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1. INTRODUCTION

Numerous papers have been published which describe the use of optimization methods to
improve the performance of eectronic circuits (see for example [1]o [2], [3], and [4]). One
of the often-heard complaints about these approaches is that the resulting " optimum solution*®
is in fact only a local optimum. In this paper we develop a method which can be used to
find the neighborhood of the global optimum. Once this neighborhood has been found a local
optimization procedure can be employed, with a garting point in this neighborhood, to find
the global optimum.

While some work has been reported in the area of global optimization, most methods require
lengthy computations and a large number of objective function evaluations [S3. (Note that
each objective function evaluation implies a computationally expensive circuit smulation). For
these reasons, these methods have not been used for eectronic circuit design. However,
satisfactory results may be obtained from heurigtic approaches which employ a rdatively low
number of objective function evaluations [51. Typical of such methods are the probabilistic
methods introduced by Kushner [63, [73 and Zilinkas [83. Although Kushner's and Zilinskas*
methods require only a small number of objective function evaluations, they were developed to
solve one-dimensional problems only, clearly not of much use for optmizing circuits in_which
severa dedgnable parameters are usually required.

In this paper we present a new technique for global optimization which, while based on the
concepts introduced by Kushner and Zilinkas is smpler, faser and extendable to higher
dimensions. “We begin our discusson in Section 2 by formulating a general one-dimensional
global optimization problem, and then describe the Kushner and Zilinskas methods for its
solution.  In Section 3 we introduce, the new simplified algorithm and extend it to higher
dimendons in Section 4. In Section 5 several numerical examples illugtrate the behavior of this
algorithm. Finally, in Section 6 we discuss some areas for future development

2. ONE-DIMENSIONAL PROBABILISTIC METHODS

Let f(x), x € ACR", f:R°->R' be a real continuous function, where A denotes the feasible
region which is assumed to be closed and smply connected. Although f may have severa
local minima, we assume that there exists an x°* such that

HX"*) Z f(x), VxfA )

We define an e-neighborhood of x**! M as [93
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M, = {x|x<A and lIx-xAHAT) | @

The object of a global optimization procedure is to find a point x* in M, which, when
used as the initial starting point for a local optimization,* results in the determination of x*.
In what follows we assume that A is a hyperrectangular whose vertices are defined by the so-
called box congraints on the designable parameters

xSx Sx 3)

where X; is the jth component of x.

At this point we limit our considerations to the one dimensional case, i.e, we assume that X
is a scalar.  Now condder the global optimization methods proposed by Kushner [7] and
Zilinkas [8]. In both these methods it is assumed that the real, continuous objective function
f(x), frR-*R', is a particular redlization of some stochagtic process f(x<*), with
x € A = [ab]CLR* and w < Q, whee Q is a s&t of random events. This assumption
implies the a priori selection of a stochastic process f(x,i*) and the definition of a measure for
a search procedure in a feasible region. It has been shown by Kushner [7], Zilinskas [8],
Mockus [10], and later by Archetti [11], that it is convenient, and wel justified, to assume
f(x) to be a sample path of a Wiener process in [a,b]. Several factors leading to this
concluson [7], [10] are that it is intuitivdly related to the physcal functions that it is a
process of Gaussan, independent and infinitely divisble increments, and that it satisfies
conditions of continuity of its realizations and homogeneity in a gven region of
A. Furthermore, as will be seen bedow, if f(x,») is a Wiener process, the behavior of the
objective function, f(x,<*), conditioned by previous function evalautions performed, can be
characterized in probabilistic terms by exceptionally smple formulas.

The major difference between the two methods is the sampling policy which is used in the
feagble region to determine the next point at which a function evaluation is to be performed.
Let x*! denote the estimate of the solution X*' in the region [ab] after k steps of the
optimization procedure, and fix®**) the objective function value at this point. In the Kushner
method the next point at which a function evaluation is to be performed is the point that

L] . . .
In general, local optimization methods are more efficieni in the neighborhood of the optimum [5].
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in [a,b]y where P denotes probability, and iy is a series of positive congtants. We denote
this (possibly nonoptimum) point by x**'. In other words this procedure chooses the point
that is most likely to be the competitor with x™* (for a given &J for the location of x'*.
Although the resulting formulas which are used to determine X*' are reativdy smple, the
Kushner method is not very useful for practical applications because of the rather arbitrary
choice of the postive constants &x. The suggestions given by Kushner in this regard are
insufficient to aid the designer in this quest for x*™.

