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1. INTRODUCTION

The general optimal structural design problem is to minimize a measure of thé cost of the
structure subject to applicable performance requirements. In most of the literature, the cost
_function is taken as the weight (or volume) of the structure, the design variables are scparawd‘
into element size parameters (i.e.,cross—sectional area) and structure configuration parameters
(i.e., joint coordinates), and the performance requirements include behavior constraints on the
stresses in each element and on the displacements of certain joints, as well as the usually

" implicit equality constraints arising from the joint equilibrium equations.

One popular approach for solving optimal structural design problems is to formulate them
as a sequence of mathematical programming subproblems. Numerous papers ([1]-[11]) use a

variety of such mathematical programming techniques.

The purpose of this paper is to introduce and illustrate a recently developed optimization -
technique of practical potential. The technique is based on two developments. First, it utilizes a
fast successive quadratic programming algorithm originally stated by Han [12] and implemented
by Powell ([131-[20]) for solving nonlinear constrained optimization problems. The algorithm
uses a Quasi-Newton method to approximate the Hessian matrix, resulting in near—quadratic
convergence to at least a local optimum. Second, the technique uses the work of Berna et al.
[21], who developed a decomposition procedure for Powell’s algorithm which partitions the
original design variables into independent and dependent variables, eliminates the dependent

variables, and thus yields a much reduced quadratic programming subproblem at each step.
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The technique is first derived and then illustrated using problems previously presented in
dgructural optimization literature. The examples all deal with the smplest sructural application
of the technique, namely eement size parameter optimization for trusses. Extendons of the
technique, including additional dructural types (plane frames and systems of finite elements)
combined with configuration optimization, are completed [34] and will be presented in later
papers.

2. DERIVATION OF OPTIMIZATION PROBLEM
21 GENERAL FORMULATION

The optimal gructural design problem is.

(P1) Find the vector of variables j which minimizes an objective function f{j) subject to

the constraints

g® =0 i = Leean’ ' (la)
hl.(y) <0 i = m'+l,.m (Ib)
Where fig._g ,h  -,_h denote real-valued functions of the vector y in N-
I m m+k m o

dimensonal Euclidean space R .

In the specific case of element size parameler optimization using an dagic finite eement
mode, the vector j contains both the element size parameters and the joint displacements. In
this case, the equality congraints (la) are given by the system equilibrium equations:

g=[KJ{u}-{p1 (€23)
where . K = dructure stiffness matrix
u = vector of joint displacements
2 = vector of applied joint loads.
The inequality constraints (Ib) are of the form

h» s.l—s.l or Siu-S; ()

where S; and Sy &€ upper and lower limits on the behavior variable S The congraints




pertain to eement stresses and joint displacements. In the former case, the controlling stresses

in lement | are
s=[HILA {u) (Ga) -

where n.l = modulus matrix

coordinate transformation matrix of eement i

J

branch-node incidence matrix of eement i

>

The eguality congraint equations (2) are bi-linear in the variables jr, as the eement
stiffnesses K—: entering into [ K ] are linear functions of the element size parameters. The
modulus matrices ”1‘ for certain element types, eg. trusses are independent of the element

size parameters, which can be demongrated as follows.

a) In a badc local coordinate system, the element force, rl., is

riz[QBIjA,.{gl:[Ea1VL13IlAi{g1 @
where £ = Young's modulus

él. = cross-sectional area of eement i

Li = length of element i
b) The controlling bar stress, S is

s =r./a, = (I/a.l) CEa/L3 T.A. {u}=E/L_,T\
1 1 1 I 171

; {up=n T A {u} ©)

A,
1717 S|

where III. = E/Li'

The inequality congtraints are thus linear functions of the j'oint displacements u, and

therefore of j.

The non-Iineari‘ty of equations g in the variables jr and the very large number of
condraint equations makes the direct solution of (Pl) infeasble or economically impractical.

One step to reformulate (Pl) so as to reduce the problem dimensions is to take advantage of




symmetry and repetition of identical components to link together some design variables j.1 as a

function of distinct déign variabl%if Le, to st
{i1=[L]{x} (©)
i= L2eeennnd
j = L’
n’ «n

It is to be noted that only the element size parameters a, may be linked together by
Equation (6); all the joint displacements must be retained as distinct design variables in X.

Further steps in reducing the problem dimensions will be introduced later.

