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Abstract

A mixed-integer linear programming approach is presented for performing

structural and parameter optimization in the synthesis of processing systems.

This approach is applied to the synthesis of utility systems that have to

provide fixed demands of electricity, power for drivers and steam at various

pressure levels, A superstructure that has embedded many potential configura-

tions of utility systems is proposed, as well as its corresponding mixed-integer

programming model. The application of the model is illustrated with a large

example problem.

Scope

Process synthesis has been a very active area of research over the last

fifteen years. Extensive reviews on the large number of publications in this

area can be found in Hendry et al. [5], Hlavacek [6], Westerberg [18],

Stephanopoulos [16] and Nishida et al. [7]. The basic approaches that have

been suggested in process synthesis are the use of heuristics, thermodynamic

targets and optimization techniques. In recent years there has been considerable

skepticism on the usefulness of the latter approach (e.g. see [16]), the main

arguments being that optimization techniques are inefficient for synthesis problems,

and do not contribute to their physical understanding. Although there is no

question that heuristics and thermodynamic targets have led to considerable

progress in several types of synthesis problems (mainly heat recovery networks*),

they do not provide a common framework for solving different classes of problems in a

systematic manner, nor do they in general guarantee optimality.

Furthermore, one particular aspect where these approaches have an important

limitation is in accounting explicitly for the interactions that take place when

synthesizing total processing systems that consist of several major components,

such as the utility system, heat recovery network and chemical plant (Papoulias [10]).

ion
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As will be shown in this series of three papers, some of the above cited

limitations can be circumvented with an approach based on mixed-integer linear

programming, a technique that allows simultaneous structrual and parameter

optimization in process synthesis. Also, with mixed-integer programming one can

develop a common mathematical framework for different synthesis subproblems and

having this representation, one can interconnect the subproblems in a natural way

to account for the interactions. It is important to note that the suggested

approach does not preclude in any way the use of heuristics or thermodynaraic

targets. Since in the mixed-integer approach a superstructure must be postulated

that has embedded many alternative flowsheets, heuristics and thermodynamic targets

can be incorporated to reduce the space of search, which in a number of instances

will reduce significantly the computational requirements. However, it is clear

that the mixed-integer programming approach can only guarantee optimality with

respect to the alternatives that are included in the superstructure.

This paper addresses explicitly the problem of synthesizing optimal utility

systems that have to satisfy fixed demands of electricity, power for drivers and

steam at various pressure levels. A mixed-integer linear programming model is

developed which as will be shown in the third part of these papers Cl2], can be

incorporated readily in the synthesis of total processing systems that consist of

the chemical plant, heat recovery network and utility system.

Conclusions and Significance

A mixed-integer linear programming model has been developed for the systematic

synthesis of utility systems. It was shown that considerable advantage can be taken

from the flowsheet topology and consistency of operating conditions for introducing

only a modest number of binary variables in the formulation. Therefore, as demonstrated

with the numerical example, large problems can be solved with reasonable computational

effort. Also, the numerical example has shown that alternatives that are poten-

tially attractive for utility systems need not be discarded with the proposed

approach.
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Introduction

The objective of this series of three papers is to present a structural

optimization approach for the synthesis of total processing systems. A total

processing system can be regarded as an integrated system, consisting of three

interactive components:

a) Chemical Plant

b) Heat Recovery Network

c) Utility System

The chemical plant is the component that performs the processing steps to

transform raw materials into products so as to meet given design specifications.

In most cases there are many potential flowsheets for the chemical plant that

include a variety of processing units such as reactors, compressors, distillation

columns and absorbers, all of which can be interconnected in many different ways.

The heat recovery network has the task of exchanging heat among hot and cold

process streams of the chemical plant in order to reduce the heating and cooling

utilities. The optimal synthesis of this component is often crucial in

determining the energy efficiency of the total system. Finally, the utility

system provides the required utilities for the chemical plant (electricity and

power to drive process units), and heating utilities for the heat recovery

network (steam at different pressure levels). Typical units found in a utility

plant are fired or waste heat boilers, different types of turbines, electric

motors, electric generators, and other auxiliary power plant units. All these

units can usually be combined in many feasible configurations that are capable

of providing the required utility demands.

