
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$3. Lattice-related structures.

If Z = <L;V,A> is a lattice, i.e. an algebra in the class L

of all latices, then Z{<i) denotes the associated poset <L;<>

and ZZ = <L;V,A/O,1> denotes the smallest lattice with smallest

element 0 and largest element 1 containing £. If 1L(<1)

denotes the class of all posets £(£) then IL(<1) <= (Q where 0

is the class of all posets. iL (<1) consists of the so-called lattice

induced posets. We have the following main-result on these (see

Weglorz [3]):

Theorem 4: If £ = <L?V,A> is a lattice then the following

statements are equivalent:

(1) &(£) is atomic compact.

(2) £ is complete.

(3) Z(£) is injective in 0#

(4) Z(£) is injective in |L (£) •

(5) £(j£) is an absolute retract in IL

(6) Z(£) is an absolute retract in

proof:

(1) implies (2)i Let ^ ^ T c L and

D = (x ̂  t; t e T} U {x ̂  u? u e U) U {y ^ t? t € T} U [y ̂  L;L e L)

£ L (<£(<!)) where U is the set of upper bounds of T, L is the

set of lower bounds of T. Then T< is finitely satisfiable in

£(<!) 9 hence satisfiable in £(<£) • The solution x « a, y = b

provides clearly a least upper bound a and a greatest lower

bound b of T.
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(2) implies (3):

Let G = <A?<>, B = <B;<> e O , G c B and h: A - L a weak

homomorphism of G in £(<!). We have to show that h can be

extended to B. To that end we apply the standard pattern:

Namely we take the set S of all pairs (C,f) where G c C c ft,

C e O , f is a weak homomorphism f : C -• L and fL = h. Since

(G,h) e S, S is not empty and Zornfs lemma assures the existence

of a maximal element (B ,h ) e S. Assuming B c: B, say

c e B\B , we can form u = U(h (b) ;b e B and b <£ c) , v =

n(h (b) ;b € B and b J> c) , choose an arbitrary element a with

u £ a <L v and define h 1: BQ U{c) -+ L by h - ^ = hQ and h^c) =
o

a; then (as easily verified) (<B U{c); ^ >_, h..) e § contradicting

the maximality of (B >h ) . We conclude that B = B. and h :
o o o o

B -* L is the desired weak homomorphism extending h.

(3) implies (4) is, of course, obvious. So is the fact that (4)

implies (5) (see example 18, this chapter).

(5) implies (6) ; We recall the McNeille-enibedding of arbitrary

posets in posets induced by complete lattices (see chapter I,

preceding remark 7). Thus, if P e O contains Z{£) then we

McNeilie-embed it in p\ By assumption, there exists a retraction

<p: P' -»•£(<£)* hence a retraction cp| : P -+ £(<̂ ) which was to

be shown.

(6) implies (1) by corollary 1 to theorem 2 since (U is closed

under the formation of ultrapowers. q. e. d.

Looking at the theorem one feels inclined to conjecture

that possibly the atomic compact posets are exactly the absolute
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retracts in 0 (since this after all holds for posets of the form

£(£)). This is not only not true (see next example) but we have

even the nice result that P e 0 is an absolute retract in (D if

and only if P = £(<£) for some complete lattice £ (see next

remarlO .

(Ex, 20) : The poset G = <{a,b,c}; £ > with a < c, b < c and

unrelated a,b is evidently atomic compact [ a short rigorous

reason would be the fact that G* = <{a,b,c};V> with a V b =

c is an equationally compact semi-lattice]. Equally evidently

G is not an absolute retract in U [e.g. G is not a retract

of IB = <{a,b,c,d}; <£ > where d < a,b5c and <{a,b,c}; £ > =

G].

Remark 5: If the poset P = <P;<£> is an absolute retract in

then there is a lattice Z such that £(£) = P.

proof: Again we can assume tint P is McNeille-embedded in a

(complete) lattice ft = <K?V,A) such that P c ft(<£) . By assump-

tion there exists a retraction <p:ft(<£) -> P. All we have to

show is that any two elements a,be P have a greatest lower

bound a A b and a least upper bound a v b in P. We know

that we have a greatest lower bound c of a and b in R(^),

i.e. (1) c £ a,b, hence, <p(c) £ <p(a) = a, <p(b) = b and (2) if

x € P and x <; a,b then x ;> c, i.e. x = <p(x) J> <p(c) . (1)

and (2) establish that <p(c) = a A b in 5? Dually we can prove

that <p(d) = a V b in P if d is the least upper bound of a

and b in R(£). q. e. d.

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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To go back to theorem 4 we recollect that the atomic com-

pactness of the lattice-induced poset £(<;) is equivalent to

the completeness of £. As remarked in f 1 (see protie.m 3) a

characterization of equationally compact lattices is not known

at the time, although we know that the mere requirement of com-

pleteness is surely not enough (see the corollary to theorem 1).

A counter-example is the frequently quoted example 3 which violates

condition 3 of the corollary to theorem 1. Another counter-example

violating condition (2) of the same corollary is the next one:

(Ex, 21): Let £ = <L;V,A> be the complete lattice defined

as follows: L = {0} U {~; n e N] U {x} U t(x>~)? n € N} U {x,0}
• • •

U{y} U {A} U {B} where x,y,A,B are mutually different symbols,

B is the largest, A the smallest element in the lattice and

the operations are determined by (1) OV— = —, OVx = (x,0), 3
OV(x,~) = B, OV(x,O) = (x,0), OVy = y, £ V i =

— , - } , - V x = (x,-), - V (x,O) = - V (x,-) =- n m n n n n m

\

B, = B, x V , ^ ) , x V (x,0) =
II

x V y = y, (x,i) V (x,i) = (x, i,i}), (x,i) V y =

,^) and (2) ^ = 0, OAx = A,

0, OAy = 0,

~A(x,0),

,^) = 0A(x,0) =

,i) = 0 =
*°

= 0,

I,i), IAx = A,

,i) = x, xA(x,0) = x, xAy = x,

(x, , ) (x,0)Ay=

Thus, XV(A(^-; n e N) ) = xVO = (x,0) £ y = A( (x,-) ;n € N) =n n

^; n e N) which (in view of the corollary to theorem 1) shows

that Z is not equationally compact.
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We know much about atomic compactness in £(<^), little

about equationally compact lattices £, but we know every-

thing in another lattice-related structure, namely in Boolean

algebras IS = <B?.V, A, * ,0,1>. The following two theorems contain

the crucial information (see Weglorz [1]).

Theorem 5: If B = <B;V,A,',O,1> is a Boolean algebra then the

following conditions are equivalent:

(1) B is complete.

(2) B is injective in the class Ji? of all Boolean algebras.

(3) B is an absolute retract in the class JD of all Boolean

algebras.

(4) B is equationally compact.

proof; The fact that (1) implies (2) follows from a standard

argument as it was displayed in the proof of theorem 4 when we

showed that (2) implies (3) [besides, the result is well-known].

(2) implies (3) and (3) implies (4) was established before [see

example 18 and corollary 1 to theorem 2] since Jp as an equational

class is closed under the formation of ultrapowers. If IB is

equationally compact then so is the lattice B' = <B;V, A> which

because of the corollary to theorem 1 in section 1 implies that

B is a complete Boolean algebra. q. e. d.

