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ABSTRACT

Successi ve- quadratic programmng (SQP) algorithns have been effec-
tive and efficient in solving nonlinearly ‘constrai ned optimzation prob-
| ems. To guarantee global convergence, however, a line search nust be per-
formed after solving the quadratic program

The line search termnates when a step size is. found which causes a
sui tabl e decrease in. an exact penalty or Lagrangian function. Because of
sone problens with these functi.ons, a line search that uses an augmnented
Lagrangi an is propose_d.

This function follows quite naturally from the derivation_ of S
nmet hods and has superior properties when co'npared to an exact penalty or
Lagrangi an function. The augnented Lagrangian is applied successfully to
three exanple problens that present difficulties for current line search
techniques. G obal and |ocal convergence results are also presented which

are valid for all positive penalty paraneters in the augnented Lagrangi an.
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1. | NTRODUCTI ON

The nonl i near programm ng problemcan be witten as

(1.1) M n f(x)
X
8.t. g(x) £0
h(x) - 0
for f:R' «+ R
- g:I—'\-’n -« R"
h:R -« R

To solve this problem successive quadratic programming (SQP) al go-
rithme were first proposed as the SCOLVER nethods of WIson (1963) and
Beale (1967). However, these require second derivatives of the constraints
ahd objective function and initial estimates of the Kuhn-Tucker
mul tipliers.

A significant inprovement was made with the results of Grcia-
Pal onares and Mangasarian (1976). Here local convergence properties are
proved even if the Hessian in the quadratic program is approxinated by
sone positive definite updating schene. b

Han (1977) was able to show gl obal convergence properties by conduct -
ing an inexact mnimzation on an exact penalty function in the search
direction found by the quadratic program

The al gorithm proposed by Han and later nodified by Powel | (1977) is

the fol | owi ng: ’ .




1) " Solve the QP Mn  VET(4)d +} dvd
QCXl/\l) d )
s.t. g(xi) + Vg(xl)rd <0

h(x*) + VhCxY) ™ - 0
. L 11’,
vhere B™ is a quasi-Newton approximation to V;xL(x U gV T

Her e; L(xgugv)  f(x) +u'g(x) +v'h(x) and the multipliers (usv)
are found fromthe QP. '
T T
2) If ITvicx) Al o+ Ju® g{x")\ + jv! hCx')! $ € stop. Here ¢ >0 is sone

smal | Kuhn-Tucker tol erance.

3) Else, find a stepsize X such that

CP(x' 4 Xd) £ P(xY) + 8xp* (xh)
vhere S
(12 P = F(x) + X5 040180 )

Sj(!)+ " nax (Bj(x).o) s
PAxY) « VE(X)Td - Arjgj(X)+-JSjIh*x)! is an approx-

imatlon to the directional derivative of P(x)g

and 6 ¢ (0ql)

Wth Han's line search function, the vectors r and s have constant

el enents given by ) .

1= 1> [uvl .

where u,v are the nultipliers at the K-T point of (!e!).




Powel I 's inplenentation, which is not as restrictive on the penal ty

terns, defines the vectors r and s to be

re-a’-0
. m(ni, % (u; + r}-l))

i 1, 1 1 -1, :
'j'm(lvjhf(lvj""'j ))

+

However, Powell's inplenentation does not have the global convergence
properties shown by Han. .

Chanber lin (1979) gave two exanpl es where Powel|'s al gorithm cycled
between two vertices of the linearized constraints. Continued cycling in
the second problem even caused the Hessian matrix to becone unbounded.
However, Chanberlin et al. (1979) showed that wuse of Han's penalty
fun_cti on causes convergence to be. too slow in some cases.

To resolve sone of these difficulties, Chanberlin et al. (19%9)
proposed the watchdog technique. Here, an iryproverrent' in either the
Lagrangi an or exact penalty function is usually accepted during the line
search. However, if the exact penalty function does no;[ decr ease nono-
t.oni cally, only the exact penalty is used in succeeding |ine sear.ches. The
authors present superlinear convergence results for this nethod and show
the advantages of this mefhod over Han's function on a small exanple
pr obl em The wat chdog techni que, however, is harder to inplenent than the
Han or Powell algorithms and requires nore work, in general, during the

line search step.