The design problem now becomes:

(P2  Minimize f( x )
Subject to g(x ) = 0 (7)
h(x) £0
The general form of the vector { x_T} is { a_1T ! gT }

where { a } = vector of element size parameters
(cross-sectional areas for trusses)

{ u } = vector of joint displacements

The Lagrangian function of problem (P2), which will be used later, is
Uxwm £)=1fx)+j2+9(x)+T *h(x) ®)

wheré NN ére vectors of Lagrangian and Kuhn-Tucker multipliers, respectively.

2.2 QUADRATIC PROBLEM FORMULATION
Han [12] has suggested that the -nonlinear optimization problem (P2) can be solved by
generating a sequence of points { x } which are the solutions to the following quadratic

approximation programming subprablem:




(P3) Minimize

IO ¢ Ax+ 12 « AXT ¢ RN+ Ax

subject to : o
g9 + vl 15T - ax = 00 ©)

h( x4 + gb( XV - ax ~ 00

where ax = xk” -X_k
9f =31/3x
VE = Q&/9:
vh = 2b/3x

The n X n matrix -Ht is intended to be an approximation of the Hessan matrix of the
Lagrangian function of problem (P2). In Han's original work, the Hessan matrix is updated by
the Davidon-Fletcher-Powell [22] method. Powell has used Han's method to solve optimization
problems with nonlinear constraints [13]-[20] with the Hessan matrix approximated by a
Quasi-Newton method. Powell suggests an empirical rule so that the updated Hessan matrix
remains positive definite or podtive semi-definite. A Quasi-Newton method which was
smultaneoudy presented by Broyden, Fletcher, Goldfarb and Shanno (BFGS) [22] ha_s been
used in his study. Numerical results have proven that the efficiency of Han's method can be

improved by Powel's modifications [13].
2.3 REDUCED QUADRATIC PROBLEM FORMULATION

Berna et al. have suggested a decomposition procedure whereby the optimization problem
(P3) can be solved more efficiently [21]. In Bernas work, the design variables { Ax } are

partitioned into two subvectors, the vector { Aa } of independent variables and the vector

{Au} of dependent variables.

The necessary conditions for solving the quadratic approximation problem (P3) are:




(1) Sationary .condition of

problem (P3):

T
Aa g /3a
[H] +3TB
Au o8 /ou

ahl/3a
} + T

ah” u

(2) Satisfaction of the linearized original congraint equations

[a#/3a) {2} + [ 3e/aul {au)=_ (g}

[ah/3al] { Aa} * [3h/3u] {AuU}~-{h}

(3) Complementary dackness and nonnegativity of the Kuhn-Tucker multipliers.

{ 7} {ah/a*" « Aa+ ah/a"" « Au+ h } =00

{.

}~ {00}

f/au

the Lagrangian function of the quadratic approximation

af’/aa
{3} =-
-

aw

11

(12)




It is eader to present the remainder of the derivation if the following notation is adopted :

H,, = azL/aaaaT HAy = azL/aaauT

HUA 'azl-/auaaT H =a7'l./auauT
uu

G. =28/da G, =asou

h, =gb/aa h, =gh/u

f, =31/3: i, =3f/3u

Using the above notation, the necessary conditions given by Equations (10) through (12)

are (rows and columns of the coefficient matrix are numbered for later reference):

@ @ & @,
G T

T
NN A

T, T
(2) H H G h Au
UA "uu "u u u (13)

3 1G G o0 0
()Au M

i
R

D) fraAYAu

i
4

n
o

(4)

"A u y
.
Aa
T =
. [hAhuﬂ Au} = 0
h

y 20

The size of the coefficient matrix in Equation (13) is extremey large. The major
contribution by Berna et al. is the procedure for eiminating the dependent variables {u}
efficiently, resulting in a much reduced quadratic programming problem. The reduction is

accomplished in two steps.
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The rows and columns in Equation (13) are first rearranged as shown:

@ @ O @

7’ _ N
®(G6, © G, ¢ Au)= /=
T T _ i
@ |H,, G, Hy, b, sl = f ”
T T - ).
D |H,, G, H,, b, Aa{ = £,
@b, © b, O y /< |-
\ /
Az
T _
7 [hA b, a Aul = 0
h
7 20

Next a reduction or condensation is performed on the firg two matrix columns of

Equation (14), producing:

3

@

1)

4)

The terms appearing in Equation (IS) are defined in Appendix A.