In the Zilinskas method, which belongs to a group of methods known as Bayesan methods
[12] [131, the next point at which a function evaluation is made is taken to be the point
which is the solution of the problem

max f, (x) ° max W )*— B{min(f(x™* ), f(x,«*))[zM] (5)
X€A * XfA

where £ denotes the expected value, and z* is a vector which contains the information
gained about process after first evaluations of f(x).

z* = [foch). f(r). ... . f(x). x',...~17 (6)

The basic philosophy behind this approach is that at every stage an average improvement
towards the minimum of f(x) is maximized, It follows from (5) that ~,(x) corresponds, for
a given x, to

pf(x“";*) .
J F(u)du - (7)

-00

where F(u) is the digtribution functiori of the random variable u = min (f(x°"), f(x,«)),
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F(v) for v < f(x**%)
F(u) = ¢
1 for v * f(x"™5)

where random variable v corresponds to f(x.») for a given x.

Since a Wiengr process was assumed, we obtain from (5), (6). and (7) the expresson

<
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Var{f(x.w)| 2"}
m (x) = f(a)

alix) = &’x

fx™) = f(a)
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It is convenient at this stage in the procedure to order the observation points (Le those
points at which the objective function has been evaluated) into a monotonically increasng

sequence

a=xt gy g <t p

(10)

where each x™* is one of the observation points xV i=l,..k in (6). Observe that as new
observation points are determined, complete reorderings may be necessary, Le, x** may be




different from x*M.

Using the wel known properties of a Wiener process [10] we may eadly obtain the
conditional expected value and the conditional variance in each subinterval [x'~* x¥],
(i=2,3,...,k) of theregion A = [a,b] from the following equations

_f(x“") (x - x™W) f(xM*) (x* - x)
wjL

m(x) =

k u

X - X

and

. x - x™ny (x¥* - x)
o) = o £ - gk @

lmuk x1'K]. From (11) we observe that my(x) is a piecewise linear function and

the eguation for <) describes a ,\uadratart]: every aubinterval  Observe that outsde of the

where x * [Xx

region A, m(X) becomes the constant values f(a) and f(b) and the variance <?(X) becomes
&1 x-a| and <r?|x-b|, respectively, (see Fig. 2-1). a° is a parameer characterigic of the
Wiener process. Its value must be estimated for each problem. - For this purpose an unbiased
maximum. likelihood estimator is used. [103. Edtimation of a' requires M initial, arbitrary

chosen observations (cq. M = 6).

To determine the next observation point x**\ the maximum values of "~y (x) in each
subinterval have to be found and then compared. This tak is made eader by the following
properties of " (x)

1. it is unimodal in each subinterval

1 it is an increasng function of a and nondecreasng function of the subinterval
length :

3. it is a nonincreasing function of the difference my(x) - f(x°p“’k)

The (k+l)st estimate of the optimum x%*, denoted  as XU s the point at which the
conditional expectation ECftolz**'} is minimum- Since this is a piecewise linear function of
X, j?**+ is the point at which f(i"**") (i=l,2,...k+l) is a minimum. Although the proof of
convergence to the global optimum [8Has in the Kushner method) requires in the limit that
k->00, usually no more than about 20 observations are needed to obtain a point which lies in
the neighborhood of the minimum (at least locally.** Since the termination criterion proposed

~
=¥

Doc to the inadequacy of the stochastic model for the objective function fU). when distances between subsequent observation* arc
small, deierministics local optimization methods are more efficient in the neighborhood of the minimum.
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Figure 2-1: Expected value and variance of a Wiener procéss
a conditional and an unconditional
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by Zilinskas [81 is not rdiable, usually the above procedure is carried out for a predetermined
number of iterations.

