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1. INTRODUCTION

The general optimal structural design problem is to minimize a measure of the cost of the

structure subject to applicable performance requirements. In most of the literature, the cost

function is taken as the weight (or volume) of the structure, the design variables are separated

into element size parameters (Le.,cross-sectional area) and structure configuration parameters

(i.e., joint coordinates), and the performance requirements include behavior constraints on the

stresses in each element and on the displacements of certain joints, as well as the usually

implicit equality constraints arising from the joint equilibrium equations.

One popular approach for solving optimal structural design problems is to formulate them

as a sequence of mathematical programming subproblems. Numerous papers ([1]-[11]) use a

variety of such mathematical programming techniques.

The purpose of this paper is to introduce and illustrate a recently developed optimization

technique of practical potential. The technique is based on two developments. First, it utilizes a

fast successive quadratic programming algorithm originally stated by Han [12] and implemented

by Powell ([133- [20]) for solving nonlinear constrained optimization problems. The algorithm

uses a Quasi-Newton method to approximate the Hessian matrix, resulting in near-quadratic

convergence to at least a local optimum. Second, the technique uses the work of Berna et al.

[21], who developed a decomposition procedure for Powell's algorithm which partitions the

original design variables into independent and dependent variables, eliminates the dependent

variables, and thus yields a much reduced quadratic programming subproblem at each step.
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The technique is first derived and then illustrated using problems previously presented in

structural optimization literature. The examples all deal with the simplest structural application

of the technique, namely element size parameter optimization for trusses. Extensions of the

technique, including additional structural types (plane frames and systems of finite elements)

combined with configuration optimization, are completed [34] and will be presented in later

papers.

2. DERIVATION OF OPTIMIZATION PROBLEM

2.1 GENERAL FORMULATION

The optimal structural design problem is:

(PI) Find the vector of variables j which minimizes an objective function f{j) subject to

the constraints

= 0 i

h.(y) < 0 i = m'+l,..,m (lb)

Where ftg,# g ,h t -, h denote real-valued functions of the vector y in N-
l m m +1 m •*-

dimensional Euclidean space R .

In the specific case of element size parameter optimization using an elastic finite element

model, the vector j contains both the element size parameters and the joint displacements. In

this case, the equality constraints (la) are given by the system equilibrium equations:

g = [ K ] { u } - { p 1 (2)

where K = structure stiffness matrix

u = vector of joint displacements

2 = vector of applied joint loads.

The inequality constraints (lb) are of the form

h^s.-s.jor siu-s. (3)

where s.. and s. are upper and lower limits on the behavior variable s.. The constraints



pertain to element stresses and joint displacements. In the former case, the controlling stresses

in element i are

s. = [ H.] T. A. { u } (3a)

where n. = modulus matrix

T. = coordinate transformation matrix of element i

A. = branch-node incidence matrix of element i

The equality constraint equations (2) are bi-linear in the variables jr, as the element

stiffnesses K. entering into [ K ] are linear functions of the element size parameters. The

modulus matrices II. for certain element types, eg. trusses, are independent of the element

size parameters, which can be demonstrated as follows.

a) In a basic local coordinate system, the element force, r., is

r. = [ K. 3 TjA. { u I = [ EaVL.3 T. A- { u 1 (4)

where £ = Young's modulus

a. = cross-sectional area of element i

L. = length of element i

b) The controlling bar stress, s., is

s. = r./a. = (I/a.) CEa./L.3 T. A. { u } = E/L. T\ A.{u} = n. T\ A. { u } (5)

where II. = E/L.
l l

The inequality constraints are thus linear functions of the joint displacements u, and

therefore of j.

The non-linearity of equations g in the variables jr and the very large number of

constraint equations makes the direct solution of (PI) infeasible or economically impractical.

