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ABSTRACT

Successive- quadratic programming (SQP) algorithms have been effec-

tive and efficient in solving nonlinearly constrained optimization prob-

lems. To guarantee global convergence, however, a line search must be per-

formed after solving the quadratic program.

The line search terminates when a step size is. found which causes a

suitable decrease in an exact penalty or Lagrangian function. Because of

some problems with these functions, a line search that uses an augmented

Lagrangian is proposed.

This function follows quite naturally from the derivation of SQP

methods and has superior properties when compared to an exact penalty or

Lagrangian function. The augmented Lagrangian is applied successfully to

three example problems that present difficulties for current line search

techniques. Global and local convergence results are also presented which

are valid for all positive penalty parameters in the augmented Lagrangian.
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1• INTRODUCTION

The nonlinear programming problem can be written as

(1.1) Mln f(x)
x

8.t. g(x) £ 0

h(x) - 0

for f:Rn •+ R

g:Rn -• Rm

h:R -• R

To solve this problem, successive quadratic programming (SQP) algo-

rithms were first proposed as the SOLVER methods of Wilson (1963) and

Beale (1967). However, these require second derivatives of the constraints

and objective function and initial estimates of the Kuhn-Tucker

multipliers.

A significant improvement was made with the results of Garcia-

Palomares and Mangasarian (1976). Here local convergence properties are

proved even if the Hessian in the quadratic program is approximated by

some positive definite updating scheme. ' '

Han (1977) was able to show global convergence properties by conduct-

ing an inexact minimization on an exact penalty function in the search

direction found by the quadratic program.

The algorithm proposed by Han and later modified by Powell (1977) is

the following:



I •

1) Solve the QP: Min VfT(X
i)d + j d V d

QCx1^1) d

h(x*) + VhCx1)1^ - 0

vhere B is a quasi-Newton approximation to V L(x 9u 9v )•

Heref L(x9u9v) • f(x) + u
Tg(x) + vTh(x) and the multipliers (ufv)

are found from the QP.

T T

2) If IvfCx1)^! + |u4 g{xl)\ + jv1 hCx1)! $ € f stop. Here c > 0 is some

small Kuhn-Tucker tolerance.

3) Else, find a stepsize X such that

P(xi 4- Xd)

vhere

(1.2) P(x) = f (x) + X rj 8j ( x )+ +I 8j' hj ( x )l f

max

P^x1) « Vf(x)Td - ̂ r j g j(x) + - J Sjlh^x)! is an approx-

imatlon to the directional derivative of P(x)9

and 6 c (09l)

With Han's line search function, the vectors r and s have constant

elements given by

r] - s] > | |u,v| |.

where u,v are the multipliers at the K-T point of (!•!).



Powell's implementation, which is not as restrictive on the penalty

terms, defines the vectors r and s to be

r° - a0 - 0

However, Powell's implementation does not have the global convergence

properties shown by Han.

Chamber1in (1979) gave two examples where Powell's algorithm cycled

between two vertices of the linearized constraints. Continued cycling in

the second problem even caused the Hessian matrix to become unbounded.

However, Chamberlin et al. (1979) showed that use of Han's penalty

function causes convergence to be. too slow in some cases.

To resolve some of these difficulties, Chamberlin et al. (1979)

proposed the watchdog technique. Here, an improvement in either the

Lagrangian or exact penalty function is usually accepted during the line

search. However, if the exact penalty function does not decrease mono-

tonically, only the exact penalty is used in succeeding line searches. The

authors present superlinear convergence results for this method and show

the advantages of this method over Han's function on a small example

problem. The watchdog technique, however, is harder to implement than the

Han or Powell algorithms and requires more work, in general, during the

line search step.



The next section discusses the use of the% augmented Lagrangian

function for the line search step. We will show that this follows quite

naturally from the development of earlier quasi-Newton and augmented

Lagrangian algorithms. Desirable properties, especially in the equality

constrained case, are also discussed. The third section presents global

and local convergence results for this function by paralleling the global

results of Han and recent local results of Boggs et al. (1982). In the

fourth section, ' the three above-mentioned problems of Chamberlin (1979)

and Chamberlin et al. (1979) are solved to illustrate the advantages of

augmented Lagrangian over the Han and Powell implementations. The last

section summarizes the results of the previous sections and suggests

further work in choosing the penalty parameter for the augmented

Lagrangian function.