The efficiency of the Zilinskas algorithm depends on a consant ¢ £ 1, which is associated
with the variance of the Wiener process (9). For large values of ¢ the method becomes more
"global" but usually more iterations are needed to locate the neighborhood of the minimum.
Note that for small values of ¢ we increase the risk that the final solution may correspond to
a local minimum only. A typical shape for ~y(x) is shown in Fig. 2-1

Solution of one-dimensional global optimization problems, by ether the Kushner or Zilinskas
methods usually requires only a small numbe of objective function evaluations [7], [81, [10].
The reason for this is as follows. In practice, a multimodal objective function f(x) is
continuous and smooth. Hence, there is some correation between function values at points
which are close to one another. Thus, it is reasonable to choose as the new observation point,
X*L either a point close to the current best estimate of the global optimum x** or in the
interval with the largest uncertainty (the longest one). Both the Kushner and Zilinskas methods
make certain tradeoffs between these two goals [7], [8], [14]. Different computational steps,
resulting from the different sampling policies employed, are determined by the same conditional
parameters of a Wiener process (11) which in turn depends on the length of subintervals and
values of f(x) at ther ends (see ~¢+,(x) in Fig. 2-2). Unfortunatey as indicated above, both
methods have Iimited'utility when applied to circuit design problems. The Kushner method
requires arbitrary choices of certain congant values (see Section 2) and the Zilinskas method
has, at every dage in the procedure, a Sgnificant computational overhead related to the
solution of (9).

3. A NEW APPROACH TO ONE-DIMENSIONAL GLOBAL OPTIMIZATION

We now develop a new probabiligtic approach to the one-dimensional global optimization
problem which is faser than Zilinskas method and more rdiable than Kushner's method.
Furthermore, this new approach may be eadly extended to higher dimensons. While this new
method retains the Wiener process as a stochastic modd of the objective function, it employs a
new sampling policy.

Observe that for any fixed point X « A, the digribution of a random variable f(%w) is
Gaussan with an expected value m(9 and a variance <(§. With this in mind, we introduce a
new auxiliary function
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WM (X) = mMi(x) - c(X) a[a,b] (12)

where my(x) and <Ix) are defined in (11). Again assume that the observation points have
been ordered as in (10). A typical shape for this auxiliary function is shown in Fig. 2-2.
Note that for a given X , the value of “\.1(*) depends on the length of the subinterval to
which X belongs and on the values of f(x) at the ends of this subintervalL Moreover, for a
given condant value c, the (conditional) probability that f(x) > w(X) is the same at every
X e [ab] (eg., for c=2, this probability equals 97.7%). Further, notice that the function (-
wt"(x)) has all the properties listed for "y«y(x) in Section 2. We propose that insead of
searching for a maximum of ~,0c). we search for a minimum of w(X), usng a procedure
gmilar to the Zilinskas method. Towards this end, we first determine the minimum value of
wi M (X) in each of the subintervals defined by (10), and then select as the next observation
point, x**\the point which corresponds to the least of these minima. The computational effort
associated with this procedure is clearly less than that required to solve (9). Furthermore, as
will be seen in Section 5, the examples show close agreement between results obtained from the
solution of (9) and those obtained using (12).

Unfortunately the use of (12) introduces the risk of missing the global minimum, even when
k->00. This can occur if the minimum of “.(x) in some subinterval is greater than f(x*)
became no observation points will then be chosen in this subinterval ~ While this risk will
decrease for larger values of c, larger values of ¢ usually increases the number of obsevations
required. A possible solution would be to adjug the value of ¢ at every optimization step.

Note that because of our choice of auxiliary function, the new observation point and the
interval within which it is located, represents, in some sense, the best tradeoff between the
uncertainty of the interval as characterized by <%(X), and the expected value of the optimum
as characterized by mg(x).

