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1. INTRODUCTION

Numerous papers have been published which describe the use of optimization methods to

improve the performance of electronic circuits (see for example [1]9 [2] , [3] , and [4]). One

of the often-heard complaints about these approaches is that the resulting "optimum solution*9

is in fact only a local optimum. In this paper we develop a method which can be used to

find the neighborhood of the global optimum. Once this neighborhood has been found a local

optimization procedure can be employed, with a starting point in this neighborhood, to find

the global optimum.

While some work has been reported in the area of global optimization, most methods require

lengthy computations and a large number of objective function evaluations [S3. (Note that

each objective function evaluation implies a computationally expensive circuit simulation). For

these reasons, these methods have not been used for electronic circuit design. However,

satisfactory results may be obtained from heuristic approaches which employ a relatively low

number of objective function evaluations [51. Typical of such methods are the probabilistic

methods introduced by Kushner [63, [73 and Zilinskas [83. Although Kushner's and Zilinskas*

methods require only a small number of objective function evaluations, they were developed to

solve one-dimensional problems only, clearly not of much use for optmizing circuits in which

several designable parameters are usually required.

In this paper we present a new technique for global optimization which, while based on the

concepts introduced by Kushner and Zilinskas. is simpler, faster and extendable to higher

dimensions. We begin our discussion in Section 2 by formulating a general one-dimensional

global optimization problem, and then describe the Kushner and Zilinskas methods for its

solution. In Section 3 we introduce, the new simplified algorithm and extend it to higher

dimensions in Section 4. In Section 5 several numerical examples illustrate the behavior of this

algorithm. Finally, in Section 6 we discuss some areas for future development

2. ONE-DIMENSIONAL PROBABILISTIC METHODS

Let f(x), x € ACR", f:R°->R! be a real continuous function, where A denotes the feasible

region which is assumed to be closed and simply connected. Although f may have several

local minima, we assume that there exists an x0* such that

Hx"*) Z f(x), V x f A (1)

We define an e-neighborhood of x**1, M€ as [93



= {x|x«A and llx-x^H^f} (2)

The object of a global optimization procedure is to find a point x* in M which, when

used as the initial starting point for a local optimization,* results in the determination of xopl.

In what follows we assume that A is a hyperrectangular whose vertices are defined by the so-

called box constraints on the designable parameters

(3)

where x. is the jth component of x.

At this point we limit our considerations to the one dimensional case, i.e., we assume that x

is a scalar. Now consider the global optimization methods proposed by Kushner [7] and

Zilinskas [8]. In both these methods it is assumed that the real, continuous objective function

f(x), frR'-^R1, is a particular realization of some stochastic process f(x,<*), with

x € A = [a,b]CLR* and w < Q, where Q is a set of random events. This assumption

implies the a priori selection of a stochastic process f(x,i*) and the definition of a measure for

a search procedure in a feasible region. It has been shown by Kushner [7], Zilinskas [8],

Mockus [10], and later by Archetti [11], that it is convenient, and well justified, to assume

f(x) to be a sample path of a Wiener process in [a,b]. Several factors leading to this

conclusion [7], [10] are: that it is intuitively related to the physical functions: that it is a

process of Gaussian, independent and infinitely divisible increments; and that it satisfies

conditions of continuity of its realizations and homogeneity in a given region of

A. Furthermore, as will be seen below, if f(x,») is a Wiener process, the behavior of the

objective function, f(x,<*), conditioned by previous function evalautions performed, can be

characterized in probabilistic terms by exceptionally simple formulas.

The major difference between the two methods is the sampling policy which is used in the

feasible region to determine the next point at which a function evaluation is to be performed.

Let x0^1 denote the estimate of the solution x"*11 in the region [a,b] after k steps of the

optimization procedure, and fix0*1*) the objective function value at this point. In the Kushner

method the next point at which a function evaluation is to be performed is the point that

In general, local opt imizat ion methods are more eff icieni in the neighborhood of the opt imum [ 5 ] .



(4)

in [avb]v where P denotes probability, and ik is a series of positive constants. We denote

this (possibly nonoptimum) point by x**1. In other words, this procedure chooses the point

that is most likely to be the competitor with x01*'* (for a given &J for the location of x"1".