In this paper a general mathematical framework based on mixed-integer

linear programming will be presented for synthesizing the above cited components.

The distinct feature of the proposed approach is that it allows simultaneous
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structural and parameter optimization for the optimal synthesis. The

application of this approach will be illustrated in this paper with the

synthesis problem of utility systems. Part II [11] of this series of papers

will deal with heat recovery networks which have a special structure that

can be exploited for an efficient solution. Finally, in Part III [12] it will

be shown that a mixed-integer formulation of the chemical plant

provides a natural way of interconnecting it with the heat recovery network

and the utility system, since the formulation can account explicitly for the

interactions that take place in the synthesis of the total processing system.

Mixed-Integer Programming Approach

In the synthesis of a processing system it is necessary to select the

configuration and operating conditions of a flowsheet that optimizes a given

objective function while satisfying the required design specifications. In

the initial stages of design the objective function is commonly economic in

nature and involves either cost minimization or profit maximization. In order

to perform both the structural and parameter optimization, the synthesis problem

can be formulated as a mixed-integer optimization problem as discussed in

Grossmann and Santibanez [3].

The first step in formulating such a problem involves the derivation of a

general configuration or superstructure that has embedded all the alternative

flowsheets that axe to be considered, and from which the optimal solution will be

selected. This superstructure contains a finite number of processing units with

their corresponding interconnections. The superstructure is commonly derived by

making use of engineering judgement, heuristics and/or thermodynamic considerations<

The following variables can be associated with the superstructure:

a) The n - vector y of 0-1 binary variables associated with the non-

existence or existence of units that will define the configuration

of the process.
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b) The n - vector x of continuous variables which correspond to
X

stream flowrates, operating conditions and sizes of units.

The physical performance of the superstructure can be represented by the

system of linear and nonlinear equations,

A x = a ( 1 )

f (x) » 0

where A is a matrix of constant coefficients with the vector a as its right-hand

side, and f is the vector of nonlinear equations. In general the system of

equations in (1) will be underdetermined leaving a positive number of degrees

of freedom. The design specifications, physical constraints, and relations for

the layout of possible processing systems which may be expressed in terms of

the 0-1 binary variables y, have the general form:

bL < B x + B y < bU

1 (2)

hL < h (x,y) < hU

where B-, B« are matrices of constant coefficients, b and b are lower and

upper bounds, and h is the m-vector of nonlinear constraints with lower and

upper bound h , h .

If the cost function C to be minimized is given by

min C « C (x,y) (3)

the synthesis problem consists in determining the optimal values of the variable

vectors x and y in the following mixed-integer nonlinear program (MINLP):

min C = C
s . t .

Ax = a

f(x)= 0

b <. B- x

(x

+ :

h < h(x,y) «

, y )

B 2 y < b u

< h u

(4)

x > ° » Yj " 0,1 j - 1,2,...n
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Due to the difficulty involved in solving this large-scale MINLP Grossmann

and Santibanez [3] have suggested to reformulate (4) as a mixed-integer linear

program (MILP). This is a class of problems for which efficient algorithms are

available for large-scale problems (see Geoffrion and Martsen [2]; Tomlin [17]),

and they have the important property of determining global optimum solutions.

The MILP formulation for process synthesis can be derived with the general

procedure described below.

In order to convert the functions f, h, in linear forms, advantage can be

taken from the fact that if operating conditions such as pressures, temperatures,

split fractions or other state parameters have fixed values, linear equations

can be derived for the performance of each unit (material and energy balances,

design specifications, physical constraints, etc.)* The effect of operating

conditions can then be analyzed by considering them through a set of discrete

values with which linearity in the performance equations and constraints is

maintained. To denote the existence or non-existence of each discrete operating

condition at each unit, 0-1 variables can be introduced with the constraint that

each unit can operate at most in one condition. The following variables can then

be associated with the general superstructure:

a) The n -vector y of binary variables which indicate the existence or

non-existence of units and streams, and which define the configuration

of the process.

b) The n - vector y of binary variables which indicate the existence or

non-existence of the discrete fixed operating conditions x that are to

be analyzed.

c c

c) The n - vector x of continuous variables which correspond to stream

flowrates and sizes of units.