2. AUGMENTED LAGRANGIAN LINE SEARCHES

To motivate the presentation of this line search function, let us

first consider an equality constrained problem:

(2.1) Mi* f(x)

s.t. h(x) « 0

Necessary optimality conditions can be written as:

Vf(x) + *h(x) v « 0

h(x) « 0

which are simply stationary points with respect to x and v of the Lagrange

function:
«

L(xfv) - f(x) + h(x)
Tv

If we augment this function with a penalty term:

(2.2) La(xfv,or) - f(x) + h(x)
Tv + f h(x)Th(x)

we find that the augmented Lagrangian has the same stationary point as the

Lagrange function, regardless of the value of a, the penalty parameter.

This stationary point can be found by applying a Newton method to



Expanding L (x9v9a) formally in a Taylor series with respect to x

and v about a point (x ,v ) cR yields:

[ 1 T

x-x1
 V2L i v i

••(IfcaiD
x-x

v-v

Truncating the series after three terms and finding a stationary point

with respect to x and v, yields:

<2.3) + V l x-x1

Lv-v

Let (x-x ) be defined as a search direction d. Since

VL (x,v,or) -1 vf (x) + Vh(x)v + a ̂ h(x) h(x) I

L h(*> J
V2L (x.v.o) -

L Vh(x)J
, and

f (x) + ^2h(x)v + o 7h(x)

or ̂ ( x ) h(x) , ,

we can simplify (2.3) to

.AeO'd - 0

h(x4) + d - 0



If the constraints are not highly nonlinear we can neglect

oV h(x)h(x), the last term in 7 x x
L^ x» v» a^ # The a b o v e equations can then

be expanded to:

(2.4) Vf(x1) + Vh(x1)v + or VhCx1) h(xS

i 1 T
(2.5) h(xx) + Vh(xx) d - 0

Because of equation (2.5) it is clearly seen that the truncated

Newton step for L (x,v,a) can be found by solving the following quad-

ratic program:

(2.6) Min Vf(x1)** + \ dT7 L(x1fv
1)d

dCRn

«.t. h(xi) + VhCx1) d - 0

Note that the solution to (2.6) is independent of a (Han (1978),

Fletcher (1974)). Since V L(x ,v ) involves calculation of second deriva-

tives we approximate this matrix by B, which is constructed by qua si-

Newton updates to V L(x,v).

The result is the familiar SQP algorithm for equality constrained

problems. Since this method follows from minimization of an augmented

Lagrangian function, it is quite natural to choose this function to

determine the stepwise X along the direction, d, chosen by the QP.
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Inequalities can be included by allowing the QP to determine the

active set from linearizations of all the constraints. After solving the

QP:

Q^.B) Hin VfXx1)1^ + i dTBd
d Z

1 1 ) ^ * 0

1 ) ^ - 0

the stepsize along d can be found by minimizing a modified augmented

Lagrangian function:

(2.7) L*<x,u,v,or) - f(x) + uTg(x)+ +

vhere

(Ofgj(x))

ufv - multipliers for
g and h9 respectively,
found from Q(x 9B)

II • 11 - the Euclidean norm

The form of (2.7) ignores the inequality constraints unless they are

violated during the line search.

It is similar to classical augmented Lagrange functions such as:

+ •



(see Bertsekas (1974)). Howevert classical techniques or multiplier

methods are less efficient because they generally involve two nested

iterations. The inner iteration minimizes the augmented Lagrangian for x

with u9v and o fixed, while the outer iteration updates u and v to

maximize the function. The penalty parameter is increased in the outer

iteration only if there is no decrease in the magnitude of constraint

violations.

On the other hand, by substituting (2.7) for the line search

functions of Han and Powell, we have a multiplier method that simulta-

neously updates x, u and v.