Although the resulting formulas which are used to determine X**1 are relatively simple, the

Kushner method is not very useful for practical applications because of the rather arbitrary

choice of the positive constants &k. The suggestions given by Kushner in this regard are

insufficient to aid the designer in this quest for

In the Zilinskas method, which belongs to a group of methods known as Bayesian methods

[12] [131, the next point at which a function evaluation is made is taken to be the point

which is the solution of the problem

max f (x) s max ttW^ ) — B{min(f(xopl*^vv)v f(x,«*))|zM] (5)
x€A * XfA

where £ denotes the expected value, and z* is a vector which contains the information

gained about process after first evaluations of f(x).

z* = [fOc1). f(r) f(xk). x ! , . . . ^ ] T (6)

The basic philosophy behind this approach is that at every stage an average improvement

towards the minimum of f(x) is maximized, It follows from (5) that ^ , ( x ) corresponds, for

a given x, to

J F(u) du - (7)
-oo

where F(u) is the distribution function of the random variable u = min (f(x°ruk), f(x,«)),



F(u)

F(v) for v <

for v * (8)

where random variable v corresponds to f(x.») for a given x.

Since a Wiener process was assumed, we obtain from (5), (6). and (7) the expression

ttJx^Jx) J [ — J e-2«dt]
-00 ** -00

du (9)

where

c =-
- mk(x)

C<rk(x>

mk(x)

a]ix)

f(a)

f(a)

It is convenient at this stage in the procedure to order the observation points (Le. those

points at which the objective function has been evaluated) into a monotonically increasing

sequence

(10)

1 where each x>k is one of the observation points xV i=l,..,k in (6). Observe that as new

observation points are determined, complete reorderings may be necessary, Le., x^k may be



different from x*kM.

Using the well known properties of a Wiener process [10] we may easily obtain the

conditional expected value and the conditional variance in each subinterval [x'~ lk,x ik],

(i=2,3,...,k) of the region A = [a,b] from the following equations:

(x - xMJC) • f (x M k ) (x ik - x)

xu - xwjL

and

(x - x1"1^) (x i k - x)

where x * [xl"uk,xi'k]. From (11) we observe that mk(x) is a piecewise linear function and

the equation for <r̂ (x) describes a ^ on every subintervaL Observe that outside of the

region A, mk(x) becomes the constant values f(a) and f(b) and the variance <rk(x) becomes

€r21 x-a | and <r2 |x-b|, respectively, (see Fig. 2-1). a2 is a parameter characteristic of the

Wiener process. Its value must be estimated for each problem. For this purpose an unbiased

maximum likelihood estimator is used. [103. Estimation of a1 requires M initial, arbitrary

chosen observations (cq. M = 6).

To determine the next observation point xk*\ the maximum values of ^M(x) in each

subinterval have to be found and then compared. This task is made easier by the following

properties of ^

1. it is unimodal in each subinterval

1 it is an increasing function of a and nondecreasing function of the subinterval
length

3. it is a nonincreasing function of the difference mk(x) - f(xoptvk)

The (k+l)st estimate of the optimum x0*, denoted as xopuk+1 is the point at which the

conditional expectation ECftolz**1} is minimum- Since this is a piecewise linear function of

x, j?**+l is the point at which f(iijL*!) (i=l,2,...,k+l) is a minimum. Although the proof of

convergence to the global optimum [8Has in the Kushner method) requires in the limit that

k->oo, usually no more than about 20 observations are needed to obtain a point which lies in

the neighborhood of the minimum (at least locally.** Since the termination criterion proposed

c ~
Doc to the inadequacy of the stochastic model for the objective function fU). when distances between subsequent observation* arc

small, deierministics local optimization methods are more efficient in the neighborhood of the minimum.
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Figure 2-1: Expected value and variance of a Wiener process:
a conditional and an unconditional



by Zilinskas [81 is not reliable, usually the above procedure is carried out for a predetermined

number of iterations.