The next theorem establishes that Mycielski's conjecture is true

in the class

Theorem 6: The Boolean algebra B is equationally compact if

and only if it is a retract of some topologically compact
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Boolean algebra (%

proof: Of course, we only need to show one direction and assume

that B is equationally compact. Then we know that B is com-

plete and can be embedded in a complete atomic Boolean algebra

C (more concretely: C can be choosen to be the complete Boolean

algebra of all subsets of the Stone space of B). Since, as

well-known, C is the direct product of 2-element Boolean algebras

B2 it carries the compact Tychonoff-topology resulting from the

discrete topology on B2* Thus, C is topologically compact.

Since H c C! a^d B is an absolute retract in J5 we proved the

result. q. e. d.

The question concerning weak equational compactness of Boolean

algebras B is, of course, easily decided. Since B J> (ft2 =

<{0,1} ;V, A,' , o,1> and B2 is a retract of (B we know that every

Boolean algebra is weakly equationally compact because of remark

3 in section 2a. We conclude our section with this obvious

remark:

Remark 6: Every Boolean algebra is weakly equationally compact.

So is every lattice and, of course, semilattice. So is, in

general, every universal algebra with a finite homomorphic image

as subalgebra.
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^4. Algebras with a single unary operation.

In this section we apply some of the results obtained in

section 2 in order to investigate the questions centered around

the concept of equational compactness in algebras G = <A;f>

of type T == <1> (i.e. f is a single unary operation on A).

The results are essentially taken from Wenzel [2] and Pacholski

and Weglorz [1]. First we characterize those algebras G = <A;f>

that are equationally compact. We recall: G is connected if

for any two a,b e A there exist n,m e N such that fn(a) =

f (b). it proves useful to introduce a few suggestive concepts

in addition.

Def. 3: If G = <A;f> is a unary algebra then a e A is called

a stagnant element if f(a) = a. st(G) is the set of all stag-

nant elements in A. If n e N and a € A then the n-periphery

nG (a) is the set of all elements b e A such that fn(b) = a and

f (b) j4 a (provided n-1 J> 0) . In case a e A satisfies

a ̂  f(b) for all b e A we call a a minimal element. If

a e A is an element such that (l)fm(a) / a for all m € N and

(2) ry^a) contains a minimal element then a is said to have order

ri in G, i.e. °Q(a) 2 n* Finally, if a e A satisfies (1)

f (a) j£ a for all m e N and (2) there is an infinite chain a ,

a., . •. .,a , . . . . such that a = a ,a» / a , for i ̂  j and a =
x m 0 1 3 m

, then a is an element of infinite order.

(Ex. 22) : The algebra r = <C ;f> with n elements C =

{a *a,....,a .} whose indices are
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determined modulo n and whose operation f />•«

is defined by f(ak) = a k + 1 is called the '' \#

cyclic algebra with n elements. It has no a/* ^
^ 4

stagnant elements unless n = 1. None of its a>^.<=r. *
L

elements has an order (be it finite, be it infinite) . If n J> 2
then m (a.) ^ p{ for all m € N and a. e C . Of course,

n.n i in

m (a ) / of is equivalent to m = 0. '

(Ex. 23) ; The algebra & = <J*;f> whose carrier set T

is, say, the set of integers and whose operation f '

is defined by f(n) = n+1 has neither stagnant nor ; ̂  .

minimal elements, m (n) consists of the one element ;

n-m for all n e A, m e N . The arbitrary element

n € Z has no finite order but is, on the other hand,of infinite

order.

We will now state the characterization-theorem of equationally

compact unary algebras G = <A;f>; it will be followed by a couple

of lemmas that serve its proof.

Theorem 7: The unary algebra G = <A;f> is equationally com-

pact if and only if

(1) Every element whose finite orders approach infinity

is of infinite order .

(2) G contains either some subalgebra n. (n ̂ > 1) or the

subalgebra j.

As we have indicated before we will prepare the proof with

some lemmas:
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Lemma 1: If IB is an elementary extension of G = <A;f> then

we have the following relationships:

(1) st(G) = ̂  is equivalent to st(fl) =

(2) For every a € A, n
G(

a) = $ is equivalent to n,ft(a) ==

(3) ft contains a subalgebra isomorphic to r*n if and only

if G contains such an algebra.

proof:

(1) follows from the fact that (3x) (f (x) = x) is a sentence it)

L , which is true in G if and only if it is true in ft. To

see (2) we take the formula <S> (3XQ)(f
n(xQ) = xx A f

n~1(xo) ^ x^ .

If we assume that ^(a) / jtf then a = (a5a,a ) e A °

satisfies $ in (B; hence a satisfies $ in G^ i.e. there

exists a. e A such that fn(a-) = a, fn~ (a.) ^ a. In short:

^(a) ^ pf. (3) follows simply from the sentence (3x) (f (x) =

n-1x A f (x) / x) . q, e. d.

Using an algorithm due to Novotny one can prove the next

lemma:

Lemma 2: C is retract of every extension <R = <B;f> that con-

tains no subalgebra (isomorphic to) d unless n divides m.

proof: As in example 22, we assume that C = {a ,a ,...,a .}

and f(a^) = a k + 1 (all indices are determined modulo n ) . If

B is connected then for every b € B there exists a unique smallest

m(b) € N Q such that fm(b)(b) e Cn, say fm(b)b) = a
i ( b ) • W e

define <p(b) = a. ,- . ... e C and easily verify that <p: B -» C

is a retraction. If B is not connected and B- is a maximal
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connected subalgebra of 8 not containing any subalgebra

C ,™ I> 1* then we pick some b.. e B, and map it via (p~ to

a G. C . Then we have for every b € B a unique m(b) e NQ such

that fm(b)(b) e [1^], say f m ( b ) (b) = fk(b) (b^ . We complete

the definition of <p by requiring that <pp (b) =

(where the index of a is again determined modulo n) • If (ft.,

is a naximal connected subalgebra of IB which contains a sub-

algebra C with n/m then we can, of course, assume that (R̂

does not contain the pregiven C (otherwise, see the first part

of the proof)• As we have just seen, there exists a retraction

0: 8, -* r; ; since n/m there exists a homomorphism }&-: C ~* C •

We define in this case <pQ : 8- -• C by (p = 0- 0.

Hi _ x n w - x

Since IB is the disjoint union of its maximal connected

subalgebras B.., i € I, we can M patch up n the homomorphisms
<p : 8. - C (more precisely: If b e B then there exists a uniquew. • x n

maximal connected subalgebra B. such that b e B^, and we

define <p(b) = (p̂  (b) . q. e. d

Lemma 3: If G = <A;f> contains some cyclic subalgebra c^*

d ^ 1, then G is retract of every extension B = <B?f> which

enjoys the following properties:

(1) ^ ( ^ = J^ ^s equivalent to no(a) = jo f o r aH a e A and

n € N.

(2) c c B implies the existence of c E G such that n

divides m.
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(3) Every element a e A whose finite orders approach infinity

is of infinite order.

proof: Lemma 2 implies that every maximal connected subalgebra

(shortly, connected component) §. of *? which is disjoint

from G can be mapped into p , via a homomorphism <p.. So if

[[G]] = <[[A]]?f> is the unique maximal subalgebra of B each

of whose components intersects A, then we only need to show that

we have a retraction <p: [[G]] -• G. Since ^(a) = nrrr.11(a) holds
w I lu. j j

true for every a e A and n € NQ we conclude that [[A]] =

U(no(a);n e N , a € A). Even more can be said:
IB o %

If we call an element a € A a branch element if \

lB(a)\lQ(a) ^/ and call U(nB(a)\nQ(a) ;n € N)

the branch of a, say br(a) (see diagram), then .••' H

A /!
[[A]] = U(br(a) ; a runs through all branch elements / ; ..