The next section discusses the use of thé%,augnented Lagr angi an
function for the line search step. W will show that this follows quite
naturally from the developnent of earlier quasi-Newon -and augnent ed
Lagrangian algorithns. Desirable properties, especially in the equality
constrained case, are also discussed. The third section presents gl obal
and |ocal convergence results for this function by paralleling the globa
results of Han and recent local results of Boggs et al. (1982). In the
fourth section, ' the three above-nentioned problens of Chanberlin (1979)
and Chanberlin et al. (1979) are solved to illustrate the advantages of
augnmented Lagrangian over the Han and Powell inplenmentations. The |ast
section summarizes the results of the previous sections and suggests
further work in choosing the penalty paranmeter for the augnented

Lagrangi an functi on.




2. AUGMENTED LAGRANGIAN LINE SEARCHES

To motivate the presentation of this line search function, let us

first consider an equality constrained problem:

(2.1) Min  £(x)

s.t. h(x) = 0
Necessary optimality conditions can be written as:

VE(x) + Vh(x) V=0

h(x) = 0

which are simply stationary points with respect to x and v of the Lagrange

function:

L(x,v) = f(x) + h(x) v

If we augment this function with a penalty term:

(2.2) L (x,v,@) = £(x) + h(x) v + g h(x) Th(x)

we find that the augmented Lagrangian has the same stationary point as the
Lagrange function, regardless of the value of a, the penaltj parameter.
. This stationary point can be found by applying a Newton method to

v L‘(x,v,c).




Expandi ng L'(X9V9a) formally in a Taylor series with respect to x

and v about a point (xi,vi) cF?_k yi el ds:

L.(x,v.a) = L.(x",vi,a) + VL ‘(xi,vi,c)r[x-xi]
v-

Al el
o(|fcalD

Truncating the series after three terns and finding a stationary point

with respect to x and v, vyields:

' 1
<2.3) vL(x',v',a@) + VL ‘(xi.v*.a)f X-X' | =0
Lv-vi

Let (x-xi) be defined as a search direction d. Since

- b |

VL..(x,v, or) -Lvf(x) + W(v*a M(x) h(ii)J 1, .-
L >

VZL.(x.v.o) - |V clig (X V2) Vh(x) .

L wh(x) T 0

an;(x,v.a) = vzf (x) + *?h(x)v + o0 7h($<) Vh(x)r
+a(x)h(x),,

we can sinplify (2.3) tos
v L (xi.v.u) +v L (=Ii ,&eO-d -0
xa == a*

T
h(x) + vty d - 0




If the constraints are not highly nonlinear we can neglect
o\/zh(x)h(x), the last term in ", A*»Vnan# The above aquatjions can then

be expanded t o:

(2.4)-  VE(xY) +Vh(xYv + or VhCXY) h(xS
+ (sz(xi) + Vzh(:l:")v1 + o Vh(xi) Vh(x"))'rd =0

(2.5) g h(x}) +vh(xd d - o

Because of equation (2.5) it is clearly seen that the truncated

Newt on step for La(x,v, a) can be found by solving the follow ng quad-

ratic program

(2. 6) Mn  VE(x)*x + ) dT7 L(xYvY)d
dCR" -

. T
«t.  h(x') +VhexY) d- 0

Note that the solution to (2.6) is independent .of a (Han .- (1978),
Fl etcher (1974)). Since VxxL(xi, vi) i nvol ves cal cul ati on of second deriva-
tives we approximate this matrix by B, which is constructed by quasi-
Newt on updates to V“L(x, V).

The result is the fanmliar SQ@ algorithm for equal i.ty constrai ned
problens. Since this met hod follows from minimzation of an augmnent ed
Lagrangi an function, it is quite natural to .choose this function to

determ ne the stepwise X along the direction, d, c_hosen by the QP.




Inequalities can be included by allowing the QP to determine the

active set from linearizations of all the constraints. After solving the

P
Q. B) Hn o VExxh) ™ +i d'Bd
d

8(x') + ¥g(x) "~ * 0

h(xl) + Vh(x' ) * - 0

the stepsize along d can be found by mninzing a nodified augnented

Lagrangi an function:

(2.7) Lr<x,u v 0r) - f(x) + uTg(x) . + vih(x)

+ 2 s, neo| |2

vhere
8y(x), - max (Qgj (x))

us Vv - multipliers for
? and hg res egtively,
ound from Q x%B)

|| ¢ 11 - the Euclidean norm

The form of (2.7) ignores the inequality constraints unless they are

viol ated during the line search.