The new line search function has several other advantages as well. A

major reason for performing a line search is to maintain or approach

feasibility. The function used by Han and especially the one used by

Powell may not suitably penalize constraint infeasibilities. The vectors r

and s are determined directly from the Kuhn-Tucker multipliers of a

quadratic program that handles linearized constraints. Thus a violation of

a nonlinear constraint at x+d may be ignored if the quadratic program does

not make this constraint active. Two examples of this are given in Section

4« The augmented Lagrangian has similar multiplier-related terms but also

contains a squared penalty term that emphasizes all of the constraint

infeasibilities. Because the QP solution is independent of a, we can

make this penalty parameter as high as needed to approach or maintain

feasibility in the line search.

Another important feature is the number of derivative discontin-

uities in the line search function. With P(x,r,s) each active constraint

has a discontinuous derivative at g(x) or h(x)=O. With L only the u g(x)
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tern contains derivative discontinuities. During the line search, the

stepsize can be found efficiently by minimizing a quadratic function

fitted by values of the line search function at the two end points and the

directional derivative. If fewer derivative discontinuities are present,

the quadratic fit and the choice of stepsize will be more accurate. For

the augmented Lagrangian function, this is especially true if equality
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3. CONVERGENCE OF AUGMENTED LAGRANGIAN LINE SEARCHES

We begin by showing that the search direction found by the quadratic

program is a descent direction for the augmented Lagrangian function. This

will be used later for global and local convergence proofs.

Lemma 3.1 (Dem'yanov and Malozemov (1974), referred by Han (1977))

If q., 1=1,...t are continuously differentiable functions from

Rn • R and

• (x) - max Cq.(x)}
i *i

then for any direction d, the upper directional derivative D.t(x)

exists and

(vq (x)Td)max
i«I(x)

where

Theorem 3.1

Let f, g and h be continuously differentiable at x and B be a

positive definite and symmetric nxn matrix. If (d,u,v) is a Kuhn-Tucker

triple of Q(x,B) with d 4 0, then:

D,L (xfufvfor) < 0

Let I - (i:g(x) > 0}

I - (i:g(x) - 0}
I - {i:g(x) < 0)

We write the directional derivative of L
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(3.1) DdL*(x,u,v§«) - Vf(x)
Td

or (hT7h(x)Td)

8i ( xV 8i ( x )+ d

For the set I

S°

From the quadratic program

(3.2) BTd + Vf(x) + Vg(x) u + Vh(x)v - 0

(3.3) «1(8l

u & 0

(3.4) g(x) + Vg(x)Td a! 0

(3.5) h(x) + Vh(x)Td » 0

F"or the set T

U1 R1 ( X ) " "Ui

but gi(x) - g i(x) + - 0

Hence
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Since (ifcjWj*) - max (0, Vgt(x)
Td)

£rom <3'4>

Equation (3.1) can be simplified to:

DdL*(x,u,v,a) - Vf(x)
Td + vTVh(x)Td

+ a (hTvh(x)Td) +

Substituting (3.2) into (3.1) yields

DdL*(x,u,v,o) - -d
TBd - ^

+ a (hTvh(x)Td) + « X 8i

Substituting (3.3) and (3.5) into the above equation gives the inequality
«

DdL*(x,u,v,er) < -d
TBd + /_ u t gĵ C*)

- a ||h(x)||2 -a J gt(x)
ici

Since B is positive definite u > 0, d £ 0 and g.(x) < 0, iel

V * - "dTBd + I*ui 8i ( x ) " a

and the theorem is proved.
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Corollary 3.1

If the search direction d 4 0 then S a X > 0 such that

, + X dSuSvSa)-* L^xSuSv1,*) - 6X4CX1)

where we set 6 • 0.1

i T 1 II 1and 0(x ) « d Bd + a \ | g(x ) 9 h(a

We continue with a perturbation lemma which is due to Daniel (1973). (See

also Leimia 3.2, Han (1977).)

Lemna 3,2 (Theorem 4.3, Daniel (1973))

* 1 T* *T
Let d minimize q(d) = ± d Bd + b d

s.t. Ad ̂  a
A A
Cd • c

and let d minimize

q(d) - j d Bd + bxd

s.t. Ad * a

Then for any fixed norm ||°||, there exist s > 0 and some 7 such that

A —. .