The efficiency of the Zilinskas algorithm depends on a constant c £ 1, which is associated

with the variance of the Wiener process (9). For large values of c the method becomes more

"global" but usually more iterations are needed to locate the neighborhood of the minimum.

Note that for small values of c we increase the risk that the final solution may correspond to

a local minimum only. A typical shape for ^M(x) is shown in Fig. 2-1

Solution of one-dimensional global optimization problems, by either the Kushner or Zilinskas

methods usually requires only a small number of objective function evaluations [7], [81, [10].

The reason for this is as follows. In practice, a multimodal objective function f(x) is

continuous and smooth. Hence, there is some correlation between function values at points

which are close to one another. Thus, it is reasonable to choose as the new observation point,

X**1, either a point close to the current best estimate of the global optimum x^* or in the

interval with the largest uncertainty (the longest one). Both the Kushner and Zilinskas methods

make certain tradeoffs between these two goals [7], [8], [14]. Different computational steps,

resulting from the different sampling policies employed, are determined by the same conditional

parameters of a Wiener process (11) which in turn depends on the length of subintervals and

values of f(x) at their ends (see ^k+,(x) in Fig. 2-2). Unfortunately as indicated above, both

methods have limited utility when applied to circuit design problems. The Kushner method

requires arbitrary choices of certain constant values (see Section 2) and the Zilinskas method

has, at every stage in the procedure, a significant computational overhead related to the

solution of (9).

3. A NEW APPROACH TO ONE-DIMENSIONAL GLOBAL OPTIMIZATION

We now develop a new probabilistic approach to the one-dimensional global optimization

problem which is faster than Zilinskas' method and more reliable than Kushner's method.

Furthermore, this new approach may be easily extended to higher dimensions. While this new

method retains the Wiener process as a stochastic model of the objective function, it employs a

new sampling policy.

Observe that for any fixed point x « A, the distribution of a random variable f(%w) is

Gaussian with an expected value m(9 and a variance <r(S). With this in mind, we introduce a

new auxiliary function
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Figure 2-2: Illustration of the objective function and two auxiliary functions
f(x) - bold line; ^ , 0 0 - solid; and w^] - dotdash



wk^(x) = mk(x) - c*k(x) a [a,b] (12)

where mk(x) and <rfc(x) are defined in (11). Again assume that the observation points have

been ordered as in (10). A typical shape for this auxiliary function is shown in Fig. 2-2.

Note that for a given x , the value of w
k+1(*) depends on the length of the subinterval to

which x belongs and on the values of f(x) at the ends of this subintervaL Moreover, for a

given constant value c, the (conditional) probability that f(x) > wk^(x) is the same at every

x e [a,b] (eg., for c=2, this probability equals 97.7%). Further, notice that the function (-

w ^(x)) has all the properties listed for ^k<H(x) in Section 2. We propose that instead of

searching for a maximum of ^ ,0c ) . we search for a minimum of wk^(x), using a procedure

similar to the Zilinskas method. Towards this end, we first determine the minimum value of

wk^(x) in each of the subintervals defined by (10), and then select as the next observation

point, xk*\the point which corresponds to the least of these minima. The computational effort

associated with this procedure is clearly less than that required to solve (9). Furthermore, as

will be seen in Section 5, the examples show close agreement between results obtained from the

solution of (9) and those obtained using (12).

Unfortunately the use of (12) introduces the risk of missing the global minimum, even when

k->oo. This can occur if the minimum of w
k+1(x) in some subinterval is greater than f(xopuk)

became no observation points will then be chosen in this subintervaL While this risk will

decrease for larger values of c, larger values of c usually increases the number of obsevations

required. A possible solution would be to adjust the value of c at every optimization step.

Note that because of our choice of auxiliary function, the new observation point and the

interval within which it is located, represents, in some sense, the best tradeoff between the

uncertainty of the interval as characterized by <?k(x), and the expected value of the optimum

as characterized by mk(x).

4. EXTENSION TO MULTIDIMENSIONAL GLOBAL OPTIMIZATION

Clearly in order for global optimization techniques to be suitable for circuit design, they

must be able to solve multidimensional problems. The extension of the Kushner and 7iiinskas

methods to higher dimensions requires consideration of multidimensional stochastic processes,

along with their complex conditional parameters, thereby making computation intractible.