One step to reformulate (PI) so as to reduce the problem dimensions is to take advantage of



symmetry and repetition of identical components to link together some design variables j. as a

function of distinct design variables x.t Le., to set

{ i 1 = [ L ] { x } (6)

j =

n9 « n

It is to be noted that only the element size parameters a. may be linked together by

Equation (6); all the joint displacements must be retained as distinct design variables in x.

Further steps in reducing the problem dimensions will be introduced later.

The design problem now becomes:

(P2) Minimize f( x )

Subject to g( x ) = 0 (7)

h( x ) £ 0

The general form of the vector { x } is { a ! u }

where { a } = vector of element size parameters
(cross-sectional areas for trusses)

{ u } = vector of joint displacements

The Lagrangian function of problem (P2), which will be used later, is

U x, M. £ ) = f( x ) + j? • g( x ) +JT • h( x ) (8)

where ^ ,^ are vectors of Lagrangian and Kuhn-Tucker multipliers, respectively.

2.2 QUADRATIC PROBLEM FORMULATION

Han [12] has suggested that the nonlinear optimization problem (P2) can be solved by

generating a sequence of points { x } which are the solutions to the following quadratic

approximation programming subproblem:



(P3) Minimize

• Ax • 1/2 • AxT • R^ • Ax

subject to

h( xk)

where AX =

Ik )T

xV

x k + 1

• AX =

• AX ^

- x k

0.0

0.0

(9)

The n x n matrix H. is intended to be an approximation of the Hessian matrix of the

Lagrangian function of problem (P2). In Han's original work, the Hessian matrix is updated by

the Davidon-Fletcher-Powell [22] method. Powell has used Han's method to solve optimization

problems with nonlinear constraints [13]-[20] with the Hessian matrix approximated by a

Quasi-Newton method. Powell suggests an empirical rule so that the updated Hessian matrix

remains positive definite or positive semi-definite. A Quasi-Newton method which was

simultaneously presented by Broyden, Fletcher, Goldfarb and Shanno (BFGS) [22] has been

used in his study. Numerical results have proven that the efficiency of Han's method can be

improved by Powell's modifications [13].

2.3 REDUCED QUADRATIC PROBLEM FORMULATION

Berna et al. have suggested a decomposition procedure whereby the optimization problem

(P3) can be solved more efficiently [21]. In Berna's work, the design variables { Ax } are

partitioned into two subvectors, the vector { Aa } of independent variables and the vector

{Au} of dependent variables.

The necessary conditions for solving the quadratic approximation problem (P3) are:



(1) Stationary condition of the Lagrangian function of the quadratic approximation

problem (P3):

aw

(2) Satisfaction of the linearized original constraint equations:

= - { g }
(11)

T T

[ a h / 3 a 1 ] { Aa } * [ 3 h / 3 u ] { Au } ^ - { h }

(3) Complementary slackness and nonnegativity of the Kuhn-Tucker multipliers:

{ 7 }T { a h / a * T • Aa + a h / a u T • Au + h } = 0.0a
(12)

{ , } ^ { 0.0 }



It is easier to present the remainder of the derivation if the following notation is adopted

HUA '

GA =

HAu =

uu

Using the above notation, the necessary conditions given by Equations (10) through (12)

are (rows and columns of the coefficient matrix are numbered for later reference):

(1)

(2)

(3)

(4)

(1) (2) (3) (4) s

H A A H A u

HuA Huu

A u

hA hu

(13)

The size of the coefficient matrix in Equation (13) is extremely large. The major

contribution by Berna et al. is the procedure for eliminating the dependent variables {u}

efficiently, resulting in a much reduced quadratic programming problem. The reduction is

accomplished in two steps.



The rows and columns in Equation (13) are first rearranged as shown:

(2) (3) (1) (4)

(3)

(2)

(1)

(4)

(14)

Next a reduction or condensation is performed on the first two matrix columns of

Equation (14), producing:

(3)

(2)

(1)

(4)

(2) (3) (1) (4)

Mj 0

0 I M, N,

H Q

0 0 Q1 0

(15)

The terms appearing in Equation (IS) are defined in Appendix A.