* V
• • / •

a e A)L)A. Our aim is to define a homomorphism (p&:
A U br(a) -• A for every branch element a such dolle^ •p<t

S
that <o I 7v = identity. There are three possibilities: (1)

a A

<[a];f>= cm
 f o r s o m e m e N, say [a] = Cm = {a=ao,ar ... , 8 ^ ^ .

If then b e br(a) D rv,(a) then we define <P^(b) = a (indices,
in a — n

recall, count modulo m) . (2) fm(a) ^ a for all m ̂  1 but

there exists some n e N such that no(a) ^ of while k (a) = of
In. ^ Hi ^

for all k ̂  n+1. Then, by assumption, nQ(a) ?£ jzf; say z € n ^ a ) .
In this case we define <p on br(a) as follows: If Q <£ k ̂  n

a
and b e br(a) n k,p(a) then <P̂  (b) = fn"k(z ) (3) For every n there

ii* a o

exists n > n such that a is of order n in G. In this
o -̂  o

case our assumption implies that a is of infinite order? i.e.

there exists a sequence c = co>
c
l9 ....,cn, of elements
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in A such that cn =
 f( c

n + 1) (equivalently cn e n ^ a ) ) . We

then map every b e br(a) n nR(a) via <pa to <Pa(t>) = cn. Thus,

in each of the possible three cases we defined <pa on A U br(a)

as homomorphism into A which is the identity on A. If we do

this for every branch element a e A in the manner just described

then it is a matter of simple verification that the locally defined

homomorphisms <c> : A U br(a) -• A patch up to a retraction
a

<p: [ [G] ] -• G. q. e. d

In a quite similar fashion one proves the next result:

Lemma 4; If G = <A;f> contains some subalgebra isomorphic to

c9 then G is retract of every extension (B without cyclic sub-

algebras enjoying properties (1) and (3) of the preceding lemma.

proof of theorem 7:

We first assume that G = <A;f> has properties (1) and (2) of

theorem 7. Then lemmas 1,3,4 show that G is retract of every

elementary extension? this result shows that G is equationally

compact (see theorem 2 in J*2) . Vice versa, we assume G to be

an equationally compact algebra. If then a e A is an element

whose finite orders approach infinity then the infinite set of

equations £ = {a = f(x^, ^ = f(x2),.•..,XR = f(*n+1)>••••) is

finitely solvable, hence solvable. Thus, a is of infinite order

verifying (1). To verify (2) we assume that G contains no cyclic

subalgebra cn- Then | {fn(a), f 1 1"" 1^), ,f(a),a}| = n+1 for

every n e N and a e A. Thus, the infinite system of equations

T< = [xQ = f (xx) ,xx = f (x 2), . .., xn = f (xn+1) , } is finitely
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a
ao

solvable, hence solvable. If (a ,a ,...5a ,...) € A is

solution of F< then evidently < ( a
n *

n e N
o) U (

fll(a
o)?

n f- N o) *
f>

is isomorphic to ,9. q. e. d.

In order to attack the naturally next question}namely the test

of Mycielskifs conjecture in the class K(<1>) we recall that
V

the Stone-Cech compactification $A of a locally compact topolo-

gical Hausdorff-space ftis the (up to homeomorphism unique) compact

Hausdorff space that contains A as a dense subspace and to

which every continuous mapping from A into a compact Hausdorff

space B can be continuously extended. So if G = <A;f> is a

unary algebra then we can endow A with the discrete topology

under which f becomes a continuous mapping. If we now extend

f: A -> A to f: pA -* pA then ^G = <pA;f> becomes a unary algebra.
V

Def. 4: pG, as just defined, is the Stone-Cech compactification

of the unary algebra G = <A;f>,

Thus, the weaker part of problem 2's question is obvious in

this case: Every unary algebra G = <A;f> (even G = <A;ĵ > with

an arbitrary set F of unary operations, for that matter) can

be embedded in a topologically compact algebra, namely G c pG.

Of course, not every one of these embedded unary algebras G is

also a retract of pG since not every unary algebra G = <A;f>

is equationally compact. It is true, however, that every equationally

compact unary algebra G = <A;f> is retract of pG. We will

prove in the sequel this result which answers problem 1 in the

affirmative for the type r = <1>.
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By theorem 7 every equationally compact algebra G = <A;f> contains

either some Cd,cl J> 1, or j as subalgebra. Thus, in view of

lemmas 3 and 4 to theorem 7, we need only to show that (1) nG(a) =

(f> is equivalent to n G(a) = <f) for all a e A and n € N, (2)

r» c pC implies the existence of C c: G such that n divides

m — c n —
m. The next two remarks serve that purpose:

Remark 7: If Q = <A?f> is a unary algebra then nQ(a) = (̂) is

equivalent to n Q(a) = (j> for every a € A, n € N.

proof: Let x e (pA\A) 0 n G(a) for some a € A. Then there

is a convergent net (a.,,D,̂ >) in A such that x = lim a
a d€D

[i.e. < D; ^> > is a directed poset, a^ e A for all d e D5

and for every open set 0 containing x there is some d € D

such that a- e 0 for all d ̂  d ]. Hence, a = fn(x) = lim fn(a.) .
d x o d € D a

Since a € A is an isolated point in pA there exists dQ € D

such that f n(aj = a for all d ^ dQ. This settles the matter

if at least one of the ad is in nQ(a) which, of course, is

always true if a is not a stagnant element (Since then a^ € n G(
a)

when f (a^) = a) .if a were stagnant and none of the a, was

in ^(a) we would conclude that fn (ad) = a for all d ̂  d ,

i.e. a = lim fn-1(a.) = fn"1(lim a,) = fn"1(x) ^ a. This contra-
d€D a deD a

diction completes the proof.

Remark 8; If G = <A;f> is a unary algebra and r* is a subalgebra

of pG then there exists a subalgebra c. of G such that n
~n

divides m.
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proof: We begin the proof with the recollection of a well-known

topological fact: If A;L,A2 c A and A± 0 A2 = 0 then A± n A2 =

^ (where XT is the closure of A.̂  in pA) , for A^ £ A is an

open and closed set in A, thus A and A-Ax are complementary

open and closed sets in pA(see, e.g., Gillman and Jerison [1],

chapter 6.9). Thus, if y = lim a for some net (a,,D,^>) in A,

m d G D d

£ = {a-;d € D] and £ 0 f (A) = f6 for some m ̂ > 1, then

& n fm(£) =y implies that y ft fm(A), i.e. y / fm(y) = lim fm(a ) [of

m m d G D

course, f (A) = [f (afl) ; ad G A}].

