NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



ASP. An Interactive APL CGrcuit Sinulation Package
by
Gegory D. Jordan
DRG Q1- 08- 82

April, 1982




ASP;
AN INTERACTIVE APL CIRCUIT
SIMULATION PACKAGE

by Gregory D. Jordan

Submitted in partial fulfillment of the requirements
for the degreee of Master of Science

Department of Electrical Engineering
Carnegie-Mellon University

August 19, 1981




TABLE OF CONTENTS

1. INTRODUCTION _ 3
2. THEORETICAL CONSIDERATIONS 5
2.1 Modified Nodal Analysis 5
2.2 The Development and Use of Some Simple Stamps 6
2.3 Stamps for Nonlinear Elements 8
2.4 Stamps For Energy Storage Elements 10
2.5 Solving the Circuit Equations I3
3. IMPLEMENTATION CONSIDERATIONS 15
3.1 Help Files 15
.2 Input Overview 16
3.3 Nonlinear Elements 17
3.4 Macros 19
3.5 Design Constraints - 20
3.6 Break Points ) 21
3.7 Interactive Checks 22
4. DESIGN DECISIONS 25
4.1 Flexibility vs. Interaction 25
4.2 Run Time vs. Error Tolerancess 26
Appendix A. Stamps : 29
Appendix B. Function Level Description of ASP 35
B.1 Mainstream Functions 35
B.2 Utility Functions 29
Appendix C. ASP User’s Manual 43
\
UNIVERSITY LIBRARIES

CARNEGIE-MELLON UMivERSITY
PITTSBURGH, PERNSYL /i1 15

VANIS 15213




Acknowledgements

Many thanks to my advisor Steve Director for his guidance and advice during the past

year.







CHAPTER 1
INTRODUCTION

A circuit designer typically has many hardware and software design aids available for
use. When doing hardware work, the designer builds small sub-circuits and tests each one
separately before assembling the final project To test these sub-circuits, signals may be
entered so the designer can examine the sub-circuit as it is slowly stepped through its
functions. At any point, the designer may wish to stop and change portions of the circuit

to enhance performance.

Unfortunately, existing circuit simulators [Weeks 73],[Cohen 78] were not designed to
be used in this manner. Present simulators can handle large circuits but allow very little
interaction. Specifii:ally, existing simulators cannot be halted during execution to" make
on-line changes to the circuitry. ASP was designed to fill this gap in circuit simulation

technology.

This paper will describe the background and implementation of ASP, an APL Simulation
Package. Initially, motivation for ASP will be discussed. The advantages and
disadvantages of APL will then be mentioned to give the reader a better understanding of
the features of ASP. Theory behind the algorithms used in the simulator will then be
considered, followed by a review of some implementation considerations. Finally, some of
the major design decisions made in ASP will be discussed and justified.

ASP was written to piovide APL users with a highly interactive circuit simulator with
good on-line help features. The most obvious use for ASP involves circuit optimization
work currently under development at Carnegie-Mellon University. The nature of
optimization makes it imperative that a circuit simulator be available. While it is possible
to manually derive circuit equations, this becomes very cumbersome for all but the
simplest of circuits. ASP allows the developers to make more extensive tests of their

circuit optimization algorithms.

APL was chosen for this type of work because of the following features:




4

® APL is a highly interactive language, that is, user input is very easily
incorporated intc programs. It is also quite simple to check input for svmtax
errors or to provide the user with access to global variables.

® It is very easy to develop new algorithms using APL. Once the language has
been mastered, the programmer may take advantage of the many powerful
operators available in APL to decrease development time.

® Debugging is very simple in APL due to the existence of commands such as
TRACE and the availabilit: of global variables.
ASP makes use of these positive aspects by performing interactive checks on user input,
making on-iine help availatle, and allowing the user much more control over the

simulation than is normally possible.

Unfortunately, ASP is also constrained by the nsgative aspects of APL. Because APL
has no compiler, execution times are relatively slow. To compensate, ASP has some
special features which ailow the user to exert more control over his/her usage of CPU
time.

® ASP allows the user to determine error constraints. To reduce CPU time
then, the user may choose to allow more truncation error.

® ASP -allows the user to avoid needless dc simulations. Before a transient
simulation is done. ASP must somehow determine the operating point of the
circuit.  If the user wishes, he/she may enter the operating point of ths
circuit and eliminate the dc simulation. If the operating point is unknown,
ASP will solve for it.

® ASP allows the user to specify break points, or halting pomnts during the
circuit simulation. At each break point, the user has the option of changing
break point data, changing circuit data, or simply continuing Wwith the
simulation.

