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CHAPTER 1

INTRODUCTION

A circuit designer typically has many hardware and software design aids available for

use. When doing hardware work, the designer builds small sub-circuits and tests each one

separately before assembling the final project To test these sub-circuits, signals may be

entered so the designer can examine the sub-circuit as it is slowly stepped through its

functions. At any point, the designer may wish to stop and change portions of the circuit

to enhance performance.

Unfortunately, existing circuit simulators [Weeks 73],[Cohen 78] were not designed to

be used in this manner. Present simulators can handle large circuits but allow very little

interaction. Specifically, existing simulators cannot be halted during execution to make

on-line changes to the circuitry. ASP was designed to fill this gap in circuit simulation

technology.

This paper will describe the background and implementation of ASP, an APL Simulation

Package. Initially, motivation for ASP will be discussed. The advantages and

disadvantages of APL will then be mentioned to give the reader a better understanding of

the features of ASP. Theory behind the algorithms used in the simulator will then be

considered, followed by a review of some implementation considerations. Finally, some of

the major design decisions made in ASP will be discussed and justified.

ASP was written to piovide APL users with a highly interactive circuit simulator with

good on-line help features. The most obvious use for ASP involves circuit optimization

work currently under development at Carnegie-Mellon University. The nature of

optimization makes it imperative that a circuit simulator be available. While it is possible

to manually derive circuit equations, this becomes very cumbersome for all but the

simplest of circuits. ASP allows the developers to make more extensive tests of their

circuit optimization algorithms.

APL was chosen for this type of work because of the following features:



• A PL is a highly interactive language, that is, user input is very easily
incorporated into programs. It is also quite simple to check input for syntax
errors or to provide the user with access to global variables.

• It is very easy to develop new algorithms using APL. Once the language has
been mastered, the programmer may take advantage of the many powerful
operators available in APL to decrease development time.

• Debugging is very simple in APL due to the existence of commands such as
TRACE and the availability of global variables.

ASP makes use of these positive aspects by performing interactive checks on user input,

making on-iine help available, and allowing the user much more control over the

simulation than is normally possible.

Unfortunately, ASP is also constrained by the negative aspects of APL. Because APL

has no compiler, execution times are relatively slow. To compensate, ASP has some

special features which allow the user to exert more control over his/her usage of CPU

time.

• ASP allows the user to determine error constraints. To reduce CPU time
then, the user may choose to allow more truncation error.

• ASP allows the user to avoid needless dc simulations. Before a transient
simulation is done, ASP must somehow determine the operating point of the
circuit. If the user wishes, he/she may enter the operating point of the
circuit and eliminate the dc simulation. If the operating point is unknown,
ASP will solve for it.

• ASP allows the user to specify break points, or halting points during the
circuit simulation. At each break point, the user has the option of changing
break point data, changing circuit data, or simply continuing with the
simulation.

Another negative aspect of APL concerns readability of code. Because of the abundance

of operators, APL is a very difficult language to read. To alleviate this problem, ASP

code contains many comments. Each function heading describes local and global variables

used in the function. The heading also lists any functions which may be called during

the execution of the present function. In addition, extensive comments have been written

within the body of the function to enhance readability.



CHAPTER 2

THEORETICAL CONSIDERATIONS

Before beginning a specific discussion of the features of ASP, this paper will first

examine the theoretical issues which affect circuit simulation. In particular, the concept

of modified nodal analysis will be reviewed. With this concept in mind, simple element

stamps may be developed for use in the simulator. The idea of stamps can then be

applied to more complex elements such as nonlinear elements, capacitors and inductors;

however, algorithms to solve nonlinear equations and do numerical integration will be

necessary. Finally, it is desirable to solve the resulting matrix equation in an efficient

manner. This section will deal with all of the above issues and describe the algorithms

used in ASP.

2.1 Modified Nodal Analysis

The modified nodal method was developed as an alternative to the nodal and tableau

methods. The major disadvantage of the tableau -approach was that it produced large

numbers of equations and variables. The nodal method addressed this problem by making

node voltages the basic variables. One disadvantage of the nodal method is that branch

currents are not conveniently obtained as output A related problem is that voltage

sources and some dependent sources are handled very inefficiently. To remedy these

problems, Ho, Ruehli, and Brennan [Ho 75] proposed some modifications to the nodal

method. The resulting method was then called the modified nodal analysis (MNA).

The basic premise of modified nodal analysis is that the basic variables are node

voltages and the branch currents of voltage sources, inductors, and other elements whose

currents are controlling variables. Introducing the extra basic variables allows voltage

sources and dependent Sources to be handled much more efficiently than in nodal analysis.

It also ^allows inductor currents to be easily accessible as output Because of these

characteristics, modified nodal analysis is the method used in ASP.

The MNA matrix can in general be expressed in the form:
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where V is the vector of node voltages,

1 is the vector of branch currents associated with voltage sources, inductors, and some

dependent sources.

Y contains the partial derivatives of KCL equations with respect to the node voltages,

B contains the partial derivatives of KCL equations with respect to the branch currents,

C contains the partial derivatives of branch relationships with respect to the node voltages,

and D contains the partial derivatives of branch relationships with respect to the branch

currents.

J and P contain values of voltage sources and current sources. These two vectors may

also contain contributions from nonlinear elements and" energy storage elements.

2.2 The Development and Use of Some Simple Stamps

To further illustrate MNA, it will be useful to construct and solve a simple circuit

using the modified nodal analysis approach. The simple circuit will consist of a voltage

source and two resistors as shown below.
R1

2

V1
I I

R2

Usmc MNA. three equations are written to solve this circuit. Two of the equations will

add the currents leaving each of the nodes. The third equation will specify the branch

relation of the voltage source. The equations resulting from an MNA analysis of the

circuit are:

1: l + (1/R )v - (1/R )v = 0
i t 1 1 3

2: - (l/R )v + (1/R + 1/R )v = 0
1 1 1 3 2

I : v = V

or. in matrix fArm:
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Looking at the matrix equation, it can be seen that each element in the circuit

contributes terms to the Jacobian. It may also be observed that the pattern of Jacobian

terms is consistent within element types. For example a resistor between nodes M and K

with a conductance of value G will contribute four terms to the Jacobian. (We are

assuming, of course, that neither of the affected nodes are ground nodes. > This resistor

will add two terms of G in the <M.M> and <N,N> positions of the Jacobian. In addition,

two terms of -G will be added in the <M.N> and <N,M> positions. As a group, these terms

which are added to the Jacobian for each element are called the element stamp. In the

following two paragraphs, a closer look will be taken at resistor and voltage source

stamps. For a complete listing of stamps used in ASP. see Appendix A.

Resistor Stamp

Suppose a resistor connected between nodes M and N has a conductance of value

G. This resistor will contribute a current to the equations of nodes M and N. The current

leaving node M can be expressed as the difference of the node voltages M and K times the

conductance G. A similar calculation can be done for the current leaving node N. Tbe

resulting effect on the MNA equations due to this resistor can then be expressed as:

VM VN RHS

M G

-G

-G

G

0

0

In the stamp notation shown above, the rows are labeled with equation numbers and the

columns are labeled with the voltage which the stamp terms in that column are

multiplying. RHS indicates the right hand side terms. In addition, BR indicates a branch

relationship.

Voltage Source Stamp
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Suppose a voltage source connected between nodes M and N has a value of Q volts.

This voltage source has a branch current <IV> which contributes current to the equations

of nodes M and N. The voltage source value is then determined by its branch relationship

equation. If the positive node of the voltage source is at node M, the resulting effect on

the MNA equations can be expressed as:

M

N

BR

VM VN IV RHS

0

0

• 1

b

0

- I

l

- l

0

0

0

Q

2.3 Stamps for Nonlinear Elements

The concepts developed in the previous section can now be extended to nonlinear

elements such as diodes and transistors. In this section, the development of a diode stamp

will be discussed. The transistor stamp or the stamp for any nonlinear element can be

derived using a similar approach.

Consider a diode with the branch relation:

V/V
I = Isie - 1 > (2.1)

where V is the thermal voltage and Is is the
saturation current.

It is obvious that:

V/V
dl « Is e
dV V

(2.2)

Now suppose initial guesses of Vo and Io are chosen. The problem is then to satisfy

equation (2.1) given the constraints of the circuit An easy way to solve this equation

would be to use a Taylor series approximation. Linearizing about the initial guess and

truncating aftervthe first two terms yields:



Vo/V
I « Io • Is c (V - Vo) (2.3)

V
T

The new I and V found when this equation is solved with the circuit constraints are

presumably closer to the real solution than Io and Vo were. Replacing the initial guess

with I and V, one can repeat the procedure to get an even more accurate approximation.

Using this iterative method with appropriate initial guesses. I and V will eventually

converge to the true solution. This is the form of the Newton-Raphson method which is

used in ASP.

Given this method, it is now possible to derive the form of a diode stamp. Note that

there are three separate terms in the Taylor series equation. Two of the terms are

dependent on Io and Vo and are therefore known. Ignoring the third term, it becomes

apparent that the contribution to the circuit from the equation is a current source.

That is, in the equation.

Vo/V
I * Io - Is Vo e <2.4»

V

I is known since all the right hand side terms are known, A known current corresponds

to a current source in the circuit.

The other term is dependent on the unknown diode voltage V.

Vo/V
I « Is V e (2.5)

V

I is an unknown in this equation and is dependent on V. An unknown current dependent

on the voltage across the element corresponds to a conductance in the circuit.

Combining all of the terms in the Taylor series and converting the contribution of each

term into a circuit element yields a stamp. The diode stamp can then be expressed as a

current source of value equation (2.4) in parallel with the conductance indicated in

equation (2.5). This stamp will be updated according to the Taylor series expansion after

each new iteration of V and I is found. When the values begin to converge to the real

solution, one can check the error criterion and stop iterating at the appropriate time.
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2.4 Stamps For Energy Storage Elements

Stamps are still unknown however, for energy storage elements, a class of elements

which includes both capacitors and inductors. Since the branch relations for capacitors

and inductors involve derivatives, a method for numerical integration must first be found.

Numerical integration schemes make an approximation to the integral by taking small time

steps and interpolating. The method used in the simulator was proposed by Van Bokhoven

[Van Bokhoven 75] in a 1975 paper. Some changes have been made in order to simplify

the algorithm and reduce the complexity of calculations.

The method is derived using Newton's divided-difference interpolation formula. This

method makes predictions to new data using previous, data. Newton's interpolation formula

truncated to two terms suggests that a new approximation to X can be made using:

X(t ) « X(t > • (t - t )X(t ,t > (2.6)
n*l n n-1 n n n-1

where t indicates the time of the last known value of X,
n

t is the time previous to t ,
n-^ n

and X(t ,t ) is a divided-difference given by the formula:
n n—1

X(t > - X(l )
n (2.7)

t - t
n n-1

To simplify this equation, let us define some new variables.

h = t - t
I n+l n

h ' = t - t
1 n n-1

d = h /h '
i i I

Lei us also define the following conventions:

X

represents the (M-l>st prediction of X at the <n+l)st time step and

X
n-1

represents the final calculation of the value of X at the (n+l>st time step.
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Equations (2.6) and (2.7> can then be rewritten as:

X « X (2.8)
n- l n

_ 2 _ 1 _ 1
X « X + d (X - X > (2.9)

n * l n*M 1 n n

Using the above equations, the simulator makes a zerotb and first order prediction to

the value of X at the new time step. To correct this prediction, Van Bokhoven suggests

an approach that is also based on Newton's divided-difference interpolation formula.