So assume that o» ^ G for every divisor d of some m e N

and let x e pA \ A. We then have to show that f (x) ^ x to end

our proof. Let G.,i e I, be the connected components of G. The

carrier set of every G., since, by assumption, it has no stagnant
1 * 2 " 3

element, can be represented as A. = A. U A. U A, such that

A? n A k = / for j /k and f(A:?) n A^ = p', i,j = 1,2,3. If

G . is in the class IK. of unary algebras without cyclic subalgebra

then this is a lemma by Ryll-Nardzewski (see Pacholski and Weglorz

[1]). If, on the other hand, G. has a cyclic subalgebra n ,.»,n(i)

^ 2 , say C ... = {a ,a,...,a /-\ n)* then we first subdivide

C ,.* as follows: If n(i) is even, we take C ... = {a ,ao,...,a ..YL\i-) n^i) o^ n(i

Cn(i) = ^ al j a3 J * ' ' 'an(i)-l-'J Cn(i) ~ &' if n is o d d j We t a k e

1 2 3
Cn(i) = fao'a2'---'an(i)-3}' Cn(i) = f al' a3'' - - *an( i)-2^/ Cn(i) =

{a />x - ) . In either of the two cases we define A"-? = C^,.. U
n( 1) -± 1 n( 1)

{a;a e AA C ... and a e (2k) (c) for some c e C 3,.,},1 n(i) ^n(i) n(i)

j = 1,2,3. It is an easy matter to check that A3, j = 1,2,3,

thus defined, satisfies the conditions stated at the beginning.
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Thus, the carrier set A of <7. satisfies A = A U A U A ,

1 n A2 = A1 n A3 = A2 n A3 = /, A1 n f V 1 ) = A2 n fm(A2) =

0 fm(A ) = f£ if A3 = U(A^?i e l ) , j = 1,2,3. Hence,

A

"I • 5" * *5 T

A U A U A , and we can now assume that x e AJ for some

1 £ j _£ 3. In other words: x = lim a^ where (ad,D,̂ >) is a
deD

net in A3. Since A? 0 f^A3) =X we conclude that f (x) =

lim fm(aj e pA\AD, i.e. fm(x) / x. q. e. d.
d€D a

Appendix: The triple-division of A which we used in the last proof

was stated as Ryll-Nardzewski!s lemma in Pacholski and Weglorz [1]

for the case G e \f{. It should be noted that in case G e K there

are actually already two subsets A^^A2 s>ucl1 that A = A]L I) A^A^^ fi

A2 = )6 and f(A^fl A]L = f(A2) D A2 = pf. The proof, of course,

remains elementary.

The next theorem is now easily established. We should note

that part of it follows from a result of Pacholski and Weglorz [1]

stating that pG is an elementary extension of G = <A;f> in

case G e K .

Theorem 8: If G = <A;f> is an equationally compact unary algebra

then it is a retract of pG.

proof: Remarks 7 and 8 imply the result because of lemmas 3 and

4 to theorem 7 and, of cqurse, theorem 7 itself. q. e. d.

Although we will not give the proof of Pacholski and Weglorz's

result that pG is an elementary extension of every G = <A;f>

with the property fR(x) / x for all n J> 1, x € A, we feel

motivated to ask for a characterization of the elementary extensions
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of arbitrary unary algebras n purely in terms of the algebraic

structure of 0,. More specifically: We would like to expand

the list of necessary conditions for 8 to be an elementary

extension of G begun in lemma 1 to theorem 7 such as to end up

with necessary and sufficient conditions.

Problem 4: Given a unary algebra G = <A?f> give a set of

structural criteria that are necessary and sufficient for an

extension IB of G to be an elementary extension.

Problem 5: Characterize the equationally compact algebras G =

<A;f̂ > where F is an arbitrary set of unary operations. Test

Mycielskifs conjecture for that class of algebras (of course,

G can again be embedded in the topologically compact algebra
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£ 5. ft-Modules.

In this short section we collect what we know about our

questions concerning equational compactness in case of unital

(left) modules over rings with identity. More precisely: We

make only a few remarks on the general case of such R-modules

since not too much is known at the time. Then we turn our

attention to vector-spaces (i.e. ft-modules where ft is a

field), realize that they are always equationally compact and verify

the truth of Mycielski?s conjecture in their case. We ignore in

this section the special case of modules over the ring of integers

i.e. the case of Abelian groups, which we will deal with in the

next section in a bit more detail. For the results of this

section see Weglorz [1].

So let ft = <R;+,-,0,•,1> be a ring with identity and

ftv = <M;{+}U{-)U{O}U{fr;r e R} > a unital R-module; i.e. fl^ =

<M;+,-,0> is an Abelian group each f an endomorphism on the

Abelian group ftu, f, = identity on M and f o f = f . Then,
xx r s r * s

of course, the class ~M of all ft-modules is an equational class

and as such closed under the formation of ultrapowers. Thus, by

corollary 2 to theorem 2 in section 2, we know that every injective

R-module is equationally compact (We call ft M injectivet! if it

is injective in _ M ) . Since, as well-known, every R-module

can be embedded in an injective R-module, we can embed every ft-

module in an equationally compact one, i.e. it can be n equationally

compactifiedn ( a concept which will still be studied in a later

section). We sum up:
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Remark 9: Every ft-module tn can be embedded in an equationally

compact ft-module (as, e.g., in the injective hull of tn) .

From the well-known fact that a ft-module tn is injective

if and only if every ft-module homomorphism <p: J -* tn from a

left ideal j of ft to tn is of the form <p(j) = j " m
o
 f o r

some m € M one concludes that vector spaces are always injective,
o

hence equationally compact:

Remark 10: Every vector space is equationally compact.

So to show that IVfycielski's conjecture is true in case of

vector-spaces we need to show that every vector-space tn is retract

of a topologically compact vector-space. This and a little more

follows from the Bohr-compactification for Abelian groups. To this

end we recall that every locally compact Abelian group Q can be

densely embedded in a topologically compact Abelian group Q'

(its Bohr-compactification) such that in particular continuous

endomorphisms on Q can be extended to continuous endomorphisms

on Q'. That is all we need to know in order to establish the

next result:

Theorem 9: (1) Every ft-modulo tn can be embedded in a topologically

compact ft-module tn' .

(2) Every vector space tn over the field ft is a retract of

some topologically compact vector space tn/ over ft.

proof: If tn = <M;{ + M-]U{0}U{fr;r e R}> is a ft-module and

^ = <>*;+,-•, 0> the associated Abelian group then we can endow

M with the discrete topology thus transforming tn-i in a
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locally compact Abelian group. Since the unary operations

f are continuous endomorphisms on Tr>-> we can extend them

to continuous endomorphisms f9 on the Bohr-compactification

ft' of ft-. It follows from the unique extendability of con-

tinuous mappings that f* of9 = f9me and f' = identity are
r s r s JL

still true. Therefore ft5 = <M>; ( + }Uf - } U{ 0] Uf f £; r <=_ R) > is

an R-module which is topologically compact and contains ft. This

settles (1). (2) follows then immediately from the fact that

the vector-space ft is injective, hence an absolute retract in

OM. Thus, the vector-space ft is a retract of ft'. q. e. d.

As mentioned before, the special case of Abelian groups will

be treated in the next section. Before doing so we mention the

following open problem:

Problem 6: One investigates the structure of equationally com-

pact R-modules aiming at their characterization and a test of

Mycielski!s conjecture in ^M.
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$6. Abelian Groups,

Although our mastery of ft-modules with respect to the

study of equational compactness is (as we have realized ini5)

rather unsatisfactory at the time, the situation is quite different

in case of unital modules over the ring Z of integers, alias

Abelian groups. Both the algebraic structure of equationally

compact Abelian groups Q = <G;+,-,0> has been extensively studied

and Mycielskifs conjecture has been verified in the class A

of Abelian groups. For references see, e.g., Kaplansky [1], Los

[1], Balcerzyk [1], Gacsalyi [1].