Another negative aspect of APL concerns readability of code. Because of the abundance
of operators, APL is a very difficult language to read. To alleviate this problem, ASP
code contains many comments. Each function heading describes local and global variables
used in the function. Thes heading also lists any functions which may be called during
the execution of the present function. In addition, exiemsive comments have been written

within the body of the function to enhance readability.




CHAPTER 2
THEORETICAL CONSIDERATIONS

Before beginning a specific discussion of the features of ASP, this paper will first
‘examine the theoretical issues which affect circuit simulation. In particular, the concept
of modified nodal analysi's will be reviewed. With this concept in mind, smple element
stamps may be developed for use in the simulator. The idea of stamps can then be
applied to more complex elements such as nonlinear elements, capacitors and inductors,
however, agorithms to solve nonlinear equations and do numerical integration will be
necessary. Finally, it is desirable to solve the resulting matrix equation in an efficient
manner. This section will dea with all of the above issues and describe the algorithms
used in ASP.

2.1 Modified Nodal Analysis

The modified noda method was developed as an dternative to the nodd and tableau
methods. The mgor disadvantage of the tableau -approach was that it produced large
numbers of equations and variables. The noda method addressed this problem by making
node voltages the basic variables. One disadvantage of the nodal method is that branch
currents are not conveniently obtained as output A related problem is that voltage
sources and some dependent sources are handled very inefficiently. To remedy these
problems, Ho, Ruehli, and Brennan [Ho 75] proposed some modifications to the nodal
method. The resulting method was then called the modified noda anaysis (MNA).

The basic premise of modified nodd analysis is that the basic variables are node
voltages and the branch currents of voltage sources, inductors, and other elements whose
currents are controlling variables.  Introducing the extra basic variables alows voltage
sources and dependent Sources to be handled much more efficiently than in nodal analyss.
It also Mdlows inductor currents to be easily accessible as output Because of these
characteristics, modified nodal analysis is the method used in ASP.

The MNA matrix can in genera be expreﬁéd in the form:




y B
C D

1<
K

[[2]

T

where V is the vector of node voltages,

1 is the vector of branch currents associated with voltage sources, inductors, and some
dependent sources.

Y contains the partial derivatives of KCL equations with respect to the node voltages,

B contains the partial derivatives of KCL equations with respect to the branch currents,

C contains the partial derivatives of branch relationships with respect to the node voltages,
and D contains the partial derivatives of branch relationships with respect to the branch
currents. ]

J and P contain values of voltage sources and current sources. These two vectors may
also contain contributions from nonlinear elements and" energy storage elements.

2.2 The Development and Use of Some Simple Stamps

To further illustrate MNA, it will be useful to construct and solve a simple circuit
using the modified nodal analysis approach. The simple circuit will consis of a voltage

source and two resistors as shown below.

R1
1 2

+¥
V1 R2

Usmc MNA. three eguations are written to solve this circuit. Two of the eguations will
add the currents leaving each of the nodes. The third equation will specify the branch
relation of the voltage source. The equations resulting from an MNA analysis of the
circuit are:

1. I + (UR)v - (YR)v =0
i t 1 13
2: - /IR + WR + IR ) =0
11 1 3 2 )
l: v =V -

or. in matrix fAmM




1 l/R‘ -l/R‘ i‘ 0

0 -l/R| l/R' + l/R’ v 0

(o] 1 o} A4 v
2

Looking at the matrix equation, it can be seen that each element in the circuit
contributes terms to the Jacobian. It may alse be observed that the pattern of Jacobian
terms is consistent within element types. For example a resistor between nodes m and &
with 2 conductance of value G will contribute four terms to the Jacobian. (We ars
assuming, of course, that neither of the affected nodes are ground nodes.) This resistor
will add two terms of G in the (mm) and (x.x) positions of the Jacobian. In addition,
two terms of -G will be added in the (m.x) and (n,M) positions. As a group, these terms
which are added to the Jacobian for each clement are called the element stamp. In the
following two paragraphs, a closer look will be taken at resistor and vollage source

stamps. For a complete listing of stamps used in ASP, see Appendix A.
Resistor Stamp

Suppose a resistor connecled between nodes m and x has a conductance of value
G. This resistor will contribute a current to the equations of nodes m and n. The cucrent
leaving node w can be expressed as the difference of the node voltages w and. x times the
conductance G. A similar calculation can be done for the current leaving node . The

resulting effect on the MNA =quations due to this resistor can then be expressed as:

In the stamp notation shown above, the rows are labeled with equation numbers and the
columns are labeled with the voltage which the stamp terms 1n that column are
multiplying. RHS indicates the right band side terms. In addition, BR indicates a branch
relationship.

