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ABSTRACT

The need for increasingly complex models for process simulation has

led several researchers to develop more efficient steady-state simulation

strategies. In a common approach, rigorous physical property calculations

are replaced by simplified ones which approximate locally the behavior of

the rigorous ones. Periodically the rigorous models are executed to check

if the simplified ones are still accurate enough, and, if not, parameters

for the simplified ones are adjusted so both the rigorous and simplified

models again predict the same values locally. Convergence is assumed when

no adjustments are needed for these parameters and the simplified model is

converged.

This approach works well for phase equilibrium and even general

process simulation problems. Some researchers have extended this approach

to optimization problems as well. In this Note we discuss problems which

arise when adapting this approach for process optimization problems. We

also present three examples where the use of simplified models can lead to

detection of false optima or convergence failures.

INTRODUCTION

In order to model physical and chemical properties efficiently,

engineers have usually resorted to simplified correlations and shortcut

procedures. As physical property and unit operations models have become

more complex, these procedures have found wide use in computer-aided

process design and simulation. UNIVERSITY LIBRARIES

* CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PENNSYLVAfJ'A 5. r \ 1



To aid in solving flash problems with complex models, approximate

methods have been proposed [1,2] which embed simplified models into the

calculation loop. Parameters for these models are found by matching

properties calculated by the simplified models with those computed by the

rigorous models. The flash problem is then solved using the simplified

models. After solution, parameters are updated by matching properties

again and the iteration repeats. Using this procedure investigators have

reported significant reductions in computational effort (see [1-4J).

Boston and Britt [3] proposed the "inside-out19 flash algorithm which

totally recasts the problem in terms of simplified models. Here the major

iterations deal with updating the parameters for simplified models and

matching their properties with a rigorous model. Since rigorous models are

evaluated in an outer iteration loop, considerably less effort is required

than with conventional procedures. The investigators report that the

algorithm works well for several types of flash problems and physical

systems* Extensions of this approach have also been made to absorption and

distillation problems [4].

Recently, this approach has also been extended to general plant-wide

simulation and optimization problems. Again, parameters for simplified

process models (such as Kremser equations and extent of conversion

reactors) are found by matching the models with rigorous model properties

in the outer loop. The simplified simulation or optimization problem is

then solved and control returns to the outer iteration loop where model

parameters are updated. Applied to general simulation and optimization

problems, this approach requires far less computational effort than with

other approaches [5,6J because rigorous model properties are calculated

much less often. For the sake of brevity we will refer to this approach as

the "inside-out" procedure.



What is overlooked, however, is that for optimization problems, the

approach based on simplified models can converge to a solution that may

not necessarily correspond to the optimum found when only rigorous methods

are used. In the next section we discuss why this situation may arise and

present three examples that illustrate difficulties for simplified models

in converging to the optimum predicted by using only rigorous models. The

first two examples show that convergence to the true optimal solution is

not obtained, while the third example fails to converge to any solution

when one in fact exists.

Comparison of Rigorous and Inside-Out Optimization Procedures

The inside—out procedure consists of applying simplified models over

a small region to approximate rigorous hard-to-calculate models. Let a

be properties calculated by the rigorous models p(x,y,a,r) such as K val-

ues or liquid and vapor enthalpies, where:

x are decision variables such as reactor pressure

y are process (dependent) variables such as stream flowrates or
compositions

T are values from process database such as pure component prop-
erties or cost coefficients.

The optimization problem, when modelled rigorously, can be described as:

Min rf(x,y f<*)

s.t. g(x,y,or) *0 (1)

- 0

or - p(xfy,offY) - o

where we distinguish between process equations that contain rigorous

models (o - p(x,y,o,Y)) and the rest (h(x,y,a) = 0 ) . At the optimum the

Karush-Kuhn-Tucker (KKT) conditions for this problem are:
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where u,v, and t are corresponding multipliers for the three types of

constraints.

Consider the inside-out formulation of this optimization problem.

Here the rigorous Models are replaced by simplified models, a-K(x,y,a,B)

= 0, with parameters S determined by setting

or - p<x,y,cr,Y) (3)

in the outer iteration. The "inside-out" optimization algorithm [5] is

thus:

Step 0) Guess B ,x,y, select a tolerance e and set i=0.

Step 1) Solve the optimization problem with simplified models.

x,y - arg{Min rf(x,y,ar)

s.t . g(x,y,Qf) < 0 (4)

h(x,y,of) - 0

a - K(x,y,ar,3i) =• 0}

Step 2) Solve for a «.p(x9y9<i9Y)«



Step 3) Calculate B from a and K(x,y,a,?). Define f = B-81. If f f

< c, stop. Otherwise, let fl1+ = B1 - H f, where H is the

Jacobian (af/38) or its approximation, depending on the outer

loop convergence method.

Step 4) Set i = i+1, and go to Step 1).

The following conditions will hold at the final solution from Step

1).
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ce - K(xty>Qr,3) - 0

uTg(x,y,or) - o

In order for the optimum of the rigorous problem (x,y,a) to match

the solution from Step 1, it is* clear by comparing (2) and (5) that a

sufficient condition is that V K = V p, V K = V p and V K = 7 p at the
x xr> y yr a or

optimum. Otherwise, the inside-out algorithm may not recognize the

rigorous optimum and not terminate at this point. To illustrate this

problem, consider the following examples.

Example 1 (Recognition of different optima)

The simple algebraic optimization problem:

Min

s.t.

