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Optim zation plays a major part in industrial chemstry and
process engineering. Here current methods for solving constrained
optim zation problems are discussed, analyzed and conpared

Ve Dbegin by describing with sinple anal ogi es the behavior of
constrained problems and optimality conditions. Three exanples
famliar to industrial chemsts and process engineers are then
described and fornul ated as constrained optimzation problens, or
nonlinear programs. Next we survey state:of-the-art strategies for
sol ving smooth optim zation problenms. These are divided into three
broad cl asses:

1) Active set strategies which optinze reduced problens in
the space of "free" variables.

2) Penalty function methods which add penalties due to
viol ated constraints to the objective function and perform
unconstrained mnim zationse

3) Successive approximtion progranmm ng whi ch approxinmates the .
nonlinear programby |inear or quadratic prograns that are easily
sol ved.

Advant ages and di sadvantages of these nethods and current
computer prograns that use these strategies are discussed.

Finally, sone general guidelines for formulating the
nonl i near programm ng probl em and obtaining appropriate results from
avai | abl e optim zation nethods are presented.
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Introduction

Optimization plays an important part in many areas of
chemistry and chemical engineering. To help motivate this talk we
will consider three simple yet typical problems of interest to
industrial chemists and chemical engineers. First, however, some
concepts of optimization of smooth functions will be reviewed.

Verv often the optimization problem can be formulated as the
minimization of a smooth (i.e., differentiable) objective function
subject to smooth inequality and equality constraints. This problem
is termed a differentiable nonlinear program (NLP) with the following
mathematical form [1]:

Min f(x)

Subject to: g(x)=0
h(x)=0

Here f is a scalar function, X is an n-dimensional vector of decision
variables, g is an m-vector of inequality constraint function, and h
is a k-vector of equality constraint functions.

In two dimensions the problem has a very simple physical
analogy. Consider a smooth valley enclosed by fences. Now a sphere
in this valley will roll to the lowest (minimum) point and stop. At
this stationary point the surface will either be flat or the sphere will
be restrained by one or more of the fences (inequality constraints). If,
in addition, the sphere is forced to roll on a smooth rail (equality
constraint) the sphere will seek the lowest point on the rail if
either the surface parallel to the rail is flat or the sphere is again
pinned by one or more fences. This concept can be summarized in very
elegant, mathematical terms by the necessary Kuhn-Tucker conditions
for optimality [2]:

£(x) + Vg(x)u + Vh(x)v=0 . 1)
8(x)=0 2)

h(x)=0 3)

p Y20 %)
u'g(x)=0 (5)

Equation (1) merely states that the gradient of the surface
and the normal directions of the fences or rails (in which force is
exerted) need to be balanced with an m + k vector of weights (u, v) as
shown in Figure 1. Note that the surface is not necessarily flat at
this optimum. Only if the weights are zero and ¥-{(x)=0 can the surface
be flat. Equations (2) and (3) state that the optimum must be in the
feasible region. Equation (4) states that force exerted by the fences
can only be in one direction while equation (5) states that the weight

u may be positive when the sphere is at the fence (g.=0), but zero
otherwise (g <0). 1

With the analogy of the smooth valley one can easily see the
possibility of several local minima. Sufficient but very restrictive
conditions for having only one minimum are the following:

1. The valley surface (the function f£f(x)) must be convex.

2. If inequality constraints (the fences,g< 0) are present,
these must be convex also.




3. If equality constraints are present, the functions h(x)
sust be linear.

The above conditions guarantee [1] that only one mninumis present
although there is an infinite nunber of single mnimum probl ens that
do not satisfy these conditions. Anong these are nany probl ens
routinely considered by industrial chenm sts and engi neers.
Exanpl e Probl ens

Now that sone concepts of optimzation have been reviewed | et
us consider sone typical chemcal and engi neering problens and di scuss
their fornulation and solution as nonlinear prograns.
1. Chemcal equilibrium

Consi der the foll owi ng sequence of gas-phase reactions:
CH4 + H,0 » CO + 3H, (rn

CO + H,0 " CO, + H, (r2)

present in steamreformng[3,4]. Ve let both reactions be in
equi li briumand need to conpute conpositions at T=1067K and P=1.235 HPa.,
To solve this problemwe nust first realize that:

a. mass i s conserved and nol es can be calcul ated fromextents
of reaction. :

b. Gbb's free energy of the systemis mninzed.