Vo/tage Source Stamp




Suppose a voltage source connected between nodes M and N has a value of Q volts.
This voltage source has a branch current <IV> which contributes current to the equations
of nodes M and N. The voltage source value is then determined by its branch relationship
equation. If the positive node of the voltage source is at node M, the resulting effect on

the MNA equations can be expressed as

2.3 Stamps for Nonlinear Elements

The concepts developed in the previous section can now be extended to nonlinear
elements such as diodes and transistors. In this section, the development of a diode stamp
will be discussed. The transistor stamp or the stamp for any nonlinear element can be
derived using a similar approach.

Consider a diode with the branch relation:

VIV
I = Isie -1> (2.1)

where V_ is the thermal voltage and Is is the
saturation current.’

It is obvious that:

VIV

dl « Is e’ T (22)

dv Vv
T

Now suppose initial guesses of Vo and lo are chosen. The problem is then to satisfy
equation (2.1) given the constraints of the circuit An easy way to solve this equation
would be to use a Taylor series approximation. Linearizing about the initial guess and

truncating after'the first two terms yields:




VoIV
| «loelsc (V - Vo) (2.3

Vv

T

The new | and V found when this equation is solved with the circuit constraints are
presumably closer to the real solution than lo and Vo were. Replacing the initial guess
with | aﬁd V, one can repeat the procedure to get an even more accurate approximation.
Using this iterative method with appropriate initial guesses. | and V will eventually
converge to the true solution. This is the form of the Newton-Raphson method V\;hiCh is
used in ASP.

" Given this method, it is now possible to derive the form of a diode stamp. Note that
there are three separate terms in the Taylor series equation. Two of the terms are
dependent on lo and Vo and are therefore known. Ignoring the third term, it becomes
apparent that the contribution to the circuit from the equation is a current source.

That is, in the equation.

Vo/VT
I * lo- 1s Vo e <2.4»

\Y
T

| is known since all the right hand side terms are known, A known current corresponds
to a current source in the circuit.
The other term is dependent on the unknown diode voltage V.

Vo/VT
| « IsV e (2.5)
\Y,
T
I is an unknown in this equation and is dependent on V. An unknown current dependent
on the voltage across the element corresponds to a conductance in the circuit.

Combining all of the terms in the Taylor series and converting the contribution of each
term into a circuit element yields a stamp. The diode stamp can then be expressed as a
current, source of value equation (2.4) in parallel with the conductance indicated in
equation (2.5). This stamp will be updated according to the Taylor series expansion after
each new iteration of V and | is found. When the values begin to converge to the real

solution, one can check the error criterion and stop iterating at the appropriate time.
.




10

2.4 Stamps For Energy Storage Elements

Stamps are still unknown however, for energy storage elements, a class of elements
which includes both capacitors and inductors. Since the branch relations for capacitors
and inductors involve derivatives, a method for numerical integration must first be found.
Numerical integration schemes make an approximation to the integral by taking small time
steps and interpolating. The method used in the simulator was proposed by Van Bokhoven
[Van Bokhoven 75] in a 1975 paper. Some changes have been made in order to simplify

the algorithm and reduce the complexity of calculations.

The method is derived using Newton's divided-difference interpolation formula.  This
method makes predictions to new data using previous, data. Newton's interpolation formula
truncated to two terms suggests that a new approx]mation to X can be made using:

Xt ) « X(t >« (t -t)Xt,t > (2.6)
n*l n n-1 n n n-1 .

where t indicates the time of the last known value of X,
n

t is the time previous to t ,

n-" . n
and X(t t ) is a divided-difference given by the formula:
n n—1
X(t > - X(I__)
n il (2.7)
t -t
n n-1

To simplify this equation, let us define some new variables.

h =t -t
| n+l n

h =1t -t
1 n n-1

d = hi/hl'

Lei us also define the following conventions:

X
represents the (M-I>st prediction of X at the <n+l)st time step and

X
n-1 .
represents the final calculation of the value of X at the (n+I>st time step.




11

Equations (2.6) and (2.7> can then be rewritten as:

-)-(- « X : (2.8)
n-1 n

2 1 1

X «X +d(X -X> (2.9)
n*| n*M 1 n n

Using the above equations, the simulator makes a zerotb and first order prediction to
the value of X at the new time step. To correct this prediction, Van Bokhoven suggests
an approach that is also based on Newton's divided-difference interpolation formula.