)

”,
|

©)
0

D)
Mj

M,

A
H

QT

(4)
LN
0

)

Au

g

(15

The conditions that the quadratic programming problem mug satisfy are then given by the

lag two rows of Equation (15):




ﬁ rAa-f&ﬂ

\L\ L (16)
J 1)

The original complementary dackness conditions. Equation (12), become
-
TQ(QToAa-h):
Again, nonnegativity of the Kuhn-Tucker multipliers in Equation (12) gives 9 t 0

The reduced QPP is, therefore:

(P4) Minimize
T T A
f(Aa) = q *Aa+1/2+ Aa *H -+ Aa
17
subject to
Q"+« Aaf h
The corresponding Lagrangian function is
A _ A
V(Aa,rj)=q *Aa+12e«<Aa" «+HeAa+*"* (QT e« Aa-h) (18)

The optimization design problem (P4) can now be solved in terms of the independent
design variables { Aa }. Theresults{ Aa } and { 7 }, of problem ( P4 ) can then be usd to
calculate the vectors { Au } and { /* } in the first two rows of the Equation (15),.thus

completing the solution of the quadratic approximation subproblem.

3. MODIFICATIONS OF THE TECHNIQUE

3.1 ACTIVE CONSTRAINTS
In applying the reduced quadratic programming technique presented above to optimal
T A
dructural design problems, the number of constraint equations Q * Aa <_ h may be 10 to 100
times larger than the number of mdependent design variables { Aa }. To further reduce the
problem dimensions, in each iteration only the critical and potentially critical congraint
equations are included, so that only about 5% to 30% of the original number of congraint

equations is used in each iteration.




3.2 -CONTROLLING STEP SIZE

In optimal structural design problems which include both stress and displacement
constraints, the optimal solution is usually found at an interior point of the design space such
that the total number of active constraint equations is less than the total number of

independent design variables. In such situations, Powell’s algorithm [13] may not converge.

To control the step size of the independent design variables and to stabilize the algorithm,
a constraint of the form
172 { A2’} s { A2} S « 19

may be added to the problem (P4).

Adding constraint (19) to the problem results in adding a diagonal matrix =+[I] to the
Hessian of the reduced quadratic moblm. where = (2 0.0) is the Kuhn-Tucker multiplier for
the above constraint. Rather than chosing ¢, we can treat » as an adjustable parameter, to be
increased if we wish to reduce the step size and decreased if we wish to allow for larger

steps. A minimum value of zero for » releases the step size constraint completely.

No automatic adjustment algorithm for » has been developed to date, but one similar to
that used by Reid [23] and Westerberg [24] could be devised. Such an algorithm would
increase 7 if the actual change in the Lagrangian function for the step taken is significantly
different from the value predicted by the linearized Lagrangian function. hold » fixed if the
linearization is moderately acceptable, and decrease » (t0 zero perhaps) if the linearization is
excellent. The addition of a diagonal matrix to the approximated Hessian matrix Hk also
stabilizes the algorithm. The updating procedure assures that the Hessian matrix I-Ik remains
symmetric and positive definite (see Appendix C), but in the limit it may make Hk nearly
singular (positive semi-definite). = We have on occasion found it effective to have a small

diagonal term in the approximated Hessian matrix to control the conditioning.




10

33 INCONSISTENT CONSTRAINTS

In solving the reduced quadratic programming problem (P4), inconsistent congraints.may
T **

exist among the set of linearized condgraint equations ( Q <« Aa £ h ). This inconssency
arises from using the linearized congraints to substitute for the original congraints, when the
initial guess or an intermediate solution is too far from the optimum solution. Powdl [13]
introduced a dummy variable £ ( 0.0 £°£ £ 10 ) into the quadratic programming problem.to
solve this problem. '

By adding the variable ( to the reduced QPP , Equation (16) becomes:

o) ~
H 0 Ql 0] Az ]= /q

A
o . wtof\ef=\c

LA A (20)

Q i 0 0] )n\=)h
a0 0o 0 <{ 2
o /4 \i j
where C = large negative constant

[y

h, < 00

1

% * CO

and a feasible solution can always be found for Equation (20).

4. IMPLEMENTATION

The complete algorithm for applying the reduced quadratic programming technique to
optima] dructural design is described in Appendix E A modular software sysem is beng
developed to implement the technique. The main feature of Fhe‘ sysem is that only the'
subroutines for generating the matrices k'f T': and IIi and their derivatives need to be compiled

with the sysem for each different dructura type.

5. EXAMPLES
Three truss examples previousy reported in the literature have been chosen to test the

accuracy and efficiency of the program.