Therefore the constraint set describing the performance of the general

processing scheme in the steady-state can be represented by the system of linear
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equality and inequality constraints:

E- y + E o x
C » e

1 * (5)
X d ^ ^ c JJ
d < D 1 y + D 2 y + D 3 x ^ d

where the matrices E- and D2 are functions of the selected fixed operating

conditions x .

The nonlinear objective function C can be approximated using

fixed-charge cost functions. The actual investment cost function for a

plant unit is commonly a concave cost function as shown in Fig. 1, where the

cost per unit capacity decreases as the capacity increases. An adequate

approximation of the cost function of unit j with capacity x. is obtained using

the fixed-charge cost function given by:

j y r x j ai yj j XJ ( 6 )

x . y - <. x - <. x - y - 9 YA e o f i

This fixed charge cost function reflects economies of scale since a fixed charge

a. for the investment of plant unit j is only incurred when the associated binary

variable is set to 1, or equivalently when the unit capacity is greater than zero

in which case the variable cost term g.x. is activated. Furthermore, lower and

upper bounds on the capacity of units (x. and x.) can be specified in order to

reduce the error between the fixed charge cost function and the actual concave

cost function as shown in Fig. 1. Also, if a more accurate approximation is

desired, more than one binary variable can be used to approximate the concave

cost function as a piecewise linear function [15].

Therefore, the general synthesis problem for a processing system can be

transformed into a problem consisting of selecting values of the binary vectors

y, y and the continuous vector xC in the mixed-integer linear program (MILP):
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C =

d c
s.t. E x y + E 2 x * e

dL < D x y + D 2 y
d + D 3 x

C < dU

0 , 1 j - 1,2,...ny (7)

0 , 1 j = 1,2,...a*

c
X

where C is the cost function, y, y are binary vectors and x is the

vector of continuous variables; &-, a~, 0, are cost vectors associated with

the binary and continuous variables; e, d , d and E-, E^, D-, D^, D~ are

respectively vectors and matrices that define the constraint set of the problem.

It should be noted that in the actual implementation of this MILP model

advantage can often be taken from the particular problem so as to reduce the

number of binary variables, which can constitute a major bottleneck for

obtaining efficiently the solution.

Synthesis of Utility Systems

In order to illustrate the application of the MILP formulation for process

synthesis, the problem of utility systems will be considered. This synthesis

problem can be stated as follows. A chemical complex requires fixed demands of

electricity, power for several process drivers, deaerated water, cooling water,

and high, medium and low pressure steam. The objective in the design is then

to determine the configuration and operating conditions of a utility plant that

satisfies the given set of demands at minimum cost. Since in general many

alternative types and arrangements of energy supply and conversion devices have

to be considered, it is a nontrivial task to synthesize the minimum cost

configuration. Few methods have been suggested previously in the literature for

synthesizing optimal utility systems, and they are briefly described below.
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An iterative linear programming (LP) model was developed by Nishio and

Johnson [8] in order to synthesize optimal steam and power plants. One of the

shortcomings in their approach is that some major decisions on the plant

configuration are based on heuristic rules that exclude many alternatives that

could possibly contain the optimal solution. Another important limitation is

that the investment costs are considered to be strictly linear with capacities,

and hence the economies of scale are not reflected in this model which can

produce designs that contain too many units. In a more recent work Nishio

et al. [9] proposed a thermodynamic approach. This method attempts to create

a utility plant that minimizes available energy losses for each plant unit,

and then allocates process drivers (turbines, electric motors) using linear

programming. The thermodynamic analysis of available energy is the basis in

deriving a set of heuristic rules that will be used to determine the plant

structure and design conditions. Although minimization of available energy

losses leads to maximum plant efficiency, it clearly does not account for the

associated investment costs of the utility plant units. Furthermore, in this

method it is not always clear what the precedence of one heuristic rule is

over another.