However, the method introduced in Section 3 can be extended relatively easily. As in the

one-dimensional case, we will define an auxiliary function, which has the properties of the

auxiliary function defined in (12). Further, we assume that we have a set of observation



points which caa be used to divide the feasible region A into a set of nonoverlapping

subregions. We will then compute the minimum value of the auxiliary function in every

subregion of A and choose as the next observation point the point which corresponds to the

least of these minima. This new observation point will then be used to futher subdivide the

feasible region and the process is repeated

4.1. DIVISION OF FEASIBLE REGION A INTO SUBREGIONS

Recall that we have already assumed that the feasible region A is a hyperrectangle whose

vertices are determined by the lower and upper limits of the values of the designable

parameters. While these vertices could be used as the initial set of observation points, we

choose not to for two reasons. First, the number of such vertices grows rapidly as the

number of dimensions of x increases. Second, the feasible region A can be huge, and trying

to subdivide an extremely large region could be computationally expensive. As an alternative,

we propose to begin with a set of (n+1) arbitrarily choosen observation points in A, which

defines a simplicial approximation to A. We will then employ either a simplicial subdivision

scheme, to refine this approximation, or a polyhedral inflation scheme, to allow for improved

coverage of A, if necessary. We now give the details of this procedure.

Let x1, x2, ..., x11*1 be the set of (n+1) randomly chosen observation points in A, and let

D0*1 denote the polytope (actually at this point a simplex) whose vertices are these points.***

Now consider the observation point, x°*2. This new observation point will fall either inside

the polytope D"*1 or inside its complement"511*1. Note that A=Dn*1 \J~tr1 and ET1 f]^1

= 0. In the first case, we will refine the approximation to A by further subdividing D0*1 into

a set of nonoverlapping simplices, S0*1, j = 1, 2, ..., n+1 which are defined by xn*2 along with

all combinations of n vertices of D"*1. Note that if xn*2 falls on the face of Dn+1 degenerate

simplices may arise which are ignored. This newly subdivided D"*1 will be called Dn+2. If

xn*2 falls inside of D11*1, we will see in Section 4.3 that because of our choice of the auxiliary

function xD*2 must be a vertex of A. We now inflate the approximation to A by adding to

D0*1 the simplices defined by this vertex of A and the vertices of the faces of the polytope

D""1 as seen by this point This new approximation is denoted by D°*2 (see [15] and [16]

for techniques to achieve this step). These concepts are illustrated in Fig. 4-1.

The above procedure can in general be repeated to generate approximation D**1 from

approximation Dk given the observation point xk+1. Before leaving this section, it is convenient

to introduce some additional notation which will be needed below. Observe that after a

Note that polytopcs D , D , .... D are undefined.
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number of subdivision and/or inflation steps, we have an approximation to A, denoted by D*

and its complement "5", such that A = D" U "5" but D" H *D" = 0. Further, D* is composed

of Ik nonoverlapping simplices, Le..

I * = U Sk

We now wish to consider the decomposition of D* into Jk subregions Gk, j=l, 2 Jk
v

where Jk is the number of faces of the polytope E^ and Gk is defined as follows. Observe

that the hyperplane defined by the j l h face of polytope I? seperates two half spaces, one of

which does not contain &. If we denote this half space by Hk then Gk is defined as

Gk = Hk H ^ , j = l 2 , - J k (13)

4.2. DEFINITION AND MINIMIZATION OF THE AUXILIARY FUNCTION

We obtain the auxiliary function of the n-dimensional vector x by generalizing expressions

(11) and (12). Towards this end note that the <r(x) component of w(x) in one dimension is an

ellipse equation over the subinterval which has its maximum value at the center of the

subinterval and zero value at the end points of the subintervaL Observe that the expression

(11) may be transformed to the form

where P

xu + xL

xu, xL - upper and lower endpoints of the subintervaL

Extension of (13) to the n-dimensional case yields

<r2(x)=—-— C/iMx-x1)1 (x-x1)] x«ACRn (14)