It is simlar to classical augmented Lagrange functions such as:

m
£x) + 35 ) [(og,(® +up] - ul

b
j.l .

¢ Tam + § lnel]?




(see Bertsekas (1974)). However; classical techniques or nmultiplier
methods are less efficient because they generally involve two nested
iterations. The inner iteration mnimzes the augnented Lagrangian for x
with ugv and o fixed, while the outer iteration updates u and v to
maxim ze the function. The penalty parameter is increased in the outer
iteration only if there is no decrease in the magnitude of constraint
vi ol ati ons.

O the ott-wer hand, by substituting (2.7) for the Iline search
functions of Han and Powell, we have a nmultiplier nethod that sinmnulta-
neously updates x, u and v.

The new line search function has several other advantages as well. A
maj or reason for performng a line search is to maintain or approach
f'easi bility'. The function used by Han and especially the one used by
Powel | may not suitably penalize constraint infeasibilities. The vectors r
and s are determined directly from the Kuhn-Tucker multipliers of a
quadratic program that handles |inearized constraints. Thus a violation of
a nonlinear constraint at x+d may be ignored if t he quadratic program does
not make this constraint active. Two exanples of this are given in Section
4« The augnented Lagrangi an has sirrilgr multiplier-related terns but also
contains a squared penalty term that enphasizes all of the constraint
infeasibilities. Because the (P solution is independent of a, we | can
make this penalty paraneter as high as needed to approach or nmaintain

feasibility in the line search.

Another inportant feature is the nunber of derivative discontin-
uities in the line search function. Wth P(x,r,s) each active constraint

has a discontinuous derivative at g(x) or h(x)=0 Wth L* only the u'rg(x)*
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tern contains derivative discontinuities. During the line search, the
stepsize can be found efficiently by mnimzing a quadratic function
fitted by values of the line search function at the two end points and the
directional derivative. If fewer derivative discontinuities are present,
the quadratic fit and the choice of stepsize will be nore accurate. For

the augnmented Lagrangian function, this is especially true if equality
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- 3. OONVERGENCE OF AUGMVENTED LAGRANG AN LI NE SEARCHES
VW begin by showing that the search direction found by the quadratic

program is- a descent direction for the augnented Lagrangi an function. This

will be used later for global and |ocal convergence proofs.

Lemma 3.1 (Demiyanov and Mal ozenov (1974), referred by Han (1977))

| f q.l, 1=1,...t are continuously differentiable functions from

R" « R and

() - 0y ()

then for any direction d, the upper directional derivative Ddt(x)

exi sts and
Dt (x) = max (Vg (x)'d)
i «l(x)
wher e
1(x) = {1]q(x) = 4(x)}
Theorem 3.1

Let f, g and h be continuously differentiable at x and B be a
positive definite and symmetric nxn mitrix. If (d,u,v) is a Kuhn-Tucker

triple of Qx,B) withd 4 0, then:

*
DLL (XfoVfOF) <0

Proof
Let I - (i:g(x) > 0} ‘
I.- (i:g(x) - 0}
I - {i:g(x) <0)

\(‘é wite the directional derivative of L* as
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(3. 1) DaL* (X, U, Vs<) - VE(x)Td + vIVh(x)'d

+ or (h'7h(x)Td) + 2“1 Vgi(x)rd
fe1

+ Z_ul Vgi(x):_d + o z gi(x)Vgi(x)Td
ie1 ie]

T
+ o z_8i (xy8j (x) 4d
46T

For the set |

gi(x) + o , 0 o si(x)+Vgi(x) +d 0
Fromthe quadratic program

(3.2) B + Vf(X) +Vg(x) u+W(x)v- 0

(3.3) (8 (x) + VB, (x)Td) = 0
u&ao

(3.4) g(x) +Vg(x)™dal 0

(3.5) h(x) + Vh(x)Td » 0

Fo the set T

T
UlRl(X) noon UI vgi(x) d
but gi(X) 'gi(X)+' 0

Hence 'ui(Vgi(z)Td) =0
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Since (%, (x)}4) = max (0, Vg, (x)"d)