4. EXTENSION TO MULTIDIMENSIONAL GLOBAL OPTIMIZATION

Clearly in order for global optimization techniques to be suitable for circuit design, they
must be able to solve multidimensional problems. The extenson of the Kushner and Ziiinskas
methods to higher dimensions requires consderation of multidimensonal stochastic processes,
along with their complex conditional parameters, thereby making computation intractible.
However, the method introduced in Section 3 can be extended rdatively easly. As in the
one-dimensional case, we will define an auxiliary function, which has the properties of the
auxiliary function defined in (12). Further, we asume that we have a set of observation




points which caa be used to divide the feasble region A into a set of nonoverlapping
subregions.  We will then compute the minimum value of the auxiliary function in every
subregion of A and choose as the next cbservation point the point which corresponds to the
least of these minima. This new observation point will then be used to futher subdivide the
feasible region and the process is repeated

4.1. DIVISION OF FEASIBLE REGION A INTO SUBREGIONS

Recall that we have aready assumed that the feasble region A is a hyperrectangle whose
vertices are determined by the lower and upper limits of the values of the dedgnable
parameters.  While these vertices could be used as the initial set of observation points, we
choose not to for two reasons. First, the numbe of such vertices grows rapidly as the
number of dimensions of x increases. Second, the feasble region A can be huge, and trying
to subdivide an extremely large region could be computationally expensve. As an alternative,
we propose to begin with a set of (n+l) arbitrarily choosen observation points in A, which
defines a sirhplicial approximation to A. We will then employ either a smplicial subdivison
scheme, to refine this approximation, or a polyhedral inflation scheme, to allow for improved
coverage of A, if necessary. We now give the details of this procedure.

Let x*, x% .., x*' be the set of (n+1) randomly chosen observation points in A, and let
D%*! denote the polytope (actually at this point a smplex) whose vertices are these points***
Now consider the observation point, x°*2. This new observation point will fall ether inside
the polytope D"*!' or insde its complement"5™!  Note that A=D™! \J~tr* and ET! f]r!
= 0. In the first case, we will refine the approximation to A by further subdividing D** into
a set of nonoverlapping smplices, S‘j)*l,j = 1, 2, .., n+1 which are defined by x™? along with
al combinations of n"vertices of D"*. Note that if x™2 falls on the face of D" degenerate
simplices. may arise which are ignored. This newly subdivided D"*' will be called D" If
x"2 falls inside of -D-”*l, we will see in Section 4.3 that because of our choice of the auxiliary
function x?*2 must be a vertex of A. We now inflate the approximation to A by adding to
D%! the smplices defined by this vertex of A and the vertices of the faces of the polytope
D'"! as seen by this point This new approximation is denoted by D°*? (see [15] and [16]

for techniques to achieve this step). These concepts are illusrated in Fig. 4-1.

The above procedure can in general be repeated to generate approximation D**' from
approximation D* given the observation point x**!. Before leaving this section, it is convenient
to introduce some additional notation which will be needed below. Obsarve that after a

“*Note that polytopcs D:, Dz, D‘ are undefined.
-
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" number of subdivison and/or inflation steps, we have an approximation to A, denoted by D*
©and its complement"5", such that A = D" U"5" but D" H*D" = 0. Further, D* is composd
of I* nonoverlapping smplices, Le.

I*=U S

i=1

We now wish to consider the decomposition of D* into J¢ subregions Gj", ji=l, 2....3
where J* is the number of faces of the polytope E* and G: is defined as follows. Observe
that the hyperplane defined by the j'" face of polytope 1? seperates two half spaces, one of
which does not contain &. If we denote this half space by H';. then G'; is defined as

G:_‘zH"H", =12, -3 (13)

4.2. DEFINITION AND MINIMIZATION OF THE AUXILIARY FUNCTION

We obtain the auxiliary function of the n-dimensional vector x by generalizing expressons
(11) and (12). Towards this end note that the <r(X) component of w(x) in one dimenson is an
elipse equation over the subinterval which has its maximum value at the center of the
subinterval and zero value at the end points of the subinterval  Observe that the expresson
(11) may be transformed to the form

A A o X!+ xt
o @)= p*-(x-1")1; where p = A
2 | 2 2

u

x", x- - upper and lower endpoints of the subinterval

Extenson of (13) to the n-dimensional case yields

2
o

<r2(x)=—i— CliMx-x)* (x-xH] x«ACR" . (14)
P

In order for aHx) to retain features of *%(x), we must asume that the simplices which
comprise the approximation to A are canonical. A canonical smplex is one in which the
distances between every pair of vertices are identical. The center of this canonical smplex, X%,




Figure 4-1: Procedure for subdividing and inflation
of the approximation to A
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is the average of the coordinates of its vertices; p is the disgance of any vertex from the
center. Unfortunately, it is highly unlikey that all simplices which comprise D* will be
canonical However, we can trandorm every smplex into a corresponding canonical smplex of
equal volume. This trandformation is described in Appendix A. The volume of the smplex is
a measure of the uncertainty of f(x) over a given subregion and for this reason it should be
unchanged. Expression (14) is attractive since, as will be seen beow, the minimum of w(x)
may be found analytically (see (17) and (BID).