(a - 1/2)2 + (x - I)2

(6)

a - [(x-1)3 + (x-1)2 + l] - 0



is pictured in Figure 1. Here Che "rigorous model" is defined by the

equality constraint:

cr - (x-1)3 + (x-1)2 + 1

and we propose the simple, approximate model:

a - K(x,3) » x + 3

(7)

(8)

The inside-out optimization problem thus becomes:

Match: a - (x-1)3 + (x-1)2 + 1 - x + 0

Solve: Mia (cr-1/2)2 + (x-1)2

a a 0 x a 0

cr - (x + 3) - 0

(9)

(10)

The optimum of the rigorous problem is clearly at point A in Figure 1.

Because the sets y and h are empty in this problem, the optimality

conditions are:

vxg2

-1

-1
5
t

g1 and g2 are not active so ^ - u - - 0 and t = -1. Applying these conditions

at point A for the simplified problem shows the following:

-1 0 -1
(12)



Again, the inequality constraints are inactive and u = u_= 0, but now no

value of t can satisfy the above conditions. In fact, if we initialize at

point A, the inside-out algorithm actually moves away to point B. We

illustrate this behavior with the following iterations:

i = 0 : Start at optimum, point A. x = 1, a = 1

The solution to:

Min (cr-1/2) + (x-1)2

s.t. cr ̂  0 , x £ 0

cr -(x + fl) - 0

is x - r - 3*/2 if a ̂  0 and x ̂  0.

Step 0) x + P° - (x-1)3 + (x-1)2 + 1

at point A

1) 3° - 0 , x - 3/4

2) « - (x-1)3 + (x-1)2 + 1 - 1.046*

3) f - a - x - 0.2969

f - f - 31- 0.2969

Use discrete Newton method to calculate B for next iteration: 6' = 0.1,

x* - 0.7, ?• = 0.363, f• = ?' -B' = 0.263

'|f " °'856
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i = 1

1) 31 - 0.856 , x - 0.322

2) a - 1.148

3) F - 0.826 f - F - 31 - -0.03

Use secant method for next 6

2 i i <eV>
BZ - 31 - f1 . - 0.777

l *°
i = 2 :

1) 3* - 0.777 , x - 0.3615

2) or - 1.1474

3) F « 0.786 f - F - 3 - 9-10"3

-f )

i » 3 ;

1) 3 - 0.795 x - 0.3525

2) a - 1.1475

3) F - 0.795 , f - F - 3 « 0

As seen in Figure 1, the solution at point B of the inside-out

optimization problem is feasible but clearly suboptimal. In the next

example, we see that even if the KKT conditions of the inside-out problem

are satisfied at the optimum of the rigorous problem, failure can still

occur if the gradients of the rigorous and approximate models are not the

same at all points.



Example 2 (Convergence to wrong solution)

Consider the following optimization problem and the corresponding

inside-out problem with a very simple approximate model:

Rigorous Inside-Out

2 2 — —
Mln c r + x cr " x • g
s . t . cr » x Mtn cr2 + x2 (13)

a - | - 1 * 0 s.t. * - £ - l * o

cr - 3

(P " x) (K - P)

Starting at some point C where x = a ̂  1 and following the same analysis

as in Example 1, the inside-out algorithm converges to point B in Figure

2. From the figure it is readily seen that point A is the optimum of the

rigorous problem and is also a KKT point for the inside-out problem. If

one starts at x = a < 1, the inside-out algorithm also converges to point

A. Otherwise, the inside-out algorithm chooses the wrong constraint set

because the gradients of the simplified and rigorous models are different.

Example 3 (No convergence)

This example shows that on some problems the inside-out algorithm

may fail to converge even if the rigorous problem is well-posed. Given

below is a small optimization problem and its corresponding inside-out

problem, again with a very simple approximate model.

Rigorous Inside-Out

Mln cr x cr " x - p

s.t. a - x Mln cr x (14)

-1 £ x £ 1 s.t. 1 £ x £ 1

cr - P
(P - x) (K - P)
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From Figure 3, the solution to both the rigorous and the inside-out

problem can be seen at point E. However, if one applies the procedure

described and demonstrated above, at any point other than E, the inside-

out algorithm cycles between points A, B, C and D. On the other hand, the

2
rigorous problem itself is well-posed; it is merely Min x s.t. -1 < x < 1.

CONCLUSIONS

The discussion and examples in the previous section demonstrate the

need for great care when solving optimization problems with simplified

model embedding. Because determination of the optimum and performance of

optimization algorithms are directly influenced by accuracy of the

objective function and constraint gradients, more attention should be paid

to derivative information when choosing simplified models and calculating

parameters* However, most shortcut models, such as Antoine equations or

distillation models with constant relative volatility, overlook this

information and can lead to suboptimal points.

The reason for the difference in solutions has a very simple con-

ceptual basis. Application of the inside-out procedure leads to the

optimum of the simplified model at a point where the simplified and

rigorous models match. However, as has been demonstrated with the above

examples, this point is not always the same as the rigorous model optimum.

This leads us to the open question as to whether appropriate

simplified models can be found for process optimization. At present, we

can offer two observations:
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a) A necessary condition for an appropriate simplified model for op-

timization is that it recognize the rigorous model optimum as a KKT

point. A stronger condition would be that the gradients of the

simplified and rigorous model be the same at the optimum. This,

however, implies nothing about convergence to KKT points inherent in

the simple model that may be absent with the rigorous model. Example 2

illustrates a problem with this feature.

b) A sufficient condition for an appropriate simplified model is that it

match the gradients of the rigorous model a£ all points. Clearly, this

condition is not very helpful because it implies that only the

rigorous model is appropriate.

The use of simplified models for process simulation has been used to

advantage for complex process models. However, much interesting and

challenging work remains in order to embed these models properly into an

optimization framework.
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FIGURE CAPTIONS

Figure 1 Recognition of Different Optima

Figure 2 Convergence to Wrong Solution

Figure 3 No Convergence
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