T
Vgi(x)_._d-o from (3.4)
Equation (3.1) can be simplified to:

*
DL (x,u,v,0) = VE(x)d + vVh(x)d
+ & (hVh(x)Td) + Z“i Vgi(x)Td
iel
ra ) e (%, ]
i 81
iel :
Substituting (3.2) into (3.1) yields
D ﬂ*(x u,v,a) = -dThd - ’u vg (x)Td
d t et B 1 1
iel ’
+ a (b1Vh(x)'d) + a 2 g, Y8, (x)d
iel
Substituting (3.3) and (3.5) into the above equation gives'the inequality
I:Ir < d.'r d zu.
Dd (x’u’v’a) = B + a 1 81(‘)
iel
2 2
-a |lb@|l” - ) g

iel

A
Since B is positive definite u > 0, d # 0 and gi(x) <0, iel

*
LY -d"Bd + Z“i 8,(® - a |lg(),, hm||* <o

iel

and the theorem is proved.
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Corollary 3.1

If the search direction di 4 0 then Sa X > 0 such that
L&t + XdSuSvSa)-* [LAxSuSv?, *) - 6X00)
where we set 6+« 0.1

. i
and o «d Ba %afgx} o n(ahit?

V¢ continue with a perturbation |enma which is due to Daniel (1973). (See

al so Leinia 3.2, Han (1977).)

Lemma 3,2 (Theorem4.3, Daniel (1973))

. * 1 ]’* *]’
Let d minimze q(d) =2dBd +bd

>

s.t. Ad N a
A A
- c
and let d nininize
g(d) - j d Bd + b*d
s.t Ad* a
Then for any fixed norm||°||, there exist s > 0 and sonme 7 such that

A—. .
{|d-dj] = se
| f . i) I-it
b) B ls positive definite

c--x{lli-ill.‘lll-NI..IIE-CiI. laall ,
T TNET

Simlarly, we can establish a bound on the nultipliers by applyi ng this

wher e

lemma to th_e dual quadratic program
1 ~ T T = T T u) J
M n NG+ A+C)B (b+Au+Cv) - au-cv -
’ at. uz0 -
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The bounds on the nultipliers are therefore:

A A -
<ge V) - (u,v)|]| * tc

whenever e€C and £ ¢ max {llﬂ-ﬁ”. ||2-] |}
" T it ]
ere H =
L B i "1t
I AB Ha "|
r -
| Bhc
t >0

Theorem 3.2

Let f, g and h be continuously differentiate and:

W [2<x TBX<P||X]|? VX

for amea, P>0

Then any sequence {x } generated by the algorithmeither termnates at a
Kuhn- Tucker point of (1.1) or any accunul ati on poi nt X, sati sfying

t he Mangasari an- Fronmowi t z Constrai nt QJaI ification (MFCQ:

-

ﬂun"Ing(;)Tz < 0; kOK vhere K = {klsk(x)-- 0}
7h(x)z « 0

and Vh(?)r is linearly independent

i s a Kuhn-Tucker point of (1.1)..




16

Pr oof

If d'=0, then (x%, u', v!) satisfies Kuhn-Tucker conditions of (1.1)
and we are done. Suppose dt 0 then x*! = x! + xa! exists for some

X > 0 such that
LVA.USVY « *i/V.uSvSa) - 64

Let X be an accumulation point of x satisfying the constraint qual-

ification. If Bt is forned by wel | -known quasi - Newt on updates, then:'
{x} +X and {B!) -+ B

It follows from definition of B' and MFOQ that QX,TB) has a
Kuhn- Tucker point, d. If d =0 thenx is a Kuhn-Tucker point of (1.1)
and the theoremis proved. Suppose that d ~ 0. By Lemma 3.2 and the sol u-

tion of X,B):

Now if d 4 0 then {X}}.- 0 as {x'} +X.

W know that if L*(x,uv,a) is not .at an optimum 3 a X> 0

*

that gives the descent direction and a decrease inL . :

For some i > 1 we can find some XX > 0

!.*(xi + lid",u
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and because (Xi} s 0,3sone y > 1 such that:

L*( i + ﬂidi,ui,vl, x) > L (x ,ui,v ) - 6?16(!!1)

Witing a Tayl or series expansion on the last inequality gives
i

YA vxl.*(xi,u ,vi',a)'rdi + %10(11) > -GYMS(x")

or vttt eh T + ot > -s6(x)

From Theorem 3.1 we know t hat
' oxtulvhinTal < At

Since d* 40, d » dand X!« 0, for i >1 we wite:
0>-0.6rfcx!) & TyAxSuSv?, ¥) ** + ocxl) > -sseaty
or  0>-(0.6-6) A(xY) anLAx, *l xln)ielia(kl) 1o >0

which is a contradiction. Therefore d = 0 and the theoremis proved.

