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Optimization plays a major part in industrial chemistry and
process engineering. Here current methods for solving constrained
optimization problems are discussed, analyzed and compared.

We begin by describing with simple analogies the behavior of
constrained problems and optimality conditions. Three examples
familiar to industrial chemists and process engineers are then
described and formulated as constrained optimization problems, or
nonlinear programs. Next we survey state-of-the-art strategies for
solving smooth optimization problems. These are divided into three
broad classes:

1) Active set strategies which optimize reduced problems in
the space of "free" variables.

2) Penalty function methods which add penalties due to
violated constraints to the objective function and perform
unconstrained minimizations•

3) Successive approximation programming which approximates the
nonlinear program by linear or quadratic programs that are easily
solved.

Advantages and disadvantages of these methods and current
computer programs that use these strategies are discussed.

Finally, some general guidelines for formulating the
nonlinear programming problem and obtaining appropriate results from
available optimization methods are presented.
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Introduction

Optimization plays an important part in many areas of
chemistry and chemical engineering. To help motivate this talk we
will consider three simple yet typical problems of interest to
industrial chemists and chemical engineers. First, however, some
concepts of optimization of smooth functions will be reviewed.

Very often the optimization problem can be formulated as the
minimization of a smooth (i.e., differentiable) objective function
subject to smooth inequality and equality constraints. This problem
is termed a differentiable nonlinear program (NLP) with the following
mathematical form [1]:

Min f(x)

Subject to: g(x)^O
h(x)=O

Here f is a scalar function, x is an n-dimensional vector of decision
variables, g is an m-vector of inequality constraint function, and h
is a k-vector of equality constraint functions.

In two dimensions the problem has a very simple physical
analogy. Consider a smooth valley enclosed by fences. Now a sphere
in this valley will roll to the lowest (minimum) point and stop. At
this stationary point the surface will either be flat or the sphere will
be restrained by one or more of the fences (inequality constraints). If,
in addition, the sphere is forced to roll on a smooth rail (equality
constraint) the sphere will seek the lowest point on the rail if
either the surface parallel to the rail is flat or the sphere is again
pinned by one or more fences. This concept can be summarized in very
elegant, mathematical terms by the necessary Kuhn-Tucker conditions
for optimality [2]:

f (x) + Vg(x)u + Vh(x)v=O (1)
g(x)^O (2)
h(x)«O (3)

T u^O (4)

Equation (1) merely states that the gradient of the surface
and the normal directions of the fences or rails (in which force is
exerted) need to be balanced with am m + k vector of weights (u, v) as
shown in Figure 1. Note that the surface is not necessarily flat at
this optimum. Only if the weights are zero and^f(x)=O can the surface
be flat. Equations (2) and (3) state that the optimum must be in the
feasible region. Equation (4) states that force exerted by the fences
can only be in one direction while equation (5) states that the weight
u may be positive when the sphere is at the fence (g>=0), but zero
otherwise (g <o). x

With the analogy of the smooth valley one can easily see the
possibility of several local minima. Sufficient but very restrictive
conditions for having only one minimum are the following:

1. The valley surface (the function f(x)) must be convex.

2. If inequality constraints (the fences,g^ o) are present,
these must be convex also.



3. If equality constraints are present, the functions h(x)
•ust be linear.

The above conditions guarantee [1] that only one minimum is present
although there is an infinite number of single minimum problems that
do not satisfy these conditions. Among these are many problems
routinely considered by industrial chemists and engineers.

Example Problems

Now that some concepts of optimization have been reviewed let
us consider some typical chemical and engineering problems and discuss
their formulation and solution as nonlinear programs.