If i) l i t

b) B Is positive definite

where

1-A|I. Ilc-C
bb

Similarly, we can establish a bound on the multipliers by applying this

lemma to the dual quadratic program:

1 ~. T T —1 T T T T
Min ^ G> + A x

u + Cv) B (b + A u + C v) - a u - c v
a.t. u > 0
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The bounds on the multipliers are therefore:

A A
!!<«• v) - (u,v)|| * tc

whenever

where

c and € • max

H
L CB i

f AB'H-a "

L CB'^-c _

t > 0

Theorem 3.2

Let f, g and h be continuously differentiate and:

« I W | 2 < * T B x < P | | x | | 2 , V x

for some a, P > 0

Then any sequence {x } generated by the algorithm either terminates at a

Kuhn-Tucker point of (1.1) or any accumulation point x, satisfying

the Mangasarian-Fromowitz Constraint Qualification (MFCQ):

z < 0 f kCK vhere K

7h(x)Tz « 0

and Vh(x) is linearly independent

is a Kuhn-Tucker point of (1.1).
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Proof

If di=0, then (x1, u1, v1) satisfies Kuhn-Tucker conditions of (1.1)

and we are done. Suppose d ^ 0 then x = x + Xd exists for some

X > 0 such that

L V ^ . U S V 1 , «) * i/V.uSvSa) - 6X4

Let x be an accumulation point of x satisfying the constraint qual-

ification. If B is formed by well-known quasi-Newton updates, then:'

{x1} + x and {B1) -• B

It follows from definition of B and MFCQ that Q(x,B) has a

Kuhn-Tucker point, d. If d = 0 then x is a Kuhn-Tucker point of (1.1)

and the theorem is proved. Suppose that d ^ 0. By Lemma 3.2 and the solu-

tion of Q(x,B):

d1 •* d i

u •• u

Now if d 4 0 then {X1}.- 0 as {x1} + x.

We know that if L (x,u,v,a) is not .at an optimum, 3 a X > 0

- *
that gives the descent direction and a decrease in L . -

For some i > I we can find some X > 0
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and because (X } •*• 0,3some y > 1 such that:

Writing a Taylor series expansion on the last inequality gives

> -

From Theorem 3.1 we know that

< ^

Since d1 4 0, dl • d and X1 • 0, for i > I we write:

o > -0.6 rfcx1) & Ty^xSuSv1,*)** + ocx1) >

or 0 > -(0.6-6) ^(x1) a ̂ L^x 1,* 1,* 1.") 1* 1 + ̂ (x1) + ©'(X1) > 0

which is a contradiction. Therefore d = 0 and the theorem is proved.

Local Convergence

This subsection relies heavily on recent convergence results of

Boggs et al. (1982). Here we assume that in a neighborhood around the

solution:

a) | |3C*—ac| | < c for some e > 0

b) the active constraint set (g9h) remains fixed in this
neighborhood

c) V L(x,u,v) is positive definite.



•(2HTPll)O = | | ( I + T X ) 8 | | antes aqi

pu«
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eiurnaq
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s33og jo s^nsaa jeoox aq3 uaqx * x

noqs 01 AjBSsaoau X|uo sj ^i
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Theorem 3.3

As d • 0 in some neighborhood about x, we have

L*(xi+I,vl,a) -

vhere x 1 + 1 - x1
 + d

1

for some i £ I.

Proof

We can write

•« ^ > d + "2 + odId1!|

by Taylor series expansion and Lemma 3.3. From the QP we know:

So

2 2

f IISC^V MxSlI2 + 0(11^113)

by (3.6).
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Thus, for some i £

-ft^x1) - -0.1 (d V d l + orllhCx1),

and the theorem is proved.

Finally we state two theorems by Boggs et al. (1982) that prove

Q-superlinear local convergence. Here we use the additional assumption

i — — — T P
that (B -V L(x,u,v)) projected into the null space of z =1 Vg(x)

is bounded, or

(3.7) ||P(X)(B1 - ^ ( x . u . v ) ) ! !

for some f > 0

(xl)

where T T

I - z (z z) z 9 the projection matrix.