In order for aHx) to retain features of *2(x), we must assume that the simplices which

comprise the approximation to A are canonical. A canonical simplex is one in which the

distances between every pair of vertices are identical. The center of this canonical simplex, xa,
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Figure 4-1: Procedure for subdividing and inflation
of the approximation to A
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is the average of the coordinates of its vertices; p is the distance of any vertex from the

center. Unfortunately, it is highly unlikely that all simplices which comprise D* will be

canonical However, we can transform every simplex into a corresponding canonical simplex of

equal volume. This transformation is described in Appendix A. The volume of the simplex is

a measure of the uncertainty of f(x) over a given subregion and for this reason it should be

unchanged. Expression (14) is attractive since, as will be seen below, the minimum of w(x)

may be found analytically (see (17) and (BID).

We can now define the auxiliary function within each of the subregions which make up A as

(15)

where j denotes either one of the simplices which make up D* or one of the subregions in

"b* as defined by (13) and the functions m* and <r* are defined as follows. Consider first that

part of the region A contained in D\ which has been further subdivided into the simplices S*.

i=l, 2, ... Ik. Let vn, vp v.n^ represent the vertices of the i* simplex; f.Jf .... f.^ be

the values of the objective function at these vertices; Sk be the equivalent canonical simplex

associated with S* and ?.,, ?p ? . n M the vertices of the canonical simplex. In what

follows, we take f.. to be the objective funtion value at the vertex ?. as well as v.. We now

define mHx) to be specified by the equation which characterizes the n+1 dimensional

hyperplane which passes through the points defined by ( f . V.J)7, (f... 9\_T)T, .... (f :

7. ,T)T. In particular, we can express mHx) as:
l»B'*I 1

Hx) (mJ)T x > m

where the n-vector m contains the last n components of the normal to the hyperplane

defined above and ^ is the distance of this hyperplane to the origin. Finally, (a\x))2 is a

hyperellipsoid which circumscribes the equivalent canonical simplex S*

Now consider that part of the feasible A made up by the subregions Gk as defined by (13).

Each of these subregions is defined by a face of the polytope D*. Let v* v* denote the

vertices which define the j* face of D\ We choose mtx) to be a constant outside of Dk

such that
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(x) min [f(v*)]

We define (<r!W)2 in this region as a linear function of the distance, d, from the face of

D \ Le.

<r2d

Parameters c and a2 are discussed more fully in Section 4.4.

Note from the above definitions, that outside of the polytope face, Le., within some
subregion Gk, the function w**(x) becomes minimal at one of the vertices of the
hyperrectangular box A. This vertex may be easily detected by testing the vector normal to the
face of the polytope defining the particular subregion Gk, and evaluating w(x) at this point
However, minimization of w**1 (x) over the canonical simplex requires solution of the
constrained optimization problem:

minimize: w ^ ( x ) = ( m W - -^L f[ />2-(x-xa)T(x-xa)]1 '2 (16)

subject to: ( ^ V x - l £ 0 j=l,2,...,n+l, n>l

where **) is a vector normal to the j* face of simplex S* with origin at x*.

Although w**'(x) in this case is strictly convex, there is no analytical^solution to problem

6). In most cases however, the solutio

alternate to solving (16) we can consider

(16). In most cases however, the solution of (16) falls inside the simplex S\ Therefore, as an

minimize w**1 (x) (17)

where w**1 (x) is as defined in (16). The solution of (17) is
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x° = x- - —-* (18)
t ( V W | ) T j ] 1 / 2t(cV/2/>Wni|)Tmj]1

(Note that (18) is a generalized form of the solution for problem (12), defined in Section 3).

Next we check whether or not x° is outside the simplex under consideration by solving for

the X in the following problem:

n+1

. v.. = x° (19)

and

n+1

If all X, i=l,2^..,n+l are non-negative, then x° is inside the simplex. If x° falls outside the

simplex, then we solve the following constrained problem:

minimize: w**1 (x)

subject to: g.(x) = (*JTx-l=0 j=l,Z...J (20)

where w**!(x) is as before and the constraints g(x) correspond to the J negative X which

results from the solution of problem (19). An analytic solution to this problem is given in

Appendix E

In higher dimensions, i.e., for n > 2, the solution of (20) may also fall outisde the simplex.