_ Local Convergence

This subsection relies heavily on recent convergence results of

Boggs et al. (1982). Here we assune that in a neighborhood around the

sol uti on:
a) | |30—'5c| | _<c for some e >0

b) the active constraint set (goh) remains fixed in this
nei ghbor hood

c) V. L(>'<-u- V) is positive definite.




*(oHTPIO = ||(1+7X)8]|| s¥sk1eue antes aqi L4

(z||,p||)o - ||(I+‘3)‘l|| snyy

| (12110 +
z -
PG (P + P (XU + () = (3

pu«

0= Pr(§X)da + ((x)g

' (g §£b moa3

* XA faiyuly s8I (x)SzA puv (x)qu ¥

{sjugerisucd L3y1enbauy aap3ide Iaw (X)8 Ixaym)

z(l l;PI l)o - ”(I_Hx)ﬂ“

z(“';pl [do = “(I_H:!)l[“

€°€ eiurnag

*par1dde o ueo (2861) *T® 39 s330g jo s"nsaa jeoox ag3 uagx * *
gnoge poogaoqqSjau agi uj x>X 3IeY3 nogs 01 AjBSsacau X|uo § i
e g JOQJ pasn azxe

RN o]
il wyy (9°¢)

0= o
flplatn' T, - 0|

:(*IB 39 sSSog aas) X"aadoad ag? aAeq icqi 'dia ?° S9i9

se qons 'sa®epdn uo™nad-Tsenb unou5|-na« 3»g3 annsse an uo™3fpp« uUX

81
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* Theorem 3.3

i

As d” ¢« 0 in sone nei ghbor hood about >-<- we have

L4 (X, v' a) - et oty s -sdx

vhere x1tooxt, d?
for sone i £ 1.
Pr oof
W can wite
i+1 1 1 * 1 1 1
I‘ (x sU SV @) = L (X ,u ,v ,a) =
1-!-1 :l. 1 1 1 1
L{x V) = L{x ,u ,v)
“ 41, 12 i 1.112
+§ dlge=™h ma*hH11° - s, b1
A + ¢+ 1 1
—vnet g gt + odl a4

- § Nseshy,, nehI®

by Tayl or series expansion and Lemma 3.3. Fromthe Q we know

i
v ‘[.(J:1 ,1.:1 ,vi)Tdi -d Tnldi

So
141 1 1 i 1 1
_L( ,u,v,)-L(x,u,v,cl)-
i
-:511 aTpl.v L(xi,ui,v"))d
2

-f IISC"V MxSII? + (117117

i
i
- (a3, g e, nehii?)

+o(l14!]1%
by (3.6).
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Thus, for sone i £ 1

i
) - 0.1 (d V' +orl1hed), syt
2 -1 @ et 4 alInahy, sy, 11
2 Lol v - el et
and the theoremis proved.
Finally we state tw theorems by Boggs et al. (1982) that prove

Q superlinear local convergence. Here we use the additional assunption

i —_— : T P T
that (B -VxxL(x,u,v)) projected into the null space of z = Vg(l)]
' h(x)
i s bounded, or
(3.7) [IPOX) (B - A(x.u.v))!I! <& (xl).

for some f >0

-1

wher e F(x) | -z (z2z) z ¢ the projection matrix.’

Theorem 3.4

Let Bisatisfy | | Bi|| <n for sone n>0. If

||x'i-;j | <c for some ¢ >0
and if (3.7) holds fory i ™I,

then the sequence {xi} generated by successive quadratic progranm ng and

X=I is well defined and converges linearly t oX.

Pr oof

(See Theorem3.3 in Boggs et al. (1982).)
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Theor em 3«5
| f VxxL(Y,'J,-v') is positive definite and the BY are obtained by
updating fornulas, such as DFP or BFGS, that possess the property (3.6)

and if {xi} converges linearly to X, then the convergence is Q superlinear.