Mol es of each conpound can be witten as:

CHy: my = p- §

B0t np g = (§) + )
[«

Q@ ny«ny = 6y -8y

-
[+
gt M Tt 5y
Hy: o5 =0g+ 35 + 5,
V\here'§i and 8§ are the extenté of reactions ri and ri , and i™ and nf£
are final and initial noles of species i. The total free energy of the

systemis given by: 2
G'Z 2465
1-1
wher e o n.p
Q-G +RIn(-i-)
5 n

51 h| n| _
It can easily be sseen that the correspondi ng nonlinear programi s:

P
Min? n (G + RTin( ~i_))
g 1 n
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=0, - o = = 1.5
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s.t. J=1

- T
g =B L0
8j won 2 0 1=1,5
8 =5, %0
g7-|2*0
where“”j are the stoichionetric coefficients of species i in reaction

j. The problemhas eight variables (n®, n, 81#S,)# six equality
constraints and seven inequality constraints for nonnegativity. nly
two degrees of freedomare present and it is easily seen hy
mani pul ating the vari abl es® and §, ®"? solving for the other

variables, the problemis a mnimzation in only two di mensi ons, bounded
by nonnegativity of n*

Al though this sinple problemcameasily be sol ved by
i ntroduci ng equilibriumconstants, the nonlinear progranmm ng
formul ation (nodified by using atom baaances instead of extents of
of reaction) allows straightforward generaaizations of the equilibrium
problemto large nultiphase, multiple reaction cases and even situations
where not all reactions may be at equilibrium

2. Nonlinear Regression of Reactor Data

Consider the stirred tank reactor in Figure 2, and the
consecuti ve reaction: rn ro

A— B— C

wi t h unknown ki netics. W postulate a general power |aw

rate expression for both reactions and an Arrhenius tenperature
dependence on the rate constant. |If the density of reactant and
effluent streans renains the sane, we can wite the nodeling equations

as: _
CA*CAOT" ] T
CB * CBO + ?(rz" rl) - 0

cc" o "2°-°

r, =k e c,
b9 e ik .
' r, = k20 e c,“g%c

where T= V/F, the residence tinme. By varying tenperature and
residence tine of the species we can neasure steady-state
concentration of the three species and fit these data to find unknown
power |aw exponents, activation energi es and preexponenti al
coefficients. A crude but conceptually easy fornulation of the
regression problemis to mnimze the weighted sumof squares of the

~error between the neasured data and the nodel prediction for

experiment all experinents j:

Min), 136, CA0 - Tisit '
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+Z"‘Gj (V Sco * T2y

where ri and 12 are given above and we ninimze with respect tom n,
P, 0, S, kig, fc* and E* and E;, . This problemmay be formul ated as
an unconstrai ned mninzation or with bounds on the decision variabl es
posed as inequality constraints. Aternatively, all of the predicted
concentrations could be represented with nodeling equations as

equal ity constraints.

A large part of nonlinear regression and paraneter estimation
lies in fornulating the problemas a nonlinear programand applying an
efficient algorithmto solve it.

3. Process Fl owsheet ptim zation

The above applications represent |ocalized applications of
optimzation, in that a particular systemis nodel ed and sol ved.
Process optimzation frequently involves the integration of several
systens and consideration of the interactions of these systens when
formulating the nonlinear program As an exanple we will consider the
classic process problemof WIllianms and Gto[ 5] «

Figure 3 gives the flowsheet of a fairly sinple chem cal
process. Two feed streans of pure A and pure B are mxed with a
recycle streamand react xn a stirred tank reactor. The follow ng
reacti ons take pl ace:

A+ B*C rn
C+B*P+E rs
P+ G*G rs
Each reaction rate observes an elenentary second order rate laww th
an Arrhenius tenperature dependence, i.e.,
~Eai I FT

2
*
i " Ko € FRi FR2/FR

where FRii~*nd Fg,», are flowates for reactants 1 and 2 of reaction i.
The reactor effluent is cooled by a heat exchanger. After an oily waste
product, G is renoved, the mxture is transferred to a distillation
col um where the valuabl e product P forns the overhead. The bottons
product consisting of 10%P in E (an azeotrope) and Cis split into
two streans; one is recycled to the reactor, the other is burned as
fuel .