Let us set out with a folklore result (of course we assume

familiarity with elementary concepts and results in A and

confine our attention to our very questions).

Remark 11: The subgroup Jt of the Abelian group Q is a direct

summand of Q if and only if M is a retract of Q.

proof: The converse being obvious we assume that <p: Q -» H is

a retraction. If then g e G then g = <p(g) + g9 with unique

2

g9 e G? since <p(g) = <p (g) + "v(g*) we conclude that cp{g9) = 0,

i.e. g' e ker <p (in accordance with example 8 we denote

{x;x e G,<p(x) = 0} as ker <p) . Thus, every element g e G

is the sum of an element in H and an element in ker <p. If

g = hj^-g^ = ll24'g2 w h e r e lli^2 G H a n d gl'g2 € k e r ^ tllen

(pCh^ + (pigj) = (oCh2) + <p(g2), i.e. ^ = <p(h]L) = (p(h2) = h2

and, consequently, g.. = g2- Thus , every element g e G is

in a unique way the sum of an element in H and an element in
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ker in, a fact which is commonly expressed by writing Q =

M@ <ker <p; + ,~5O>; in other words: H is a direct summand of

Q. q. e. d.

If we take in account example 18, chapter II, wich elaborates

on the fact that pure subgroups and pure subsystems coincide in

case of Abelian groups and combine this with the above rdnark

and theorem 2 then we conclude immediately the following characteri-

zation of equationally compact Abelian groups.

Theorem 10: An Abelian group is equationally compact if and only

if it is a direct summand of every extending Abelian group in

which it is pure.

Balcerzyk [1] showed that the class of all Abelian groups

which are direct summands of every extending Abelian group in

which they are pure coincides with the class of all algebraically

compact Abelian groups in the sense of Kaplansky [1].

Def. 5 (Kaplansky [1]): An Abelian group Q is algebraically

compact if (} = S @ P , i.e. Q is the direct sum of a divisible

group fi and an Abelian group P which is the direct product of

Abelian groups P (p e set of prime numbers c z) where P is

a module over the ring of p-adic integers Z both without

elements of infinite height and complete in its p-adic topology.

We mentioned Balcerzyk1s result at this point since it illumi-

nates the fact that theorem 10 is indeed a valuable characteri-

zation of equationally compact Abelian groups? for the class of

algebraically compact Abelian groups has been intensively studied
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and their structure is satisfactorily discerned. However we will

delay a proof of Balcerzykfs theorem until the end of this section

for two reasons: Firstly, its proof presupposes familiarity with

p-adic integers and p-adic topologies, results that we can

not derive although we have to use it within the present

framework; secondly, while verifying the truth of Mycielski!s

conjecture for the class A we have to establish a lemma which

we also need to establish Balczerzyk's result. So we decide to

aim next at a verification of the fact that every equationally

compact Abelian group is direct summand ( = retract) of a topo-

logically compact Abelian group. A crucial step in that direction

is the following remark of Los [1] :

Remark 12; If c denotes the cyclic group with pn elements
P ii

(p = prime number) and C «, the Prufer-group over the prime
P

number p then each Abelian group Q can be embedded in a direct

product M of groups of the type C ~ (a = 1,2,3,....,«) such
P

that (1) ,Q is a pure subgroup of M and (2) Q is a sub-

direct product of the groups r» occurring in U.
P

proof; The proof is a sharpening of Birkhoff's subdirect representa-

tion theorem (theorem 12, chapter I) if applied to our situation .

A group Q' is subdirectly irreducible (o£ course, we assume

|G'| > 1) if and only if the set of all non-trivial subgroups of

Q' intersects in a non-trivial subgroup £ which then, of course,

is finite of prime order p(see remark 1.19). If g e G* \ E

then [g] D E = E shows that n*g e E for some n e N? hence
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(pn)»g = 0 and g is of finite order. Thus, Q' is a torsion

group and as such a direct sum of primary groups. Since Q' can

have no proper decomposition as direct sum we conclude that Q5

is p-primary. If then Q5 is of bounded order then it is a

direct sum of cyclic groups, hence a cyclic group itself: Q' =

C for some n € N. If Q5 is not of bounded order then it
P
is either a divisible group or a reduced group (since every Abelian

group is the direct sum of its divisible and its reduced part).

If Q' is divisible then it is, as well-known, isomorphic to a

direct sum of copies of the additive group of rational numbers

and of c » where £ are prime numbers. Since Q' is p-primary

we conclude that Q* is isomorphic to a direct sum of copies of

C a, only. If, on the other hand, Q* is reduced, then Q* is
P .
a reduces torsion group and has as such a finite cyclic non-trivial

direct summand; in other words: Q* = £ for some n e N.
P

Tte conclude: The Abelian groups c «* a = i*2*3*****00 a r e exactly
P

all subdirectly irreducible Abelian groups and, according to

Birkhoff's theorem, every Abelian group Q is isomorphic to a

subdirect product of some of these. Thus, we have an embedding

of Q in a direct product It5 of Abelian groups c > a - 1^2,...,
Pa

this much we are assured of by merely using Birkhoff*s theorem.

We will now show that by adding some more suitable groups Q.
~pa

as direct factors to U then we get an Abelian group M containing

Q both as subdirect product and pure subgroup, a claim that

will be proved in the next three paragraphs. The very next para-

graph serves merely as a refresher of our memory for some elementary
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connections:

(1) If A - (c5 Tf75 is a factor in the direct product H'
Pa Pa

then each 6 € A is isomorphic to some quotient group Q/Qg?

0fi € C(G). For the purpose of this proof we identify 6 =

. Thus, Q = TT (Q/OCTS e JS) and an isomorphism is given

<P(g) = (tgl^fi^A (see £ 7, chapter I) • Of course, if we add

any new congruence relations 0 ,y e T, from C(Q) then we

have even more that Q = ir (Q/0*;6 e A U T) , and isomorphism

being given by 0(g) = ( [ g l O g ) ^ • ill If g € G and p is

a prime number then the p-height h (g) of g is defined
p

to be either n e N if g € p n G \ p n + G or » if such n does

not exist. If g e G then P(g) denotes the set of all prime

numbers p with h (g) < °°.

Let us now assume we can add to {0^7^ e A} some more con-

gruence relations from C(Q), say (9 ;v € T) with the following

two properties

*, \

(Pi) Q/6A ^ C f° r a ll ^ e &J~F (P ^ prime number)o exp
(P2) For every g € G and p e P(g) there exists 0

such that lgie6(g) / O and Q/0fi(g) = C^ ( g ) + l )

Then (see above paragraph) we have an isomorphism 0: Q - ir

6 € AUD via 0(g) = (tg]06)g € ^jp. We claim that then j/)(Q)

[which we identify with Q] is a pure subgroup of & = TT(0/©C?