Grossmann and Santibanez [3] have formulated the synthesis problem of

steam generation systems as a mixed-integer linear program. Although their

model accounts for different operating conditions (pressures and temperatures),

it is rather simplified since it does not consider turbine and motor driver

assignments for satisfying electricity and power demands, nor heat integration

improvements of the plant cycle. The driver assignment problem is very

important in the synthesis of optimal steam and power systems since in general

it is not known a priori which power demands will be satisfied by high or

medium pressure steam turbines, gas turbines or electric motors. Recently,



-10-

Petroulas and Reklaitis [13] proposed a synthesis procedure for

utility systems based on a decomposition of two coupled subproblems. The first

subproblem determines the number of steam headers as well as the pressure in

each header, and is modeled as a dynamic program that minimizes the available

energy losses. The driver selection is the second subproblem, and is

formulated as a linear program having as objective to minimize the energy

inputs to the utility plant (steam and electricity). Coupling of the two

subproblems occurs at the driver efficiencies and heat load of the boiler.

The limitation of this procedure is that it does not account for investment

costs of the plant units and does not consider the possibility of using gas

turbine drivers. Also the LP formulation for the driver selection problem

may not be adequate in many cases, since it might give designs having steam

turbines with an excessive number of extractions and inputs, or select two

different drivers (steam turbine and electric motor) for satisfying the same

power demand. As shown below, the problem of synthesizing utility systems

can be formulated as a MILP that can overcome some of the limitations or

difficulties encountered in the above cited methods.

Derivation of the Superstructure

The first step in the formulation of the synthesis problem of utility

systems is to consider systematically many alternative configurations by

including them in a superstructure. In this general flowsheet all common units

employed in a utility plant are included, namely, boilers generating steam,

different types of turbines generating power and electricity, electric motors

converting electricity to power, steam headers at different pressure levels,

condensers and other auxiliary equipment discussed below. A superstructure for

a utility system, containing a very large number of feasible alternative

designs is presented in a simplified form in Fig. 2.



-11-

Observe that there are three steam headers at high, medium and low

pressure levels respectively. In each pressure level different steam pressures

and temperatures (states) can be considered, but only one operating state must

be selected in any level. Steam can be generated with either fired or waste

heat boilers operating at pressures and temperatures consistent with the

conditions in the steam headers. The available steam in each header can be

used to provide a required steam demand, drive steam turbines operating in

this level, or otherwise be transferred to the next lower level steam header

with pressure reductors where water is added to match the steam quality.

There are three types of power generating devices considered: steam

turbines, gas turbines and electric motors. The steam turbines can operate in

either a high or medium pressure level depending on the inlet pressure of the

steam. The steam turbines can be either of the condensing or backpressure type,

with the possibility of extractions in both cases. The gas turbines are of

the simple open cycle type, with air as the working medium. The hot gases

exhausting the turbine section can be either used in a regenerator to preheat

the compressed air before it enters the combustor of the gas turbine, or it

can be integrated as preheated air for further combustion in fired boilers

or as heating medium in waste heat boilers (Sawyer, [14]). Electricity can be

produced by any combination of steam and gas turbines connected with a common

shaft on an electric generator. Power demands for drivers can therefore be

satisfied with steam turbines, gas turbines or electric motors. It should be

noted that the amount of electricity generated is not always the demand

specified by the problem, since it may be necessary to produce additional

electricity to drive electric motors for satisfying some of the power demands.

In order to complete the superstructure auxiliary units have to be

included. There is an optional vacuum condenser depending on whether there
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are any condensing steam turbines used. here is also a water treater for the

make-up water, and a deaerator that trea .•; the feedwater returning to the

boilers and the required process (deaerated) water demand. The water returning

to the boilers is raised to the required pressure with a feedwater pump,

and can be preheated with an indirect contact feedwater heater that uses medium

pressure steam. Finally, provisions should be made for satisfying the utility

plant power requirements (internal demands), for the feedwater pump, boiler

draft fans and cooling water pumps.

Given the superstructure described above, the synthesis problem consists

in determining the configuration of the utility plant, the values of the

operating pressures and temperatures of the three levels of steam, the type

and capacities of boilers, and all stream flowrates. Also, it is necessary to

determine the assignment of turbines or electric motors to electricity and

power demands, as well the type of turbine used for each demand. The criterion

used for optimization in this case is the minimization of the total annual

cost of the system.