Example 1 is a ten bar planar cantilever truss shown in Figure 1, previoudy sudied by

Schmit [3], Khan [25] and others. Design and loading data are given in Table 1.




n

Example 2 is a twenty-five bar transmisson tower truss, shown in Figure 2. previoudy
sudied by Schmit [3], Arora [4] and others. The design data and the two loading conditions

applied are given in Table Z The edements are linked into eight groups as in Reference [3].

Example 3 is a seventy-two bar space truss, shown in Figure 3, previoudy sudied by
Schmit L33, Arora [4] and others. Design and loading data are given in Table 3. The eements

are linked into sixteen groups as in Reference [3].

For each of the three examples, two cases were investigated: Case Iy usng eement sress

congraints only and Case 2, with displacement congraints included.

6. RESULTS
The results obtained for the three examples are shown in Tables 4 through 6, showing the
final areas the total weight, and the number of cycles to convergence. The optimal results for

Case 2 of the three examples are compared to published results in Tables 7 through 9.

It can be seen from the tables that the technique presented converges in all cases to the
same optimum point as the previous sudies. It can also be seen that with one exception
(Venkayya [1] -on Example 2), the present technique requires fewer cycles to converge to an

2
approximate optimal point than the fastest of ‘the previous methods.

7. CONCLUSION

A fagt optimization technique for optimal sructural design has been presented. The speed
of the technique derives from two key factors  firs, the dependent design variables are
eiminated or condensed out of the quadratic approximation subproblems, and second, near-
quadratic convergeﬁce for the independent design variables is obtained. The technique appears
to be particularly attractive for large-scale optimal sructural .design problems, since all joint
displacements (a subvector of length equal to the numper of degrees of freedom times the
number of loading conditions) are diminated, resulting in a reduced quadratic programming

subproblem involving only the distinct element sizing parémeiers as design variables.

¥ 1 » < '5
Defined as max hg_-l [,llmax ]_Pi]_ S 10
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Results obtained with -the techniqgue for a number of dandard test problems are in

agreement with previous results and show a general reduction in the numbe of cycles to

conver gence.

An interesting consequence of the optimization technique described is that the solution of
each quadratic approximation subproblem may not be a feasble one unless the optimum is
reached. Specifically, a trial solution given in terms of the current variables { a } and { u }

is not in equilibrium with the applied joint loads{p}«




Figure 1.

Ten bar cantilever truss




1A

Twenty:five bar transnission tower truss

Figure 2.




Seventy-two bar space truss

Figure 3.




Table 1. Design datai for 10 bar truss

— L -
Mbdul us of elasticity = 10* ksi
Material density ' = 0.10 Ib/in
Stress linits = + 25fcsj
Lower limt on cross-sectional area = 0.10 in
Upper li.mits on displacenents = 2.0in
Nunmber of | oading conditions = 1

Magni tude of load (Kips)

Node X y
1 0.0 -10.0
3 0.0 -10.0

Table 2. Design data for 25 bar transm ssion tower

Modul us of elasticity = 10% csi 3
Material density = 0.10 Ib/in
Stress limts = £ 40 kS£
Lower limt on cross-sectional area = 0.10 in2 *

0.01 in~ **
Upper limts on displacenents = 0.35in
Number of |oading conditions = 2

Magni tude of 1oad (Kips)

Loadi ng
condition  Node X y z
1 -1.0 -10.0 -5.0
1 2 0.0 -10.0 -5.0
3 -0.5 0.0 0.0
4 -0.5 0.0 0.0
1 0.0 -20.0 -5.0
2 2 0.0 20.0 -5.0
* Stress constraints only

an Stress and di spl acenent constraints
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Table 3. Design data for 72 bar truss

_ 4
Modul us of elasticity = 10 " Ksi
Mat eri al density =0.210 Ib/in
Stress linmts = =+ 25 ksj
Lower limt on cross-sectional area = 0.10 in2
Upper limts on displacenents = 0.25 1in
Nurmber of | oading conditions = 2

Magni t ude of | oad (Kips)

Loadi ng
condi tion Node X b 4 Z
1 1l 5.0 5.0 -5.0
1 0.0 0-0 -5.0
2 2 0.0 0.0 -5.0
3 0.0 0.0 -5.0
4 0.0 0.0 -5.0
Table 4. Optimum 10 bar truss
Final area (in )
Manbe numbe case 1 case 2
1 7.9379 30.7928
2 0. 1000 0.1000
3 8. 0621 23.9655
4 3.9379 14.7038
5 0. 1000 0.1000
6 0. 1000 0.1000
7 5. 7447 8.5321
8 5.5690 20.9519
9 5. 5690 20.8014
10 0. 1000 0.1000
Fi nal weight (Ib) 1593. 18 5076.64
Nunmber of iterations 3 10
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Table 5. Optimum 25 bar transmission tower