6 e AUF) . Because of example 17 we only need to show tla t p -x =

g (p = prime number, k e N, g = ([91^)5 A..p £ ^(G)) is solvable

in if and only if it is solvable in tf)(G). Thus, let p^h' =
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g, h' e H. If h (g) = » then it is clear that p -g* = g

for some gf e #(G). If h (g) = n € N then p € P(g) and,

by (P2), there exists 0g/g) such that [g]96( ^ ^ 0 and Q/05(g)

C n + 1. Since p^[g']e6(g) - [g]«6(gj * 0 is true in Q/6fi(g) =

p, , we conclude that k <^ n [otherwise k = (n+1) + v and

/;> 0 implies pk • [g']06(g) = p"' (p
n+1- lg' 106(g) > = P ^

0 = °1 •

Thus, k <2 h (g) ; i.e. there exists g5 e 0(G) such that p -gJ =

g. Hence, $(Q) is a pure subgroup of M which (because of (Pi))

settles the matter. We are left with proving that {^5?^ € A)

can be extended to [Qyiy € ZDF} such that properties (Pi) and

(P2) are satisfied? this task will be taken care of in the next

and last paragraph of this proof:

Let g € G, p € P(g) and h (g) = n € N. Then g e pnG \ p n + G;
P

i.e., if Q is the group Q/p Q, then Q is a group of bounded

order in which every element has an order dividing p n and g =

[g]p n Q has order p n + . Thus, Q is a direct sum of cyclic

groups c> with at least one direct summand C v with y ^
P^ - P7o

n+1. Clearly c n+^ = <[9l ? + ̂ -^0> is a homomorphic image of
P . _

C which^ in turn, is a homomorphic image of Q. In short:
P ° ~
(1) c n + 1

 s- Q/9 fo2: some congruence relation 9 and (2)
[g]0 ^ 0. If we add all these congruence relations 9 for

P>9 P*<3

arbitrary g e G and p € P(g) we have a set of congruence rela-

tions, namely [B^;6 e A} U {0 ;g € G and p € P(g)), satis-

fying properties (PI) and (P2). q. e. d.

We now can easily prove the next theorem:
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Theorem 11: An Abelian group is equationally compact if and only

if it is a direct summand (retract) of a topologically compact

Abelian group.

proof: Of course, we need only to prove one direction. So

we assume that the Abelian group Q is equationally compact and

embed it in a direct product M of groups c in such a manner
P

that Q is pure in M (see remark 12). If a is a natural

number then c is finite, hence a topologically compact group
P

in the discrete topology. If a = °° we have the Prufer group
f; ^ which is divisible and isomorphic to the multiplicativep* ngroup of p -th roots of unity among the complex numbers, n =

0,1,2, 3, , Thus, C a, is a direct summand of £, the mul-
P . .

tiplicative group of complex numbers z with absolute value |z| =

1 which, as closed and bounded subset of the complex plane, is

a topologically compact group. Thus, if M = 7r(7r(c ~ / \ ?a(p) € I);

p € ̂ ) , then Jt is a retract of #* = Tr(7r(c*a/ w«(p) c I) ; p e
a

p
where C^ a ( p )

 = C a(p) in c a s e a ( p ) < °° a n d c*a(p) = C in c a s e

P P P
a(p) = c». since W* is a topologically compact group via the

Tychonoff-product-topology, Q is a retract of M (Q is

equationally compact and pure in M) and Ji is a retract of M*

we conclude that Q is a retract of the topologically compact group

W*. q. e. d.
Before we proceed we take time out for a little illustration:

(Ex. 24):

(1) An Abelian group which is the direct product of Abelian groups

Q^* i € I, is equationally compact if and only if every Q, is.
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(2) If Q is equationally compact then so is n-Q for every

n e N: To see this we use theorem 11: There is a topologically

compact group M such that tt = Q® Q' for some Q'• Hence,

n*tt = n*Q©n*Q'. Since n*Jt is closed in M it is topologically

compact itself, n*Q is direct suramand of thetopologically com-

pact group n*Jt and hence, n*Q is equationally compact.

(3) If Q is equationally compact and n^n^..., are natural

numbers then 0( (n, •nj-• • »n, ) . G; k = 1,2,...) is equationally

compact: As in (2) we see this by realizing that M = Q 0 Q'
k k k ^

implies (ir n.). It = (ir n.).Q0 (ir n.)Q) and therefore
k i==1 " i = 1 " k i = 1 X k

n((7T n.)-M;k = 1,2,...) = n((ir n.).Q; k = 1, 2, . . .) Q fl( (ir n.)-Q*;
i=l x i=l x i=l x

k = 1,2,....). Since the left side is topologically compact pro-

vided M is, the claim follows again from theorem 11.

(4) If Q is equationally compact, p is a prime number and

Q is the subgroup of elements of infinite p-height then
XT

Q is equationally compact: This follows from (3) and Q =

n(pk-$7 k = 1,2, ).

(5) It follows, of course, from our considerations that every

group c is equationally compact. So is the additive group
+ p a

D s= <Q;+,-,0> of rational numbers. So is, in short, every divi-

sible group.

We conclude our investigations with a proof of the equivalence

of the concepts u equational compactness11 and ff algebraic compact-

ness" (see definition 5). As indicated before we presuppose

familiarity with p-adic integers and p-adic topologies in modules

over these rings.
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Theorem 12: An Abelian group is algebraically compact if and

only if it is equationallycompact.

proof: If Q is equationally compact then (by remark 12) we

can embed Q in a direct product M of groups C ~ such that
ex
P

Q is pure in W, i.e. Q is a direct suramand (= retract) of
&. If we write Ji = fi Q P where & is the direct product of all

direct factors C of M and P is the direct product of all
P

direct factors C of TA with n € N, then & is a divisible
P

group and P is a direct product of finite cyclic groups c n
P

which, as well-known, are complete in their p-adic topology and,

of course, contain no elements of infinite p-height. Thus, T&

is algebraically compact, and so is every retract (as was shown by

Kaplansky); in particular, Q is algebraically compact.

Vice versa, let Q be an algebraically compact Abelian

group? i.e. Q = &@P (see definition 5) where P = 7f.(tn ;P =

2,3,5,7,...) and the fi\ are Z -modules without elements of

infinite height that are complete in their p-adic topology. Since

& is divisible it is direct suramand of every extending Abelian

group and is therefore equationally compact. So to show that Q

is equationally compact we are left with showing that P = TT(H\ ?

p = 2,3,5,7,11,13,....) is equationally compact, i.e. that each

\W is equationally compact. To this end we utilize the fact that

every complete Z -module (completeness refers always to the p-adic

topology) is the completion of a direct sum of cyclic Z -modules;

thus \w = (@(h.;i e I))* where each H. is a cyclic,
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hence compact, Z -module and * indicates completion in the

p-adic topology. @(ft.;i e I) is then (up to isomorphism) con-

tained in the topologically compact Z -module 7r(yî ;i € I) and

(as Abelian group) pure in irfh^i e I) [we say that (j^h^i e I)

is a pure submodule of irth^i e I)] . Thus, ((-^Mh^i € I)*

can be considered to be the topological closure of 0 (H.;i e I)

in 7r(h.;i e I). It is well-known that the pureness of (+)(U.;i € I)

in Tr(h.?i e I) implies the pureness of ((+)(h.;i € I))* in

7r(h.;i e I). Since therefore ((+)(h.;i e I))* = ft is a pure

submodule of 7r(h.;i e I) which is complete and has no elements

of infinite p-height it follows from another known result that

( (+) (h . ; i e I) ) * is a direct summand of TT(H . ; i e I) ; i.e. tn

is direct summand of the topologically compact Abelian group

ir(li.;i € I) • In other words: fry is equationally compact. q. e. d.

With the results at our disposal it is an easy exercise to

verify the claims made in the next example; the claims can be found

as exercises 62-65 in Kaplansky [1].