Thus problem (19) must be solved using the solution obtained for (20). If some of the X. are

still negative the appropriate constraints are appended, and (20) is resolved
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f Since x° is the solution point for an equivalent canonical simplex, the solution point in the
original simplex is found by backward transformation (Appendix A).

4.3. MAIN ALGORITHM

We now summarize the procedure for global optimization. Assume that a set of (n+1)
observation points within the feasible region A have been choosen and that an objective
function evaluation has been performed at each of these. These points define the simplex S0*1,
which constitutes the initial approximation, D"*1, to A. furthermore, as new observation points
are formed, the approximation to A is refined in such a way so that it remains composed of
nonoverlaping simplices. Thus, the k* step in the procedure involves:

1. Minimization of the auxiliary function (15) over each of the simplices, S\ that make
up the approximation, D* (which involves repeated solution of (17), (l!>) and (20))
and over each of the regions Gk in T5\ as defined by (13) (which involves evaluation
of the objective function at a vertex of A).

2. Selection as the new observation point, x"*1, that point which yields the least of the
minima found in 1.

3. If the uncertainty of- the region which contains the new observation point is
acceptably small, then take this region as being the neighborhood of the global

( minimum, and xk*' as the initial point for a local optimization procedure. If the
undertainty of this region is too large, continue to the next step.

4. If xk*' falls within a simplex which makes up D \ subdivide this simplex using xk<H

as a new vertex. If xk+1 f alb in ^ \ ie. , at a vertex of A, then inflate the poly tope
D" to include xk*' as a vertex.

4.4. PARAMETER EVALUATION
We now consider evaluation of the parameters <r2 and c. As for the one-dimensional case in

the expression for w(x), two constant values <r2 and c exist In the one dimensional case, a2

is a Wiener process parameter and corresponds to differences of observation values. At this
point, we generalize the assumption made in the one dimensional case, namely that f(x) is a
realization of a certain stochastic process. As shown by Mockus [10] the most suitable
stochastic model is a multidimensional Gaussian function defined on A with expected value /*

and covariance matrix K whose entries are defined as:
»

K i J = a1 f l ( 1 — — ) i. j=1.2,...ji (21)

where
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Estimators of parameters /i and a1 may be obtained using the method of unbiased

likelihood estimation [10]. Let the number of observation points equal M. We obtain first the

estimator ^ of expected value /i

(22)
* 1TK !1

where

f — is the column vector of M function observations

1 — is the unit M-vector

The estimator If of <r2 is as follows:

1
a2 = (f - IJIFK"1 (f - lu) " (23)

M-l

Note that this method of estimating a1 needs further investigation since the auxiliary

function w(x) was created by an analogy to the w(x) in the one-dimensional case, and not by

analogy with the stochastic process. Nevertheless, formula (19) keeps the information about the

range of differences of f(x) values and for this reason appears to be useful.

The meaning of the constant c remains unchanged in higher dimensions. Further, the study

of the behavior of the proposed algorithm as c varies should bring further improvement in its

efficiency.

5. NUMERICAL EXAMPLES

5.1. ONE-DIMENSIONAL CASE

Three different one-dimensional multiextremal functions were considered:

1. f,(x) = 2(x - 0.75)2 • sin(5frx - 0.4») - 0.125 0* x £ 1

which has a global minimum at x = 0.7795 with f = -1.1232287
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1 f2(x) = min Ef2J(x), tj

where

f2J(x) = 2(x-0.75)2 + sin (8»x - 0.5») - 0.125

tjx)

-1.25 • 75(0.17 - x) x £0.17

-1.25 + 35(x - 0.17) x > 0.17

which has a global minimum at x=0.17 with f = -1.25 and two local minima at x
= 0.75 with f(x) = -1.125 and x = 0.99842 witff"f(x) = -1.0007867

3.
5

Lj sin t(j+l)x+j]J -10 £ x £ 10

which has three equal minima at the points -6.77457, -0.49139 and 5.79179 with f
= -1103125, and one local minimum at x = 4.5577 with f(x) = -9.4947. """

In all of these examples, six observation points were initially chosen in the region A which

resulted in the region A being divided into 5 equal subintervals. Table 5-1 compares the new

observation points chosen by the original Bayesian method .(i.e., Silinskas) and the simplified

method, for different values of c It was decided a priori to fix the number of observations at

31 Table 5-2 shows the two best results for different values of c and the number of

observations required to achieve these results.