Corrections are made by approximating the derivative of X with respect to time. Using

divided-differences, the derivative can be approximated by X(t ,t ). A second order
n*"l n—1

correction can be made using the formula:

X - X X - X
n - l n - l n - l n+1 , -» , ^«• (2.10)

where h = t - t
2 n*l n-l

Using these equations then, the stamp for a capacitor or inductor can be calculated.

For example, suppose we have a circuit where the only unknown is a capacitor voltage.

X. At each time step, zeroth and first order predictions of X would be made. Once these

predictions are known, th? capacitor stamp can be temporarily added to the circuit in

order to solve for the voltage at the present time step. The capacitor stamp consists of:

A current source of value:
_1 _2

(C/h ) X * (C/h ) X
1 n*l 2 n- l

in parallel with

a conductance of value:

<C/h > • (C/hj

where C is the value of the capacitor in farads.

The NfNA system of equations can now be solved for the final solution at the in+Dst

time step.

Inductors can be handled in a similar fashion. The only major difference is that while
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the capacitor stamp consists of a current source in parallel with a resistor, the inductor

stamp consists of a voltage source in series with a resistor. This is very desirable since

inductor currents are available as output because of the presence of a voltage source in

the stamp.

The other portion of the Van Bokhoven algorithm is step size control. It is important

that step sizes are well chosen for a number of reasons. If the step size is too small,

the simulation will take a very long time. If the step size is too large, the numerical

integration algorithm may not converge to the desired solution or truncation error may be

too large. To minimize CPU time, it is necessary to choose the largest possible step size

which satisfies the desired error criterion.

Using the remainder term from Newton's interpolation formula, second order truncation

error at the nth step can be calculated using the formula:

- 3 . 3
E - (X - X ) (2.11)

where

and

v-
B. •

_ 3

n

11*1

t -
n

(1/h

_ 2

n

d (h
1 :

t
n-2

) +

n n

It is now possible to predict the second order truncation error at the (n+l)st step if a

step size of h is used. Extrapolating from the above formula and making substitutions

yields:

E = h ( h + h ) ( < l / h > «• ( 1 / h >) E ( 2 . 1 2 )
n-l 1 1 2 n

((1/h) + <l/(fa+h ))> h h,

If the predicted error is set equal to the maximum allowable error, the resulting

nonlinear equation in h can then be solved using the Newton-Raphson technique. This

new step, size is then used to make the next prediction and correction by updating the

stamps of energy storage elements. The circuit equations are then solved and a new error
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is determined. If the new error is greater than the maximum allowable error or if a

nonlinear element stamp did not converge, the simulator rejects the step, cuts the step size

in half, and starts the process again. If the new error is within tolerances, the simulator

will increment time and solve for a new time step.

2.5 Solving the Circuit Equations

Finally, a technique is necessary to efficiently solve the matrix equations which have

been created. Such a technique should take advantage of the special features of the

circuit equation matrices:

1. Sparseness - Large circuits especially have a relatively small proportion of
nonzero elements. Hence the solution method should avoid storage of the
zero-valued coefficients. The method should also avoid needless
multiplications by zero.

2. Uniformity - That is, the equations of each circuit have a particular pattern
of zeroes and non-zeroes. In spite of updating stamps for energy storage and
nonlinear elements, this pattern remains the same. A good method would take
full advantage of this fact

One can take advantage of the sparseness and uniformity properties by using a* combination

of LU factorization and sparse matrix methods.

LU factorization involves factoring the matrix equation to be solved into an upper

triangular(U) and a lower triangular* L) matrix. Once these two matrices are known, a

simple forward and backward substitution will solve the problem. Since the matrix is

sparse however, many fewer operations need to be done than the total indicated by the

substitutions.

The sparse matrix method used in ASP allows for efficient storage of the jacobian

matrix. Three vectors are used to index and store members of the jacobian.

• JA is a vector containing column indices of all the elements

• 2A is a vector containing row pointers

• A is a vector containing the nonzero elements of the jacobian

After the three vectors are compiled, pivoting is done using the Markowitz criterion

[Markowitz 57] to reduce fill and operation count.

LU factorization and sparse matrix techniques will not be discussed in greater detail in

this paper. Further information on sparse matrix techniques can be found in Sparse



14

Matrices and Their Applications [Gustavson 7 2 ] . These algorithms were packaged by Jim

Christ and Fred Heaton as a semester project for 18-701. Because of the nature of the

interface, the existence of sparse matrix techniques is nearly invisible to the simulator.
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CHAPTER 3

IMPLEMENTATION CONSIDERATIONS

This chapter will deal with specific implementation issues concerning ASP. Emphasis

will be placed on interesting or new features of ASP. A better understanding of the

organization and use of the simulator can be gained by reading this section and referring

to the appendices at the appropriate times.

3.1 Help Files

The first unique feature of ASP is the set of twenty seven help files in the ASP

workspace. Many of these help files summarize syntax for the different element types.

Each time the user is prompted for input, it is possible to type HELP and receive some.

In addition to the more specific help files, two general files exist which allow the user to

see what type of help is available. The most general of these two files is listed below:

A LIST OF ALL HELP FILES AVAILABLE ALONG WITH THEIR
SUEJECT IS:

HELP - THIS FUNCTION!
HELPBKADD - ADDING BREAK POINTS
HELPBKDROP - DROPPING BREAK POINTS
HELPBKUTILS - RESPONDING TO UTILITIES MENU AFTER BREAK

POINT
HELPBREAK - SPECIFYING BREAK POINTS AT INITIAL INPUT
HELPC - SPECIFYING CAPACITORS
HELPCON - SPECIFYING DESIGN CONSTRAINTS
HELPDEFN - DEFINING NONLINEAR MODELS
HELPDEP - SPECIFYING DEPENDENT SOURCES
HELPDROP - DROPPING ELEMENTS
HELPGYRA - SPECIFYING GYRATORS
HELPI - SPECIFYING CURRENT SOURCES



16

HELPINP - LISTING OF ALL CIRCUIT ELEMENT INPUT HELP FILES
HELPINPDEC - RESPONDING TO TYPE OF INPUT QUESTION
HELPL - SPECIFYING INDUCTORS
HELPMACRO - SPECIFYING MACROS
HELPNODEOUT - SPECIFYING NODE VOLTAGES FOR OUTPUT
HELPOUTFILE - WRITING TO EXTERNAL FILE
HELPQ - SPECIFYING NONLINEAR ELEMENTS
HELPR - SPECIFYING RESISTORS
HELPREAD - HAVING FILE READ BY SIMULATOR
HELPRINT - SPECIFYING PRINTING INFORMATION
HELPSIM - CHOOSING TYFE OF SIMULATION
HELPTRAN - SPECIFYING TRANSIENT SOURCES
HELPUTILS - RESPONDING TO GENERAL UTILITIES MENU
HELPV - SPECIFYING VOLTAGE SOURCES
VCURSXPLAIN - SPECIFYING CODED CURRENT AND VOLTAGE

NUMBERS

In case this on-line help is not sufficient, a more extensive source of help is the ASP

User's Manual listed in Appendix C.

3.2 Input Overview

Before moving on to discussions of specific elements and features, the input language of

ASP will be briefly reviewed. A line of element input is used to specify the following

information:

• the element type

• the element number

• the nodes which the element is between

• and the value of the element or information to determine element definition.

Some typical element specifications would be:

Rl 1 2 1000
C2 39 50 1E.NG5

VI 987 34 10

Other types of input are accepted by ASP as well. The user may choose to specify break

points, design constraints or simulation time and printing information. These structures as

well as a more comprehensive review of element specifications can be found in the ASP

User's Manual which is Appendix C.
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3.3 Nonlinear Elements

Another special feature of ASP is the flexibility it has with regard to nonlinear

elements. The user may specify nearly any type of nonlinear element for ASP to process.

The only restrictions are:

1. The user must be able to write equations to express each element current in
terms of node voltages.

2. The user must be able to write equations to express the partial derivatives of
each element current with respect to the involved node voltages.

Many well known models lend themselves easily to this format The Ebers-Moll

transistor model and the simple diode model are especially useful and easy to specify. It

is possible to specify many different models and to save these models in the workspace

for future use. It is also possible for the user to specify a nonlinear element with as

many nodes as necessary. There is no limit to number of terminals on an ASP nonlinear

element.

We now give a thorough discussion of how nonlinear elements are handled in ASP. A

nonlinear controlled source is specified in the input language by the statement*

QK Nl N2 . . . NN MODEL PI P2 . . . PM

• where Q signifies a nonlinear element

• M is the number of the nonlinear element.

• N l , N2, . . . NN are the nodes to which the nonlinear element is connected,

• MODEL is the name of the function which contains the model definition,

• and PI, P2, . . . PM are parameters to be used by the model function.

Before entering ASP, the user should have created the two defining functions and saved

them in the ASP workspace. In our example, the function MODEL is specified so the

two functions should have been called MODEL and DMODEL (The derivative function

name should always correspond to the current function name preceded by a 'DM. MODEL

specifies N- l element currents in terms of the N node voltages. The Nth current can, of

course, be determined from the first N- l currents. DMODEL specifies the derivatives of

each current with respect to each node voltage. That is MODEL returns an N-l vector

of currents and DMODEL returns a N- l x N matrix of derivatives. Both of these two

functions may accept and use the P parameters as part of the nonlinear model. Using

these two functions and the user input shown above, ASP can accurately model the

nonlinear element according to user specifications.
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In Chapter 2, it was shown that a diode can be modeled by a parallel combination of a

resistor and a current source. It is possible to use this same technique with any

nonlinear element. For example, suppose the equation of a noniinear element can be

expressed as:

i s f <v ,v , . . . v ) (3 .D
m m 1 2 N

for m=l,2, . . . N- l

If-an initial guess of v
1 0» v , 0« • • - V

N O
 is c h o s e n * a T a>r l o r series expansion can be

done to linearize the equation.

i = i • (di /dv >(v - v ) (3.2)
m.l m.O m.O 1 1.1 1.0

• (d i / d v )<v - v ) • . . .
m.O 2 2J 2.0

• (di /dv )(v - v >
m.O N N.I N.O

As before, it is possible to notice that there are two types of terms in the above

equation. One type consists of all terms which must be calculated at the zeroth iteration.

Because these terms are known, they effectively add a current source to the circuit The

other type consists of terms which are dependent on the node voltages at the first

iteration. Since these terms are unknown and relate the current tc the node voltages, they

effectively add a resistance to the circuit. In this way, the stamp for a nonlinear element

can be determined. MODEL and DMODEL calculate all the necessary terms to add the

stamp to the jacobian. After each iteration, the stamp is updated until the solution

converges.

The function NEWRAP is used to implement the Newton-Raphson iteration in ASP.

The first function to be called by NEWRAP is NOQSAVE. This function saves the

elements of the jacobian which will be altered by any nonlinear stamp. NOQSAVE is

necessary so the jacobian can then be restored after the iteration calculation is done.

UPDATQ is then called to update the nonlinear stamp. UPDATQ calls the model

function and the derivative function, creates the stamp, and adds it to the jacobian. The

matrix equation is then solved and the difference between the new solution and the

solution from the previous iteration is measured. The maximum voltage and current errors

are found and these are compared with an absolute and relative voltage and current error.