Theorem 3.4

Let B satisfy || B || < n for some n > 0. If

j | < c for some c > 0

and if (3.7) holds for y i ̂  I,

then the sequence {x } generated by successive quadratic programming and

X=l is well defined and converges linearly tox.

Proof

(See Theorem 3.3 in Boggs et al. (1982).)
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Theorem 3«5

If V L(x,u,v) is positive definite and the B are obtained by

updating formulas, such as DFP or BFGS, that possess the property (3.6)

and if {x } converges linearly to x, then the convergence is Q-superlinear.

Proof

(See Theorem 3.2 in Boggs et al. (1982).)
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4. EXAMPLE PROBLEMS

In this section we demonstrate the superiority of an augmented

Lagrangian line search on three example problems. The first problem was

given by Chamber 1 in et al (1979) to show the slow convergence of Han's

exact penalty function. In that example, using the watchdog technique

leads to faster convergence.

In the last two examples, due to Charoberlin (1979), cycling is

observed when Powell's line search function is used. The cycling problems

are caused by violations of nonlinear constraints that the quadratic

programming step determined to be inactive. Cycling in the last example

also causes the Hessian matrix and quadratic programming shadow prices to

become unbounded.

On all three examples, using the augmented Lagrangian line search

function eliminates the problems encountered with other line search

functions.

a. Slow convergence with exact penalty function line search
(see Chamber1in et al. (1979)).

2 2
Consider the problem Min F(x) « -Xj + T(x. -i- xt - 1)

2 2
s.t. Cj(x) « Xj + x2 - 1 - 0

The solution can be seen by inspection as: ••[:]•
Let

"cos 0

sin 6
and assune

no errors are made in approximating the matrix

V L(x*,v*) - I . x k + 1 is therefore[ cose + sin 9 1 v v
- x* + d*

sineCl-cose] J
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As mentioned by Chamberlin et ai. (1979)f it follows that for any small

positive number c,

I|xk-x*|I and the ratio ||xk+1-x*||/||xk-x*l

can be made less than e if 6 is chosen sufficiently small*

From the definition of P(x)

p(xk) « -cose

V4-1 2 2
P(x ) - -cose -sin e + (T + s) sin 6

k+1
For reduction to occur in P(x ),

(4.1) T -I- 8 < 1 •

Likewise the Lagrangian and augmented Lagrangian functions are given by:

L(x tv) • -cose

,, k+1 x ft . 2. ^ f cose sln2e "NL(x fv) * -cose -sin e + I = J

L (x fvfor) » -cose

L*(xk+1,v) - -cose -sm2e + ( c o s 9
2

8 l n 2 e ) + I »in4e

and the multiplier on the constraint c is:

cose
2 " T
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Since s £ |v| £ 0 for either the Powell or Han line search func-

tions, P(xk**) does not decrease at x ** if t > 1. It can easily be

k+1
seen that the Lagrangian decreases at x and the augmented Lagrangian

also decreases as long as

2(1 -

cr<
- cos26)

(Note that this upper bound is always greater than 1. Also as 8 • 0

k * *
(x is arbitrarily close to x ) then for a reduction in L to occur at
k+1
x o may take any positive value*)

Moreover, if x is too large the penalty function may not even be

minimized at x=x • If we set x at I I with |h| < 1 but arbitrarily

close to 1.

) « . h + (s -

and a derivative discontinuity occurs at h=l. Hence,

or

P(x ) is minimized at h « 1 when

- 1 - 2h(s - T) £ 0

(4.2) 0 fc T - 1/2

Note that the two bounds on s [(4.1) and (4.2)] are inconsistent if

x > 3/4. Since the optimum is independent of the parameter T we also need

a line search that is unaffected by x.