5.2. TWO-DIMENSIONAL CASE

Two different two-dimensional multiextremal functions were considered:

1. Branin's function.

^Ocytoty-bx^x-d)2 + h(l-f)cos(x) + h

where a=l. b=5.1/4»2, c=5/», d=6, h=10. f=l/8»

-5 £ x * 10, 0 £ y £ 15

This function has three equal global minima at points (-3.14159, 11275), (3.14159,
1275), (9.42478, 1475) with f^ = 0.397887.

1 Goldstein's and Price's function [17]

f2(x,y) = [l-Kx+y+l)2(19-14x+3x2-14y+6xy+3y2)] x
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Table 5-1: Comparison of observation points determined by the Bayesian
and simplified methods
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Table 5-2: The results of the optimization by the Bayesian
and simplified methods
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[3(W2x-3y)2(18-32x+12x2+48y-36xy+27y2)]

-2 £ x £ 2, -2 * y £ 2

This function has a global minimum at the point (0.000, -L000) with fBia = 3 and
the local minima as given in the following uble:

X
y
f(x.y)

-.600
-.400

30

-.398
-.602

35

1.800
.200
84

L200
.800
840

The algorithm presented in Section 4.4 was used to find the neighborhood of the global

optimum. The two best results, after 36 observation points were found for different values of

c, are shown in Table 3.

5.3. A FIVE-DIMENSIONAL EXAMPLE

To illustrate the performance of the proposed technique for higher dimensional problems,

consider the circuit of a constant voltage reference described by Heydemann, et al [18] shown

in Fig. 5-1. The circuit is designed to keep the output voltage v^ constant in spite of

variations in the set of technological parameters such as transconductance, threshold voltage,

channel width absolute tolerance, channel length absolute tolerance and temperature.

The designable parameters are the channel length of each of the MOS devices, denoted by

(x]9...,xs). The following five-dimensional optimization problem can be formulated:

minimize

subject to

f(xr...

15
15
15
15
15

1

* x
S X4

* %5

(V

100
150
150
200
200

(length in microns)

Heydemann solved this problem using a grid technique [18] and found, after 2500 circuit

analyses, 4 different global minima at which f(x) - 0.0.

Since the method proposed in this paper determines only a neighborhood of the global

optimum, it is hard to compare the efficiency of both approaches. However, after only 100

circuit analyses, we obtained a reasonable neighborhood of the global optimum. Any point in
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Table 5-3: Results for the optimization of functions of two variables
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Figure 5*1: Circuit example.
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this neighborhood could be used as the initial point for any local optimization technique.

Table 5-4 summarizes the results of applying the proposed method for global optimization and

five best estimates of the optimum for various values of c.

6. CONCLUSIONS

A new method for seeking the global optimum in circuit optimization problems has been

developed which requires a relatively small number of function evaluations and has a low

computational overhead. Unfortunately, we cannot establish a strict relationship between the

dimensionality of the problem, Le. the number of design parameters, and the number of

function evaluations required for its solution. However, based upon a number of examples, it

appears that if the number of function evalutions is about 20 times the number of design

parameters, a reasonable neighborhood of the global optimum can be found. Increasing the

number of function evaluations 2 or 3 times does not seem to significantly change the results.