Pr oof

(See Theorem 3.2 in Boggs et al. (1982).)
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" 4. EXAMPLE PROBLEMS

In this section we demonstrate the superiority of an augmented
Lagrangian line search on three example p.roblems. The first problem was
given by Chamberlin et al (1979) to show the slow convergence of Han's
exact penalty function. In that example, using the watchdog technique
leads to faster convergence.

In the last two examples, due to Chamberlin (1979), cycling is
observed when Pc;well's line search function is used. The cycling problems
are caused by violations of nonlinear constraints that the quadratic
programming step determined to be inactive. Cycling in the last example
also cau’ses the Hessian matrix and quadratic programming shadow prices to
become unbounded. |

On all. three examples, using the augmented La;gtangian line search

function eliminates the problems encountered with other 1line search

functions.

a. Slow convergence with exact penalty function line search
(see Chamberlin et al. (1979)).

2

Consider the problem Min F(x) = X, + ?(xi +x, - 1)
2 2
s.t. cl(x) =x + x, - 1=0

The solution can be seen by inspection as: x -[1 ],

K cos ©
Let x = and assune
sin 0

no errors are made in approximating the matrix

2
cosd + sin' ©
v I.(x*,v*) =1 . xk'u is therefore - xk +d
- Xx sin6[1-cos6]
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" As nentioned by Chanberlin et ai. (1979); it follows that for any small

positive nunber c,

| X x*| | and the ratio

Xt ] x|

can be nade less than e if 6 is chosen sufficiently snall*

Fromthe definition of P(x)

‘ p(x*) « -cose

V41 2 2

P(x ) - -cose -sine+ (T+s) sin6 °

For reduction to occur in P(xk+1

),

(4.1) T-- 8<1 o

Li kewi se the Lagrangi an and augnented Lagrangi an functions are given by:

L(XEV) « -cose

I.’(%?+1 V) * -cbse -sl n2e t 1

C
-
*

L (xkfvfor) » -Cose

L*(x*"Lv) - -cose -sm%e + (£2528l02e ) 4 | yinte

and the multiplier on the constraint c_ is: -
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Since s £ |v] £0 for either the Powell or Han line search func-
tions, P(x***) does not decrease at xk** if .t >1 It can easily be
seen that the Lagrangi an decreases at xk+1 and the augrmented Lagrangi an

al so decreases as long as

2(1 - =528,

cr<
(1L - cos?6)

(Note that thi s‘ upper bound is always greater than 1. Also as 8 « 0

k * *
(x is arbitrarily close to x ) then for a reduction in L to occur at
k+1 -
X o nay take any positive val ue*)
Moreover, if x is too large the penalty function nmay not even be
o * N _ o
mnimzed at x=x ¢ If we set x at | I with |h < 1 but arbitrarily

Lol
close to 1.

P(x") « . pt (Is - (1 - h")

and a derivative discontinuity occurs at h=l. Hence,

P(xh) is mnmzed at h « 1 when

- 1-2h(s - T)'£0

or

(4.2) OfcT - 12

Note that the two bounds on s [(4.1) and (4.2)] are inconsistent if
x > 3/4. Since the optinmumis independent of the parameter T we also need
a line search that is unaffected by x.

Both the Lagrangian and augnented Lagrangian functions are unaf-

h l‘] and using

-
fected by T. Starting at x= = |
. Lo
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2
B« I, we have d'%)'

and V«-"_[h2+2h-|] - T

4h
The functions are therefore:
L(hiv) - - h+-K[h*+2h - 1] (h*- 1)
L*(hfvta) - - h+-\ Ch?+ 2h - [] (h2- 1) +f_(h2- I)2

4h™

Thus, both functions are mninized at h=l (xh = x*) for any a in L*o

This problem illustrates how the Lagrang;i an and augnented Lagrangi an
line searches are independent of T and converge to x*- Hence the conver-
gence problens of exact penalty functions are avoided. The next tw
problenms illustrate how the augnented Lagrangi an line _search (for appropri-

ate values of a) prevents cycling due to changing active sets of nonlin-

ear constraints.