Final area (inz)

Group Member S==sssomummmmums
No. numbers case 1 case 2
1 1 0.1000 0.0100
2 2345 0.3761 2.0415
3 6 789 0.4709 3.0011
4 10 11 0.1000 0.0100
5 12 13 0.1000 0.0100
6 14 15 16 17 0.1000 0.6836
7 18 19 20 21 0.2773 1.6248
8 22 23 24 25 0.3801 2.6716

Final weight (1Db) 91.13 545.03

Number of iterations 3 8

Table 6. Optimum 72 bar truss

2
Final area (in’)

Group Member
No. numbers case 1 case 2
1 1 2 3 4 0.1888 0.1565
2 5 6 7 8 910 11 12 0.1000 0.5493
3 13 14 15 16 ) 0.1000 0.4061
4 17 18 0.1000 0.5550
5 19 20 21 22 0.1904 0.5127
6 23 24 25 26 27 28 29 30 0.1000 0.5289
7 31 32 33 34 0.1000 0.1000
8 35 36 0.1000 0.1000
"] 37 38 39 40 0.1987 1.2521
10 41 42 43 44 45 46 47 48 0.1000 0.5214
11 49 50 51 52 0.1000 0.1000
12 53 54 0.1000 0.1000
13 55 56 57 58 0.2941 1.8321
14 59 60 61 62 63 64 65 66 0.1000 0.5119
15 67 68 69 70 0.1000 0.1000
16 71 72 0.1000 0.1000
Final weight (1Db) 96.637 379.62

Number of iterations 3 8




Table 7

Opti mum designs for ten-bar truss

2
Final area ( in)

G oup Schnmit & Kiura(3) Schmt & Arora & Khan & Thi s
No. NEWSUMI  CONM N Farshi (2) Venfcayya(1l)Haug(4) W I nmert(25)paper
. - =
1 30.6700 30.5700 33.4320  30.4160 o 30.9800  30.7928
2 0. 1000 0. 3690 0. 1000 0. 1280 o 0. 1000 0. 1000
3 23.7600 23.9700 24.2600 23.4080 e 24.1690 23.9655
4 14.5900 14.7300 14.2600  14.9040 *xk 14.8050 14.7038
5 0. 1000 0. 1000 0. 1000 0.1010 i 0. 1000 0. 1000
6 0. 1000 0. 3640 0. 1000 0.1010 *xk 0. 4060 0. 1000
7 8.5780 8. 5470 8. 3880 8. 6960 ke 7.5470 8.5321
8 21.0700 21.1100 20.7400 21.0840 e 21.0460  20.9519
9 20.9600 20.7700 19.6900 21.0770 *xk 20.9370 20.8014
10 0. 1000 0. 3200 0. 1000 0. 1860 *xk 0. 1000 0. 1000
Fi nal
wei ght (1 D)5076.85 5107.30 5089.00 5084.90 x 5066.98 5076. 64
Nunber of
iterations 13 14 23 25 *rx 18 10
*** data not avail abl e
Table 8 Optinumdesigns for 25-bar transm ssion tower
Final area (in)
G oup Schmt & Mura(3) Schmit & Arora & Khan & Thi s
No. NEWSUMI  CONM N Farshi (2) Venkayya(l) Haug(4) WIImert(25)paper
1 0. 0100 0. 1660 0. 0100 0. 0280 0. 0100 0. 0100 0. 0100
2 1. 9850 2.0170 1. 9640 1. 9420 2.0476 1. 7550 2.0415
3 2.9960 3. 0260 3. 0330 3. 0810 2.9965 2.8690 3.0011
4 0.0100*  0.0870 0. 0100 0. 0100 0. 0100 0. 0100 0. 0100
5 0. 0100 0. 0970 0. 0100 0. 0100 0. 0100 0. 0100 0. 0100
6 0. 6840 0. 6750 0. 6700 0. 6930 0. 6853 0. 8450 0. 6836
7 1. 6770 1. 6360 1. 6800 1. 6780 1.6217 2.0110 1. 6248
8 2.6620 2.6690 2. 6700 2.6270 2.6712 2.4780 2.6716
Fi nal
wei ght (1 b) 545.17 548. 47 545. 22 545. 49 545. 04 553. 94 545. 03
Nunber
iterations 10 9 17 7 12 9 8




Table 9 Opti numdesigns for 72-bar truss

Final. area ( in?)