Both the Lagrangian and augmented Lagrangian functions are unaf-

fected by T. Starting at x = I and using



B « I, we have
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and v « - ^ [h2 + 2h - l] - T
4h

The functions are therefore:

L(hfv) - - h + -K [h
2 + 2h - 1] (h2 - 1)

L*(hfvta) - - h + -\ Ch
2 + 2h - l] (h2 - 1) + f (h2 - I)2

4h

Thus, both functions are minimized at h=l (x = x ) for any a in L •

This problem illustrates how the Lagrangian and augmented Lagrangian

line searches are independent of T and converge to x • Hence the conver-

gence problems of exact penalty functions are avoided. The next two

problems illustrate how the augmented Lagrangian line search (for appropri-

ate values of a) prevents cycling due to changing active sets of nonlin-

ear constraints.

b. The Problem Min x_

- a(x,) - xo * 0

c2(x) - a(l-x1) - x2 * 0

lihere a(x) * 2x2 - x3

cycles between x =1 I and x =1 I if Powell's line search function
L 0 J L 0 J

is used.

c? - 0 £0 . a
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The solution to the quadratic program gives u «| ± I d=x = I 0 J

3 I I -

' ' • ' • [ : ] " "
F'(x°,r0)

L*« (x°,«°,

T
where •' is the directional derivative V <i d.

The Armijo inequality holds for P(x ,r ) and L(x ,u ) for the step-

size, X = 1

L(x°,u°)

both become 0 * 1 - 6

where 6 is set to 0.1 by Powell (1977). The augmented Lagrangian line

search does not satisfy the inequality

* 1 0 * 0 0 * 0 0
L (x\u tor) * L (x

u
fu ,or) + A L

 f(xu
tu fcr) f

(vhich is | ̂  1 + | -

as long as a > I/A - 1 .
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Similarly, during the next iteration with

lins unchanged at I.•-[;]..•»

2
x m -ra Ha na

(same as starting pt.)

P^.r1) - 1 L<xV) - 1 L V . U 1 ) -1 + f
2 1 . 2 1 * 2 1

P(x ,r ) - 1/2 L(x ,u ) - 0 L (x .« ) - a/2
P'O^.r1) - - 1 L'Cx1,!!1) - - 1 L*'^1,*1) - - (1 + a)

The Armijo inequality holds for P(x,r) and L(x,r) at X - 1,

(1/2 « 1 - 6 for 6 « [0,1/2])

.«V* Ux1,!1) + 6 L'(x1,^

( O i l - ! for 6 a [0,l])

but does not hold for L (x,u,a):

+ 6

f - 8(1 +or) )

if a > 1/6-1. Consequently, for an appropriate choice of a, the augmented

Lagrangian will prevent cycling between the above two infeasible points.
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Setting B =1, x =0, 6=0.1, the penalty parameter, a, at 10,

and minimizing a quadratic function along the search direction, this op-

timization problem converges to the optimum [x «| I I in four it-(*-r°-
\ L0.

.375.

erations, if augmented Lagrangian line searches are used. Similar results

are obtained with a=100. Table 1 lists the iterations for both values of

a. As seen from the table, performance in both cases is quite efficient.

c. In this problem, cycling between two infeasible points also

causes the Hessian and the multiplier to become unbounded.

Kin y (constant)

s.t. c.(x) • -b(x) £ 0

c2(x) - -b(l-x) £ 0

vhere b(x) « -1+x+zx-zx

for z 2 4

Beginning at x = 0 and B = 0, we have

•Hi) •'•[:] •-•[:]
L*<x°fu°,or) - & + a/2 P(x°,r°) - 0

L V . U 0 , * ) - a/2 ^ 0

L*'(x°,u°,a) - - O + of) Pf(x°,r°)

*u°) - P
^0) - 0

,«°) - - P
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For the penalty and Lagrangian functions, the line search is satis-

fled at d = 1, (X = 1) *

l«°) * L(x°,u°) + 6 L'(xO.«°)

W * P(x°,r°) + 6 P'(xO,u°)

(0 * P(l-fi)) for 6 « [0,1]

For the augmented Lagrangian, the inequality

* 1 0 * 0 0 *' 0 0L (x/,o) * L (x ,u ,or) + 6 L (x ,u ,er)