(Ex. 25):

(1) A torsion group is equationally compact if and only if it is

a direct sum of a divisible group and a group of bounded order.

(2) No free Abelian group is equationally compact. In particular,

neither the group of integers nor any direct product thereof is

equationally compact.

(3) A countable torsion-free group is equationally compact if and

only if it is divisible.
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Before leaving this section we go one step beyond the necessary

and sum up the different characterizations of equationally com-

pact Abelian groups established so far.

Theorem 13: The following statements are equivalent for an

Abelian group Q:

(1) Q. is equationally compact,

(2) Q is direct summand of every extending Abelian group which

contains Q as pure subgroup.

(3) Q is direct summand of some topologically compact Abelian

group.

(4) Q is algebraically compact in the sense of Kaplansky.

In the introductory remarks to theorem 13 we announced to state

all characterizations established u so far. tf Of course, other

interesting characterizations are conceivable and, as a matter of

fact, available. So Balcerzyk [2] proved the following remark whose

proof we skip:

Remark 13: The Abelian group Q is equationally compact if and

only if every finitely solvable set of equations £•= {x -g =

nix ; n = 1,2,3,...} with g € G is solvable in Q.

Apart from merely providing a different (although quite interesting)

characterization of equationally compact Abelian groups, remark

13 has the following noteworthy corollary.

Corollary: An Abelian group is equationally compact if and only

if it is equationally^ -compact.
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Finally we mention three open problems, two of them on the

rather obscure situation in non-Abelian groups, which were suggested

in Mycielski [1].

Problem 7: In example 4 preceeding 1, chapter I, we constructed

a set 7s with ox equations over the ring of integers which was

unsolvable although every countable subset was solvable. Does

such a set T still exist if we replace the ring of integers by

the additive group of integers?

Problem 8; As H. Freudenthal showed, the group of linear substi-

tutions ax + b with rational numbers a,b, a j4 0, is not em-

beddable in a compact topological group. Is that group embeddable

in an equationally compact group? (If the answer was M yes" then

this would, of course negate the Mycielski conjecture in its

general form).

Problem 9: Study equational compactness, respectively equational

m-compactness in non-Abelian connected locally compact topological

groups.
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Si. Equational Compactifications.

After our investigations concerning the influence of

equational compactness on specific algebraic structures as per-

formed in the preceeding sections we now turn our attention to a final

general problem which comes up quite naturally: If G is a

universal algebra which is not equationally compact itself can we

always embed it in an equationally compact universal algebra or, at

least, in an equationally \W-compact one where 4W is some fixed

cardinal number? If the answers were yes could we always remain

within the equational class HSP(G) determined by G? It is

questions of this sort that this section is devoted to. We refer

to Weglorz [2] and Mycielski [1] as far as the questions and

results of this last section are concerned.

Def. 6; An algebra (B = <B;F> is called a (weak) equational

^/^-compactification of G if G is a subalgebra of B and 8

is (weakly) equationally ^-compact (>^= infinite cardinal). The

class of all (weak) equational .^-compactificati ons of G is

denoted by C (G) (resp., C (G)). We then define C(G) =
4fv 4$f

H(C (G) ; *n "runs over the class of infinite cardinals) and know,

of course, that the elements of C(G) are exactly the equationally

compact algebras containing G, called equational compactifica-

tions of G. Similarly, CWeak(Gj = (1(CWeak (G) ; 4*4/runs

through the class of infinite cardinals) contains the weak equa-

tional compactifications of G.

It is quite clear that not every algebra has an equational

(or even only a weakly equational) compactification. As example
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of such an algebra we could take the lattice in example 3 (pre-

ceding section I.I) which is not equatiottaily compact and has

visibly no equational compactification. If we add the two

elements 0,1 as nullary operations in that lattice then we

have already an example of an algebra without a weak equational

compact if ication. We shall see, however, that every algebra G

has a (weak) equational /^^-compactification for every infinite

cardinal number 4fy* Before pursuing these matters further we

introduce classes of algebras related to the ones introduced in

definition 5 but weaker in their requirements.

Def. 7: If 44V is an infinite cardinal and G = <A;F> is a

universal algebra then (B = <B;F> is a quasi-equational ^

compact if ication of G if IB contains G as subalgebra and

every set of £ inequations with constants in A is solvable

in IB provided it is finitely solvable in G. The class c (G)

contains all quasi-equational ^-compactifications of G. Again

c(G) = 0(c (G); fW runs through all infinite cardinal numbers)

consists of the so-called quasi-equational compactifications of

G.

Corollary: If G is a universal algebra and /0^an infinite

cardinal then C (G) cc.(G) and C(G) cc(G).

Here we face immediately a quite interesting open problem

(see Weglorz [2]):

Problem 10: Does C(G) = J2f always imply c(G) = p^
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Before we go on we list a few more elementary properties of

the operators C , C, c and c.

fiemark 141

(a) If G cG then, for each m, c (G,) c c (G ) and

C (G-) c C (G ) . This, of course, implies ctG..) c c(G ) and
4& 1 W ° °

QiQj) S C(G
O>-

(b) Sharpening part of (a) we get that C (G^ = Ci(GQ) 0 EtGĵ )

if G ,G are arbitrary algebras and EfG,) is the class of all

extensions of G-.

(c) Both c (G) and c(G) are classes of algebras closed under

extensions. This, of course, is not true for C (G) and C(G).
4H

(d) If W^ W then both c (G) £ C ^ G ) a n d

The statements of remark 14 are quite evident and require no

proof. So is, as a matter of fact, the next remark:

Remark 15: The following statements are equivalent for an algebra

Gt

(1) G is equationally ^-compact

(2) G € 0(cMB) -;B c G) = c (G)

(3) E(G) c c (G) where E(G) is the class of extensions of

G

(4) G € H(C (fc);B c G) = C (G).
A& A/ry

Appendix: Remark 15 remains valid if we consistently drop the

cardinal number 4y/.
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We now will derive the following theorem due to Mycielski.

We will, however, give a different proof based on a lemma of

Ryll-Nardzewski (see corollary 2 to theorem II.3).

Theorem 14: For an arbitrary algebra G and a fixed infinite

cardinal number Mv it is always true that C (G) £ d9 although

there are algebras G with C(G) = ftf.

In preparation of the proof we first prove the following

remark:

Remark 16: For each algebra G and each infinite cardinal num-

ber 4?/ there is a set XL, p of equations with constants in A

which is finitely solvable in G and has the property that B €

c (G) holds if and only if G c B and S r is solvable in B.

proof: We define an equivalence relation on the class of all

finitely solvable sets of equations E with constants in A

satisfying | X)| <£ 0^as follows: £, = S2 holds if and only if

there is a bijection <p from the variables actually occurring in

TH to those occurring in XU such that <p(S-«) = E2 where

<p{Tj) is the set of equations resulting from XL after having

replaced every variable x by (p(x ). We then take a complete

and irredundant system of representatives of the equivalence classes,

say E., i € I, and can without loss of generality assume that

i / j implies X. PI X. = fo where X. is the set of variables

occurring in £. . Then the set T> r = U(E.?i e I) is visibly

finitely satisfiable in G? moreover. E ^ is satisfiable in

an algebra IB ̂  G if and only if, for each i e I, the set S.
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is satisfiable in 0. The remainder of the proof is now clear

and remark 16 proved. q. e. d.