MILP model

Having developed the superstructure for the utility system, the second

step is to formulate the synthesis problem as a mixed-integer linear program.

In order to develop this MILP model continuous and binary variables are

associated with the general flowsheet presented in Fig. 2. The continuous

variables represent the capacities of all the units and stream flowrates

(air, hot gases, fuel, steam and water). The binary variables (0-1 variables)

assigned to plant units represent the existence or nonexistence of the

corresponding units at a given operating state. The operating pressures and

temperatures to be analyzed are treated as a set of discrete values with each

of them associated to binary variables that indicate the existence or non-

existence of the discrete value.
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In order to derive the MILP model, consider that in the superstructure the

set of units N = {n} , is postulated for providing the given set of utility

demands. These processing units are boilers, steam headers at different

pressure levels, different types of turbines, pressure reductors and auxiliary

power plant units. The first task is to define the interconnections of each

plant unit n with the following index sets:

I = {ml unit n has input flowrate from unit m}
n (8)

0 = {m | unit n has output flowrate to unit m}

Therefore, the superstructure for the utility plant can be represented as a

mathematical graph (network), where the nodes of the graph are the plant units

and the edges are the stream flowrates.

In order to investigate a number of different operating conditions, a

subset of units N..CN is chosen where discrete pressures and temperatures are

specified. The units N- in this model will correspond to the three steam

headers, the vacuum condenser and gas turbines. As a result of the selected

discretization of conditions on the units N-, discrete operating conditions will

also occur in the rest of the units of the superstructure. Therefore, the

index set K that defines the discrete conditions of the output streams for

each unit is defined as

Kn = {k| unit n operates at condition (P Tnk)} n e N (9)

The existence or non-existence of unit n operating at condition k can then

be represented by the binary variables y , which are defined as follows:

ynk

1 unit n is selected in the final structure and
operates at condition k

(10)
0 otherwise

As will be shown below, many of these binary variables can actually be

eliminated in the implementation of the MILP model by taking advantage of the
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topology and consistency of operating conditions in feasible configurations.

As for the continuous variables, the flowrates of the streams in the

superstructure will be represented by the non-negative variables F - , that

denote the output flowrate from unit n at condition k, and that is directed

to unit m. Each one of these variables will have associated to it the spe-

cific enthalpy hm, as a fixed parameter. The heat and work generated by

unit n are denoted as Q and W - Therefore, the material and energy balances
n n

for all plant units will be given by:

y y Fn - y y Fmt - o
L L ink U L nk

me I keK meO keK
n m n n n e N (11)

y y F\ h
n, •- y y Fm. hm. - o - w = o

LJ U ink mk [_> [_> nk nk TI n
mel keK mfiO keK

n n n n

In order to activate the flowrates in the superstructure that are consistent

with the selection of units and their corresponding operating conditions, logical

constraints must be imposed. Firstly, since for each plant unit at most

one operating condition k can be selected the following (in)equalities apply,

X
keK

n

In the case that unit n must exist in the final solution the equality is used,

whereas in the case when unit n may not exist the inequality is used. To ensure

that the output flowrates of each unit are at the same operating condition k if

unit n exists, the following inequalities must be included

meO
n

where U is an arbitrary upper bound on the stream flowrates.
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There are in addition two other types of logical constraints that must

hold in the superstructure. The first one arises when a unit m will exist

at the condition k, if and only if unit n exists at the same condition. In

this case one can set for the corresponding binary variables of units m and

n the equality

y , - y i k « K (14)
Jmk nk n v '

An example of this case would be the relation of the boiler and steam header

at high pressure when both must exist simultaneously, and therefore at the

same condition.