b. The Probl em Mn xi

s.t. . cl(x) - a(xk) - Xp * 0

C2(x) - a(l-x1) - x2*0

lihere a(x) * 2x? - x8
o_To? 1 "7
cycl es between x =1 I ;and x™ =1 _if Powell's line search function
L0J™* ToJ
is used. .
0
Let zo-[o] BO-I
c?-0 £0.a
eo-l
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ro" i il
+

The solution to the quadratic programgives u°«|

J d=x =L 0J
0 - -
and r‘B_II- | JI 1

[ "'.J,';[:]""

r(xosro) =1 F (XO’ rO) ==-1

L(xo,uo) =1 I.'(xo,uo) = ol

el =1 +§ L« (X°, ¢’ \a) = = @+ 1)

where ' is the directional derivative Vx<de.

The Armijo inequality holds for P(xf",ro) and L(xo, uo) for the step--

size, X=1
?(xl.ro) = l’(xo,ro) + 8 P'(xo,ro)
L(x-l.uo) s L(X°,U°) + 8 L' ,ud).
both become 0*1-6

where 6 is set to 0.1 by Powell (1977). The augnented Lagrangi an line

search does not satisfy the inequality

L*(x%utoor) * L gxleuo,or) + AL#(XUPU fgr) f
(vhichis |"1+|--5(¢+1)) »

as long as a>I1/A-1 . °
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Simlarly, during the next iteration with

0 - [ ' ] ® M)mlins unchanged at |
L} . ’ L} [} .

~M-ra Ha na

(sane as starting pt.)

Prorh) -1 L<xV) -1 . LV. ut) -1 +f
2 1 . 2 1 ' * 21
P(x ,r) - U2 L(x ,u) -0 L (X .«) - a2

PoOrl) - -1 Loty - -1 L' Al +hy - = (1 + a)

The Armjo inequality holds for P(x,r) and L(x,r) at X - 1,

r(xz,rl) = r(xl,rl) + 8 P'(xl,tl)

(/2«1 -6 for 6 «[0,1/2])

Lo <V Uk T + 6L (XN
(Oil-1 for 6al0l])

but does not hold for L’ix,u,a):

telole) s et el + 6L el

(Z<1+f- gl+ar))

if a>1/6-1. Consequently, for an appropriate choice of a, the augnented

Lagrangian wi ||l prevent cycling between the above two infeasible poi nts.
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Setting Bozl, x°=0, 6=0.1, the penalty paraneter, a, at 10,

and minimzing a quadratic function along the rc direciion, this op-
L1 ﬂ
timzation problem converges to the optimm | <!|r -3 I |
375, 1]

\

erations, if augnented Lagrangian line searches are used. Sinmilar results

in four it-

are obtained with a=100. Table 1 lists the iterations for both val ues of

a. As seen fromthe table, performance in both cases is quite efficient.

c. In this problem cycling between two infeasible points also

causes the Hessian and the multiplier to beconme unbounded.

Kin y (constant)
s.t. cl(x) e -b(x)'£0

ca(X) - -b(l-x)-£ 0

vhere b(x) « -1+x+zx-zx3
for z 2 4
_Begi nni ng at x0 = 0 and B0 = 0, we have
'oHi) o"o’[:] o-o[:] d=1
L*<x®su°, or) - & +al2 P(x°,r°) - 0
LV. U%, *) - a2 : P A =0
L (x°,u°,8) - - O+d P(xe,rf) = -8
L J°)-P
l.(xlf‘o) -0

ved, ) --P
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For the penalty and Lagrangi an functions, the line search is satis-

fledat d =1, (X=1) *

L ®) FLOXC, W) +6L (X0 «)
W P(x°,1°) + 6 P(x°u)
(0* P(I-fi)) for 6 «[0,1]

For the augnented Lagrangi an, the inequality

UOd Dy« L(x% %) +6 17 (x8ule)
(o/2a p+o/2- 6(P+a))

is not satisfied, if ais chosen > (1-6)6/6. Sinmlarly for the second

iteration, at x=

IR R

am=-1 , X2-X°-0

P(x* r') - pz M(l,!il) - pz
P(x?,rS - P2 L(x*u') -0
Ao (xtAhy - - Pz L' Cx'M) - - pz

lf(x!,ul.u) = 8z + /2
A(x2, *xIn) a2
Lx* (x',ii'7) - - (pz + or)

and the line search using a penalty or Lagrange function is satisfied at

the initial point of the cycle. Again, the augnented Lagrangian |ine

search breaks this cycle if the penalty paraneter

a>(l - 6) pz/6
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Setting B8=1, 2=4, y=0, x°=0, §=0.1 and the penalty parameter, a,
to 10, and minimizing a quadratic along the search direction, the problem
convergés to the optimum (x=0.5) in five iterations, if ;ugmented
Lagrangian line searches are used. With a=100 only four iterations are
required for convergence. The results of both cases are given in Table 2

and show efficient performance.
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5. CONCLUSI ONS

