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ABSTRACT

The need for increasingly conplex models for process simulation has
led several researchers to develop more efficient steady-state sinulation
strategies. In a common approach,‘ ri gorous physical property calculations
are replaced by sinplified ones which approximate locally the behavior of
the rigorous ones. Periodically thelrigorous model s are executed to check
if the sinplified ones are still accurate enough, and, if not, paranmeters
for the sinplified ones are adjusted so both the rigorous and sinplified
model s again predict the same val ues [ ocal l'y. Convergence is‘ assumed when
-r{o adjustments are needed for these paraneters and the sinplified nodel -is
conver ged.

This approach works well for phase equilibrium and even general
proce:e,s simul ation problens. Sonme researchers have extended this approach
to optimzation problens as well. In this Note we discuss problems which
arise when adapting this approach for process optimzation problems. W
al so present three exanples where the use of sinplified nodels can lead to

detection of false optima or convergence failures.

| NTRODUCTI ON

In order to. nodel physical and chemcal properties efficiently,
engi neers have wusually resorted to sinplified correlations and shortcut
procedures. As physical property and unit operations nodels have becone

more conplex, these procedures have found wide use in conputer-aided

process design and sinulation. ~ INVERSTY LUIBRRES
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To aid in solving flash problems with complex models, approximate
methods have been proposed [1,2] which embed simplified models into the
calculation lobp. Parameters for these models are found by matching
properties calculated by the simplified models with those computed by the
rigorous models. The flash problem is then solved using the simplified
medels. After solution, parameters aré updated By matching properties
again and the iteration repeats. Using this procedure investigators have
reported significant reductions in computational effort (see [1-4]).

Boston and Britt [3] propose& the "inside-out" flash algorithm which
totally recasts the problem in terms of simplified models. Here the major
iterations deal with updating the parameters for simplified models and
matching their properties with a rigorous model. Since rigorous models are
evaluated in #n outer iteration loop, considerably less effort is required
than with conventional procedures. The investigators report that the
algorithm works well for several types of flash problems and physic;1
systems. Extensions of this approach have also bgen made to absorption and
distill#tion problems [4].

Recently, this approach has also been extended to general plant-wide
simulation and optimization problems. Again, parameters for simplified
process models (such as Kremser equations and extent of conversion
reactors) are found by matching the models with rigorous model properties
in the outer loop. The simplified simulation or optimization problem is
then solved and control returns to the outer iteration loop where model
parameters are updated. Applied to general simulation and optimization
problems, this approach requires far less computational effort than with
other approaches [5,6] because rigorous model properties are calculated
much less often. For the sake of brevity we will refer to this approach as

the "inside-out' procedure.




What is overlooked, however, is that for optinization probl ens, the
approach based on sinplified nodels can converge to .a solution that may
not necessarily correspond to the optinm found when only rigorous nethods
are used. In the next section we discuss why this situation may arise and
present three exanples that illustrate difficulties for sinplified nodels
in converging to the optinmm predicted by using only rigorous nodels. The
first two exanples show that convergence to the true optinmal solution is
not obtai ned, while the third exanple fails to converge to any solution

when one in fact exists.

Conpari son of Rigorous and Inside-Qut Optim zation Procedures

The inside—eut procedure consists of applying sinplified npdels over
a snmall region to approximate rigorous hard-to-calculate nodels. Let a
be properties calculated by the rigorous nodels p(x,y,a,r) such as Kval-

ues or liquid and vapor enthal pies, where:

X are decision variables such as reactor pressure

y are process (dependent) variables such as stream flowates or
composi tions

T are values from process database such as pure conponent prop-
erties or cost coefficients.

The optim zation problem when nodelled rigorously, can be described as:

Min rf(x,yi<*)

s.t. g(x,y,or) *0 ‘ (D
h(x,y,@) - 0

. or - p(xzy,offY) - o
where we distinguish between _process equati ons that contain ri gorous

nodels (o - p(x,y,0,Y)) .and the rest (h(x,y,a) =0). At the optinmmthe

Kar ush- Kuhn- Tucker (KKT) conditions for this problem are:
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g(xX,y,&) £ 0
h(x,y,a) - O
ot - p(x,y,cr,Y) - o

ax o

«"g(Xty»cr) - 0

where u,v, and t are corresponding multipliers for the three types of

constraints.