The objective is to maximze the annual rate of return on
pl ant investnent, so we can pose the objective function as:
Mn - 100 |8400[(0.3F, + 0.0068F>>(0.876)
* sal es over head factor
- (0.02Fs - 0.03F - 0.0U.)]

raw naterials & waste

- 60V - 2.22Fo1/ 600V
P R| P
pl ant fixed charge utility plant investnent
(10%of investment)  cost




The equal ity constraints for the optimzation are the mass bal ances,
reactor nodeling equations and unit operations relationships for the
process. An overall nass bal ance gi ves:

hI ' FA-H:BIIFGHFPHFDI o

The conposition of the azeotrope in the bottons provides a P bal ance
over the distillation colum.

hZHFRP-O.lFRE-FP’-O

Pin Pin Pin
feed bottom overhead
An overall nass bal ance on E gives:

hy = Mp/M) - - DFrF, F& ~ °
R
E forned in E | ost inFD
r eact or

The nass bal ance for P is:

' C2"RB'RC " <YV¥3TRCFRp} Vp’FR

P formed in reactor
n FP n FD t<FRP LERVA <FR _FG - FP)] = {
P in overhead PinF

Remai ni ng equati ons are:
Mass bal ance on A

) '
h5 n <_kIFRAFRB>Vp/FR n W < V FG n V/\ + FA
formed fuel feed

Mass bal ance on B:

2
h6 - FB + (_/\/\ _ VRBFRC>VP/FR "o DA BBAR _ FP "

f eed f or ned f uel

Mass bal ance .on C
h7 KV V kl FRAFRB nooal MB> k2FRBFRC

2
ka’gc" v p/rR - FDFRCI (F

f or ned f uel

R " FPu F®

FG»

=0




Mass Bal ance on G

2
"g " <VVKRRCRPP'FR" F6 T °

f or ned wast e

Definition qf total reactor effluent, F

h9 *FR"ﬁRA"FRB"FRC"FRE"FG"FRP"°
The inequality constraints are limts on the reactor tenperature:
o o 580 * T * 680°R _
the production rate -
“ 0 £ F, £ 4763 |bs/hr
and nonnegativity of all the flow rates: Fi £0

and the reactor volune: V™ O

Overall, the problemhas 13 variables, nine equality constraints, and
15 inequality constraints. This probl emhas been sol ved by many
i nvestigators using a nunber of nethods [5-8].

Al though the Wllians-Cto nodel takes sone work to derive,
the problemis very sinple conpared to process optimzati on nodel s
routinely encountered in industry. Because of conplicated nodeling
equati ons, conplex physical property correl ations, |arge nunbers of
conponents, and entangl ed recycle streans |eading to nany nmass bal ance
rel ationships, industrial processes are often nodel ed by nany
t housands of equati ons.

Solving these problens is very difficult and tine-consum ng
To aid in calculation, nost conpanies use process sinulators which
greatly sinplify the nodeling but not the optimzation. nly recently
have techni ques been applied which sinplify the optimzation step as
wel 1 ]9, 10].

Havi ng revi ewed sone detailed applications of constrained
optim zation, let us now consider sone state-of-the- art tool s that
allow their solution.

Constrai ned Qptim zation Techni ques

Met hods for constrained optimzation can be divided into three
broad categories. These are:

1. active set strategies - where inequality constraints are
added or dropped fromthe set of equality constraints. An
unconstrai ned mnimzation then takes place in the reduced space of
the renmai ning degrees of freedom

2. penalty function methods - where the violated constraints
forma penalty termin an extended or augnented objective functlon
on whi ch unconstrai ned mnimzation can be appli ed.




3. successive approxinati on nethods - where the nonlinear
programm ng problemis approxi mated repeatedly by either a linear
program (SLP nethods) or a quadratic program (S net hods).

Categories 1 and 2 use unconstrained mnimzation algorithmns
such as Newton's nethod, quasi-Newton methods or conjugate gradient
net hods. Excellent reviews of these methods are given in [11,12].
The last category uses standard linear or quadratic programm ng
packages that are available in alnost every conputer installations
library (e.g., MPS, sinplex, QPSCL) e

.- Active Set Strategies

These al gorithnms choose a set of active constraints and then
optimze a problemwith fewer degrees of freedom |If the Kuhn-Tucker
conditions are satisfied at this solution, the algorithmtern nates.
QG herwi se the set of active constraints is changed and anot her
unconstrai ned problemis sol ved.