The conditions that the quadratic programming problem must satisfy are then given by the

last two rows of Equation (15):



s

T ". > \L\ (16)

The original complementary slackness conditions. Equation (12), become

* T • ( QT • Aa - h ) = 0

Again, nonnegativity of the Kuhn-Tucker multipliers in Equation (12) gives 9 t 0

The reduced QPP is, therefore:

(P4) Minimize

T T A

f( Aa ) = q * Aa + 1/2 • Aa * H • Aa
(17)

subject to

QT • Aa £ h

The corresponding Lagrangian function is

V ( Aa , rj ) = qT * Aa + 1/2 • AaT • H • Aa +*T * ( QT • Aa - h ) (18)

The optimization design problem (P4) can now be solved in terms of the independent

design variables { Aa }. The results,{ Aa } and { 7 }, of problem ( P4 ) can then be used to

calculate the vectors { Au } and { /* } in the first two rows of the Equation (15), thus

completing the solution of the quadratic approximation subproblem.

3. MODIFICATIONS OF THE TECHNIQUE

3.1 ACTIVE CONSTRAINTS

In applying the reduced quadratic programming technique presented above to optimal

T ^

structural design problems, the number of constraint equations Q * Aa < h may be 10 to 100

times larger than the number of independent design variables { Aa }. To further reduce the

problem dimensions, in each iteration only the critical and potentially critical constraint

equations are included, so that only about 5% to 30% of the original number of constraint

equations is used in each iteration.



X2 CONTROLLING STEP SIZE

In optimal structural design problems which include both stress and displacement

constraints, the optimal solution is usually found at an interior point of the design space such

that the total number of active constraint equations is less than the total number of

independent design variables. In such situations, Powell's algorithm [13] may not converge.

To control the step size of the independent design variables and to stabilize the algorithm,

a constraint of the form

1/2 { AaT} • { Aa } £ € (19)

may be added to the problem (P4).

Adding constraint (19) to the problem results in adding a diagonal matrix JT*[I] to the

Hessian of the reduced quadratic problem, where v (£ 0.0) is the Kuhn-Tucker multiplier for

the above constraint- Rather than chosing *, we can treat v as an adjustable parameter, to be

increased if we wish to reduce the step size and decreased if we wish to allow for larger

steps. A minimum value of zero for * releases the step size constraint completely.

No automatic adjustment algorithm for n has been developed to date, but one similar to

that used by Reid [23] and Westerberg [24] could be devised. Such an algorithm would

increase n if the actual change in the Lagrangian function for the step taken is significantly

different from the value predicted by the linearized Lagrangian function, hold n fixed if the

linearization is moderately acceptable, and decrease n (to zero perhaps) if the linearization is

excellent The addition of a diagonal matrix to the approximated Hessian matrix H. also

stabilizes the algorithm. The updating procedure assures that the Hessian matrix H, remains

symmetric and positive definite (see Appendix C), but in the limit it may make H, nearly

singular (positive semi-definite). We have on occasion found it effective to have a small

diagonal term in the approximated Hessian matrix to control the conditioning.
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33 INCONSISTENT CONSTRAINTS

In solving the reduced quadratic programming problem (P4), inconsistent constraints may

T **

exist among the set of linearized constraint equations ( Q • Aa £ h ). This inconsistency

arises from using the linearized constraints to substitute for the original constraints, when the

initial guess or an intermediate solution is too far from the optimum solution. Powell [13]

introduced a dummy variable £ ( 0.0 £ £ £ 1.0 ) into the quadratic programming problem to

solve this problem.

By adding the variable ( to the reduced QPP , Equation (16) becomes:

H

0

Q j

1 h i
T A

0

0 0
(20)

I1 0 0 0

where C = large negative constant

h. < 0.0

% * CO

and a feasible solution can always be found for Equation (20).