Wth the augnmented Lagrangian line search the difficulties of previ- _
ously inplenmented line search functions appear to be elimnated. As shown
in the exanple problens, this line search function does not retard the
superlinear convergence of SQ nmethods, as Han's (and Powell's) penalty
function can, and the augnented Lagrangi an accurately penalizes infeasible
nonlinear constraints that are left inactive by the quadratic program

Usi ng the- augnmented Lagrangian line search with SQ has been shown
in Section 2 tb be an efficient irrplerrentation of classical multiplier
nmet hods. Here the variables and nultipliers are updated sinultaneously. It
should be nentioned that although nmultiplier nethods may require many
unconstrained mnimzations, they do have paranetrically superlinear
conver gence properties.

In addition the augmented Lagrangian has fewer derivative discon-
tinuities than the Han or Powel | penalty functions. Especially in the
equal ity constrained case, this neans that better quadratic approximations
are possible during a line search and nore*" exe;ct L line search nininiza-
tions will be perfornmed.

' In Section 3 we presented Iocal\ and gl obal convergence results that -
do ' not depend on o as long as a £0. Aso, since the 'QD sol ution di
is independent of a, a large value of a does not ‘affect th_e direction
of the algorithm The exanple problens in Section 4, however, require some
bound on a which is problem dependent but generally quite reasonébl e. A

heuristic that may be enployed in choosing a would be to set

at*! - arl1 @) for sore vl

i g0, hogXMY | * H.CY) . hoeh) 11 + ¢ .
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He_re, C> 0 is chosen so that SQP converges superlinearly when the
constraint violations are snall, but prevents much larger constraint
violations from occurring. Controlling this paraneter provides.a tradeoff
bet ween achi eving good convergence close to the solution and approaching

the optinum efficiently when large initial constraint violations are

present .
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TABLE 1

Problemb Solved vith Augnented Lagrangi an Li ne Searches

a= 10

i i 1 i * { 4
| x5 X2 51(: ) e, (x7) L (x ,u,a)
1 0 0 0 1.0 6.0
2 0.55 0 0. 4386 O 3139 1. 6775
3 0. 4998 0. 3737 1. 0086«10~3 1.5116-10"3 0. 37496
4* 0. 5000 0. 3750 1.49-10"8 1.49-10"8 0. 375
a - 100
1 i i 1 * {1 1
i Xy X, cl(x ) cz(x ) L (x ,u ,o)
1 0 0 0 1.0 51.0
2 0. 5050 0 0. 38126 0. 36876 14. 583
3 0. 500 0. 37499 1.225+10"° 1.275' 10*° 0. 375002
4 12 3/8 0 0 3/8

*Wthin specified KKT tolerance (10"°)

(Results obtained using double precision on a DEC 20 conputer., The "O s"
in the iterations denote no significant digits remaining.)




a ¢°

TABU 2

problemc Solved vlth Augnented Lagrangi an Li he Searches

’ Q-10

h 4 .
i ™ . cl(xi') \V* L ) et ol
1 0 10 0. 6.0
2 0.55 -. 0945 0. 1045 0. 55065
3 0. 5018 . 00367 _0.00369 6.834-10"°
4 * 0.5000 -6.72-Hf ® 6. 72' UT® 2.259-10'1°
5 12 0 0 0

a- 100
1 xl (xS cptxh) “ * (x\ us
1 0 1.0 0 51.0
2 0. 505 9.949¢j 0-° 1.0049- i 0- 2 5. 0546- | 0-°
3 0. 5000 -4.85+] 0-° 4.85-10"° 1.1764- 1 0-
4 12 0 0 0
4 (Resul ts obtai ned usi ng doubl e precision on a DEC 20 conputer. The |ast
! ~lteration shows no significant digits remaining for 0.)