G oup Schmit & Mura(3) Schmit & Arora & Khan & This
No. NEWSUHT CONM N Farshi (2) Venfcayya(l) Haug(4) W!II nert (25)paper
1 0. 1565 0. 1558 0. 1580 0. 1610 0. 1564 0. 1519 0. 1565
2 0. 5458 0. 5484 0. 5940 0. 5570 0. 5464 0.5614 0. 5493
3 0. 4105 0. 4105 0. 3410 0. 3770 0. 4110 0.4378 0. 4061
4 0. 5699 0.5614 0. 6080 0. 5060 0.5712 0. 5317 0. 5550
5 0. 5233" 0. 5228 0. 2640 0.6110 0. 5263 0. 5814 0. 5127
6 0.5173 0. 5161 0. 5480 0. 5320 0.5178 0.5273 0. 5289
7 0. 1000 0. 1000 0. 1000 0. 1000 0. 1000 0. 1000 0. 1000
8 0. 1000 0.1133 0. 1510 0. 1000 0. 1000 0. 1583 0. 1000
9 1. 2670 1. 2680 1.1070 1. 2460 1.2702 1. 2526 1.2521
10 0.5118 0.5111 0.5790 0.5240 0.5124 0. 5244 0.5241
11 0. 1000 0. 1000 0. 1000 0. 1000 0. 1000 0. 1000 0. 1000
12 0. 1000 0. 1000 0. 1000 0. 1000 0. 1000 0. 1000 0. 1000
13 1. 8850 1. 8850 2. 0780 1. 8180 1. 8656 1. 8589 1.8321
14 0.5125 0.5118 0. 5030 0.5240 0.5131 0. 5259 0.5119
15 0. 1000 0. 1000 0.1000 - 0.1000 0. 1000 0. 1000 0. 1000
16 0. 1000 0. 1000 0. 1000 0. 1000 0. 1000 0. 1000 0. 1000
Fi na
wei ght (1 b) 379.64 379.79 388. 63 381. 20 379. 62 387.67 379. 62
Nurber of
iterations 9 8 22 12 12 10 8
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APPENDIX A. TERMS APPEARING IN EQUATION (15)

The terms appearing in the condensed Equation (15) are

Define:
-1
G ooy’
= T -1 T
C

Ml o 21 o CA
M2 - n G2 * HUAII Cuuu * GA

NI:GZ*hu

-
» " HAA " HAu * 6] = Ga " GAT » G « Hya * A x Cyyy * CA

QT:hAuhu*Gl*GA
* =2 IA T HAY 2 G %8 - GAT L Gy, . Cuuu ¥ g *F Gal * Gy * fy

h=-h+h *G-*g
m-=uG|*8

"2 = m G x Fy v Cyyy * 9
APPENDIX B. ALGORITHM
The procedure for performing optimal design is described by the following algorithm.

Step O Initialization
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i) Set k (iteraIion index) = 0 and the Hessian matrix Hk = [I]
(results in the first step in the steepest descent direction-),

ii) Initialize vector { a } and solve Equation (2) for vector { u }.

Step 1 Compute right hand side and derivatives for approximation problem

(Equations (10) - (12)).

)k =ke1

ii) Compute matrices G A and Gu and vector g

iii) Compute vectors fj\ and fu

iv) Compute matrices hA and hu and vector h

v) If Kk =1 go to Step 2

vi) Compute
T T
! (] _[Sa ta
x) )}t cT{ " |aT]’
2 u u u
vii) Compute
W. n s (W
A =p+z (2l A n IV
w i w !
u uj.
11*1 J
A _ {
w, ( 5'1‘( )1/2
n+2
Wheren = (k- 1) « 2 b
y = {aL/ax12 - {3 L/3X}:l
_ T T .
cj-[WA Wu ]jé j=1..n

: T
o =7 <) «rf+ 3
j-J J




’[L if 5", 202 a
e= T .
£a—28y etherWise
Wa.
D
C=8B L -0 & + (1. - 8X(- a.
v+ (L0 &+ (0 O w b

Step 2 Reduction (Condensation) and setup of Quadratic Programming problem

i) Compute matrices H and Q (see Appendix A)
A

ii) Compute vectors g and h (see Appendix A)

iii) Select critical and potentialy critical constraints for problem (P4)

Step 3 Optimization
i) Solve problem (P4) for vectors { Aa'} , { j) }

ii) Backsubstitute in the first two rows of Equation (IS) for vectors

{ Au} and { n}

iii) Compute

T T

gL ) l’A . GA . hA
X f GT : hT !