We can now define the auxiliary function within each of the subregions which make up A as
W) = mix)- ¢ o'tx) ' (15)

where j denotes ether one of the simplices which make up D* or one of the subregions in
"b* as defined by (13) and the functions m’;_and <* are defined as follows. Consder first that
part of the region A contained in D\ which has been further subdivided into the simplices S.

i=l, 2, .. Ix. Leét vn, Vp.... v’.n" represent the vertiges of the i* dmplex; lf.Jf I.’\ be
the values of the objective function at these vertices, S: be the equivalent canonical smplex
asociated with Si* and ?i,, %0 .. .?.QM the vertices of the canonical smplex. In what

follows, we take f':] to be the objective funtion value at the vertex ?.u_ as wel as Vi We now
define mHx) to be specified by the equation which characterizes the n+l dimensional
hyperplane which passes through the points defined by (f. V.J), (f.. 9.0, .. (f

7. ,O7T. In particular, we can express mHx) as
1»B'*1 .1

mHX)* () x > 7

where the n-vector m contains the lat n components of the norma to the hyperplane
defined above and A is the disance of this hyperplane to the oLigin. Finally, (a}x))2 is a
hyperelipsoid which circumscribes the equivalent canonical sSmplex S

Now condder that part of the feasble A made up by the subregions G‘; as defined by (13).
Each of these subregions is defined by a face of the polytope D*. Let v:l ..... vi; dencte the
vertices which define the j* face of D\ We choose mgx) to be a congtant outsde of DX
such that




m(x) = min [f(v})]

We define (<rJ!W)2 in this region as a linear function of the disance, d, from the face of
D\ Le

(c;(x))’ = <7

Parameters ¢ and a’ are discussed more fully in Section 4.4.

Note from the above definitions, that outside of the polytope face, Le., within some
subregion G‘;, the function wj**(x) becomes minimal at one of the vertices of the
hyperrectangular box A. This vertex may be easily detected by testing the vector normal to the
face of the polytope defining the particular subregion G';, and evaluating w(x) at this point
However, minimization of W’;*l (x) over the canonical simplex requires solution of the

constrained optimization problem: .

minimize: w” (x) = (,m W,- AL 152 (kX (xox ] 2 (16)
v £

subject to: ("JV'x-I £0 j=1,2,...,n+l, n>l
o~y

where *jl) is a vector normal to the j* face of smplex S with origin at x*.

Although w;*'(x) in this case is drictly convex, there is no analytical“solution to problem
(16). In most cases however, the solution of (16) falls inside the smplex S\ Therefore, as an
alternate to solving (16) we can consider

minimize we* (x) 7

where vv’;*1 (x) is as defined in (16). The solution of (17) is
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(18)

(Note that (18) is a generalized form of the solution for problem (12), defined in Section 3).
Next we check whether or not x° is outsde the smplex under consideration by solving for
the X in the following problem:

n+1

j=z1 Al. Vi =X (19)

and

n+1

> X =1
i

If all Xf i=l,2"..,n+l are non-negative, then x° is indde the smplex. If x° falls outsde the
smplex, then we solve the following constrained problem:

minimize:  we! (x)

subject to: g(x) = (*3"x-1=0 i=1,2..J (20)

where W;‘*!(X) is as before and the condraints ggx) correspond to the J negative Xj which
results from the solution of problem (19). An analytic solution to this problem is given in
Appendix E

In higher dimensions, i.e, for n > 2, the solution of (20) may also fall outisde the sSmplex.
Thus problem (19) must be solved using the solution obtained for (20). If some of the X. are
still negative the appropriate congraints are appended, and (20) is resolved
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Since x° is the solution point for an equivalent canonical simplex, the solution point in the
original simplex is found by backward transformation (Appendix A).