The second type of constraint arises when the existence of a unit m

at condition k implies the existence of unit n at the same condition, but

the reverse is not true. In this case only one binary variable y , is re-

quired to denote the existence of unit m and therefore one can set

y - y i, k « K (15)
•'mo •'ink m N '

where y is related to the existence of unit n by the constraint

mo
k«K

n

Since unit n will then define the operating conditions at unit m, constraint

(13) must be replaced by the following inequalities to activate the flowrates

in unit m

Y F* - U y f * 0 k € K
L» mk ynk n

mk 7nk n
(17)

I I Fi-Uymo*°
k€K UO

n m

An example of this second case would be the relation of a turbine with a

steam header, where the existence of the former implies the existence of the

latter, but not vice versa.
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It is very important to note that it is the equalities in (14) and (15)

that allow the elimination of a large number of binary variables in the

implementation of the MILP model. The equation in (14) allows the use of the

same binary variables for several units, whereas the equation in (15) requires

that some units be assigned only one binary variable even if they can operate

at several conditions. Using these equalities the only binaries required in

the superstructure of the utility plant are for each state of the steam

headers and one for each potential steam and gas turbine and electric motor*

In order to meet the utility demands the continuous variables in the model

must meet the following constraints:

a) Power demands

A «
W = ) W p = 1,2,...P (18)
P Z_J «

neN
P

where N = {n (unit n supplies power demand p}

b) Steam demands (in the form of heat duties)

Q. = I Qn s "1.2....S
neN

s

where N = [n | unit n steam demand s}

c) Water demands

Fr = I I Fnk r = 1> 2>— R (20)
neN keK

r n

where N = [n | unit n supplies water demand r}

Logical constraints in terms of binary variables can of course also be

added to ensure that a given demand is satisfied by only one unit. An example

would be when only one turbine should satisfy the power demand for a driver.

As for the capacities of the unit n, they will be given depending on the

type by
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G
n

V V Fm, flowrate capacity of unit n

meO keK
n n

W work load of turbine or motor drive n
n

(21)

These capacities will in general be bounded by minimum and maximum capacities

G , G , in the constraint

I *•*>* Gn * G n < I *nk> (22)

keKn keKn

Finally, the objective function in the synthesis model is given by the

fixed and variable cost of all plant units, while the operating cost is given

by the fuel, water or any other purchased utility cost. Therefore, the form of

the objective function is •

min C = Y y (a , y i + B G ) + Y y v i F i + Y 8 WU L nk 7nk pn n' L L nk nk L n n
neN keK neN keK neN_,

n u n Cs

where NTT and N_, define the units that purchase utilities, and
U £i

a , , B , Y i 9 8 a r e cost coefficients,nk' H n ' Ynk n

The problem of synthesizing an optimal utility system given by the objective

function (23) and the set of constraints (10)-(22), corresponds to a KLLP for

which both structural and parameter optimization can be performed in the

superstructure. To obtain the values of the coefficients in the MILP model

the following information is necessary:

a) Data on the utility demands

b) Enthalpy and entropy data for steam and gas stream

c) Efficiencies of turbines

d) Cost correlations for all units and utilities

This MILP model can then be solved with standard mixed-integer programming

codes so as to provide the optimal configuration from a superstructure that has

embedded many feasible utility systems.
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Numerical Example

In order to demonstrate the application of the MILP model for synthesizing

utility systems, a test problem taken from Nishio et al. [9] is considered.

The problem is to synthesize an optimal utility system servicing a petroleum

refinery of 200,000 BPSD capacity. The set of the refinery utility demands is

given in Table 1. As can be seen, there is a demand for electricity, 10

external power demands for drivers, 3 internal power demands for the utility system,

and demands for medium and low pressure steam, and dearated and cooling water.

Also there is import of medium and low pressure steam and condensate return. The

operating conditions and other parameters of the utility plant units are given

in Table 2. Note that three operating conditions are considered for each, the

high pressure (HP) steam header, and the medium pressure (MP) header. Cost

coefficients were derived in the fixed charge form using the cost data given in

Guthrie [4] and Woods et al. [l9l, which were updated to 1981 prices using the

Chemical Engineering Index. Stream enthalpies and entropies were obtained from

thermodynamic tables([l], Dl4]), and the turbine efficiencies are the ones given

in Nishio et al. [9].

There were two cases studied using the data of the above example problem.