u u u

Step 4 Determine step size parameter
i) For k = 1
v, =0.0
i
i) Fori =1, ,m'
v; = Max C/ij 1.05+(v; +| p;| I}
iii) For i = nf+l...,m

vp=max { ?2,,05% (v, +y)]}
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iv) Select the largest value of a. O.0SaS 1.0,
a) If ¥(AUl») > *, go to b)
al) If V(ZSL») < WA.U.V) or
UX.UC/1.9) < UA.u./i.f) go to vi)
b) If WI\E*) < WA,u») go to vi)

c) Go to v) of Step 5
where V(A,u,») = F(A,u) + Z»y |g-,(A,u)j + Z», Max{ 0, h; }

L(X, M n )= F(X)e/iT e g( X)+7 «h(X)

Ld ~r
A=A+az AA,0u=10+g AU

. ~ - ) Aa
vi) S A=A ,u=u and & = a
Au

Step 5 Check for convergence

i) Let f = ST | A(".J », gi(Au)
Ly
u
i) If f £ € print result and go to Step 6
iii) Adjust the step controlling parameter n
iv) If k < maximum number of alowed iterations, go to Step 1
v) Print error message and go to Step 6
Step 6 Stop.
APPENDIX C UPDATING OF THE HESSIAN MATRIX
In Powell's work ([13]-[20]), the Hessian matrix was updated by the BFGS rank 2
method In that updating method, the Hessian matrix H is initialy set equa to an identity
matrix, and in each iteration on the quadratic approximation subproblem the Hessian matrix is

updated by the following formula:




Hp=H + — -~

<y,s> <s,H's >
where y =L (x**) -L (x*)
s = x¥*t - xk

<y.,s>=yls

Ingead of keeping the full matrix HK’ Beraa suggested the following expresson to update

the Hessian matrix:

’ N
"AA AU WAj
= [II- +i:£:(—1)j | [ W T WU_T]
AuA Puu J‘ wuj ’ ’
“

where WA and Wu are defined in Appendix B and n = (k-1)* 2
i i '

The following formula, used by Berna, is implemented in the present method to update
he reduced Hessian matrix in each iteration . By using this formula, the number of arithmetic

operations performed in updating the reduced Hessian matrix is reduced dramatically.

A T T

H wpa -Hau xe3+ O3 *npa* G *hyy » o3
= (I +ZWy  Wa ") -(ZW, W, T)*Gs-Gs"* (ZWy *+Wal)
i J j ) 3 3

T
=1 % G F e Z (W, - G ¢ W, )% (Wa -G » W, )T

j j j §
where G- = (G )'' ad G, = G. - Gy
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number of independent variables

number of dependent variables.




- 10.

12.

13.

27

REFERENCES
V. B. Venkayya, "Design of Optimum Sructures** Computer & Structures, VoL 1, 1971,
pp. 265-309.
L. A. Schmit and B. Farshi, "Some Approximation Concepts for Structural Synthesis*
AIAA Journal, VoL 12, No. 5, 1974, pp. 692-*99.
L. A. Schmit and H. Miura. **Approxirpation Concepts for Efficient Structural Synthesis**
Tech. report CR-2552, NASA, 1976.
Arora, J. S. and Haug, E. J. Jr., "Efficient optimal design of sructures by generalized
steepest descent programming** Int. J. Num. Meth. Engng, VoL 10, 1976, pp. 747-766.
Arora, J. S and. Govil, A. K., **An efficient method for optimal dructural design by
subgtructuring,” Computers & Structures, VoL 7, 1977, pp. 507-515.
Govil, A. K. Arora, J. S and Haug, E. J., "Optimal design of wing dructures with
subgructures** Computers & Structures, VoL 10, 1979, pp. 899-910.‘
Arora. J. S. and Haug, E.-J., "Methods of desgn senstivity analyss in sructural
optimization,” AIAA Journal, Vol. 17, 1979, pp. 970.
R. T. Haftka & J. H. Starnes Jr., "Application of a Quadratic Extended Interior Penalty
Function for Sructural Optimization,** AIAA Journal, VoL 14, No. 6, 1976, pp. 718-724.
R. T. Haftka & R Prasad. "Programs for Analysis and Resizing of Complex Structures”
Computers & Structures, VoL 10, 1979, pp. 323-330. N
B. Prasad & R. T. Haftka, "A Cubic Extended Interior Penalty Function for Sructural
Optimization** Int. J. for Numerical Methods in Engineering, VoL 14, 1979, pp.
1107-1126.
G. N. Vanderplaats & F. Moses, "Sructural Optimization by Methods of Feasble
Directions*' Computers & Structures, VoL 3, 1973, pp. 739-755.
S. P. Han, "A Globally Convergent Method for Nonlinear Programming.” Journal of
Optimization Theory and Applications, VoL 22, .No. 3. July 1977, pp. 297-309.
M. J. D. Powel, "A fagt algorithm for nonlinear congtrainted optimization calculations',