If either error is too large. NOQRESTOR is called to restore the jacobian and another

iteration is done. If the error is tolerable, NOQRESTOR is called, time is updated, and

the simulator can then take another step. A function level description of ASP can be

seen in Appendix B.
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As the user specifies nonlinear elements, checks are run to ensure that input language

syntax has been followed. ASP also checks that the necessary functions have been

defined. No checks are done on the model definition function because of the great

flexibility which the user has. The user must be careful to define the correct number of

currents and derivatives and the user is responsible for the accuracy of the functions. It

is anticipated that a user will only need to develop a few nonlinear models and can then

store these models in his/her ASP workspace.

3.4 Macros

To augment the extensive nonlinear element capability, ASP also allows the user to

define macros or groups of elements. Macros become significant when the user needs to

expand models to include energy storage elements. Since no capacitors or inductors can

be expressed in a nonlinear model, macros are necessary to allow more sophisticated

modeling. It is anticipated that any complex transistor models will be expressed as

macros consisting of some nonlinear elements and some capacitors and resistors.

The specification of a macro is done by the statement:

MACM Nl N2 . . . NN ELEMENTS PI P2 . . . PK

• where MAC signifies a macro,

• M is the element number of the macro,

• Nl , N2, . . . NN are external nodes to which the macro is connected,

• ELEMENTS is the name of the function which defines the macro elements,

• and PI, P2, . . . PT are the parameters of the macro elements.

Previously, the user should have created the function (ELEMENTS in this case) which

contains the elements of the macro. The syntax for listing macro elements is only slightly

different than the regular element specification syntax. Function definition and macro

input are discussed in more detail in the ASP User's Manual.

When specifying a macro, ASP allows the user to specify parameters, and internal and

external nodes for the macro. Parameters can be specified as VAL[l ] , VAL[2], . . .

VAL[M] corresponding to PI, P2, . . . PM. Parameter passing allows the same macro

to be used for many elements of the same form but with different specs. Internal nodes

are specified as (INTERNAL), (INTERNAL* 1), etc. ASP uses numbers greater than

7000 to refer to internal nodes. For more information on node and current svntax. see
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Appendix I of the User's Manual. Elements of the macro refer to internal nodes in the

above manner. After each macro is added to the data base, the global variable

INTERNAL is updated so it is greater than the highest node specified thus far. This

allows the user to specify internal nodes without any knowledge of which numbers have

been used. As long as the user specifies nodes greater than INTERNAL, there should be

no problem. External nodes are specified as <EXTERNAL[1]), (EXTERN AL[ 2 ]>, . . .

(EXTERNAL[N]> corresponding to N l , N2, . . . NN. Specifying external nodes in this

manner allows the macro to be interchangeable. The user can of course specify a node

directly however this seems to defeat the purpose of macros.

Macros are implemented in ASP through the function ADMAC. This function looks at

the user-defined ELEMENTS function and assigns numerical values to the variables

EXTERNAL, INTERNAL, and VAL. ADMAC then pieces together these values and

forms a character string which is of the same format as the regular element specifications.

Finally, ADMAC calls the function CHANGE which calls the appropriate function to add

the specific element.

• Very few checks are done on macros. The input specification is checked for duplicate

elements and a minimal number of external nodes. A check is also run to make sure the

function containing the macro elements exists. No checks are run on this ELEMENTS

function so the user must be careful.

3.5 Design Constraints

Since it is expected that ASP will be used as a design tool, a capability to evaluate

design constraints has been included. Specifically, ASP can evaluate any function of the

form:
_ rT

f(V,I) dt (3.3)i - II!<v-1-
where f is a function of the node voltages V and the branch
currents h
and T is the ending time of the simulation.

To specify a design constraint, the user types in:

CONK CONFUNC
v

• where CON signifies a design constraint,

• M is the number of the constraint.
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• and CONFUNC is the name of the design constraint function.

To define the function CONFUNC, the user must once again be familiar with the node

and current syntax found in Appendix I of the User's Manual. CONFUNC should be a

function of node voltages and branch currents and should return the value of the design

constraint

ASP treats design constraint evaluation as a current source of value CONFUNC

charging a capacitor of value IF. Using the numerical integration scheme mentioned in

Chapter 2, it is possible to model the capacitor as a current source in parallel with a

resistor. Design constraint evaluation then reduces to the problem of analyzing a circuit

with two current sources in parallel with a resistor. ASP solves this simple circuit and

returns the results of the function integration.

CONFUNC is defined with the aid of the ASP function NUM. This function takes the

number of a node voltage or branch current and returns the present value of this voltage

or current NUM allows the user to conveniently specify values of voltages and currents

as opposed to names. CONFUNC then returns the value of the current source to be used

in the circuit explained above.

Function evaluation is done in parallel with solution of the main circuit After a step

is accepted, first and second order predictions are made to the value of the design

constraint. The correction is then done as explained above. The user need not specify

the design constraint as output since it will automatically be shown if constraints have

been specified.

Once again, no checks are done on the user-defined function. The user must be careful

to specify the proper voltages and currents and to return the proper value of the design

constraint function. The user is reminded, however, if the specified constraint function

does not exist

3.6 Break Points

Another special feature of ASP is its ability to process break points. Break points are

user-specified halting points in the simulation. They are useful when the user can

determine the success or failure of his/her test case before the simulation has finished.

The user may wish to change the value of one element and then simulate the same circuit

again. Break points facilitate manipulations such as this.
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Break points are specified by the input line:

BREAK Tl T2 . . . TN

Break point times need not be specified in ascending order however, they will be serviced

in ascending order.

When ASP reaches the • initial break point, voltages and currents will be calculated as

usual and the break point utilities menu will be called. This menu gives the user seven

options.

1. Add break points - The user may add new break points to the present list.
This capability is useful if the user would like to continue the unbroken
simulation for some time longer than expected.

2. Delete break points - The user may delete break points from the list. This is
useful if the user decides that tht simulation is running well and no more
break points are necessary.

3. Examine break points - The user may examine all break points specified so
far.

4. Examine values of constraints, voltages or currents - The user may examine
the current status of any constraints, voltages, or currents.

5. Change circuit element data - The user may temporarily return to the main
utilities menu to add or drop circuit elements. This capability is useful if the
user would like to change one or two circuit elements while keeping the rest
of the circuit the same. After these modifications are done, ASP attempts to .
use the old dc solution for the new circuit. In the case of minor circuit
modifications, this would save the user a substantial amount of time. If the
attempt fails, ASP solves for the new operating point

6. Continue with simulation - The user may continue with the simulation as if
the break point was never serviced.

7. Exit - Finally, the user may simply choose to exit from ASP.

3.7 Interactive Checks

The final special feature of ASP to be considered is interactive checking. During the

input phase, the user has the option of choosing interactive input or file reading input. If

the user chooses to input circuit data interactively, each element specification will be

examined for syntax errors. Appropriate error messages will be displayed and the user

can make immediate corrections and reenter the elements. In the case of file reading

input, the user will see a list of errors. The user then has the option of entering the

interactive input mode to make corrections.
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Element specifications are checked for:

• omission of element numbers

• unacceptable characters (alpha or numeric)

• incorrect number of nodes specified

• shorted element specified

• node numbers or element number greater than 999

• non-integer node numbers

• and the existence of duplicate elements.

In addition, more specific checks are made on some elements. For example, a check is

run to detect O-valued resistors. More extensive checks are also run on transient source

information.

A more general checking function is also included in ASP. The function H A N G E L C K

checks for hanging nodes, omission of simulation type information, omission of end time

and printing increment information, failure to specify any elements, and failure to define a

specified design constraint HANGELCK must be successfully completed before a

simulation can be run.
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CHAPTER 4

DESIGN DECISIONS

One of the most difficult problems encountered while programming ASP involved the

resolution of two important design decisions. To discuss these decisions, one must first

understand some of the problem constraints. One of the major advantages of ASP was to

be its interactive nature and the extent to which the user's input was checked for errors.

In conflict with this goal was the necessity to make ASP a flexible and useful tool as

well. The second trade-off involved simulation time and truncation error. In order to

run a fast simulation, one must relax the error constraints. In order to run an accurate

simulation then, one must be willing to sacrifice somewhat in the area of CPU time. In

this chapter, these irade-offs will be discussed and the ASP project will be summarized.

4.1 Flexibility vs. Interaction

Two of the main areas where the flexibility vs. interaction conflict -came into focus

were the definition of nonlinear elements and the definition of macros. For nonlinear

elements, it would have been possible to define one or two often used nonlinear elements

as part of the package. Although the user would be confined to using these predefined

models, he/she could be assured of correct syntax. Macros would not be allowed due to

the difficulties involved with syntax checking. ASP chooses the alternate option of

flexibility. The main reason for this choice is that the user is free to define any type of

nonlinear element/macro combination. The user is not at all limited by predefined models

or element types. In addition, macros can be used to define blocks of elements which

may be redundant in a circuit, thus saving the user input time.

The cost of these advantages was seen as very minimal. The use of parameter passing

in macros and nonlinear elements increases the flexibility of each model. Workspaces in

APL also allow for easy storage of old models. Definition procedure was also simplified

so that a user with some basic familiarity with APL should have very little trouble

defining models.. Any initial difficulties the user may have seem insignificant when one

views model definition as essentially adding a new, more exact element to the simulator's

capability.
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Extensive syntax checking is done when any other element is entered by the user. These

checks are listed in the User's Manual following the specific element syntax. The only

known way for the user to be unexpectedly expelled from the simulation package is when

the user incorrectly defines nonlinear models or macros.

4.2 Run Time vs. Error Tolerances

The other important trade-off involves run time and error tolerances. ASP has a step

size control mechanism which ties step size to truncation error. If the user is willing to

allow large amounts of error, ASP will take relatively large steps. Conversely, if the

user will not tolerate much error. ASP will take relatively small steps. Because APL has

no compiler, run times can sometimes become excessively long if a tight error criterion is

specified.

To illustrate the relationship between truncation error and step size, a dc simulation test

case was run using three different error tolerances. The data below shows the effect

which error tolerances have on CPU time.

Trial 1:
EVABS = .0001 V(3) = -0.1
EVREL = .001
EIABS = 1E.NG7 V(2) = 9.922115064
EIREL = .001

V(l) = 10
CPU time =14:05 (in minutes:seconds)

V(4) = 5.75843106
Operation count = 1919006

V(6) = -10
Statement count = 550272

V(7) = -0.4014731114

1(3001) = 1.714295548E-5

1(3002) = -0.009598526889

1(3003) = -0.008638907752
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Trial 2:
EVABS = .001
EVREL = .01
EIABS = 1E.N66
EIREL = .01

CPU time = 6:30 (in minutes:seconds)

Operation count = 969950

Statement count = 278226

V(3) = -0.1

- V(2) = 9.922115064

V(l) = 10

V(4) = 5.758431061

V(6) = -10

V(7) = -0.4014731123

1(3001) = 1.714295548E-5

1(3002) = -0.009598526888

K30Q3) = -0.008638907751

Trial 3:
EVABS = .01
EVREL = .1
EIABS = 1E.NG5
EIREL = .1

CPU time = 5:00 (in minutes:seconds)

Operation count = 685241

Statement count = 195558

V(3) = -0.1

V(2) = 9.922115122

V(l) = 10

V(4) = 5.75843422

V(6) = -10

V(7) = -0.4014802619

1(3001) = 1.714294262E-5

1(3002) = -0.009598519738

1(3003) = -0.008638901316

The above data indicates a small correlation between error and correctness of the

solution however, this will not always be the case. Obviously, for this circuit and similar

circuits, the user should use a relatively lenient set of error parameters. For more

complex circuits though, especially those with many energy storage elements, the user will

probably want to enforce a tighter error constraint.