proof of theorem 14;

The fact that C(G) = 0 (even Cweak(Q) = 0) can happen was

pointed out before. So let G be an arbitrary universal algebra

and /W\s a fixed infinite cardinal number. We denote the initial

ordinal number of 4W by \l, choose a limit ordinal p > M

such that u is not confinal with p (i.e. I y. < p if each

y. < p) and define G ,y < p, recursively as follows:

(1) G = G? (2) if y = 6+1 then we choose E r according
O nVf9\x g

to remark 16. By Ryll-Nardzewski!s lemma (corollary 2 to theorem

II. 3) there exists an algebra, say G , containing Gj> in which

£ ^ G is solvable. So Gy e cJ[Gj) 7 (3) if y = Ilia (6;6<y)

is a limit ordinal then we define Gy = U(G6;6<y). Finally, we

define IB = U(G ;7<p) and claim that ft € C (G) . To see this we
y ,/M

choose a set S of equations with constants in B which is

finitely solvable in B such that \T\ <^fy\* Then the number of

constants involved is, of course, ^Hv* likewise both the number

of variables involved is <£ 4W^and the number of finite subsets of

Tf is 4̂ft- So if we take one solution in IB for each finite

subset of S and put them together to a set S then the set of

components occurring in the solutions of S can be assumed to be
2

of cardinality ^y =4ty. if we finally take in account theconstants occurring in T we may assume that S is a system of

equations with constants in B'(B' c B) which is finitely solvable
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in <[B'];F> and |B'| <JM + W = 4ft- Assume B' = (bQ,b1, . . . ,

v(y) + ) y < u. Since fi is not cofinal with p we know that

S i/(v) = PJ < P, hence <[B'];F>cc; . Since G , a c (G ,)
. p p "r X p

by construction we conclude that T is solvable in G
6> +i £ **>

i.e. £ is solvable in 8. Hence, ' (R e C (G) and C (G) / X-

q. e. d.

We ought to re-read the open problem 10 in light of this last

theorem, because it shows it in new light. We recollect:
C (G) ^ / (hence, even more CWeak(G) / tf and c (G) ^ p) holds
Aw 4w f
for every G and 4^. On the other hand, C(G) =/6 is a

definite possibility. It is an interesting result however to

note that C(G) ^ 0 is equivalent to C(G)riHSP(G) / &.

Theorem 15: If 8 € C(G) then every maximal subalgebra of fl

containing G and belonging to HSP(G) [and such subalgebras

exist! ] belongs to C(G)OHSP(G).

proof; First of all it is a simple application of Zorn's lemma

to conclude the existence of maximal subalgebras of 8 containing

G and belonging to HSP(G). We assume G* to be such an alge-

bra and associate with every infinite cardinal number ^z^the set

of equations T< ~, of remark 16. We have to show that G' e c (CM
4>n,d stK

for every 4*v or, equivalently, that each T n , is solvable

in G'. To this end we fix some infinite cardinal number

assume that a is an ordinal number such that y < a for every

x occurring in E _ r , . If, finally, A>= Id^, (HSP(G'))
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[see def. 1.37 for the notation] then AU XL,r, is evidently

solvable in B by, say, (b L,x • Assume we could show that

G" = <[A'U{b ;y < a}]; F > e HSP(G) then the maximality

of G> would imply that G" = G', hence E , Q was solvable in

G 5
5 i#e. G* G %/G^) which would finish our proof. So we are left

with showing that G" = <[A'U{by;y < a}];F> e HSP(G') = HSP(G).

To see the last point we select an arbitrary coQ-tuple

(TT ) e A'* where each IT is a certain polynomial expression
n n<co n

o
involving a finite number of c/s and of elements a* e A5 ; say

^ " V ^ - ' I l n l ' V ) ^ ( n ) ' With £ n G p t 0 ° ^ ^
If £ = g e Id(HSP(G)) = ld(HSP(GM) then we have evidently that

(o) ) , ,

a (n) ) ̂ # * V ] n<coQ

^ • • • • ^ X i t ( o ) (o)}'

a ^ % }^ ( )

e Id , (HSP(G^)). Hence (b ) is a solution of that equation

and therefore p(ir ̂ TT,, ... . ,ir ,....) = q(7T 9TT- ,.•.. ,TT , . . . . . ) •

In short: g = g e Id(G^^). q. e. d.

In a similar fashion one can prove the following analogous

result:

Theorem 16: If B € c(G) then there exists some f. c B such that

C € HSP(G) n c(G).

To complete the list of results in that direction we mention

that continuity considerations assure immediately that every

algebra G which can be embedded in a topologically compact
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algebra IB (say B e C, (G)) can also be embedded in one of

the same equational class. We sum up:

Theorem 17: If B € C (G) then G e HSP(G) 0 C. (G) if
top toP

(2 = <A;F> is the closure of G in B.

It is interesting to note that the obvious question concerning

weak equational compactifications is open at the time:

Problem 11: Does Cweak(G) ^ jzf always imply that Cweak(G) 0

HSP(G) *£ /ft

We conclude both chapter and seminar with a nice application

of our results leading to an extension and elegant proof of a

lemma of Numakura [1] stating that topologically compact semi-

groups with cancellation are groups. We can indeed replace the

requirement of. topological compactness in that lemma by equational

compactness. The technique used in the proof due to Weglorz and

Hulanicki is noteworthy since it indeed suggests itself to further

application.

Theorem 18 (Numakura, Weglorz, Hulanicki) :

Every equationally compact semigroup with cancellation is a group.

proof: We split the proof in two parts, first settling the case

of Abelian semigroups.

(1) Let S = <S;*> be an equationaliycompact Abelian semigroup

and consider the set of equations E = {x = s*x ; s € S] . The
s

finite subset {x = s.-x , x = s,-xo ,.....,x= s -x } has
1 sl 2 S2 n s

n
evidently the solution x= s^s. s ,x = s..s_...s. _. s . ,

1 2 n s . 1 2 i-l i+l
thus, L is finitely solvable, hence solvable in S. if x = d,s
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x = c , s e S , is a solution then in particular d = d#c,. Thus,s s d

if c • s = t for an arbitrary element s e S we get d*c *s = dt,
Q- a

i.e. d»s = d*t, i.e. (because of cancellation) t = s, hence

c •s = s. We therefore have an identity 1 = c - in S. To

assure the existence of inverses we choose s e S and know that

(s*d)*c _ = d? hence, cancellation implies s*c , = 1, i.e.
S * QL S * d

c A = s"
1.s*d

(2) if g = <S;»> is a non-Abelian equationally compact semi-

group with cancellation then S = U([s];s e S) and each <[s];#>

is an Abelian semigroup with cancellation. Since S e C(<[s];*>

for each s e S we use theorem 15 to assure for every s the

existence of some g £ HSP(<[s] ; • >\ n C(<[s];-> with » 3 sc?-
s ' mmmt s

Each such * 3 of course, is an equationally compact Abelians
semi-group with cancellation, hence (by part (1)) a group. Thus,

§• = U(S ;s G S) represents S as union of Abelian groups,s

If we can show that the identity elements 1 of all the groups
s

§ coincide then we are done. To see the last point we choose

s,t e S; (i) 1 . • s*t = s«t implies 1 . • s = s, i.e.
Is-t = 1s* ( i i ) s"t'1s-t = s' t i m P l i e s t # 1

s.t
 = tf i*e*
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