The probl em

Mn f(x)

s.t. g(x) £ 0
h(x) « O

L:Xx £U

-is nodified by adding slack variables (s »~ 0) to inequality
constraints. The set of variables is then partitioned into basic
(dependent) vari abl es, y, and nonbasic (independent) variables, z.

Thi s probl em

Min f(x)
g(x) + s =0 h(z,y) - 0
h -
) =0 (x,5) « (z.Y)
LEx=U
s 2 0

is then converted into a problemwi th sinple bounds of the form

Mn F(z,y(z))
s.t. LAz £ U
Since the elinnated constraints, g and h, can be nonlinear and not

directly reducible to formF, a reduced gradient is calculated and used
to conpute search directions for the unconstrained mnimzation.




Witing the gradient of F in terms of y and z gives

I N
daz 3z ~ bzhy

dy/dz is obtained by enforcing feasibility of the constraints and
writing:

éH * 8* A—Ady -Akgrh—dz
§y bz

d
2 =+t 3y &z

The reduced gradient is therefore

df i 3h, 30 T 3L
dz az " az' ay’ ay

with (n-k) nonbasic variables, z, and (mfc) basic variables, y.

Several types of search directions are incorporated into
active set strategies. Probably the nost efficient is given in
[13,14]. Here the nonbasic set is partitioned into the superbasic
set, those variabl es between upper and | ower bounds, and renaining
variables which are at their bounds. The reduced gradient is then
exam ned for each remaining non-basic variable to see if it should
join the superbasic set. This occurs if the reduced gradient is
negative (positive) and the variable is at its lower (upper) bound.
The seéarch direction is then set to zero for the renaining nonbasic
vari abl es and the unconstrained al gorithm generates search directions
for the superbasic set.

The earliest active set strategy is the sinplex nethod of
linear programming. |If the problemis linear, the search direction for
the variable z] [15] is:

dF dF
0 if |=—| # max | |
dzy| T N |z,
d‘1 -
dF dF d|
-— {f == mx |9--
dzj dzj K dz,u

Rosen [16] proposed a simlar orthogonal gradient projection algorithn1mhich'
deals with linear constraints and uses - F as the search direction. Qhers
[17,18,19] used quasi-Newton methods [20] with the reduced gradient.

In dealing with nonlinear constraints all reduced gradient
algorithms linearize the constraints at the current iteration and
calculate the reduced gradient. Sone algorithns [21,14] then project
into the hyperplane of the linearized constraints. Qhers, however
calculate the search direction and then adjust the basic variables so
that equality constraints are always satisfied. This involves a few




Newton iterations of the form:

y“l = yi - [ — ] h(zi,yi) with z= fixed

At present there are three widely used optimization programs based on
the active set strategy. GRG2[22]iconverges the equality constraints
for every function evaluation. It uses quasi-Newton search directions
on the reduced problem when the number of degrees of freedom is small or
conjugate gradients when the reduced problem is large. A similar
approach is used by VMP[18] but here a different projection strategy

is used for the reduced problem.

MINOS[14] can project into the tangent hyperplane of the
constraints without always satisfying equality constraints. This
algorithm has been implemented as a very sophisticated and efficient
package. Results on optimization test problems have shown that MINOS
performs very well[23].

Penalty Function Methods

This is the earliest of the constrained optimization
approaches [24,25]. Popularized by Fiacco and McCormick [26] as
Sequential Unconstrained Minimization Techniques (SUMT), early penalty
function concepts are now obsolete although extensions of their ideas
have led to more current and efficient algorithms.

The SUMT philosophy involves the solution of a series of
unconstrained problems on penalty functions made up of the objective
function and constraints. Several types of penalty functions have
been proposed. Two typical functions are the interior penalty:

P (x) = £(x) - i- Z 31(")
.1"1

(which uses feasible points and handles inequality constraints only)
and the exterior penalty

m k
Be = £ +oy [ ) [max(0,g,)T* +) b7 ]
31 =1

(which uses infeasible points). For a given @i, the penalty function
is minimized at Xj, say. As @j tends to infinity the sequence of 31
tends to the optimum x. Figure 4 shows this approach on a
one-dimensional problem. Penalty functions have the advantage of not
having to track nonlinear constraints as active set strategies do.
However, as ai the penalty function becomes more and more
ill-conditioned, leading to a sequence of Xj that terminates before .
the optimum is found. Also, Penalty functions are only as good as the
unconstrained minimization algorithm used. If the surface is not




convex, the algorithmw |l fail and the penalty function al gorithm
termnates prematurely.