4. IMPLEMENTATION

The complete algorithm for applying the reduced quadratic programming technique to

optima] structural design is described in Appendix E A modular software system is being

developed to implement the technique. The main feature of the system is that only the

subroutines for generating the matrices k., T. and II. and their derivatives need to be compiled

with the system for each different structural type.

5. EXAMPLES

Three truss examples previously reported in the literature have been chosen to test the

accuracy and efficiency of the program.

Example 1 is a ten bar planar cantilever truss shown in Figure 1, previously studied by

Schmit [3], Khan [25] and others. Design and loading data are given in Table 1.
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Example 2 is a twenty-five bar transmission tower truss, shown in Figure 2. previously

studied by Schmit [3] , Arora [4] and others. The design data and the two loading conditions

applied are given in Table Z The elements are linked into eight groups as in Reference [3].

Example 3 is a seventy-two bar space truss, shown in Figure 3, previously studied by

Schmit L33. Arora [4] and others. Design and loading data are given in Table 3. The elements

are linked into sixteen groups as in Reference [3].

For each of the three examples, two cases were investigated: Case lf using element stress

constraints only and Case 2, with displacement constraints included.

6. RESULTS

The results obtained for the three examples are shown in Tables 4 through 6, showing the

final areas, the total weight, and the number of cycles to convergence. The optimal results for

Case 2 of the three examples are compared to published results in Tables 7 through 9.

It can be seen from the tables that the technique presented converges in all cases to the

same optimum point as the previous studies. It can also be seen that with one exception

(Venkayya [1] on Example 2), the present technique requires fewer cycles to converge to an
2

approximate optimal point than the fastest of the previous methods.

7. CONCLUSION

A fast optimization technique for optimal structural design has been presented. The speed

of the technique derives from two key factors: first, the dependent design variables are

eliminated or condensed out of the quadratic approximation subproblems, and second, near-

quadratic convergence for the independent design variables is obtained. The technique appears

to be particularly attractive for large-scale optimal structural design problems, since all joint

displacements (a subvector of length equal to the number of degrees of freedom times the

number of loading conditions) are eliminated, resulting in a reduced quadratic programming

subproblem involving only the distinct element sizing parameters as design variables.

• 2
Defined as max | g .

1 I '
1 /max 1 P- 11 1 '

< -5
S 10
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Results obtained with the technique for a number of standard test problems are in

agreement with previous results and show a general reduction in the number of cycles to

convergence.

An interesting consequence of the optimization technique described is that the solution of

each quadratic approximation subproblem may not be a feasible one unless the optimum is

reached. Specifically, a trial solution given in terms of the current variables { a } and { u }

is not in equilibrium with the applied joint loads{p}«
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Figure 1. Ten bar cantilever truss



Figure 2. Twenty-five bar transmission tower truss
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Figure 3. Seventy-two bar space truss
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Table 1. Design data

Modulus of elasticity

Material density

Stress limits

Lower limit on cross-sectional

Upper limits on displacements

Number of loading conditions

Node

1

3

i for 10 bar truss

area

104 ksi
= 0.10 lb/in
= ± 25 fcsi

= 0.10 in

2.0 in
1

Magnitude of load (Kips)

X

0.0

0.0

y

-10.0
-10.0

Table 2. Design data for 25 bar transmission tower

Modulus of elasticity

Material density

Stress limits
Lower limit on cross-sectional

Upper limits on displacements

Number of loading conditions

Loading
condition Node X

1 -1.
1 2 0.

3 -0.
4 -0.

1 0.
2 2 0.

area

1 0 4 f c s i

= 0.10 lb/in
= ± 40 ksi
= 0.10 in *

0.01 in **
= 0.35 in

2

Magnitude of load (Kips)

0

0

5

5

0

0

y z

-10.0 -5.
-10.0 -5.
0.0 0.
0.0 0.

-20.0 -5.
20.0 -5.