1. Chemical equilibrium

Consider the following sequence of gas-phase reactions:
CH4 + H20 ^ CO + 3H2 (r^

CO + H20 ̂ ^ C02 + H2 (r2)

present in steam reforming[3,4]. We let both reactions be in
equilibrium and need to compute compositions at T=1067K and P=1.235 HPa.
To solve this problem we must first realize that:

a. mass is conserved and moles can be calculated from extents
of reaction.

b. Gibb's free energy of the system is minimized.

nj -
Moles of each compound can be written as:

•s
n2 ™ n2

CO: n_ « n,

C 0 2 :

where §i and §2 are the extents of reactions ri and ri , and i^ and n£
are final and initial moles of species i. The total free energy of the
system is given by: 5

1-1
where p

Q, - G. + RT In ( -i-

5 'hi n.i
It can easily be seen that the corresponding nonlinear program is:

^ ni(Gi + RT in( ^i_ ))

• 1 n



s.t.

h

8i " ni

g7 - l2 * o

where u^j are the stoichiometric coefficients of species i in reaction
j. The problem has eight variables (n^, n, §1#S2)# six equality
constraints and seven inequality constraints for nonnegativity. Only
two degrees of freedom are present and it is easily seen by
manipulating the variables^ and §2

 a n d solving for the other
variables, the problem is a minimization in only two dimensions, bounded
by nonnegativity of n^ .

Although this simple problem cam easily be solved by
introducing equilibrium constants, the nonlinear programming
formulation (modified by using atom baaances instead of extents of
of reaction) allows straightforward generaaizations of the equilibrium
problem to large multiphase, multiple reaction cases and even situations
where not all reactions may be at equilibrium.

2. Nonlinear Regression of Reactor Data

Consider the stirred tank reactor in Figure 2, and the
consecutive reaction: r^ r2

A—> B—> C

with unknown kinetics. We postulate a general power law
rate expression for both reactions and an Arrhenius temperature
dependence on the rate constant. If the density of reactant and
effluent streams remains the same, we can write the modeling equations

CA * CA0 + " l = °

CB * CB0

CC " CC0 " " 2 = °

-E,/RT m n

1
where T= V/F, the residence time. By varying temperature and
residence time of the species we can measure steady-state
concentration of the three species and fit these data to find unknown
power law exponents, activation energies and preexponential
coefficients. A crude but conceptually easy formulation of the
regression problem is to minimize the weighted sum of squares of the
error between the measured data and the model prediction for
experiment all experiments j:

r CAO - Tri>i +



CB0" T ( V

ZW3j(V

where ri and 12 are given above and we minimize with respect to m, n,
p, q, s, k10, fc^ and E^ and E2 . This problem may be formulated as
an unconstrained minimization or with bounds on the decision variables
posed as inequality constraints. Alternatively, all of the predicted
concentrations could be represented with modeling equations as
equality constraints.

A large part of nonlinear regression and parameter estimation
lies in formulating the problem as a nonlinear program and applying an
efficient algorithm to solve it.

3. Process Flowsheet Optimization

The above applications represent localized applications of
optimization, in that a particular system is modeled and solved.
Process optimization frequently involves the integration of several
systems and consideration of the interactions of these systems when
formulating the nonlinear program. As an example we will consider the
classic process problem of Williams and Otto[5]«

Figure 3 gives the flowsheet of a fairly simple chemical
process. Two feed streams of pure A and pure B are mixed with a
recycle stream and react xn a stirred tank reactor. The following
reactions take place:

A + B-* C r̂
C + B-* P + E r2
P + C-* G r3

Each reaction rate observes an elementary second order rate law with
an Arrhenius temperature dependence, i.e.,

~Eai/FT 2
r * k e F F /Fri oi 6 FRiFR2/FR

where FRii^nd FRi2 are flowrates for reactants 1 and 2 of reaction i.
The reactor effluent is cooled by a heat exchanger. After an oily waste
product, G, is removed, the mixture is transferred to a distillation
column where the valuable product P forms the overhead. The bottoms
product consisting of 10% P in E (an azeotrope) and C is split into
two streams; one is recycled to the reactor, the other is burned as
fuel.