In the first case electricity was produced using only steam turbine generators

which is the same problem solved by Nishio et al. [9] , who employing heuristic

rules discarded the use of gas turbines for generating electricity. In the

second case the possibility of producing electricity also with a gas turbine

generator was also included in the supersturcture. The same fuel (kerosene) was

used for the fired boiler and gas turbine. The problem sizes were 44 binary

variables, 253 continuous variables, 107 constraints for the first case, and

45 binary variables, 261 continuous variables, 115 constraints in the second

case. The optimal solution for both cases was obtained"in approximately 90

seconds of CPU time on a DEC-20 computer, using the branch and bound algorithm

of the LINDO computer code [15].
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The optimal configuration obtained in the first case has an annual cost of

26.82 M$/year and is shown in Fig. 3. The internal power demands of this

optimal design are given in Table 4. The optimal configuration represents a

condensing Rankine power cycle, that produces electricity with a combination of

HP and MP steam turbines connected to the electric generator with a common

shaft. The HP steam turbine is a backpressure turbine exhausting to the MP

steam header, and the MP steam turbine is a condensing turbine with an

extraction to the LP steam header. Power demands no, 3, no. 4, no. 6, no. 7

and no. 14 are satisfied with MP steam turbines exhausting to the LP steam

header, while electric motors are used for the remaining power demands.

Observe that the operating condition with the higher pressure (P = 96.53 bar,

T = 713°K) is selected for the HP steam header, while the MP steam header operates

at the intermediate pressure (P • 17.24 bar, T = 600°K). In fact this

configuration is similar to the solution given by Nishio et al. [9] with the

exception that in the optimal design of Fig. 3 steam reheating (68.27 x 10 kj/hr)

is performed in the boiler. More detailed comparisons among these two solutions

(fuel consumption, plant efficiency) are perhaps not appropriate since the values

assumed for stack temperature of the boilers are probably different.

In the second case, the optimal configuration has a total annual cost of

15.73 M$/year, which corresponds to a 417O reduction in the utility plant cost

when compared to the previous case. The basic configuration is a binary cycle

utility plant as shown in Fig. 4. The gas turbine cycle (1st cycle) produces

most of the electricity required, while the exhaust hot gases are integrated

in the main boiler to be used as preheated air and consequently reduce the fuel

consumption in the boiler. Notice that the Rankine cycle (2nd cycle) does not

require a condensing section since all steam turbines are backpressure turbines.

The remaining electricity is generated with a HP steam turbine exhausting to
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the MP steam header. The same power demands as in the first case are

satisfied with MP steam turbines and electric motors, but in this case there

is a smaller load for the steam turbine driving the cooling water pump

(no. 14), and the electric motors for the boiler feedwater pump and boiler

draft (no. 12 and no. 13). Note that there are two small reductors used

between the steam headers in order to balance the steam flows in the utility

plant. The only difference in the operating conditions of this utility system

when compared with the optimal design obtained in the first case, is that the

operating condition with intermediate pressure (P = 69 bar, T = 661 K) is

selected for the HP steam header. Finally, it is important to note that this

optimal binary cycle plant has 37.47o less fuel consumption with respect to the

above design that uses no gas turbine generator. Clearly, the reduced fuel

consumption of the binary cycle represents a significant improvement in the

efficiency of the utility system.

Discussion

As shown with the numerical example, the MILP approach is a powerful tool

for designing utility systems. The fact that potentially promising alternatives

can be embedded in the superstructure and that they need not be discarded has

produced in the above example savings of 37.47O in fuel cost and 417o in total

annual cost. It is important to note that the proposed approach optimizes

simultaneously both the structure and operating conditions of arbitrary utility

systems, which is a great improvement over previous methods reported in the

literature. Another important feature of the above model is that due to its

mathematical representation it can easily be added to a MILP synthesis model for

total processing systems as will be shown in the third part of this series of

papers [11] .
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Another point worth mentioning from the examples that were solved is

that the proposed MILP model for utility systems constitutes an efficient

synthesis method since modest computational effort was required for solving

both cases of the example problem (less than 2 minutes CPU time on a DEC-20)•

For larger problems, it would be possible to decrease the computational effort

for solving this MILP problem by adding heuristic constraints to the proposed

formulation that will reduce significantly the feasible region, and hence the

enumeration effort. For the synthesis of utility systems, an appropriate

heuristic constraint would be to specify that the maximum fuel cost, which is the

dominant term in the annual cost, is within a small percentage (e.g. 57o) of the

value obtained at the relaxed LP solution. The effect of this constraint in the

MILP model is to eliminate from consideration utility plant configurations with

fuel consumption that most likely will not lead to the optimal solution.