0

0

0

0

0

0

Stress constraints only

Stress and displacement constraints
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Table 3. Design data for 72 bar truss

Modulus of elasticity = 10 Ksi

Material density = 0 . 1 0 lb/in

Stress limits = ± 25 ksi

Lower limit on cross-sectional area = 0.10 in

Upper limits on displacements = 0.25 in

Number of loading conditions = 2

Magnitude of load (Kips)

Loading

condition Node

5.0 5.0 -5.0

1

2

3

4

0 . 0
0 . 0
0 . 0

0 . 0

0 - 0
0 . 0
0 . 0
0 . 0

-5.0
-5.0

-5.0
-5.0

Table 4. Optimum 10 bar truss

2
Final area (in )

Member number case 1 case 2

1 7.9379

2 0.1000

3 8.0621

4 3.9379

5 0.1000

6 0.1000

7 5.7447

8 5.5690

9 5.5690

10 0.1000

Final weight (lb) 1593.18

Number of iterations
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Table 5. Optimum 25 bar transmission tower

Group
No.

1
2
3

4

5

6
7

8

14

18

22

HeniDer
numbers

1
2 3 4 5
6 7 8 9

10 11

12 13

15*16 17

19 20 21

23 24 25

Final

case 1

0.1000

0.3761

0.4709

0.1000

0.1000

0.1000

0.2773

0.3801

area (in )

case 2

0.0100

2.0415

3.0011

0.0100

0.0100

0.6836

1.6248

2.6716

Final

Number

weight (lb)

of iterations

Table 6. Optimum 72

91.

3

bar

13

truss

545.03

8

Final area (in )

Group
No.

1
2
3

4

5
6
7

8
9

10

11

12

13

14

15

16

1

5

13

17

19

23
31

35
37

41

49

53

55

59
67

71

Member
numbers

2

6

14

18

20
24
32

36

38

42

50

54

56

60

68

72

3

7

15

21

25
33

39

43

51

57

61

69

Final weight

Number• oi

4

8 9

16

22

26 27
34

40

44 45

52

58

62 63

70

(lb)

: iterations

10
*

28

46

64

11

29

47

65

12

30

48

66

case 1

0.1888

0.1000

0.1000

0.1000
0.1904

0.1000
0.1000

0.1000
0.1987

0.1000

0.1000

0.1000

0.2941

0.1000

0.1000

0.1000

96.637

3

case 2

0.1565

0.5493

0.4061

0.5550
0.5127

0.5289
0.1000

0.1000
1.2521

0.5214

0.1000

0.1000

1.8321

0.5119

0.1000

0.1000

379.62

8
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Table 7 Optimum designs for ten-bar truss

Group

No.

1

2

3

4

5

6
7

8

9

10

Final

Schmit &

NEWSUMT

30.6700

0.1000

23.7600

14.5900

0.1000

0.1000

8.5780

21.0700

20.9600

0.1000

weight(ID)5076.85

Number of

iterations 13

Kiura(3)

CONMIN

30.5700

0.3690

23.9700

14.7300

0.1000

0.3640

8.5470

21.1100

20.7700

0.3200

5107.30

14

2
Final area ( in )

Schmit &
Farshi(2)

33.4320

0.1000

24.2600

14.2600

0.1000

0.1000

8.3880

20.7400

19.6900

0.1000

5089.00

23

Arora &
Venfcayya(1)Haug(4)

30.4160

0.1280

23.4080

14.9040

0.1010

0.1010

8.6960

21.0840

21.0770

0.1860

5084.90

25

***
***
***
***
***
***
***
***
***
***

***

***

Khan & This

Willmert(25)paper

30.9800

0.1000

24.1690

14.8050

0.1000

0.4060

7.5470

21.0460

20.9370

0.1000

5066.98

18

30.7928

0.1000

23.9655

14.7038

0.1000

0.1000

8.5321

20.9519

20.8014

0.1000

5076.64

10

*** data not available

Table 8 Optimum designs for 25-bar transmission tower

Group

No.