Presnted at the 1977 Dundee Conference on numerical Analysis




14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25,

28

M. J. D. Powel, "The convergence of variable metric methods for nonlinear congrained
optimization calculations*®. Presented at the Nonlinear Programming 3 symposum held at
Madison, Wisconsin 1977
M. J. D. Powdl, "Variable metric methods for constrained optimization**. Presented at
the Third International Symposum on Computing Methods in Applied Sciences and
Engineering (Paris) 1977

M. J. D. Powell "Condraint optimization by a variable metric mehod** Tech. report,

" DAMTP University of Cambridge , 1978.

M. J. D. Powdl, "Gradient conditions and Lagrange multipliers in nonlinear
programming** Tech. report, DAMTP University of Cambridge, 1979.

M. J. D. Powdl, "Quas-Newton formulae for sparse second derivative matrices** Tech.
report, DAMTP University of Cambridge, 1979.

M. J. D. Powdl, "Optimization algorithm in 1979, Presented at the- Ninth [FIP
Conference on Optimization Techniques (Warsaw) 1979

R.M. Chamberlain, C Lemarechal H.C Pedersen and MJ.D. Powel, **The Watchdog
Technique for Forcing Convergence in Algorithms. for Congrained Optimization", Tenth
International Symposium on Mathematical Programming August, 1979

T. J. Bena, M. H. Locke and A. W. Westerberg, "A New Approach to Optimization of
Chemical Processes," AIChE. Journal, Vol. 26, January 1980, pp. 37-43.

J.E.Dennis and Jorge J. More, "Quasi-Newton Methods*Moativation and Theory,” SIAM
Review, VoL 19, No. 1, January 1977, pp. 46-89.

J. K. Red, "Least squares solution of sparse systems of nonlinear equations by a
modified Marquardt algorithm.," Decomposition of Large-Scale Problems, 1973, pp.
437-445.

A. W. Westerberg and S. W. Director, "A Modified Least Squares Algorithm for Solving
Sarse N X N Sets of Nonlinear Equations” Computers and Chemical Engineering,
Vol. 2, 1978, pp. 77-81.

Khan, M. R. , Willmert, K. D. and Thornton, W. A., "An optimality criterion method
for large-scale structures* A/AA Journal, Vol. 17, 1979, pp. 753.




26.

27.

28.

20.

30.

31

31

33.

29

C Fleury and M Gerandin, "Optimality Criteria and Mathematical Programming. in
Structural Weight Optimization,” Computer & Structures, VoL 8. 1978, pp. 7-17.

G. Sander and C Fleury, "A Mixed Method in Structural Optimization,g* Int. J. Numer.
Meth. Eng., VoL 13. 1978, pp. 385-404.

C Fleury, "A Unified Approach to Structural Weight Minimization,** Comp. Meth.
Appl. Mech. and Eng., VoL 20, 1979, pp. 17-38.

C Fleury, "Sructural Weighf Optimization by Dual Methods of Convex Programming**
Inter. J. Numer. Meth. Eng., VoL 14, 1979, pp. 1761-1783.

C Fleury and L. A. Schmit, "Primal and Dual Methods in Structural Optimization**
ASCE J. Structural Div., May 1980, pp. 1117-1135.

R. Fletcher, 'The calculation of feasible point .for linearly congtrained optimization
problems” Tech. report AERE R.6354, U.K.A.E.A. Research Group, April 1970.

R. Fletcher, "A Fortran Subroutine for General Quadratic Programming/* Tech.
report AERE R.6370, U. K. A. E. A. Research Group, June, 1970.

R. Fletcher, "A General Quadratic Programming Algorithm** /. Inst. Maths Applies,
VoL 7. 1971, pp. 76-91. _

Nien-Hua Chao, Application of a Reduced Quadratic Programming Technique to
Optimal Structural Design, PhD dissertation, Carnegie-Melon University, November

1981.

/




FI QURES

Figure 1. Ten bar cantilever truss
Figure 2. Twenty-five bar transmssion tower truss

Figure 3. Seventy-two bar space truss