The correlation between CPU time and allowable error makes it clear that the user will

want to choose the most lenient constraints possible which still yield useful results. It is

also clear that even with lenient constraints, CPU times are very substantial. ASP



28

alleviates this problem by giving the user enough flexibility to eliminate all unnecessary

simulation time and error constraints. The user can choose his/her own error tolerances

simply by setting the global variables EVREL, EVABS, EIREL, and EIABS in the ASP

function. These variables correspond to the allowable relative and absolute voltage and

current errors. ASP also eliminates any unnecessary dc simulations by prompting the user

for the operating point before a transient simulation. The user can either specify the

operating point or ask ASP to determine it. If the user can specify the operating point,

the CPU time necessary for a dc simulation can be applied to more constructive problems.

In addition, ASP allows the user to specify break points to eliminate unnecessary

simulation time. The user can then continue or stop the simulation dependent on the

previous results. Finally, after a break point has been reached, the user has the option of

easily changing circuit data. If only minor changes have been made, ASF will iterate to

the new operating point without ramping the independent sources. This will also save a

considerable amount of CPU time.

ASP then was created as a relatively efficient simulator in a slow APL environment.

Many features have been added to increase the productivity of the simulator and to

eliminate unnecessary CPU usage. It is hoped that the combination of these features with

the interactive checking and on-line help will make ASP a useful tool.
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APPENDIX A
STAMPS

Current Controlled Current Source Stemp

CCCSK Nl N2 N3 N4 X

Nl N2 N3 N4 100K RHS

Nl

N2

N3

N4

100K 1 - 1

• X

-X

- 1

In the above stamp syntax, N1...N4 indicate nodes,
100M indicates a CCCS current in the ASP syntax,
and RHS indicates the right hand side terms.
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Current Controlled Voltage Source Stamp

CCVSM Nl N2 N3 N4 X

Nl N2 N3 N4 200M 200M RHS

Nl

K2

N3

N4

200K

200K

1 - 1

1 - 1

JL

- 1

1

- 1

*-x

Capacitor Stamp in Element Form

CK Nl N2 X

The second order stamp for a capacitor of this form is:

a current source of value
(X%H[l])#(lst order prediction of capacitor voltage)

+ (X%H[2])#(2nd order prediction of capacitor voltage)

in parallel with

a conductance of value
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Inductor Stamp in Element Form

LK N l N2 X

The second order stamp for an inductor of this form is:

a voltage source of value
(X%H[l])#(lst order prediction of inductor current)

• (X%K[2})#(2nd order prediction of inductor current)

in series with

a conductance of value

Gyrator stamp

GYRAK Nl N2 N3 N4 X

Nl N2 N3 N4 RHS

Nl

N2

N3

N4

-X

X

X

-X

X

-X

-X

X



Current Source Stamp

IK Nl N2 X

Nl

Resistor Stamp

RM N l N2 X

32

N2 RHS

Nl

N2

-X

X

Nl N2 RHS

Nl

N2.

1%X

-1%X

-1%X

i%>:



Voltage Source Stamp

VM N l N2 X

Nl

33

N2 300K RHS

Nl

N2

300K 1 - 1

1

- 1

X

Voltage Controlled Current Source

VCCSM N l N2 N3 N4 X

Nl N2 N3 N4 RHS

Nl

N2

N3

N4

• X

-X

-X

X
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Voltage Controlled Voltage Source

VCVSM Nl N2 N3 N4 X

Nl N2 N3 N4 400H RHS

Nl

N2

N3

N4

400M 1

-

- 1 -X X

1

- 1
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APPENDIX B
FUNCTION LEVEL DESCRIPTION OF ASP

In order to facilitate modifications to ASP and to enhance the readability of the APL

code, the following function level description has been written. Functions will be grouped

according to functionality and each group will be briefly described.

B.1 Mainstream Functions

*****

* ASP *
* The introductory function. ASF initializes variables*
* and asks the user for his input type choice. *
* ASP then calls one of the INPUT functions. *
**********************************************************

* INPUT *
* The INPUT functions allow the user to input circuit *
* data. INPUT functions are: INTERINP and FILEREAD.
* INPUT functions set MODE to faddf and call the CHANGE *
* function. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * x * * * * * * * * * * * * * * * * * * * * *

**********************************************************
* CHANGE
* The CHANGE function decides what type of element the *
* user is trying to specify. CHANGE then calls the pro- *
* per CHECKING function. *
**********************************************************

* CHECKING
* The CHECKING functions check element specifications *
* for proper syntax. CHECKING functions are: TWOCHECK, *
* FOURCHECKf QCHECK, TRANCHECK, CONCHECKr PRNTCHECK,
* BREAKCHECK, and MACHECK. If proper syntax has not *
* been followed, the user will be given an error message *
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* and the INPUT function will attempt to read the next «
* line. If proper syntax has been followed, CHANGE will *
* call the appropriate ADD function. *

************************ft**ft*********tt*******X**X*ft*******

ADD
* The ADD functions add element stamps to the jacobian *
* matrix. ADD functions are: ADVCVS, ADVCCS, ADV, *
* ADCCVS, ADCCCS, ADI, ADRES, ADGYR, ADQ, ADCLf and *
* ADKAC. Some of the simple element additions are *
* handled in the CHECKING functions. After the ADD *
* functions are finished, the INPUT functions attempt to *
* read the next line of input. *

If there is input on the next line, CHANGE is called
and the process repeats until all input has teen
entered. Once this occurs, the UTILITIES function
ta*es over.

* UTILITIES *
* The UTILITIES function allows the user to choose one *
* of the following seven options: *
* *
* Option 1 - Add more circuit elements. *
* UTILITIES calls INTERINP and the user can add *
* elements as before. *
* *
* Option 2 - Delete some existing elements. *
* UTILITIES calls the function DROP. This *
* function sets MODE to 'drop1 and calls the *
* CHANGE function. The CHANGE function then *
* calls the proper DELETE function. *
* + *
* DELETE functions drop element stamps *
* from the jacobian matrix. DELETE func- *
* tions are: DPVCVS, DPVCCS, DPV, DPCCVS, *
* DPCCCS, DPI, DPRES, DPGYR, DPQ, DPCLf *
* DPTRAN, DPKAC, DPCOK and DP3REAK.
* *
* Option 3 - Examine the input to date. *
* UTILITIES exhibits the variable INP which *
* contains all user input to date. . *
* *
* v Option 4 - Write the input to an external file. *
* UTILITIES calls the function OUTFILE which *
* allows the user to wrire the input to an *
* external file. . *
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* Option 5 - Continue processing. *
* UTILITIES calls the SETSIM function (see *
* below) to set up the simulation. *
* *
* * Option 6 - Exit *
* Leave the ASP package. *
* *
* Option 7 - Return to breakpoint menu if applic- *
* able. *
* The user will return to a previous menu if *
* possible. *

* SETSIM *
* SETSIM does the following to prepare for simulation: *
* *

- Calls the function HANGELCK to check if all
* necessary information has been specified. *
* HANGELCK also checks for hanging nodes in the *
* circuit. *
* *
* - Calls the SEGREGATE function to distinguish *
* between node voltages and branch currents. *
* This is done to allow-separate criteria for *
* voltage and current error. *
* *
* - Calls the PIVOT function which is part of the *
* sparse matrix package. PIVOT pivots the *
* jacobian to reduce fill. *
* *
* - In the case of a transient analysis, the user *
* is prompted for the operating point. If it is *
* known, a dc analysis can be eliminated. If *
* the operating point is unknown, ASP solves for *
* it using the DCSIM function. *

+
(Note: If a dc analysis is being done, DCSIM will be
called. DCSIM is also called in case of an unknown oper-
ating point. DCSIM is not called when a transient
analysis is being done and the operating point of the
circuit is known to the user.)

* DCSIK
* DCSIM is the function called to provide a dc Simula- *
* tion. DCSIM transforms each constant source into a *
* transient source which reaches its value at time=.ls. *
* Each transient source is then transformed into a tran- *
* sient source which reaches its 0 value at time=.ls. *
* That is each source is ramped up to its 0 value over a *
* .Is interval. Each of the 'transient1 sources begins *
* with a value of 0. The solution of the circuit is *
* obvious at- this point. By taking small time steps ana *
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* doing an evaluation at each point, the dc solution can *
* be found. DCSIM sets up this transient simulation *
* and calls TRANSIK to implement it. After the dc *
* solution is found, TRANSIM may be called. *
**********************************************************

+
(Note: If only a dc simulation is being done, ASP stops
at this point• Continue for more on transient simula-
tions.)
OUTASK is called here to ask the user which voltages or
currents should be printed.

'+
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * x * * * * * * * * * * * * * * * * * * * *

* TRANSIK - *
* TRANSIK does the following to implement a transient *
* simulation: *
* - Initialize variables necessary for simulation. *
* *
* . - Call the STARTUP function to start off the *
* simulation. STARTUP essentially does three *
* first order corrections while the error *
* estimation facility is being initialized. *
* STARTUP initially calls the NOCLSAVE function *
* which saves the values of positions in the *
* • jacobian which are affected by capacitors and *
* inductors. *
* *
* - BEGIN the LOOP
* Reset variables. *
* *
* Call UPDATRAN to update transient source *
* stamps. *
* *
* Call PRED to predict using the Van Bok- *
* - hoven algorithm described in Chapter 2. *
* *
* Call CORRECT to correct using the Van *
* Bokhoven algorithm from Chapter 2. *
* *
* Call NEWRAF tc implement the Newton- *
* Raphson algorithm. *
* NEWHAP calls NOQSAVE to save values of *
* positions in the jacobian which are af- *
* fected by nonlinear elements. A loop is *
* then begun: " *
* NOQRESTOR is called tc restore *
* the jacobian to its pre-stamp *
* condition. *
* *
* UPDATQ is called to update the *
* . nonlinear stamp. *
* - *
* v GAUS is called to do the LU fac- *
* torization. BACK and FOR are *
* called to do backward and. for- *
* ward, substitution. *
* - *
* Error is then checked to see if *
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*

Ik

*

•

Ik '

Ik

Ik

Ik

Ik

Ik

Ik

Ik

Ik

*

Ik

*

*

Ik

*

the iterations should continue.

If not, NOQRESTOR is called again to
restore the jacobian.

Error is checked to see if the step
should be accepted or rejected. If the
step is rejected, cut the step in half,
restore the jacobian to its original
condition and return to the beginning of
the loop. If the step is accepted,
continue with:

Restore each transient current source
With TRANIRESTOR.

Evaluate the design constraint if nec-
essary.

Increment time and restore the jacobian
using NOCLRESTOR.

Accommodate any printing requests or
break point requests.

Calculate a proposed step size using
HCALC and continue the loop until the
end time is reached.

B.2 Utility Functions

In addition to the functions already mentioned, there are other Utility functions in ASP.

These functions handle small tasks which are necessary for the Mainstream functions to

work effectively. A list of these functions and a small discussion on each will now be

given.

ASSIGN - taxes the user-specified nodes and converts them into
node numbers which the simulator can user ie.
consecutive numbers.