Consider the inside-out formulation of this optimzation problem
Here the rigorous Models are replaced by sinplified nodels, a-K(x,Y, a, B)

=0, with paraneters S det er mi ned by setting
or - p<x,y,cr,Y) ™ K(%,¥.a,»B) (3)

in the outer iteration. The "inside-out" optimzation algorithm [5] is

t hus:
Step 0) Quess B", X, Y, select a tolerance e and set i=0.
Step 1) Sol ve the optimzation problemw th sinplified nodel s.
X,y - argfMin rf(x,y,ar)
s.t. axy,Qf) < O 4)
h(x,y,of) - O

a- K(xy,ar,3) = 0}

Step 2) Solve for @ « p(Xeys<l 9Y)«




Step 3) Calculate B from a and K(xTy-,-a-,'?). Define f = B-8% If f°f

< ¢, stop. Oherw se, let f1% - g - oH f, where His the
Jacobian (af/38) or its approximtion, depending on the outer

| oop convergence nethod.

Step 4) Set i = i+l, and go to Step 1).
The following conditions wll hol;j at the final solution from Step
1).»
v e V8 %xh Y "ou
V . V 7yh _V v { =0 (5
7Of4 1 R VAR I S t

g(x,y,a) < 0
h(xQY!a) =0
ce - K(xiysgf,3) -0

u'g(x,y,or) - o

In order for the optimm of the rigorous p'roblem(f,)'/',é‘) to match
the solution from Step 1, it is* clear t;y conparing (2) and (5) that a

sufficient condition is that VK=Vp, VK=VpadVK=7p at the
r r

r>

X X y y a o}
opti mum Ot herw se, the inside-out algorithm may not recognize the
rigorous optinum and not terminate at this point. To illustrate this

probl em consider the follow ng exanples.

Exanple 1 (Recognition of different optinma)

The sinple algebraic optimzation problem

Mn  (a- 1/2)2+ (x-1)°2
s.t. ez20 , x20 (6)

a-[(x-1)%+ (124 1] -0




is pictured in Figure 1. Here Che "rigorous model"” is defined by the

equality constraint:

or - (x-1)°+ (x-1)% + 1

(7)
and we propose the sinple, approxinmte nodel:
a - K(x,3) »X-|'-'3 (8)
The inside-out optimzation probIenTthus becones:
Mat ch: a- (x-1)°+ (x-1)2+1-X+0 (9)
Sol ve: M a (cr-1/2)2 + (x-1)?2 (10)

aal0 xal@o
a-(x+3) -0

The optimum of the rigorous problem is clearly at point A in Figure 1.
Because the sets y and h are enpty in this problem the optimlity

condi ti ons are:

[vz‘] [v,sl %2 . “':P][:L]'
+ 2| =0 (11)
‘7,,‘ Avagl V.8, 1-v 3 .
U
(+] -1 0 0
+ : 5 =0

1 0 -1 1l t

g: and g, are not active so "-u-,~0 and t = -1

Appl yi ng these conditions

at point A for the sinplified problem shows the follow ng:

(12)




Again, the inequality constraints are inactive and Uy = u,= 0, but now no

value of t can satisfy the above conditions. In fact, if we initialize at
point A, the inside-out algorithm actually noves away to point B. W

illustrate this behavior with the following iterations:

i =0 : Start at optimum point A x =1, a=1

The sol ution to:

M n (cr-1/2) + (x-1)2

s.t. cr"(_) , X £20
o -(x+fl)-0
is x“r332ifar0andx” 0.
Step 0) X+ P° - (x-1)%+ (x-1)2+ 1
' at point A
1) -0, x- 34 )
2) S (X-1)% 4+ (X-1)2+ 1 - 1.046F
3) f.a-X- 02969

X
f - f- 3% 0.2969

Use discrete Newton nethod to cal cul ate Bi' for next iteration: 6' = 0.1,

x* - 0.7, ?» =0.363, fe =7 -B" =0.263

®° pr-p

l“ o1 §50

pl =p®-¢




=1z
1) - 3'-0856 , X -0.322
2) a- 1.148
3) F-086 f-F-3'--003
Use secant nmethod for next 6
2 i | <eV>
z 1 1=
BZ -3 - f €= 0.777
i =2
1) 3* - 0777 , X - 0.3615
2) ©oor - 1.1474
3) . F«078 . f-F-3-910"°
3 2 2 1
B mp? -2 LB o9 795
-t
i »3;
1) 3.0.795 x - 0.3525
2) a - 11475
3) F-07% , f-F-3«0