An exact penalty function:

POO - f(x) +« ||9+’h||p

- where g- = max(Q Q) and‘flél.lp - p-normof vector a -
(101}
=) |- ° yL/p

does not requires to tend to infinity to find the optimum If [2]

2 fjuvi1<P-iyp

where u,v are the KKT multipliers at the opti mum then the m ni mum of
the nonlinear programmng problemis found at the mininumof the exact
penal ty. The disadvantage to this penalty function, however, is that *
it isnot differentiate at the boundary of the constraints.

TAnot her, way of avoiding the requirenent that or** is to add the
terns ug + v htothe exterior penalty function given above. For a
finiteor it can easily be shown that the mnimumof this function
under certain conditions will satisfy Kuhn-Tucker conditions for the
HLP. The function:

L(x.u‘.va) = f(x) +¢"g+“2 + uTq +vh "'G“hllz

or equivalently

m
— . 2 2
Lixuve) =F(X) +[0) ° ag +u ) - u)
§=1

+ a"hﬂz+ vn

is known as the augmented Lagrangi an and was originally applied only
to equality constraints[27]. The extension to inequality constraints
| eads to the above expression [28].

The optim zation proceeds by mnimzing L(x,u,v#) wth
respect to x, keeping u and v fixed. |If constraints are satisfied,
stop. Qherw se update u and v to maxi m ze the augnented Lagrangi an.
The penalty parameter, or, is periodically increased if constraint
violations are not reduced. The algorithmfollows naturally from
consi deri ng Kuhn- Tucker saddl epoi nt conditions[1]

f6H +u'g(X) +vh(xX) =fC +u'g(X) +vh(xX) =1f(x) + xi\(k) +vIh(x)

and rerely consists of
Max[ M n(L(x, u, Vv, cr)]
U, Vv X

Several unconstrained al gorithns have been applied to the inner

m nimzation and outer maxi mzation of L(x,u,v,cr). An excellent
revi ew of these augnented Lagrangian or nultiplier methods is given
in[29].
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Successi ve Approxi mation Met hods
These met hods can be summarized by the follow ng steps [30].

1. Forman approxi nate nmodel of the NLP at the current point that can
be solved by a standard al gorithm (Linear or Quadratic Progranm ng).

2. Let the sol ution d" fromthe standard al gorithmdetermne the
search direction for the next point. |If the directionis zero, stop.

3. Find a stepsize X along this search direction that gi vg_'s_"a poi nt )
which is "better" than the current point. Go to 1) with X = x' + Xd'.

As mentioned above, the approxi mate nodel is solved either as
a linear or quadrati c program For |inear programm ng thf appr oxi mat e

nodel is a sinple linearization about the current point X i.e.,
M n fCcxt)yn
.t g(x])jd =-g(x))
h{x'}» = -htx’)

where d is the search direction found by the LP. COten limts nust be
pl aced on d because the LP mbdel cannot take advantage of curvature of
the original surface. |In fact, adjustnent of the extrapolation limt
ondis very critical in the nei ghborhood of the optimm as
oscillations usually occur.

Since their developnent in the late fifties and early sixties
[30,31], SLP nodels have been widely used for refinery optinmzation

- and other large process problens that are nostly |inear[ 32, 33].

If a erdeI approximation is made to a quadratic programthe
result is: ’

Mn f(x%)"+ -|dBd
Ty
)A
Again the nonlinear problemis linearized about x* but a quadratic

termis added to the objective function. The natrix B is the Hessian
of the Lagrangian at x“[ 34]:

vt ut vty v rody + oy gyt + v hodhvt

0

t. 3
st g3 + gxd)Ta =0

h(ar ) hj

or its quasi-Newton[19] approximation. Here the multipliers u®, v*

are shadow prices fromthe quadratic program Placing an

extrapolation limt ond is not as critical here as with SLP, because
the quadratic objective function includes curvature information from
the NLP. In fact, if Bis a quasi-Newon approxinmation to v  L(X,u,V)
and remains positive definite, no extrapolation limt ondis™
required.

For SLP nethods the stepsize in step 3 is usually set to one
and novenent is dictated by the size of extrapolation linit. Wth SQP
nmet hods the stepsize is found by mnimzing an exact penalty function
along the search direction. A though this procedure worfcs very well,
sone difficulties have been reported[35 36] .