BKPNTADD - prompts the user for break points to be added.
This function is called from BKPNTUTILS.

BKPNTDROP - prompts the user for break points to be dropped.
This function is also called from BKPNTUTILS.

BKPNTUTILS - gives the user options to change break point data,
change circuit element data, or continue with

v simulation.

CAPV - determines voltage across two nodes for a given order of
prediction.
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COMPACT - drops unused nodes from consideration.

CREATE - is called by PIVOT to create temporary fill elements,
(SPARSE MATRIX FUNCTION)

DESTROY - destroys positions in the jacobian.
(SPARSE MATRIX FUNCTION)

EXAMINE - allows the user to examine present values of design
constraints, voltages, or currents. This function is
called from BKPNTUTILS.

FASTADI - adds a current source for a capacitor stamp.

FASTADRES - adds a resistor for a capacitor or inductor stamp.

FINDINP - finds total element information when given type and
number of element.

FN3EVAL - evaluates the objective function at a given time.

FPWL - returns value of PWL function when given time and
parameters.

FSIN - returns value of SIN function when given time and
parameters.

FUNCK - checks if a given function exists in the workspace.

INCR - increments values of elements of the jacobian.
(SPARSE MATRIX FUNCTION)

IKIT - initializes variables.
(SPARSE MATRIX FUNCTION)

LOOKUP - looks up elements in the jacobian when given row and
column indices.

(SPARSE MATRIX FUNCTION)

*HUK - returns current value of the given voltage or current.

PRINT - prints out the ASP workspace.

PUT - puts a given value into a specified row and column in the
jacobian.

(SPARSE MATRIX FUNCTION)

PWLCK - checks the PWL portion of a PWL transient source.

REDUCE - removes a row and column pair from the jacobian.
(SPARSE MATRIX FUNCTION)

ROW - calculates a given row of the LU factorization.
V (SPARSE MATRIX FUNCTION)

*SINCK - checks the SIN portion of a SIN transient source.

TRANSBACK - does the back substitution for the transposed
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jacobian problem.
(SPARSE MATRIX FUNCTION)

TRANSFOR - does the forward substitution for the transposed
jacobian problem.

(SPARSE MATRIX FUNCTION)

TRANSOL - solves the transpose problem.
(SPARSE MATRIX FUNCTION)

TRANSPOSE - obtains column-wise representation of pivoted L and
U matrices.

(SPARSE MATRIX FUNCTION)

This list does omit all of the HELP functions which were previously listed. HELP

files all begin with the letters 'HELP'.
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APPENDIX C
ASP USER S#MANUAL



ASP

APL SIMULATION PACKAGE

A User's Manual

ASP is a simulation package written in APL by

Gregory D. Jordan
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1. INTRODUCTION
This manual is intended for use with ASP which is now implemented on the CMU TOPSC

system. A large amount of on-line help is available, however this manual is in most cases a

more extensive source of information. Some knowledge of APL is valuable if the user would

like to explore all of the capabilities of ASP. As a general tool, however, ASP can be used and

enjoyed by everyone.



2 GETTING STARTED
Before loading the ASP workspace, be sure to increase the allowable workspace size by typing:

)MAXCORE 200

Next, to enter the simulator package, type:

)L0AD ASP
ASP

The user will now be asked to input data. There are two possible input methods. The user may

wish to copy data from a previously created external file or the user may wish to input data

interactively. The syntax for each element remains the same in both cases. The user will

probably want to use interactive input until he/she is familiar with ASP syntax. When naming

external files for ASP to read, it is important to keep file names shorter than 8 characters or

else an error will result.



3. INPUT SYTNTAX
In this section, each type of element will be examined and input syntax will be discussed.

Some general points should be made first.

1. Error tolerances can be set by the user by altering the variables EVREL. EVABS,
EIREL, and EIABS in the ASP function. These variables are the relative and
absolute error allowable for voltages and currents. That is, the simulator checks that
the maximum voltage error at each time step is less than:

EVABS • EVREL#(the voltage which corresponds to the largest
voltage error term)

A similar calculation is done for current error.

2. Scientific notation is acceptable to ASP, however abbreviations are not That is 1E3
and 1E.NG12 are acceptable, however IK and 1M are not When using a TTY
terminal, you will not be able to specify any macro element parameters or values less
than .0001. In short, this occurs because TTYs convert the (.NG) character to the
totally different (-) character. To avoid this problem, either switch to an APL
terminal or use individually specified elements rather than macros.

3. Node numbers and element numbers must be positive integers less than 1000. The
ground node must be labeled node 0. This is due to an ASP convention for handling
internal nodes and currents. No hardship should result since ASP is not designed to
handle hundreds of nodes or elements.

4. An acceptable input file consists of circuit elements and a DC or TRANSIENT line
to indicate dc or transient simulation. If transient simulation is chosen, the user
must also specify a PRINT statement In addition, the user has the option of
specifying break points using a BREAK statement or design constraints using the CON
statement.

5. ASP uses the following convention for defining elements:

That is, current always flows from the positive to the negative terminal of an element. In

addition, the ASP convention is that the positive terminal is always defined first. Be especially

careful of this when defininc current sources.



3.1. Resistors

The basic form of resistor input is:

RMN1 N2 VALUE

• where R signifies resistor,

• M is the number of the resistor,

• Nl and N2 are the nodes which the resistor is between,

• and VALUE is the value of the resistor in ohms.

Typical resistor specifications are:

Rl 1 2 10000
R5O 67 734 200

Checks are run for 0-valued resistors, unacceptable alpha characters, node or element numbers

which are not integers or are out of bounds, incorrect number of nodes entered, shorted elements,

and duplicate elements, where duplicate means two resistors with the same element number.

3.2. Capacitors and Inductors

The basic form of capacitor or inductor input is:

LM Nl N2 VALUE

CM Nl N2 VALUE

• where L and C signify inductor and capacitor respectively,

• M is the number of the capacitor or inductor,

• Nl and N2 are the nodes which the capacitor or inductor is between,

• and VALUE is the value of the capacitor or inductor in farads or hsnrys.

Typical capacitor and inductor specifications are:

Cl 1 5 .00001
L90 35 0 .5798

Checks are run for unacceptable alpha characters, incorrect number of node numbers entered, node

or element numbers which are not integers or are out of bounds, shorted elements, and duplicate

elements, where duplicate means two capacitors or two inductors with the same element number.

3.3. Gyrators
The basic form of gyrator input is:

GYRAM Nl N2 N3 N4 VALUE

• where GYRA signifies 'gyrator.

• M is the number of the cvrator.



• Nl , N2, N3, and N4 are the nodes which the gyrator is connected to,

• and VALUE is the value of the unitless multiplier.

A brief discussion is in order here. Nl and N3 correspond to the positive ends of the voltaees

and N2 and N4 correspond to the negative ends. The equation of the gyrator can be written as:

I * -(VALUEHV1-V2)
1^ * (VALUEXV3-V4)

That is, the current on each side of the gyrator is proportional to the voltage on the other side.

The proportionality constant is" «7- VALUE.

Typical gyrator specifications are:

GYRA1 10 3 0 5
GYRA43 9 15 34 22 10

Checks are run for for unacceptable alpha characters, element numbers or nodes which are not

integers or are out of bounds, incorrect number of nodes specified, shorted gyrators, and duplicate

elements, where duplicate means two gyrators with the same element number.

3.4. Linear Current Controlled Current Sources

The basic form of linear current controlled current sources is:

CCCSM Nl N2 N3 N4 VALUE

• where CCCS indicates a linear current controlled current source,

• M is the number of the current controlled current source,

• Nl, N2, N3, and N4 are the nodes which the CCCS is connected to,

• and VALUE is the value of the unitless multiplier.

Nodes Nl and N2 are connected to the controlled source. Nodes N3 and N4 are connected to

the controlling current Nl and N3 denote <•> nodes and N2 and N4 denote <-> nodes. It is

important to note that N3 and N4 are actually shorted nodes. That is, no other element may

connect nodes 3 and 4 since the simulator internally puts a 0-valued voltage source across these

nodes to determine current The equation of the CCCS may be written:

I = (VALUE)!

That is, the current on one side of the CCCS is proportional to the current on the other side.

The proportionality constant is VALUE.

Typical CCCS specifications are:

CCCS1 1 2 3 4 50
CCCS67 23 456 32 123 2

Checks are run for unacceptable alpha characters, elemenl numbers or nodes which are not

integers or are out of bounds, shorted CCCSs (note that nodes 3 and 4 may not be the same



node number), incorrect number of nodes specified, and duplicate elements, where duplicate means

two CCCSs with the same element number.

3.5. Linear Current Controlled Voltage Sources

The basic form of linear current controlled voltage source input is:

CCVSM Nl N2 N3 N4 VALUE

• where CCVS signifies current controlled voltage source,

• M is the number of the current controlled voltage source,

• Nl , N2, N3, and N4 are the nodes which the CCVS is connected to,

• and VALUE is the value of the multiplier in ohms.

Nodes Nl and N2 are connected to the controlled voltage source. Nodes N3 and N4 are

connected to the controlling current Nl and N5 denote ( + ) nodes and N2 and N4 denote <-)

nodes. Once again, nodes 5 and 4 are shorted because of the internal O-valued voltage source.

The equation of the CCVS may be written:

(VI - V2> « (VALUE)I
3-4

That is, the voltage on one side of the CCVS is proportional to the current on the other side.

The proportionality constant is VALUE.

Typical CCVS specifications are:

CCVS1 1 2 3 4 10
CCVS34 98 323 52 772 2

Checks are run for unacceptable alpha characters, element numbers or nodes which are not

integers or are out of bounds, incorrect number of nodes specified, shorted CCVSs < nodes 3 and

4 may not be the same number), and duplicate elements, where duplicate means two CCVSs with

the same element number.

3.6. Linear Voltage Controlled Current Sources

The basic form of linear voltage controlled current sources is:

VCCSM Nl N2 NS N4 VALUE

• where VCCS signifies voltage controlled current source,

• M is the number of the voltage controlled current source,
v

• Nl, N2, N3, and N4 are the nodes which the VCCS is connected to,

• and VALUE is the value of the multiplier in mhos.

Nodes Nl and N2 are connected to the controlled current source. Nodes NS and N4 are



connected to the controlling voltage. Nl and N3 denote ( + > nodes and N2 and N4 denote (->

nodes. Any element may be placed between nodes 3 and 4. The equation of the VCCS may be

written:

I - VALUE(V3 - V4)

That is. the current on one side of the VCCS is proportional to the voltage on the other side.

The proportionality constant is VALUE.

Typical VCCS specifications are:
VCCS1 2 3 4 5 10
VCCS23 34 56 67 87 2

Checks are run for unacceptable alpha characters, element numbers or nodes which are not

integers or are out of bounds, incorrect number of nodes specified, shorted VCCSs and duplicate

elements, where duplicate means two VCCSs with the same element number.

3.7. Linear Voltage Controlled Voltage Sources

The basic form of linear voltage controlled voltage source input is:

VCVSM Nl N2 N3 N4 VALUE

• where VCVS signifies voltage controlled voltage source.

• M is the number of the voltage controlled voltage source,

• Nl , N2, N3, and N4 are the nodes which the VCVS is connected to,

• and VALUE is the value of the unitless multiplier.