As seen in Figure 1, the solution at point B of the inside-out
optim zation problem is feasible but <clearly suboptimal. In the next
exanple, we see that even if the KKT conditions of the inside-out problem
ére satisfied at the optirrﬁm of the rigorous problem failure can still
occur if the gradients 6f the rigorous and approximte nodels are not the

sane at all points.




Example 2 (Convergence to wrong solution)
Consider the following optimization problem and the corresponding

inside-out problem with a very simple approximate model:

kigorov.is Inside-0Out
Min az + xz ; =x = B
s.t. a=x " Min az + xz (13)
x x
@-3 1<0 s.t. a'z-lso
_ ‘ =8
(p = x) (K =8)

Starting at some point C where x = a > 1 and following the same analysis
as in Example 1, the inside-out algorithm converges to pcint B in Figure
2. From the figure it is readily seen that point A is the optimum of the
rigorous problem and is also a KKT point for the inside-out problem. If
one starts at x=a < 1, the inside-out algorithm also converges to point
A. Otherwise, the inside-out algorithm chooses the wrong constraint set

because the gradients of the simplified and rigorous models are different.

Example '3 (No convergence)

This example shows that on some problems the inside-out algorithm
may fail to converge even if the rigorous problem is well-posed. Given
below is a small optimization problem and its corresponding inside-out

problem, again with a very simple approximate model.

Rigorous Inside-Out
Min ax a=x=8
s.t. a=x Min a X - (14)
~-l1sx=<1 s.t. l1sx<1
a=8

(p = x) (kK =8)
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From Figure 3, the solution to both the rigorous and the. inside-out
problem can be seen at point E. However, if one applies the procedure
descri bed and denonstrated above, at any point other than E, the inside-
out algorithmcycles between points A, B, C and D. On the other hand, the

2
rigorous problemitself is well-posed; it is merely Mn x s.t. -1 < x < 1L

CONCLUSI ONS

The discussion and exanples in the previous section denonstrate the
need for great care when solving optinmzation problens with sinmplified
nodel enbeddi ng. Because determ natidn of the optimm and performance of
optim zation algorithms are directly influenced by accuracy of the
objective function and constraint gradients, nore attention should be paid
to derivative information when choosing sinplified nmodels and calcul ating
‘baramaters* However, nobst shortcut nodels, such as Antoi ne‘ equations or
distillation nodels wi.t_h constant relative wvolatility, overlook this
i nformation and can lead to suboptimal points.

The reason for the difference in solutions has a very sinple con-
ceptual basis. Application of the inside-out procedure leads to the
optimum of the sinplified nodel at a point where the sinplified and
rigorous nodels match. However, as has been denonstrated with the above
exarrp_l es, this point is not always the sane as the rigorous nodel optinum

This |eads .Ljs to the open question as to whether appropriate
sinplified nodels can be found for process optimzation. At present, we

can offer two observations:




a)

b)

11

A necessary condition for an appropriate sinplified nodel for op-
timzation is that it recognize the rigorous nodel optinmm as a KKT
point. A stronger condition would be that the gradients of the
sinplified and rigorous nodel be the same at the optimm This,
however, inplies nothing about convergence to KKT points inherent in
the sinple nodel that may be absent with the rigorous nodel. Exanple 2

illustrates a problemwith this feature.

A sufficient condition for an .appropriate sinplified nodel is that it
match the gradients of the rigorous nodel af all points. Clearly, this
condition is not very helpful because it inplies that only the

rigorous nmodel is appropriate.

The use of sinplified nmodels for process sinulation has been used to

advantage for conplex process nodels. However, much interesting and

challenging work remains in order to enbed these nodels properly' into an

optim zation franework.
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FIGURE CAPTIONS

Figure 1 Recognition of Different Optima
Figure 2 Convergence to Wrong Solution

Figure 3 No Convergence
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