This neighborhood of the solution is a good point at which to employ a local optimization

method The efficiency of proposed algorithms depends strongly on the techniques used to

divide the parameter space. Hence, further investigation into techniques for this purpose is

suggested To decrease the risk of missing a global optimum further study of how best to

choose the constant c is needed
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c

1

2

3

PARAMETERS

Xl

25.66
35
27.66
27.75
27.35

28.53
25.28
23.27
25.15
40.66

25.16
40.13
26.14
25.18
15

X2

33.69
21.22
20.9
20.87
20.59

19.19
36.89
15
30.21
36.78

37.96
37.88
15
33.21
15

X3

124.6
116.8
94.16
94.22
128.1

95.74
124.8
51.64
101.6
100.4

124.9
101.1
48.47
100.3
150

X4

158.3
149.5
122.5
172.5
125.2

134.3
161.2
168.8
130.2
160.9

162.2
162
166.9
127.8
200

X5

150.7
123.7
142.6
92.68
96.28

103.6
154
62.76
99.7
187.7

155.1
187.7
59.23
95.23
15

0.000029
0.001338
0.001619
0.003964
0.00405

0.001256
0.002974
0.04688
0.06899
0.0818

0.004965
0.086
0.1303
0.1416
0.1429

yout

4.995
4.963
5.04
4.937
5.064

4.965
4.945
4.783
4.737
4.714

4.93
4.707
4.639
4.624
5.378

# Obs.

41
69
79
78
82

100
47
59
41
67

49
78
63
44
18

Table 5-4: Results for the optmization of the circuit example
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APPENDIX A

A.1 SIMPLEX TRANSFORMATION

Consider a simplex defined by the vertices p1, j?,...,?*1. Assume that the origin of the

parameter space is at p"*1 and define the matrix P as

P = (Al)

Let the matrix

•[< s2
(A2)

characterize an a priori selected canonical simplex with the origin at s* . Observe that for

any scalar k > 0, a matrix

S = kS (A3)

also corresponds to a certain canonical simplex.

We wish to transform the simplex P into the canonical simplex S whose volume is the same

; P, so that

detS = detP (A4)

Let the square matrix T correspond to the transformation of P into the known simplex S
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TP = S (A5)
O

From (A3). (A4), and (A5) we have

" S (A6)
oo

If S* is a certain point in the canonical simplex S then the corresponding point p* in the

original simplex is defined by the backward transformation

p* = p"*1 + (detCT1))-1'" r ' s* (A7)
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APPENDIX B
i

B.1 CONSTRAINT OPTIMIZATION OVER A SIMPLEX

Let S denote a certain canonical simplex defined by (Bl)

(f .)
Tx S 1 i=lX.jJ+l (Bl)

where j. are the vectors normal to the simplex faces with origins at its center x*. Assume

that the solution of an unconstrained optimization problem over S (see (16)) falls outside j

faces. In this case, solution x° of the following constrainted optimization problem is required:

minimize w(x) =mTx+m -kOl
o

subject to g.(x)=(*.)Tx-l=0; j=l.£~.J (B2)

Since w(x) and g(x), j=1.2....J are convex, the Kuhn-Tucker necessary and sufficient

£ optimality conditions for (B2) are:

J

L 0uVg.

0. j=1.2....J (B3)

Hence we get:

CR' - C V l ' h V . ] ^ ^ ",'i " •, ' i

Multiplying (B4) by (»3T, j = 1, 2,.... J, we gee

J

After some further manipulation we obtain:
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H

where

-• -<H,m (B6)

H =
3.,, A

and H =H H
d r

Hence

where K=H-!H, (B7)

From (B4) and B7) we have

m •• - — —— * ny - Hr(Km + UjK,1) = 0 (B8)

Defining the vectors % and 9' as
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m = (I - HrK)m

and

T = (I-HK),1 (B9)

and multiplying 038) by (*')T we obtain

k
; — ——- » T (& + u T ) = 0 (BIO)

[RMx-xR)T(x-xR)] l /2 J '

and the optimal point x°

R ( ^ • u,^')
x° = xR -

The multiplier ut is obtained from solution of the quadratic equation:

u^1) • (ir * (ft * upT)T(& ^u^1))172 = 0 (B12)

The distance between the solution x° from xR is less than a radius R, although, for (n>2) it

may be outside the simplex S again. The procedure described in Section 4.3 is then

recommended. It should be noted that if J=l then & = m and 71 = T -
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