Nodes Nl and N2 are connected to the controlled voltage source. Nodes N3 and N4 are

connected to the controlling voltage. Nl and N3 denote ( + ) nodes and N2 and N4 denote (->

nodes. Any element may be placed between nodes 3 and 4. The equation of a VCVS may be

written as:

(VI - V2) = VALUE(V3 - V4)

That is, the voltage on one side of the VCVS is proportional to the voltage on the other side.

The proportionality constant is VALUE.

Typical VCVS specifications are:

VCVS1 1 2 3 4 10
VCVS34 45 65 789 12 2

Checks are run for unacceptable alpha characters, element numbers or nodes which are not

integers or are out of bounds, incorrect number of nodes specified, shorted VCVSs, and duplicate

elements, where duplicate means two VCVSs with the same element number.



3.8. Constant Voltage Sources
The basic form of constant voltage source input is:

VM.N1 N2 VALUE

• where V signifies constant voltage source,

• M is the number of the voltage source.

• Nl and N2 are the nodes which the voltage source is between,

• and VALUE is the value of the voltage source in volts.

Nl is the positive node of the voltage source and N2 is the negative node. The voltage source

current is defined as flowing from node 1 to node 2. Typical voltage source specifications are:

VI 1 0 5
. V23 456 34 15

Checks are run for unacceptable alpha characters, node or element numbers which are not integers

or are out of bounds, shorted elements, incorrect number of nodes entered, duplicate constant

voltage sources and duplicate transient voltage sources, where duplicate means two voltage sources

with the same element number.

3.9. Constant Current Sources

The basic form of constant current source input is:

IM Nl N2 VALUE

• where I signifies constant current source.

• M is the number of the current source,

• Nl and N2 are the nodes which the current source is between,

• and VALUE is the value of the current source in amps.

The current from the current source is defined as flowing from node 1 to node 2 through the

current source. Typical current source specifications are:

I I 1 2 5
134 27 0 10

Checks are run for unacceptable alpha characters, node or element numbers which are not integers

or are out of bounds, incorrect number of nodes entered, shorted elements, duplicate constant

current sources and duplicate transient current sources, where duplicate means two current sources

with the sama element number.



3.10. Transient Voltage Sources

The basic form of transient voltage source input is:

TRANVM Nl N2 TYPE PARAMETERS

• where TRANV signifies transient voltage source,

• M is the number of the transient voltage source,

• Nl and N2 are the nodes which the transient source is between.

• TYPE indicates the type of transient source, (one of PWL &. SIN)

• and PARAMETERS are parameters required by the specific type.

Nl is the positive node of the voltage source and N2 is the negative node. Current flows

through the transient source identically to the constant source. For TYPE specifications, see

section 3.11.1 on allowable type information.

Typical transient voltage source specifications are:

TRANV1 1 0 PWL 0 C 1 10 2 10 3 20
TRANV34 45 93 SIN 0 1 I 0 0

Checks are run for unacceptable alpha characters, element numbers or nodes which are net

integers or are out of bounds, incorrect number of nodes specified, shorted transient sources,

incorrect numbers of parameters specified, incorrect types specified, duplicate transient voltage

sources and duplicate constant voltage sources, where duplicate means two voltage sources with

the same element number.

3.11. Transient Current Sources

The basic form of transient current source input is:

TRANIM Nl N2 TYPE PARAMETERS

• where TRANI signifies transient current source,

• M is the number of the transient voltage source,

• Nl and N2 are the nodes which the transient source is between,

• TYPE indicates the type of transient source (one of PWL 4: SIN),

• and PARAMETERS are parameters required by the specific type.

For TYPE specifications, see the following section on allowable types. Nl is the positive node

of the current source and N2 is the negative node.

Typical transient current source specifications are:
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TRANI1 1 0 PWL 0 0 1 10 2 10 3 20
TRANI34 45 93 SIN 0 1 1 0 0

Checks are run for unacceptable alpha characters, element numbers or nodes which are not

integers or are out of bounds, incorrect number of nodes specified, shorted transient sources,

incorrect numbers of parameters specified, incorrect types specified, duplicate transient current

sources and duplicate constant current sources, where duplicate means two current sources with

the same element number.

3.11.1. Allowable Types
PWL - indicates a piece-wise linear source. Some even number of parameters must be

specified ie.(Tl VI T2 V2 . . .TN VN). At Tl and before, the value of the source is VI.

From Tl to T2, ASP linearly interpolates to find the appropriate voltage or current At T2. the

value of the source is V2. ASP continues the linear interpolation until the end of the simulation

is reached. If TN is reached before the end of the simulation, the source value remains VN. Ts

are specified in seconds and Vs are specified in volts or amps.

SIN - indicates a sinusoidal. source. Five parameters must be specified ie.(offset, amplitude,

frequency, delay, damping factor) Parameters are specified in volts or amps, Hz, and seconds.

The value of the source can be determined by the equation:

V = offset • (amplitude>ed*mpinrriU(sinpart)

where sinpart is:

sinpart = sin( 2 (pi X frequency >td>

and td is:

(lime - delays

3.12. Nonlinear Elements
The basic form of nonlinear element input is:

QM Nl N2 N3 . . . NN MODNAM PI P2 . . . PM -

• where Q signifies nonlinear element,

• M is the number of the nonlinear element,

• Nl , N2, . . . NN are the nodes connected to the nonlinear element,

• MODNAM is the name of the model used for the element,

• and PI, P2. . . . PM are parameters to be used by the model function.
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For model definition information, see section 3.12.1. Parameters should only be specified for a

model function which expects parameter input. If the function does not expect parameters, none

should be specified.

Typical nonlinear element specifications are:

Ql 34 21 52 EMOLLA .00000002 56 32
Q43 9B 2 DIODE

Checks are run for illegal characters in the node number portion, too few nodes specified

element numbers or nodes which are not integers or are out of bounds, use of undefined model

functions and duplicate nonlinear elemenis, where duplicate means two nonlinear elements with the

same element' number.

3.12-1. Model Definition

Two APL# functions must be created in crder for tte user to define a nonlinear element model.

For purposes of illustration, the first function shall be called MODNAM and the second function

shall be called DMODNAM. The. only actual constraint on these two function names is that they

should not contain any numeric characters and DMODNAM should always be the same as

MODNAM with a 'D' in front Some examples of model function names are DIODE,DDIODE

and EMOLL.DEMOLL.

The MODNAM function defines the currents which leave each node of the nonlinear element.

If an N terminal element is specified, only N-l currents need to be defined though because of

Kirchhoffs Current Law. MODNAM should in this case return an N-l element vector which

defines the current leaving the first N-l nodes and flowing through the element. Each current is

a function of the node voltages which can be accessed as V [ l ] , V[2] . . . V[N]. Parameters

can be passed to the functions if they are listed in the nonlinear specification. If no parameters

are to be passed, the functions MODNAM and DMODNAM should not expect any.

As an example of a diode specification with one parameter passed:

QM Nl N2 DIODE .000000001

The DIODE function is:

.DL FUNC_DIODE VAL
FUNC_1.RQ 0
FUNC[I3 VAL#((.NGl)+*(V[l]-V[2])%.025)
.GO 0
.DL

v
Important features to note include:

• DIODE takes VAL as an argument. In this case, VAL is a scalar. If the user
wishes to pass more than one parameter, VAL could be a vector with parameters
accessed as VAL[1], VAL[2], etc. •
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• Since the diode is a two terminal element, DIODE returns a one element vector.

• The voltace at node Nl is accessed as V [ l ] . The voltage at node N2 is accessed as
V[2] .

• FUNC[1] refers to the current leaving node Nl and flowing through the diode.

The other function to be specified is the DMODNAM. This function specifies the derivatives

of each current with respect to each node voltage. DMODNAM then should return a N-l x N

matrix where the [P;Q] element refers to the derivative of the Pth current with respect to the

Qth voltage.

Consider again the specification for diodes.

The DDIODE function is:
•DL DFUNC_DDIODE VAL
DFUNC 1 2.RO C
DFUNCll;l] (VAL%.026)#(*(V[l]-V[2])%.026)
DFUNC[l;2]~((0-VAL)%.026)#(*(V[l]-V[2])%.026)
.GO 0
.DL

3.13. Macros
The basic form of macro input is:

MACM Nl N2 . . . NN FUNCNAME PI P2 . . . PT

• where MAC signifies a macro,

• M is the number of the macro,

• Nl, N2, . . . NN are external nodes to which the macro is connected,

• FUNCNAME is the name of the function which defines the macro (see 3.13.1),

• and PI, P2, . . . PT are the parameters of the macro.

Macros are clusters of pre-defined elements. Macros are useful when defining sophisticated

transistor models or when a circuit is very repetitive. Definition of macros is more difficult than

normal input however, so the user should be very careful and expect some difficulty. When

using the same macro model more than once, the user should NOT drop a macro which contains

voltage or current sources. These sources present difficulties because each source current wiil

have the same number in the ASP current numbering system (see Appendix I).

Typical macro specifications are:
MAC1 1 2 KACRO 1.2 3.87

MAC87 65 80 71 6 MACNAME 1 10 100 .

Checks on macro specifications are not very extensive because of the great flexibility the user

has. Checks are run for fewer than two nodes, node and element numbers which are not mteeers
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or are out of bounds, nonexistent FUNCNAME functions, and duplicate macros, where duplicate

means two macros with the same element number.

3.13.1. Macro Definition
To define a macro, one must define a function which lists all the elements of the macro.

Basically, the syntax is the same as for normal input however there are some exceptions.

• Usually a macro uses internal nodes. To indicate an internal node, use the global
variable INTERNAL. That is, allowable internal nodes are (INTERNAL* 1),
(INTERNAL+4 5) etc. * Never use an internal node that is numbered less than
INTERNAL.

• To specify an external node, use the variable EXTERNAL. This variable is a vector
which contains the nodes Nl, N2, . . . NN which were named in the macro
specification. Allowable external nodes are (EXTERNAL[1 ]>, <EXTERNAL[2]), . .
. <EXTERNAL[N]>.

• All nodes must be enclosed in parentheses. All numbers and numeric expressions
must be separated by commas. No parentheses should be used when specifying
parameters.

• Parameters which are passed to the macro may be used by referring to them as
VAL[1], VAL[2] . . . VALET].

An example of an acceptable two external, two internal node macro is:

MAC1 1 2 MACNAME 1.2 3.87

AND

.DL MACRO
Rl, (EXTERNAL[l3),(INTERNAL),VAL[l]
TRANV1# (INTERNAL), (INTERNAL+1) PWL 0,0,l,VAL[2]
R2, (INTERNAL+1)r(EXTERNAL[2]),1000
.DL

The resulting circuit entry from this macro would be:
Rl 1 7001 1.2
TRANV1 7001 7002 PWL 0 0 1 3.87
R2 7002 2 1000

where 7001 and 7002 refer to internal nodes according to ASP syntax.
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4. NECESSARY INPUT
The user must choose between a dc analysis and a transient simulation. The operating point

must be found for each type of simulation. If a transient simulation is chosen however, the user

will have the option tc supply the operating point This will then save the user a needless dc

simulation. If the user does not know the operating point ASP will solve for it and the

transient analysis will follow.

4.1. DC Analysis

To specify dc analysis, the user must input the line:

DC

A dc analysis will be done and all node voltages and the currents from inductors, voltage sources

and some dependent sources will bt displayed. For an explanation of the output syntax • for

currents, see Appendix I.