The objective is to maximize the annual rate of return on
plant investment, so we can pose the objective function as:

Min - 100 |8400[(0.3F + 0.0068FD>(0.876)
* sales overhead factor

- (0.02FA - 0.03F- - 0.0U- )]

raw materials & waste

- 60V - 2.22FO1/ 600V
P R| P

plant fixed charge utility plant investment
(10% of investment) cost



The equality constraints for the optimization are the mass balances,
reactor modeling equations and unit operations relationships for the
process. An overall mass balance gives:

hl ' FA + FB " FG " FP " FD ' °

The composition of the azeotrope in the bottoms provides a P balance
over the distillation column.

P in P in P in
feed bottom overhead

An overall mass balance on E gives:

FZ D F R F p FG

E formed in E lost in F
reactor

The nass balance for P is:

h4 ' Ck2FRBFRC " <YV k3 FRC FRp} Vp/FR
P formed in reactor

"FP " FD t<FRP " V ' < F R -
P in overhead P in F

Remaining equations are:
Mass balance on A:

h5 " <-klFRAFRB>Vp/FR " W < V FG " V^ + FA
formed fuel feed

Mass balance on B:

h6 - FB + ( - ^ ^ - VRB FRC> V
P
/ FR " ' D ^ B B ^ R - FP " FG»

feed formed fuel

Mass balance on C:

h7 " K V V klFRAFRB " ^ / MB> k2FRBFRC

" FP " FG>

formed fuel



Mass Balance on G:

h8 " < V V k3FRCFRPVp/FR " F6
formed waste

Definition of total reactor effluent, F

h9 * FR " FRA " FRB " FRC " FRE " FG " FRP " °

The inequality constraints are limits on the reactor temperature:

f • • 580 * T * 680°R

the production rate

0 £ Fp £ 4763 lbs/hr

and nonnegativity of all the flow rates: F £ 0

and the reactor volume: V ̂  0

Overall, the problem has 13 variables, nine equality constraints, and
15 inequality constraints. This problem has been solved by many
investigators using a number of methods [5-8].

Although the Williams-Otto model takes some work to derive,
the problem is very simple compared to process optimization models
routinely encountered in industry. Because of complicated modeling
equations, complex physical property correlations, large numbers of
components, and entangled recycle streams leading to many mass balance
relationships, industrial processes are often modeled by many
thousands of equations.

Solving these problems is very difficult and time-consuming.
To aid in calculation, most companies use process simulators which
greatly simplify the modeling but not the optimization. Only recently
have techniques been applied which simplify the optimization step as
well[9,10].

Having reviewed some detailed applications of constrained
optimization, let us now consider some state-of-the-art tools that
allow their solution.

Constrained Optimization Techniques

Methods for constrained optimization can be divided into three
broad categories. These are:

1. active set strategies - where inequality constraints are
added or dropped from the set of equality constraints. An
unconstrained minimization then takes place in the reduced space of
the remaining degrees of freedom.

2. penalty function methods - where the violated constraints
form a penalty term in an extended or augmented objective function,
on which unconstrained minimization can be applied.



3. successive approximation methods - where the nonlinear
programming problem is approximated repeatedly by either a linear
program (SLP methods) or a quadratic program (SQP methods).

Categories 1 and 2 use unconstrained minimization algorithms
such as Newton's method, quasi-Newton methods or conjugate gradient
methods. Excellent reviews of these methods are given in [11,12].
The last category uses standard linear or quadratic programming
packages that are available in almost every computer installations
library (e.g., MPS, simplex, QPSOL)•

Active Set Strategies

These algorithms choose a set of active constraints and then
optimize a problem with fewer degrees of freedom. If the Kuhn-Tucker
conditions are satisfied at this solution, the algorithm terminates.
Otherwise the set of active constraints is changed and another
unconstrained problem is solved.

The problem

Min f(x)

s.t. g(x) £ 0

h(x) « 0

L * x £ U

is modified by adding slack variables (s ^ 0) to inequality
constraints. The set of variables is then partitioned into basic
(dependent) variables, y, and nonbasic (independent) variables, z.