4.3. MAIN ALGORITHM _

We now summarize the procedure for global optimization. Assume that a set of (n+1)
observation points within the feasible region A have been choosen and that an objective
function evaluation has been performed at each of these. These points define the simplex S'l"'.
which constitutes the initial approximation, D**', to A. furthermore, as new observation points
are formed, the approximation to A is refined in such a way so that it remains composed of
nonoverlaping simplices. Thus, the k™ step in the procedure involves:

1. Minimization of the auxiliary function (15) over each of the simplices, S*, that make

up the approximation, D* (which involves repeated solution of (17), (19) and (20))

and over each of the regions G‘ in D*, as defined by (13) (which involves evaluation
of the objective function at a vertex of A).

2. Selection as the new observation point, x**', that point which yields the least of the
minima found in 1.

3. If the uncertainty of- the region which contains the new observation point is
acceptably small, then take this region as being the neighborhood of the global
minimum, and x**' as the initial point for a local optimization procedure. If the
undertainty of this region is too large, continue to the next step.

4. If x*' falls within a simplex which makes up D', subdivide this simplex using x**
as a new vertex. If x**! fallsin D", ie., at a vertex of A, then inflate the polytope
D* to include x**! as a vertex.

4.4. PARAMETER EVALUATION

We now consider evaluation of the parameters o> and ¢. As for the one-dimensional case in
the expression for w(x), two constant values o> and c exist. In the one dimensional case, o>
is a Wiener process parameter and corresponds to differences of observation values. At this
point, we generalize the assumption made in the one dimensional case, namely that f(x) is a
realization of a certain stochastic process. As shown by Mockus [10] the most suitable
stochastic model is a multidimensional Gaussian function defined on A with expected value

and covariance matrix K whose entries are defined as:

n - x! '
K.iij= a° n ( 1- —:—-—'— ) i, 71,2...n (21)

t=1
1

where

— JU_ oL
Al xl xl




Edimators of parameters /i and a’ may be obtained using the method of unbiased

likelihood egtimation [10]. Let the number of observation points equal M. We obtain first the
edimator " of expected value /i

1Kt
A (22)
* 1'K'1
where
f — is the column vector of M function observations
1 — is the unit M-vector
The estimator If of <r? is as follows:
1
';2 = (f - 1JFK"Y (f - Iy (23
M -1

Note that this method of estimating a' needs further investigation since the auxiliary
function w(x) was created by an analogy to the w(x) in the onedimensional'case, and not by
analogy with the stochastic process. Nevertheless, formula (19) keeps the information about the
range of differences of f(x) values and for this reason appears to be useful.

The meaning of the congtant ¢ remains unchanged in higher dimensons. Further, the sudy

of the behavior of the proposed algorithm as c¢ varies should bring further improvement in its
efficiency.

5. NUMERICAL EXAMPLES

5.1. ONE-DIMENSIONAL CASE
Three different one-dimensional multiextremal functions were considered:
1 £, = 2 - 0757 » SN(frx - 0.4») - 0125 0 x £ 1

which has a global minimum at x = 0.7795 with fa.. = -1.1232287
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1 fx) = min Efy(x), tx)d 0sx<1

where
fy(X) = 2(x-0.75)% + sin (8x - 0.5») - 0.125
-1.25 « 750017 - X) X £0.17
tjx) =
-1.25 + 35(x. - 017) x > 017
which has a global minimum at x=0.17 with f . = -1.25 and two local minima at X

= 0.75 with f(x) = -1.125 and x = 0.99842 Witff" f(x) = -1.0007867

- 1 .
£,x) = - Z Lj sn t+)x+]d ~ -10 £ x £ 10

which has three equal minima at the points -6.77457, -0.49139 and 5.79179 with f _
= -1103125, and one local minimum at x = 45577 with f(x) = -9.4947. e

In all of these examples, six observation points were initially chosen in the region A which
resulted in the region A being divided into 5 equal subintervals. Table 5-1 compares the new
observation points chosen by the original Bayesan method .(i.e., Slinskas) and the simplified
method, for different values of ¢ It was decided a priori to fix the number of observations at
31 Table 5-2 shows the two best results for different values of ¢ and the number of
observations required to achieve these reaults.