4.2. Transient analysis

To specify a transient analysis, the user must input the line:

TRANSIENT

It is also necessary to specify the time of simulation and the printing increment desired. These

can be set using the format:

PRINT PRINTINCR EHDTIHE

• where PRINT indicates that the user is setting print parameters,

• PRINTINCR is the tune interval between each time ASP prints out results,

• and ENDTIME is the time when the simulation should halt.

ASP will only print out the voltages and currents which the user specifies. The user can

specify voltages and currents to output after all circuit elements have been entered and the choice

is made to continue simulation. For an explanation of the output syntax for currents, see

Appendix I.
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5. OPTIONAL INPUT

5.1. Break Point Specification

In the course of the simulation, break points may be specified where ASP halts and the user

has options to change previous simulator input Suppose the ENDTIME of the simulation is 1

sec. Furthermore, suppose the user will be able to determine the success or failure of the test

before the simulation is complete. Using ASP, the user may specify a break point at say .3 sec.

and decide if the simulation should continue.

To specify break points, use the format:

BREAK Tl T2 . . . TN

• where BREAK indicates that the user is setting break points,

• and Tl , T2, . . . TN are times at which the user would like the simulator to halt.

When ASP halts at a break point, the user will have the option to add, delete, or examine

current breakpoints, examine values of constraints, voltages, or currents, change circuit element

data, exit, or continue with the present simulation. The user may only change future break

points; he/she may not add or delete break points which have already been passed. If the user

decides to change circuit element data, ASP will try to use the old DC solution for the new

circuit as well. If this attempt fails, ASP will fmd the new operating point and then begin

another transient simulation. If the user chooses the last option, the simulation will continue as

if the break had never occurred.

5.2. Design Constraints

The user also has the option of specifying design constraints for the simulator to integrate over

time. Design constraints have no effect during the DC analysis however, during the transient

analysis, the functions are integrated over time and the results are printed out with the remainder

of the output. The user need not ask the simulator to output the design constraint calculations.

If a design constraint has been specified, the user will see the value at each printing increment.

If no constraint has been specified, no design constraint data will be presented.

To specify a design constraint, use the format;

CONM FUNCNAM

• where CON indicates that a design constraint is being specified,

• M is the number of the design constraint,

• and FUNCNAM is the name of the function containing the design constraint.
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For help in defining a design constraint see 5.2.1.

Typical design constraint specifications are:

C0N1 TEST
C0N999 FUNC

Checks are run for duplicate constraint numbers, undefined constraint functions, and constraint

numbers which are not integers or are out of bounds.

5.2.1. Function Definition
To use a design constraint, the user must define a function which returns the value of the

constraint at a specific time point To facilitate this, ASP contains the function NUM which

serves as an interface between the user defined nodes and currents and the values which the

simulator has calculated. NUM accepts numbers which refer to node voltages or currents and

returns the value of these voltages and currents at the present time. For help in specifying

voltages and currents, see Appendix I.

A typical design constraint definition is:

C0N1 FUNC

and

.DL RESULT_FUNC

RESULT_(((NUK l)-2)*2) + (((NUM 3001)-.001)*2)
.GO 0
.DL
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APPENDIX I
EXPLANATION OF VOLTAGE AND CURRENT NUMBERING

SYSTEM
• Currents and voltages are specified as follows:

• Voltages will appear as their node numbers and can be as high as 999.

• Currents will appear differently depending on the type of element generating the
current
CCCS currents - 1000 • element number
CCVS currents - 2000 + element number •
voltage source currents * 3000 + element number
VCVS currents - 4000 + element number
inductor currents - 5000 + element number
inductor voltages - 6000 + element number
Numbers greater than 7000 indicate internal nodes. The only feasible way for the
user to determine these is to run the simulation.

Some examples would be:

• 3001 would indicate the current due to voltage source number 1.

• 2048 would indicate the current due to CCVS number 48.

• 7092 would indicate an internal node.



APPENDIX II
TEST CASES



The first test case shows user input and simulator output for a dc simulation.
Error parameters are currently:

EVABS s .001
EVREL = .01
EIABS = .000001
EIREL s .01

The circuit is shown below:

TEST CIRCUIT #1

R1: 500 ohms
R2: 500 ohms
R3: 1k ohms

V1: 0.1 volts
V2: 10 volts
V3: 10 volts

Q1,Q2 model: Emoll



@apl
terminal..TTY
APL-20 DECSYSTEM-20 APLSF 2(504)
TTY134) 0:12:41 WEDNESDAY 22-JUL-81 GJOC [4,452]
CLEAR VS

)MAXCORE 200
WAS 40P

)LOAD ASP
SAVED 23:39:22 21-JUL-81 169P

ASP
WELCOME TO THE APL SIMULATION PACKAGE! IF YOU ENCOUNTER ANY PROBLEMS
ALONG THE WAY, PLEASE FEEL FREE TO TYPE "HELP-.
WHICH TYPE OF INPUT WOULD YOU PREFER?

0 - READ FROM AN EXTERNAL FILE
1 - ENTER DATA INTERACTIVELY

INPUT MODE: 1

YOU WILL NOW BE ASKED TO INPUT THE CIRCUIT DATA. HELP IS AVAILABLE
IN THIS MODE IF YOU WOULD LIKE. EACH ENTRY WILL BE CHECKED FOR
ERRORS AND AN APPROPRIATE MESSAGE WILL BE SENT. IF AN ASTERISK
APPEARS, THE SIMULATOR IS READY TO ACCEPT NEW DATA. TO
EXIT THE INPUT MODE, TYPE 000. PLEASE ENTER YOUR DATA NOW.
* VI
THERE IS AN INCORRECT NUMBER OF NODES SPECIFIED.
VI
PLEASE REENTER THIS ELEMENT AS IT HAS NOT BEEN ADDED.
* V.I 1030 1
TEE SECOND CHARACTER MUST BE NUMERIC.
V.I 1030 1
PLEASE RSENTER THIS ELEMENT AS IT HAS NOT BEEN ADDED.
* VI 1050 0 10
NODE NUMBERS GREATER THAN 999 ARE NOT PERMISSABLE.
VI 1050 0 10
PLEASE REENTER THIS ELEMENT WITH APPROPRIATE NODE NUMBERS.
* VI 0 3 .1
* VI 0 6 10
A DUPLICATE ELEMENT EXISTS FOR:
VI 0 5 10
PLEASE REENTER THIS ELEMENT UNDER A NSW NAME.
* V2 0 6 10
* V3 10 10 10
YOU HAVE SPECIFIED THE SAME NODE TWICE.
V3 10 10 10
PLEASE REENTER THIS ELEMENT AS IT HAS NOT BEEN ADDED.
* V3 1 0 10
* Rl 2 1 500
* R2 1 4 500
* R3 6 7 1000
* Ql 7 2 3 EMOLL
* Q2 7 4 0 EMOLL
* DC
* 000



YOU MAY NOW SELECT ANY OF THE OPTIONS BELOW TO MODIFY THE INPUT
OR CHECK THAT THE SIMULATION HAS COMPILED ALL THE DATA.
TO CONTINUE PROCESSING, SIMPLY SELECT OPTION 5. IF YOU CHOOSE
ANOTHER OPTION, YOU CAN EXIT THAT OPTION AND RETURN TO THIS
MENU BY TYPING 000.

OPTION 1 - ADD MORE CIRCUIT ELEMENTS

OPTION 2 - DELETE SOME EXISTING ELEMENTS

OPTION 3 - EXAMINE THE INPUT TO DATE

OPTION 4 - WRITE THE INPUT TO AN EXTERNAL FILE

OPTION 5 - CONTINUE PROCESSING

OPTION 6 - EXIT

OPTION 7 - RETURN TO BREAKPOINT MENU IF APPLICABLE

OPTION => 5
OPERATING POINT NOW BEING DETERMINED



THE RESULTS OF THE DC SIMULATION ARE:
NODE VOLTAGES:

V(3)

V(2)

V(l)

V(4)

V(6)

V(7)

-0.1

9.922115064

- ID

= 5.758431061

= -10

= -0.4014731123

BRANCH CURRENTS:

I(3001) = 1.714295548E-5

I(3002) = -0.009598526888

1(3003) = -0.008638907751

)SAVE
0:42:02 22-JUL-81 166 PGS ASP <C75> [4,452]

)OFF HOLD
TTY134) 0:42:15 22-JUL-81
CONNECTED 0:29:34 CPU TIME 0:06:30
278226 STATEMENTS 969950 OPERATIONS

EXIT



The second test circuit is a simple amplifier. An initial dc analysis is done to
determine the operating point. Finally, the transient analysis is done. Error
parameters for this test case are the same as for the first test case. The
amplifier circuit is shown below:

V1

TEST CIRCUIT #2

R1: 100 ohms
R2: 4K ohms
R3: 1K ohms
R4: 2K ohms
R5: 1K ohms

C1: 100 uF
C2: 1 uF

V1: .Ssin2(pi)t
V2: 15

Q1 model: Emoll



@A?L
terminal..TTY
APL-20 DECSYSTEM-20 APLSF 2(504)
TTY134; 5:12:25 WEDNESDAY 22-JUL-81 GJOC [4,452]
CLEAR WS

)MAXCORE 200
WAS 40P

)LOAD ASP
SAVED 4:08:01 22-JUL-81 170P

ASP
WELCOME TO THE APL SIMULATION PACKAGE! IF YOU ENCOUNTER ANY PROBLEMS
ALONG THE WAY, PLEASE FEEL FREE TO TYPE -HELP".
WHICH TYPE OF INPUT WOULD YOU PREFER?

0 - READ FROM AN EXTERNAL FILE
1 - ENTER DATA INTERACTIVELY

INPUT MODE: 0

ENTER THE INPUT FILENAME: SIM,DAT
INPUT FILE HAS BEEN READ.

(The file sim.dat contains tHe following input;
TRANV1 1 0 SIN 0 .5 1 0 0

V2
Rl
Cl
R2
R3
Ql
R4
R5
C2

4
1
2
4
3
6
4
6
6

0
2
3
3
0

5
0
0

15
100
1E.NG4
4000
1000
3 EMOLL
2000
1E3
1E.NG6

TRANSIENT
PRINU .01 .15



YOU MAY NOW SELECT ANY OF THE OPTIONS BELOW TO MODIFY THE INPUT
OR CHECK THAT THE SIMULATION HAS COMPILED ALL THE DATA-
TO CONTINUE PROCESSING, SIMPLY SELECT OPTION 5. IF YOU CHOOSE
ANOTHER OPTION, YOU CAN EXIT THAT OPTION AND RETURN TO THIS
MENU BY TYPING 000.