This problem.

h(z,y) - 0

(x,s) « (z,y)

is then converted into a problem with simple bounds of the form:

Min F(z,y(z))

s.t. L ^ z £ U

Since the eliminated constraints, g and h, can be nonlinear and not
directly reducible to form F, a reduced gradient is calculated and used
to compute search directions for the unconstrained minimization.



Writing the gradient of F in terms of y and z gives

dF
dz bz by

dy/dz is obtained by enforcing feasibility of the constraints and
writing:

AU A ^ A ^ 9 h A
dh * 0 * r— dy + r— dz

3y 7 bz

dz * L 3y J az

The reduced gradient is therefore

bi -1
d£ m bi 3h r 3h T 3f
dz az " az L ay J ay

with (n-k) nonbasic variables, zr and (m+fc) basic variables, y.

Several types of search directions are incorporated into
active set strategies. Probably the most efficient is given in
[13,14]. Here the nonbasic set is partitioned into the superbasic
set, those variables between upper and lower bounds, and remaining
variables which are at their bounds. The reduced gradient is then
examined for each remaining non-basic variable to see if it should
join the superbasic set. This occurs if the reduced gradient is
negative (positive) and the variable is at its lower (upper) bound.
The search direction is then set to zero for the remaining nonbasic
variables and the unconstrained algorithm generates search directions
for the superbasic set.

The earliest active set strategy is the simplex method of
linear programming. If the problem is linear, the search direction for
the variable z. [15] is:

dF
dzk

max
k

L
dz,

Rosen [16] proposed a similar orthogonal gradient projection algorithm which
deals with linear constraints and uses - F as the search direction. Others
[17,18,19] used quasi-Newton methods [20] with the reduced gradient.

In dealing with nonlinear constraints all reduced gradient
algorithms linearize the constraints at the current iteration and
calculate the reduced gradient. Some algorithms [21,14] then project
into the hyperplane of the linearized constraints. Others, however,
calculate the search direction and then adjust the basic variables so
that equality constraints are always satisfied. This involves a few



Newton iterations of the form:

i+i i ah1 " i i 4
r " y - C ̂ -r ] h(z ,y ) with z fixed

ay1

At present there are three widely used optimization programs based on
the active set strategy. GRG2[22]i converges the equality constraints
for every function evaluation. It uses quasi-Mewton search directions
on the reduced problem when the number of degrees of freedom is small or
conjugate gradients when the reduced problem is large. A similar
approach is used by VMP[18] but here a different projection strategy
is used for the reduced problem.

MINOS[14] can project into the tangent hyperplane of the
constraints without always satisfying equality constraints. This
algorithm has been implemented as a very sophisticated and efficient
package. Results on optimization test problems have shown that MINOS
performs very well[23].

Penalty Function Methods

This is the earliest of the constrained optimization
approaches [24,25]. Popularized by Fiacco and McCormicfc [26] as
Sequential Unconstrained Minimization Techniques (SUMT), early penalty
function concepts are now obsolete although extensions of their ideas
have led to more current and efficient algorithms.

The SUMT philosophy involves the solution of a series of
unconstrained problems on penalty functions made up of the objective
function and constraints. Severed, types of penalty functions have
been proposed. Two typical functions are the interior pencilty:

P^x) = f(x)
ut

-- y - 7 -
or. L g (x)

(which uses feasible points and handles inequality constraints only)
and the exterior penalty

m k
2PE » f(x) + Ofi [ £ Imax(0,gj(x))] + £ h

l

(which uses infeasible points). For a given ott, the penalty function
is minimized at xi, say. As »£ tends to infinity the sequence of xi
tends to the optimum x. Figure 4 shows this approach on a
one-dimensional problem. Penalty functions have the advantage of not
having to track nonlinear constraints as active set strategies do.
However, as af" the penalty function becomes more and more
ill-conditioned, leading to a sequence of "X̂  that terminates before .
the optimum is found. Also, penalty functions are only as good as the
unconstrained minimization algorithm used. If the surface is not



convex, the algorithm will fail and the penalty function algorithm
terminates prematurely.