(o/2 a: p + o/2 - 6(P + a))

is not satisfied, if a is chosen > (1-6)6/6. Similarly for the second

iteration, at x=l

1

x2-x°-0

P(x1,r1) - pz Mx1,!!1) - pz

P(x2,rS - P/2 L(x2,ul) - 0

^•(x1^1) - - Pz L'Cx1^1) - - pz

^(x2,*1^) - a/2

L*'(xl,iil^f) - - (pz + or)

and the line search using a penalty or Lagrange function is satisfied at

the initial point of the cycle. Again, the augmented Lagrangian line

search breaks this cycle if the penalty parameter

a > (I - 6) pz/6 .
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Setting B=l, z=4, y=0, x =0, 6=0.1 and the penalty parameter, a,

to 10, and minimizing a quadratic along the search direction, the problem

converges to the optimum (x=0.5) in five iterations, if augmented

Lagrangian line searches are used. With a=100 only four iterations are

required for convergence. The results of both cases are given in Table 2

and show efficient performance.



5. CONCLUSIONS

With the augmented Lagrangian line search the difficulties of previ-

ously implemented line search functions appear to be eliminated. As shown

in the example problems, this line search function does not retard the

superlinear convergence of SQP methods, as Han's (and Powell's) penalty

function can, and the augmented Lagrangian accurately penalizes infeasible

nonlinear constraints that are left inactive by the quadratic program.

Using the augmented Lagrangian line search with SQP has been shown

in Section 2 to be an efficient implementation of classical multiplier

methods. Here the variables and multipliers are updated simultaneously. It

should be mentioned that although multiplier methods may require many

unconstrained minimizations, they do have parametrically superlinear

convergence properties.

In addition the augmented Lagrangian has fewer derivative discon-

tinuities than the Han or Powell penalty functions. Especially in the

equality constrained case, this means that better quadratic approximations

are possible during a line search and more*"exact91 line search minimiza-

tions will be performed.

In Section 3 we presented local and global convergence results that

do not depend on o as long as a £ 0. Also, since the QP solution d

is independent of a, a large value of a does not affect the direction

of the algorithm. The example problems in Section 4, however, require some

bound on a which is problem dependent but generally quite reasonable. A

heuristic that may be employed in choosing a would be to set

a1+1 - a^lO0) for some

1 + 1
) h(x1+1if ||g(x1+1
)+, h(x

1+1)|| * H.C* 1)*. hOc1) 11
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Here, C >, 0 is chosen so that SQP converges superlinearly when the

constraint violations are small, but prevents much larger constraint

violations from occurring. Controlling this parameter provides.a tradeoff

between achieving good convergence close to the solution and approaching

the optimum efficiently when large initial constraint violations are

present.
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TABLE 1

Problem b Solved vith Augmented Lagrangian Line Searches

10

1

2

0

0.55

0.4998

0.5000

X2

0

0

0.3737

0.3750

0

0.4386

1.0086«10~3

1.49-10"8

1.0

0.3139

1.5116-10"3

1.49-10"8

6.0

1.6775

0.37496

0.375

a - 100

1

1

2

3

4

0

0.5050

0.500

1/2

0

0

0.37499

3/8

0

0.38126

1.225 10"5

0

1.0

0.36876

1.275'10*5

0

51.0

14.583

0.375002

3/8

*Within specified KKT tolerance (10"6)

(Results obtained using double precision on a DEC-20 computer.
in the iterations denote no significant digits remaining.)

The "O's



TABU 2

problem c Solved vlth Augmented Lagrangian Line Searches

Of - 10

a - 100

V*1)

1

2

3

4

5

0

0.55

0.5018

* 0.5000

1/2

1.0

-.0945

.00367

-6.72-Hf6

0

0 .

0.1045

0.00369

6.72'UT6

0

6.0

0.55065

6.834-10"5

2.259 -lO"10

0

1

1

2

3

4

1

0

0.505

0.5000

1/2

1

9

-4

cx(x

.0

.949

.85*

0

s

•io-3

io-5

c

1.

4.

0

0049-

85 10

0

io-2

-5

L (x\u

51.0

5.0546-

1.1764-

0

>

io-3

io-7

(Results obtained using double precision on a DEC-20 computer. The last

Iteration shows no significant digits remaining for 0.)