5.2. TWO-DIMENSIONAL CASE
Two different two-dimensional multiextremal functions were considered:

1. Branin's function.
AQcytoty-bx”x-d)? + h(l-f)cos(x) + h
where a=I. b=5.1/4»% c=5/», d=6, h=10. f=1/8»
—5£X*-10, O£y £ 15

This function has three equal global minima at points (-3.14159, 11275), (3.14159,
1275), (942478, 1475) with f* = 0.397887.

1 Goldstein's and Price's function [17]

fo(xy) = [I-Kx+y+)*(19-14x+3x*14y+6xy+3y?)] X
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Table 5-1: Comparison of observation points determined by the Bayesan
and smplified methods
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Table 5-2: The results of the optimization by the Bayesan
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[3(W2x-3y)?(18-32x+12x*+48y-36xy+27y?)]
2 £X £ 2 2%y E2

This function has a global minimum at the point (0.000, -L000) with fgiz = 3 and
the local minima as given in the following uble:

X -.600 -.398 1.800 L 200
y -.400 -.602 .200 .800.
f(x.y) 30 b 84 840

The algorithm presented in Section 44 was used to find the neighborhood of the global
optimum. The two best results, after 36 observation points were found for different values of
c, are shown in Table 3.

53. A FIVE-DIMENSIONAL EXAMPLE

To illugrate the performance of the proposed technique for higher dimensional problems,
condder the circuit of a congant voltage reference described by Heydemann, et al [18] shown
in Fig. 5-1. The circuit is desgned to keep the output voltage v* congant in spite of
variations in the set of technological parameters such as transconductance, threshold voltage,
channd width absolute tolerance, channd length absolute tolerance and temperature.

The dedgnable parameters are the channd length of each of the MOS devices, denoted by
(X9...,Xs).  The following five-dimensional optimization problem can be formulated:

minimize f(x..x) = (v, = 5P

subject to

15 £ 100

15 £ 10

155 %, £ 150 "~ (length in microns)
15 < 200

15 < 20

Heydemann solved this problem using a grid technique [18] and found, after 2500 circuit
analyses, 4 different global minima at which f(x) = 0.0.

Since the method proposed in this paper determines only a neighborhood of the global
optimum, it is hard to compare the efficiency of both approaches However, after only 100
circuit analyses, we obtained a reasonable neighborhood of the global optimum. Any point in
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Table 5-3: Results for the optimization of functions of two variables
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this neighbbrhood could be used as the-initial point for any local optimization technique.
Table 5-4 summarizes the results of applying the proposed method for global optimization and
five best egtimates of the optimum for various values of c.

6. CONCLUSIONS

A new method for seeking the global optimum in circuit optimization problems has been
developed which requires a reatively small number of function evaluations and has a low
computational overhead. Unfortunately, we cannot establish a strict relationship between the
dimensonality of the problem, Le the numbe of dedgn parameters, and the number of
function evaluations required for its solution. However, based upon a number of examples, it
appears that if the number of function evalutions is about 20 times the numbe of dedgn
parameters, a reasonable neighborhood of the global optimum can be found. Increasing the
number of function evaluations 2 or 3 times does not seem to dgnificantly change the results.
This neighborhood of the solution is a good point at which to employ a local optimizat'ion
method The efficiency of proposed algorithms depends strongly on the techniques used to
divide the parameter space. Hence, further invesigation into techniques for this purpose is
suggested To decrease the risk of mising a global optimum further study of how best to
choose the congtant c is needed