An exact penalty function:

POO - f (x) + « ||g+,h||

- where gj- - max(O,g) and ||a|| - p-norm of vector a -

does not requires to tend to infinity to find the optimum. If [2]

a-||u'v||<P-iyp

where u,v are the KKT multipliers at the optimum, then the minimum of
the nonlinear programming problem is found at the minimum of the exact
penalty. The disadvantage to this penalty function, however, is that * .
it is not differentiate at the boundary of the constraints.

Another way of avoiding the requirement that or** is to add the
terms u g + v h to the exterior penalty function given above. For a
finite or it can easily be shown that the minimum of this function
under certain conditions will satisfy Kuhn-Tucker conditions for the
HLP. The function:

= f(x)

or equivalently

= f(x) + |JJ

is known as the augmented Lagrangian and was originally applied only
to equality constraints[27]. The extension to inequality constraints
leads to the above expression [28].

The optimization proceeds by minimizing L(x,u,v#) with
respect to x, keeping u and v fixed. If constraints are satisfied,
stop. Otherwise update u and v to maximize the augmented Lagrangian.
The penalty parameter, or, is periodically increased if constraint
violations are not reduced. The algorithm follows naturally from
considering Kuhn-Tucker saddlepoint conditions[1]

f6H + uTg(x) + vTh(x) = f CX) + uTg(x) + vTh(x) = f(x) + xi\(k) +vTh(x)

and merely consists of
Max[Min(L(x,u,v,cr)]
U,V X

Several unconstrained algorithms have been applied to the inner
minimization and outer maximization of L(x,u,v,cr). An excellent
review of these augmented Lagrangian or multiplier methods is given
in [29].



Successive Approximation Methods

These methods can be summarized by the following steps [30].

1. Form an approximate model of the NLP at the current point that can
be solved by a standard algorithm (Linear or Quadratic Programming).

2. Let the solution d from the standard algorithm determine the
search direction for the next point. If the direction is zero, stop.

3. Find a stepsize X along this search direction that gives^a point
which is "better" than the current point. Go to 1) with x = x1 + Xd1

As mentioned above, the approximate model is solved either as
a linear or quadratic program. For linear programming the approximate
model is a simple linearization about the current point x , i.e.,

Min fCx 1)^

s.t. g(xj)jd = -g(xj)
1 ^ = -htx1)

where d is the search direction found by the LP. Often limits must be
placed on d because the LP model cannot take advantage of curvature of
the original surface. In fact, adjustment of the extrapolation limit
on d is very critical in the neighborhood of the optimum as
oscillations usually occur.

Since their development in the late fifties and early sixties
[30,31], SLP models have been widely used for refinery optimization
and other large process problems that are mostly linear[32,33].

If a model approximation is made to a quadratic program the
result is:

Min f ( x 1 ) ^ + -|dTBd

s.t. g(3C ) + gix*) d = 0
h(ar ) + hjx 1)^ = 0

Again the nonlinear problem is linearized about x* but a quadratic
term is added to the objective function. The matrix B is the Hessian
of the Lagrangian at xL[34]:

V L(x ,u ,v ) * V f(x ) + V g(x )u + V h(x )v

or its quasi-Newton[19] approximation. Here the multipliers u1, v*
are shadow prices from the quadratic program. Placing an
extrapolation limit on d is not as critical here as with SLP, because
the quadratic objective function includes curvature information from
the NLP. In fact, if B is a quasi-Newton approximation to v L(x,u,v)
and remains positive definite, no extrapolation limit on d is™
required.

For SLP methods the stepsize in step 3 is usually set to one
and movement is dictated by the size of extrapolation limit. With SQP
methods the stepsize is found by minimizing an exact penalty function
along the search direction. Although this procedure worfcs very well,
some difficulties have been reported[35,36].