However, care should be taken in the use of this constraint as too small a

percentage may not produce any feasible solutions.
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Table 1; Ut i l i ty Demands and Imports for Example Problem

DEMANDS

STEAM
M.P. s t e a m 1 2 5 . 1 Ton/hr
L.P. steam 187.3 Ton/hr

ELECTRICITY
no. 1 32030 kW

EXTERNAL POWER
no. 2 818 kW
no. 3 1965 kW
no. 4 2020 kW
no. 5 1530 kW
no. 6 1940 kW
no. 7 3120 kW
no. 8 85 kW
no. 9 440 KW
no. 10 203 kW
no. 11 650 kW

INTERNAL POWER
no. 12 (BFW pump) to be calculated
no. 13 (boiler draft fan) to be calculated
no. 14 (cooling water pump) to be calculated

WATER
deaerated water 275 Ton/hr
cooling water 7306 Ton/h r

IMPORTS

STEAM & CONDENSATE
M.P. steam 224.0 Ton/hr
L.P. steam 50.2 Ton/hr-
condensate return 120.1 Ton/h r



Table 2: Stream/Equipment Conditions for Example Problem

STREAM/EQUIPMENT CONDITIONS

H.P. STEAM HEADER
Operating Condition no. 1 P = 96.53 bar, T s 713 K
Operating Condition no. 2 P = 68.95 bar, T « 661 K
Operating Condition no. 3 P * 55.16 bar, T = 782 K

M.P. STEAM HEADER
Operating Condition no. 1 P = 20.68 bar, T * 758 K
Operating Condition no. 2 P = 17.24 bar, T « 600 K
Operating Condition no. 3 P = 13.79 bar, T » 690 K

L.P. STEAM HEADER
Operating Condition no. 1 P = 3.45 bar, T = 411 K

DEAERATOR pressure = 1.013 bar
temperature - 373 K

FEEDWATER HEATER heat donor (M.P. steam)
heat receiver (BIW)

BOILER blow-down rate = 5%
efficiency - 90%
fuel LHV = 43950 kj/kg
fuel cost = 0.1395 $/kg

VACUUM CONDENSER exhaust steam pressure - 120 mmHg
condensate temperature = 328 K
cooling water in = 303 K
cooling water out = 323 K

COOLING WATER PUMP inlet pressure = 1.013 bar
outlet pressure = 7.94 bar
inlet temperature = 303 K
pump efficiency = 65%

GAS TURBINE GENERATOR compression ratio «• 10*0
expansion ratio - 9.8
compressor efficiency = 85%
turbine efficiency = 87%
combustor efficiency = 98%
fuel LHV = 43950 kj/kg
fuel cost = 0.1395 $/kg
max. regenerator eff. s 80%
exhaust gas temperature » 900 K



Table 3: Economic Data for Example Problem

Annual Operation = 8400 hours
Capital Recovery Factor = 0.154252
Gas Turbine Fuel (Kerosene) = $ 143/ton
Fired Boiler Fuel (Kerosene) = $ 143/ton
Water = $ 0.05/1000 gallons



Table 4. Optimal Internal Power Demands for Example Problem

INTERNAL POWER CALCUIATED DEMAND

CASE I: UTILITY SYSTEM WITHOUT GAS TURBINE GENERATOR

no. 12 (BFW pump) 857 kW
no. 13 (boiler draft fan) 879 kW
no. 14 (cooling water pump) 2539 kW

CASE II: UTILITY SYSTEM WITH GAS TURBINE GENERATOR

no. 12 (BFW pump) 326 kW
no. 13 (boiler draft fan) 239 kW
no. 14 (cooling water pump) 1827 kW



Figure 1. Approximation of concave cost function with fixed-charge cost function.

Figure 2. Superstructure of utility system.

Figure 3. Optimal utility system with no gas turbine generator.

Figure 4. Optimal utility system with gas turbine generator.
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