-




PARAMETERS
Xy X, X3 Xg Xg f(xl.....xs) Vout # Obs.
25.66 33.69 124.6 158.3 150.7 j 0.000029 4.995 41
35 21.22 116.8 149.5 123.7 0.001338 4,963 69
27.66 20.9 94.16 | 122.5 142.6 0.001619 5.04 79
27.75 20.87 94.22 | 172.5 92.68 0.003964 4.937 78
27.35 20.59 128.1 125.2 96.28 0.00405 5.064 82
28.53 19.19 95.74 | 134.3 103.6 | 0.001256 4,965 100
25.28 36.89 124.8 161.2 154 0.002974 4,945 47
23.27 15 51.64 | 168.8 62.76 0.04688 4,783 59
25.15 30.21 101.6 130.2 99.7 0.06899 4,737 4]
40.66 36.78 100.4 160.9 187.7 0.0818 4.714 67
25.16 37.96 124.9 162.2 155.1 0.004965 4,93 49
40.13 37.88 101.1 162 187.7 | 0.086 4,707 78
26.14 15 48.47 | 166.9 59.23 § 0.1303 4.639 63
25.18 33.21 100.3 127.8 95.23 § 0.1416 4.624 | 44
15 15 150 200 15 § 0.1429 5.378 18

" Table §-4: Results for the optmization of the circuit example
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APPENDIX A

A.1 SIMPLEX TRANSFORMATION

Consider a simplex defined by the vertices p', j?,..,2*. Aswme that the origin of the
parameter space is at p'*' and define the matrix P as

P = pl_pﬂ‘l . PJ_PI'PI .. pll_Pll*l . . (Al)

Let the matrix

so.:[< s s:—-l | (A2)

characterize an a priqri selected canonical smplex with the origin at s’;“. Observe that for
any scalar k > 0, a matrix

S = kS : . (A3)

also corresponds to a certain canonical simplex.

We wish to transform the smplex P into the canonica simplex S whose volume is the same
a; P, so that

detS = detP (A4)

Let the square matrix T correspond to the transformation of P into the known smplex S




26

From (A3). (A4), and (A5) we have
S = {de(T"')™" Se (A6)

If S* is a certain point in the canonical dmplex S then the corresponding point p* in the
original smplex is defined by the backward transformation

p* = p"*! + (detCTY)-"" r's* (A7)

f.'
‘.‘f




ath
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APPENDIX B

B.1 CONSTRAINT OPTIMIZATION OVER A SIMPLEX
. Let S denote a certain canonical smplex defined by (BI)

()’x S1 i=1X.jJ+l (BI)

where j. are the vectors norma to the smplex faces with origins at its center x*. Assume
that the solution of an uncondrained optimization problem over S (see (16)) falls outside j
faces. In this case, solution x° of the following condrainted optimization problem is required:

minimize w(x) =m'x+m -kOI*<{x~x*}T{x-x*))'"

subject to g’.(x):(*j)Tx-Izo; j=1.£~.J (B2)

Since w(x) and gj(x), j=1.2...J are convex, the Kuhn-Tucker necessary and sufficient
optimality conditions for (B2) are ' )
J
F
Vwix»l  yvgx? =0
Fl

ujs,.(x’) = 0. j=1.2..J _ (B3
Hence we get:
x i
m + . (B4)
R -CVI'hV.]~» ~ "l e

Multiplying (B4) by (»JST, j =1 2..J, wegee
k
[R*(x~x")"(x-x"))""

J
(3)'m + sy up, =0 Fll. (B5)
=

After some further manipulation we obtain:




o,
H {2 § -<H,m +ulﬂ‘ql)
u, .
where
(ql)T - ()
H = (") -
v
L
(") - )

M= ['2 '3'116

and H =H H
d

r

Hence

[2]: - {Km + I.lll(q')

From (B4) and B7) we have

LY

=

where K=H-'H,

kx
m ee. *
[R*={x-x")T(x-x"))'""

Defining the vectors % and 9" as

ny -

H,(Km + UjK,}

(B6)

(B8)
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th=( - HKm
and
T = (I-HK),* (59)

and multiplying 038) by (*')" we obtain

k -
: — »JT (& +uT) =0 (BIO)
[RMx-x®)T(x-x®)] ‘

and the optima point x°

R R(A ¢ U,/_\')

° = - {Bl11)
IR @ @ ¢ 0y

The multiplier v, is obtained from solution of the quadratic equation: .

('YRE + urY) o (ir* (ft* upT)(& *urY))2 =0 (B12)

The distance between the solution x° from X7 is less than a radius R, athough, for (n>2) it
may be outsde the smplex S again. The procedure described in Section 4.3 is then
recommended. It should be noted that if J=I then & = mand 7* =T -
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