SQP nethods were initially discovered in 1963 [37,38] but have

only recently been seriously inproved and devel oped [34,39,40]. In
general, applications of this method have been very successful. How
ever some questions and difficulties nust still be resol ved.

Conpari son of Met hods

Cf the strategies described above, only active set and
successi ve quadrati c programm ng met hods shoul d be seriously
considered. Although penalty function methods provide a good
conceptual grasp of the constrained problem they are nmuch-less
efficient and lead to conputational problens as the penalty paraneter
goes to infinity.

Two very powerful conputer packages that use active set
strategies are MNOS[41] and 6R&2[22]. In nurerical studies these
codes have been shown to be very robust and efficient. Al though the
S method is easy to programwith the aid of a standard quadratic
programm ng package, only one version (VF02AD fromthe Harwell
library) is commercially available at present [42]. In nunerica
conpari sons [40,13], the SQ nethod has even outperfornmed some active
set strategies. Qurrent research on this nethod should make it nore
efficient, robust and reliable.

Conclusions - Tips for solving Qotim zation Probl ens

Havi ng surveyed briefly some aspects of optim zation
techni ques and applications, we conclude with a few guidelines for
formul ating optimzation problens and choosing nethods to solve them

Wien formul ating the optim zati on nodel, consider the sinpler
aspects first. nly when one understands the behavior and limtations
of a sinple nodel should he proceed, stepwise, to a nore conplicated
one[43]. Starting with too conplicated a nodel |eaves no
opportunities to backtrack and correct the forrmulation if the
optimzation fails

Ohce formul ated, the nodel and optinization approach shoul d be
checked for sensitivity to changes in the scientist's data. He should
careful ly consider what infornation the optimzation study wll
provi de and how changi ng prices, variable feedstocks and fluctuating
equi pnent performance will affect these results.

Before applying an optimzation technique to the nodel the
scientist should check for inconsistent constraints or equations. For
instance, the optimzation will surely fail if two conpositions sum up
to one and both are constrai ned above 60% Moreover, many _

i nconsi stenci es appear subtly and are difficult to spot. Al so the
scientist should, if necessary, scale the variables so that they have
sinmlar orders of nagnitude. The same shoul d be done with objective
and constraint functions and their gradients. A though poorly scal ed
nodel s do not affect the theoretical solution of the problem they

i ntroduce conputational problens due to the conmputer's fixed
preci si on.

Finally, in choosing an optimzation nethod to solve the
nodel , one shoul d consider the follow ng questions:

1. Are the nodel | ed functions continuous and differentiate? :
If not, only very inefficient and time-consunm ng direct search




.

net hods of fer any guarantee of success. A though the optimzation
t echni ques surveyed above may still solve the problem they could al so
jaminto a corner and stay there. '

2. Can gradients be calculated anal ytically?

Al though the objective and constraint functions nay be snoot h,
it may be difficult to calculate analytical gradients. Instead the de-
rivative is obtained by perturbing the variable and neasuring the effect
on the function. To get an accurate nmeasure of the gradient, the pertur-
bation size nust be chosen carefully. A good rule of thunb is to let the
perturbation size beva where e is the relative function error [44].

3. Wiat fcindof equality constraints are present and how shoul d they
be treated?

Each tine the objective function is evaluated the al gorithm
could solve all of the equality constraints first. On the other hand,
it could just linearize the constraints and project the objective
function onto the linearized space. The latter approach allows the
si mul at aneous optini zation of the objective function and convergence
of equalities.

If the nunber of equalities is small and the systemis easily
solved, following a feasible path is always a safe policy. Failure
of the algorithmalways yields an inproved and usabl e point.

If the systemof equations is large and difficult to sol ve,

a feasible path policy nay be grossly inefficient. Fortunately, SLP,
S and M NG5 are wel |l -suited to the linearized approach. In the ab-
sence of degrees of freedomthey all degenerate to a danped Newt on

net hod for solving nonlinear equations. Mreover, if the constraints
are linear, this problemcan be handl ed very easily by the above three
net hods.

Sumary

In this paper we surveyed sone current nethods for constrained
optimzation. Presently, the best nethods are active set strategies,
such as M NG5S and GR&, and SQP net hods.

VW began with a sinple anal ogy to constrained optinization and
formul ated three chemical problens as nonlinear progranms. After
review ng current optimzation techni ques we concluded wth sone

guidelines for their application
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