SQP methods were initially discovered in 1963 [37,38] but have
only recently been seriously improved and developed [34,39,40]. In
general, applications of this method have been very successful. How-
ever some questions and difficulties must still be resolved.

Comparison of Methods

Of the strategies described above, only active set and
successive quadratic programming methods should be seriously
considered. Although penalty function methods provide a good
conceptual grasp of the constrained problem, they are much less
efficient and lead to computational problems as the penalty parameter
goes to infinity.

Two very powerful computer packages that use active set
strategies are MINOS[41] and 6RG2[22]. In numerical studies these
codes have been shown to be very robust and efficient. Although the
SQP method is easy to program with the aid of a standard quadratic
programming package, only one version (VF02AD from the Harwell
library) is commercially available at present [42]. In numerical
comparisons [40,13], the SQP method has even outperformed some active
set strategies. Current research on this method should make it more
efficient, robust and reliable.

Conclusions - Tips for solving Optimization Problems

Having surveyed briefly some aspects of optimization
techniques and applications, we conclude with a few guidelines for
formulating optimization problems and choosing methods to solve them.

When formulating the optimization model, consider the simpler
aspects first. Only when one understands the behavior and limitations
of a simple model should he proceed, stepwise, to a more complicated
one[43]. Starting with too complicated a model leaves no
opportunities to backtrack and correct the formulation if the
optimization fails.

Once formulated, the model and optimization approach should be
checked for sensitivity to changes in the scientist's data. He should
carefully consider what information the optimization study will
provide and how changing prices, variable feedstocks and fluctuating
equipment performance will affect these results.

Before applying an optimization technique to the model the
scientist should check for inconsistent constraints or equations. For
instance, the optimization will surely fail if two compositions sum up
to one and both are constrained above 60%! Moreover, many
inconsistencies appear subtly and are difficult to spot. Also the
scientist should, if necessary, scale the variables so that they have
similar orders of magnitude. The same should be done with objective
and constraint functions and their gradients. Although poorly scaled
models do not affect the theoretical solution of the problem, they
introduce computational problems due to the computer's fixed
precision.

Finally, in choosing an optimization method to solve the
model, one should consider the following questions:

1. Are the modelled functions continuous and differentiate?
If not, only very inefficient and time-consuming direct search



methods offer any guarantee of success. Although the optimization
techniques surveyed above may still solve the problem, they could also
jam into a corner and stay there.

2. Can gradients be calculated analytically?
Although the objective and constraint functions may be smooth,

it may be difficult to calculate analytical gradients. Instead the de-
rivative is obtained by perturbing the variable and measuring the effect
on the function. To get an accurate measure of the gradient, the pertur-
bation size must be chosen carefully. A good rule of thumb is to let the
perturbation size be fT where e is the relative function error [44].

3. What fcind of equality constraints are present and how should they
be treated?

Each time the objective function is evaluated the algorithm
could solve all of the equality constraints first. On the other hand,
it could just linearize the constraints and project the objective
function onto the linearized space. The latter approach allows the
simulataneous optimization of the objective function and convergence
of equalities.

If the number of equalities is small and the system is easily
solved, following a feasible path is always a safe policy. Failure
of the algorithm always yields an improved and usable point.

If the system of equations is large and difficult to solve,
a feasible path policy may be grossly inefficient. Fortunately, SLP,
SQP and MINOS are well-suited to the linearized approach. In the ab-
sence of degrees of freedom they all degenerate to a damped Newton
method for solving nonlinear equations. Moreover, if the constraints
are linear, this problem can be handled very easily by the above three
methods.

Summary

In this paper we surveyed some current methods for constrained
optimization. Presently, the best methods are active set strategies,
such as MINOS and GRG2, and SQP methods.

We began with a simple analogy to constrained optimization and
formulated three chemical problems as nonlinear programs. After
reviewing current optimization techniques we concluded with some
guidelines for their application.
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