1

2

3

4

5

6
7

8

Final
weight(lb)

Number of
iterations

Schmit &

NEWSUMT

0.0100

1.9850

2.9960

0.0100*

0.0100

0.6840

1.6770

2.6620

545.17

10

Miura(3)
CONMIN

0.1660

2.0170

3.0260

0.0870

0.0970

0.6750

1.6360

2.6690

548.47

9

Final

Schmit &

Farshi(2)

0.0100

1.9640

3.0330

0.0100

0.0100

0.6700

1.6800

2.6700

545.22

17

2
area (in )

Venkayya(l)

0.0280

1.9420

3.0810

0.0100

0.0100

0.6930

1.6780

2.6270

545.49

7

Arora &

Haug(4)

0.0100

2.0476

2.9965

0.0100

0.0100
0.6853

1.6217

2.6712

545.04

12

Khan & This

Willmert(25)paper

0.0100

1.7550

2.8690

0.0100

0.0100

0.8450

2.0110

2.4780

553.94

9

0.0100

2.0415

3.0011

0.0100

0.0100

0.6836

1.6248

2.6716

545.03

8



20

Table 9 Optimum designs for 72-bar truss

Group

No.

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15
16

Final

weight(lb)

Number of

iterations

Schmit &

NEWSUHT

0.1565

0.5458

0.4105

0.5699

0.5233"

0.5173

0.1000

0.1000

1.2670

0.5118

0.1000

0.1000

1.8850

0.5125

0.1000
0.1000

379.64

9

Miura(3)

CONMIN

0.1558

0.5484

0.4105

0.5614

0.5228

0.5161

0.1000

0.1133

1.2680

0.5111

0.1000

0.1000

1.8850

0.5118

0.1000
0.1000

379.79

8

Final area

Schmit &

( in2 )

Farshi(2) Venfcayya(l)

0.1580

0.5940

0.3410

0.6080

0.2640

0.5480

0.1000

0.1510

1.1070

0.5790

0.1000

0.1000

2.0780

0.5030

0.1000
0.1000

388.63

22

0.1610

0.5570

0.3770

0.5060

0.6110

0.5320

0.1000

0.1000

1.2460

0.5240

0.1000

0.1000

1.8180

0.5240

0.1000

0.1000

381.20

12

Arora &
Haug(4)

0.1564

0.5464

0.4110

0.5712

0.5263

0.5178

0.1000

0.1000

1.2702

0.5124

0.1000

0.1000

1.8656
0.5131

0.1000

0.1000

379.62

12

Khan & This

Willmert (25)paper

0.1519

0.5614

0.4378
0.5317

0.5814

0.5273

0.1000

0.1583

1.2526

0.5244

0.1000

0.1000

1.8589

0.5259

0.1000
0.1000

387.67

10

0.1565

0.5493

0.4061

0.5550
0.5127

0.5289

0.1000

0.1000

1.2521

0.5241

0.1000

0.1000

1.8321

0.5119

0.1000
0.1000

379.62

8
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APPENDIX A. TERMS APPEARING IN EQUATION (15)

The terms appearing in the condensed Equation (15) are:

Define:

• « °u

Cuuu " G2 ' H«u ' CI

Then:

M l • ° 1 • G A

M2 - " G2 * HUA" Cuuu * GA

N l = G 2 * hu

» " HAA " HAu * Gl * GA " G A T * G2 * HUA + ^ * Cuuu * GA

Q T = hA " hu * G l * G A

* = " fA + HAu * Gl *8 - G A
T . G2 . C u u u * g * G A

T * G2 * fu

h = -h + h * G - * g

m l = " G l * 8

"2 = " G2 * Fu " Cuuu * g

APPENDIX B. ALGORITHM

The procedure for performing optimal design is described by the following algorithm.

Step 0 Initialization
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i) Set k (iteration index) = 0 and the Hessian matrix H, = [I]

(results in the first step in the steepest descent direction),

ii) Initialize vector { a } and solve Equation (2) for vector { u }.