OPTION 1 - ADD MORE CIRCUIT ELEMENTS

OPTION 2 - DELETE SOME EXISTING ELEMENTS

OPTION 3 - EXAMINE THE INPUT TO DATE

OPTION 4 - WRITE THE INPUT TO AN EXTERNAL FILE

OPTION 5 - CONTINUE PROCESSING

OPTION 5 - EXIT

OPTION 7 - RETURN TO BREAKPOINT MENU IF APPLICABLE

OPTION => 5



IF THE DC SOLUTION IS KNOWN, PLEASE ENTER THE SOLUTION VECTOR
IN THE FOLLOWING ORDER:
3001 1 3002 4 2 3 6 5
OTHERWISE, SIMPLY ENTER A 0.
0
OPERATING POINT NOW BEING DETERMINED.
THE RESULTS OF THE DC SIMULATION ARE:
NODE VOLTAGES:

V(l)

V(4)

V(2)

V(3)

V(6)

V(5)

- 0

= 15

= 6.62032S710E-8

- 2.805124689

= 2.437090328

= 10.61300629

BRANCH CURRENTS:
1(3001) = 6.620329710E-10

1(3002) = -0.005242215684



TYPE IN DESIRED NODE VOLTAGE OUTPUTS ON SEPARATE LINES.
IF NO MORE ARE DESIRED, ENTER A 0.
*5
*G

TYPE IN DESIRED CURRENT OUTPUTS ON SEPARATE LIN^S.
IF NO MORE ARE DESIRED, ENTER A 0.
*0



TIME V(5)

0.01 10.56251037

0.02 10.52135796

0.03 10.48598946

0-.04 1C-. 45456504

0.05 10.42767043

0.06 10.4046288

0.07 10.38531285

0.08 10.36940854

C.09 10.35672836

0.1 1C.34705207

0.11 10.3402017

0.12 10.33600056

0.13 10.33429029

0.14 10.3349194

0.15 10.33774642

0.16 10.34263609

)SAVE
5:21:19 22-JUL-81 166 PGS ASP <075> [4,452]

)OFF HOLD
TTY134) 5:21:20 22-JUL-81
CONNECTED 0:09:55 CPU TIME 0:08:22
438849 STATEMENTS 1514205 OPERATIONS



The final test circuit is a simple circuit with a resistor, diode, and capacitor.
This test shows the use of macros, design constraints, and break points. Once
again, error parameters are the same and the circuit is shown below:

R1

V1 \7 =£ C1

TEST CIRCUIT # 3

R1: 1M ohms / 50K ohms

C1: 100 uF

V1: sin2(pi)t

CM model: Diode



@APL
terminal..TTY
APL-20 DECSYSTEM-20 APLSF 2(504)
TTY134) 23:34:29 TUESDAY 21-JUL-81 GJOC [4,452]
CLEAR VS

)MAXCORE 200
WAS 40P

)LOAD ASP
SAVED 23:34:16 21-JUL-81 170P

ASP
WELCOME TO THE" APL SIMULATION PACKAGE! IF YOU ENCOUNTER ANY PROBLEMS
ALONG "THE WAY, PLEASE FEEL FREE TO TYPE "HELP".
WHICH TYPE OF INPUT WOULD YOU PREFER?

0 - READ FROM AN EXTERNAL FILE
1 - ENTER DATA INTERACTIVELY

INPUT MODE: 0

ENTER THE INPUT FILENAME: TRTEST,DAT
INPUT FILE HAS BEEN READ.

(The file trtest.dat contains the following input:
TRANV1 1 0 SIN 0 1 1 0 0
Rl 1 2 1E6
MAC1 2 0 TRANMAC .0001
TRANSIENT
PRINT .01 .15
CON1 TRANOBJ
BREAK .05 .1



(Another note: The macro and design constraint definitions were
previously declared in the workspace. They are now listed below
for the purpose of this example.

.DL RESULTJTRANOBJ
RESULT_((NUM 2)-.5)*2
.GO 0 "
.DL

.DL TRAKMAC
Ql,(EXTERNAL[1]),(EXTERNAL[2])DIODE
Cl,(EXTERNALCl]),(EXTERNAL[2]),VAL
• DL

YOU MAY NOW SELECT ANY OF THE OPTIONS BELOW TO MODIFY THE INPUT
OR CHECK THAT. THE SIMULATION HAS COMPILED ALL THE DATA.
TO CONTINUE PROCESSING, SIMPLY SELECT OPTION 5. IF YOU CHOOSE
ANOTHER OPTION, YOU CAN EXIT THAT OPTION AND RETURN TO THIS
MENU -BY TYPING 000.

OPTION 1 - ADD MORE CIRCUIT ELEMENTS

OPTION 2 - DELETE SOME EXISTING ELEMENTS

OPTION 3 - EXAMINE THE INPUT TO DATE

OPTION 4 - WRITE THE INPUT TO AN EXTERNAL FILE

OPTION 5 - CONTINUE PROCESSING

OPTION 6 - EXIT

OPTION 7 - RETURN TO BREAKPOINT MENU IF APPLICABLE

OPTION => 5



IF THE DC SOLUTION IS KNOWN, PLEASE ENTER THE SOLUTION VECTOR
IN THE FOLLOWING ORDER:
3001 1 2
OTHERWISE, SIMPLY ENTER A 0.
0 0 0

TYPE IN DESIRED NODE VOLTAGE OUTPUTS ON SEPARATE LINES.
IF NO MORE. ARE DESIRED, ENTER A 0.
*2
•1
• 0

TYPE IN DESIRED CURRENT OUTPUTS ON SEPARATE LINES.
IF NO MORE ARE DESIRED, ENTER A 0.
*3001
*0



TIME V(2) V(l) 1(3001) CON1

0.01 5.606510942E-6 0.06279046656 -6.278436005E-8 0.002499950576

0.02 1.515055727E-5 0.1253331283 -1.253179777E-7 0.004999844466

0.03 3.032184939E-5 0.1873811582 -1.873503363E-7 0.007499603524

0.04 5.262128233E-5 0.2486896815 -2.436370603E-7 0.009999172553

0.05 8.048330394E-5 0.309016742 -3.089362587E-7 0.01249849235

YOU MAY NOW SELECT ANY OF THE OPTIONS BELOW TO MODIFY THE INPUT OR
BREAKPOINT DATA.
BREAKPOINT MENU:

OPTION 1 - ADD BREAKPOINTS

OPTION 2 - DELETE BREAKPOINTS

OPTION 3 - EXAMINE BREAKPOINTS TO DATE

OPTION 4 - EXAMINE VALUES OF CONSTRAINTS, VOLTAGES OR CURRENTS

OPTION 5 - CHANGE CIRCUIT ELEMENT DATA

OPTION 6 - CONTINUE WITH TRANSIENT SIMULATION

OPTION 7 - EXIT

OPTION => 6

0.05 8.048330394E-5 0.309016742 -3.089362587E-7 0.01249849235

0.06 0.0001156700412 0.3681242566 -3.680085866E-7 0.01499764316

0.07 0.0001554051144 0.4257789554 -4.256235503E-7 0.01749629043

0.08 0.0002007531253 0.481753302 -4.815525489E-7 0.01999450144

0.09 0.0002515734686 0.5358263917 -5.355748182E-7 0.02249222838

0.1 0.0003076779324 0.5377848229 -5.874771450E-7 0.02498942013

0.1 0.0003076779324 0.5877848229 -5.874771450E-7 0.02498942013



YOU MAY NOW SELECT ANY OF THE OPTIONS BELOW TO MODIFY THE INPUT OR
BREAKPOINT DATA.
BREAKPOINT MENU:

OPTION 1 - ADD BREAKPOINTS

OPTION 2 - DELETE BREAKPOINTS

OPTION 3 - EXAMINE BREAKPOINTS TO DATS

OPTION 4 - EXAMINE VALUES OF CONSTRAINTS, VOLTAGES OR CURRENTS

OPTION 5 - CHANGE CIRCUIT ELEMENT DATA

OPTION 6 - CONTINUE WITH TRANSIENT SIMULATION

OPTION 7 - EXIT

OPTION => 5

YOU MAY NOW SELECT ANY OF THE OPTIONS BELOW TO MODIFY THE INPUT
OR CHECK THAT THE SIMULATION HAS COMPILED ALL THE DATA.
TO CONTINUE PROCESSING, SIMPLY SELECT OPTION 5. IF YOU CHOOSE
ANOTHER OPTION, YOU CAN EXIT THAT OPTION AND RETURN TO THIS
MENU BY TYPING 000.

OPTION 1 - ADD MORE CIRCUIT ELEMENTS

OPTION 2 - DELETE SOME EXISTING ELEMENTS

OPTION 3 - EXAMINE THE INPUT TO DATE

OPTION 4 - WRITE THE INPUT TO AN EXTERNAL FILE

OPTION 5 - CONTINUE PROCESSING

OPTION 6 - EXIT-

OPTION 7 - RETURN TO BREAKPOINT MENU IF APPLICABLE

OPTION => 1



YOU WILL NOW BE ASKED TO INPUT THE CIRCUIT DATA. HELP IS AVAILABLE
IN THIS MODE IF YOU WOULD LIKE. EACH ENTRY WILL BE CHECKED FOR
ERRORS AND AN APPROPRIATE MESSAGE WILL BE SENT. IF AN ASTERISK
APPEARS, THE SIMULATOR IS READY TO ACCEPT NEW DATA. TO
EXIT THE INPUT MODE, TYPE 00C. PLEASE ENTER YOUR DATA NOW.
* R2 1 2 50000

* 000

OPTION 1 - ADD MORE CIRCUIT ELEMENTS

OPTION 2 - DELETE SOME EXISTING ELEMENTS

OPTION 3 - EXAMINE THE INPUT TO DATE

OPTION 4 - WRITE THE INPUT TO AN EXTERNAL FILE

OPTION 5 - CONTINUE PROCESSING

OPTION 6 - EXIT

OPTION 7 - RETURN TO BREAKPOINT MENU IF APPLICABLE

OPTION => 2

ON SEPARATE LINES, PLEASE LIST THE ELEMENTS YOU WISH TO DELETE.
TO QUIT, TYPE H000".
* Rl
* BREAK .05 .1
* 000



OPTION 1 - ADD MORE CIRCUIT ELEMENTS

OPTION 2 - DELETE SOME EXISTING ELEMENTS

OPTION 3 - EXAMINE THE INPUT TO DATS

OPTION 4 - WRITE THE INPUT TO AN EXTERNAL FILE

OPTION 5 - CONTINUE PROCESSING

OPTION 6 - EXIT

OPTION 7 - RETURN TO BREAKPOINT MENU IF APPLICABLE

OPTION => 7

0.01 1.255809319E-12 0.06279046656 -1.255809331E-6 0.0025

0.02 2.505662553E-12 0.1253331283 -2.506662565E-6 0.005

0.03 3.747623151E-12 0.1873811582 -3.747623164E-6 0.0075

0.04 4.973793619E-12 0.2486896815 -4.9'T3793631E-6 0.01

0-05 6.180334828E-12 0.309016742 -6.180334840E-6 0.0125

0.06 7.362485120E-12 0.3681242566 -7.362485132E-6 0.015

0.07 8.515579097E-12 0.4257789554 -8.515579103E-6 0.0175

0.08 9.635066030E-12 0.481753302 -9.635066041E-6 0.02

0.09 1.071652782E-11 0.5358263917 -1.071652783E-5 0.0225

0.1 1.1'75569645E-11 0.5877848229 -1.175569646E-5 0.025

0.11 1.274847079E-11 0.6374235393 -1.274847080E-5 0.0275

0.12 1.359093282E-11 0.6845466417 -1.369093283E-5 0.03

0.13 1.457936309E-11 0.7289681551 -1.457936310E-5 0.0325

0.14 1.541025537E-11 0.7705127692 -1.541025538E-5 0.C35

0.15 1.618033052E-11 0.8090165265 -1.618033053E-5 0.0375

0.16 1.688654940E-11 0-.8443274705 -1.688654941E-5 0.04

v )SAVE
23:39:22 21-JUL-81 165 PGS ASP <075> [4f452]

)OFF HOLD
TTY124) 23:39:31 21-JUL-81
CONNECTED 0:05:02 CPU TIME 0:01:20
50436 STATEMENTS 177797 OPERATIONS
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