Step 1 Compute right hand side and derivatives for approximation problem

(Equations (10) - (12)).

i) k = k • 1

ii) Compute matrices G and G and vector g

iii) Compute vectors f. and f

iv) Compute matrices h. and h and vector h

v) If k = 1 go to Step 2

vi) Compute

u

vii) Compute

W.

W
11*1

= b + Z (-
j 1

w

n+2

Where n = ( k - 1) • 2

a.

Z <-l)J * «r/
j-J J

T

j = 1 n
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e
f L if 5T

 r

£ a — 8 y otberw

0.2 a

otherwise

C = By + (L - 0) & + (1. - 8)X(-

Step 2 Reduction (Condensation) and setup of Quadratic Programming problem

i) Compute matrices H and Q (see Appendix A)
A

ii) Compute vectors q and h (see Appendix A)

iii) Select critical and potentially critical constraints for problem (P4)

Step 3 Optimization

i) Solve problem (P4) for vectors { Aa } , { j) }

ii) Backsubstitute in the first two rows of Equation (IS) for vectors

{ Au } and { n }

iii) Compute

Step 4 Determine step size parameter

i) For k = 1

v =0 .0

ii) For i = 1, ,m'

v. = Max C | / i j 1

iii) For i = nf+l...,m

i — 1, m

v. = max { ?. , 0.5 * ( v. + y ) }
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iv) Select the largest value of a. O.OSaS 1.0,

a) If ¥(A.ul») > *k go to b)

al) If V(ZSL») < WA.U.V) or

uX.uC/1.9) < UA.u./i.f) go to vi)

b) If Wi\£*) < WA,u,») go to vi)

c) Go to v) of Step 5

where V(A,u,») = F(A,u) + Z». |g-(A,u)j + Z». Max{ 0., h{

L( X, /». n ) = F( X ) • / iT • g( X ) +i7T • h( X

Vk = Min *Jh

vi) Set A = A , u = u

Step 5 Check for convergence

i) Let f = ST i A ( + . J ». gj(A,u)

ii) If f £ € print result and go to Step 6

iii) Adjust the step controlling parameter n

iv) If k < maximum number of allowed iterations, go to Step 1

v) Print error message and go to Step 6

Step 6 Stop.

APPENDIX C UPDATING OF THE HESSIAN MATRIX

In Powell's work ([13]-[20]), the Hessian matrix was updated by the BFGS rank 2

method In that updating method, the Hessian matrix H is initially set equal to an identity

matrix, and in each iteration on the quadratic approximation subproblem the Hessian matrix is

updated by the following formula:



y y s s

< s , H^ s >

where

< y , s >

y = L ( xk + 1 ) - L ( xk )

s = xk + 1 - xk

< y , s > = y s

Instead of keeping the full matrix H., Beraa suggested the following expression to update

the Hessian matrix:

HAA HAu

HuA Huu

W A T W u
J J

where W and W are defined in Appendix B and n = ( k - l ) * 2

The following formula, used by Berna, is implemented in the present method to update

he reduced Hessian matrix in each iteration . By using this formula, the number of arithmetic

operations performed in updating the reduced Hessian matrix is reduced dramatically.

- HAA - HAU * G 3 " H UA

= ( If + Z W . WA_T ) - ( Z W .

* G 3
T • ( I z * Z Wu_ * Wu_T ) * G 3

= I r * G 3
T * G 3 • Z ( - G3

Huu * G 3

u_T ) * G 3 - G 3
T * ( Z Wu_ • WA_T )

) * ( W A - G 3

where G- = ( G )
1 U

" and = G • GA
X A
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r = number of independent variables

z = number of dependent variables.
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FIGURES

Figure 1. Ten bar cantilever truss

Figure 2. Twenty-five bar transmission tower truss

Figure 3. Seventy-two bar space truss