Corrections are made by approximating the derivative of X with respect to time. Usng
divided-differences, the derivative can be approximated by X(t .t ). A second order

n*"l n—1
correction can be made using the formula
=1 =2
ax X - X X - X
dl = n-I| n-1| « n-I| n+1 (210)
n+1
h b
i 2
where h =t -t
2 n*| n-l

Using these equations then, the stamp for a capacitor or inductor can be calculated.
For example, suppose we have a circuit where the only unknown is a capacitor voltage.
X. At each time step, zeroth and first order predictions of X would be made. Once these
predictions are known, th? capacitor stamp can be temporarily added to the circuit in
order to solve for the voltage a the present time step. The capacitor stamp consists of:

A current source of value:
1 2

(C/lh) X * (C/h) X
1 n*| 2

n-1

in parallel with
a conductance of value: .
<C/h'> « (C/hj

where C is the value of the capacitor in farads.
The NfNA system of equations can now be solved for the fina solution a the in+Dst
time step.
Inductors can be handled in a similar fashion. The only mgor difference is that while




——

12

the capacitor stamp consists of a current source in parallel with a resistor, the inductor
stamp consists of a volltage source in series with a resistor. This is very desirable since
inductor currents are available as output because of the presence of a voltage source in

the stamp.

The other portion of the Van Bokhoven algorithm is step size comtrol. It is important
that step sizes are well chosen for a number of reasons. If the step size is too small,
the simulatior will take a very long time. If the step size is toc large, the numerical
integration algorithn may not converge to the desired solution or truncation em;r may be
too large. To minimize CPU time, it is necessary 10 choose the largest possible step size

which satisfies the desired error criterion.
Using the remainder term from Newton’s interpolation formula, second order truncation
error at the nth step can be calculated using the formula:

3 3

E = (X -X) (2.11)
n n n

1+hB
32

where b, =t -t

3 n+1 n=2
b/ =1 -t

- n n=.

B_ = (l/hl) + (1/b)
-3 _2 2
X =X +d (X -X)
n n - n n

and d =d (b/b)

It is now possible to predict the second order truncation error at the (n+1)st step if a
step size of h is used. Extrapolating from the above formula and making substitutions
yields:

3 i
—

E_=hih + b (/) « (1A E_ (2.12)

n-l

((1/h) + (1/(b+b )1 h b

If the predigted error is set equal to the maximum allowable error. the resulting
nonlinear equation in h can then be solved using the Newton-Raphson technique. This
new slep. size is then used to make the next prediction and correction by updating the

stamps of energy storage elements. The circuit equations are then solved and a new error




w

13

is determined. If the -new error is greater than the maximum allowable error or if a
nonlinear element stamp did not converge, the simulator rejects the step, cuts the step size
in hdf, and starts the process again. If the new error is within tolerances, the simulator
will increment time and solve for a new time step. '

2.5 Solving the Circuit Equations

Finaly, a technique is necessary to efficiently solve the matrix equations which have
been created. Such a technique should take advantage of the spécial features of the
circuit equation matrices:

1. Sparseness - Large circuits especialy have a relatively small proportion of

nonzero elements. Hence the solution method should avoid storage of the

zero-valued  coefficients. The method should aso avoid needless
multiplications by zero.

2. Uniformity - That is, the eguations of each circuit have a particular pattern
of zeroes and non-zeroes. In spite of updating stamps for energy storage and
nonlinear elements, this pattern remains the same. A good method would take
full advantage of this fact
One can take advantage of the sparseness and uniformity properties by using & combination

of LU factorization and sparse matrix methods.

LU factorization involves factoring the matrix equation to be solved into an upper
triangular(U) and a lower triangular* L) matrix. Once these two matrices are known, a
smple forward and backward substitution will solve the problem. Since the matrix is
gparse however, many fewer operations need to be done than the total indicated by the
substitutions.

The sparse matrix method used in ASP alows for efficient storage of the jacobian
matrix. Three vectors are used to index and store members of the jacobian.
* JA is a vector containing column indices of all the elements
. '_ZA_ iS a vector containing row pointers
. -A is a vector containing the nonzero elements of the jacobian

After the three vectors are compiled, pivoting is done using the Markowitz criterion
[Markowitz 57] to reduce fill and operation count.

LU factorization and sparse matrix techniques will not be discussed in greater detail in
this paper.  Further information on sparse matrix techniques can be found in Sparse




¥

14

Matrices and Iheir Applications [Gustavson 72]. These algorithms were packaged by Jim
Chrig and Fred Heaton as a semester project for 18-701. Because of the nature of the

interface, the existence of sparse matrix techniques is nearly invisible to the simulator.




-

15

CHAPTER 3
IMPLEMENTATION CONSIDERATIONS

This chapter will deal with specific implementation issues concerning ASP. Emphasis
will be placed on interesting or new features of ASP. A better understanding of the
organization and use of the simulator can be gained by reading this section and referring

to the appendices at the appropriate times.

3.1 Help Files

The first unique featufe of ASP is the set of twenty seven help files in the ASP
workspace. Many of these help files summarize syntax for the different element types.
Each time the user is prompted for input, it is possible to type HELP and receive some.
In addition to the more specific help files, two general files exist which aliow the user to
see what type of help is available. The most general of these two files is listed below:

A LIST OF ALL HELP FILES AVAILABLE ALONG WITH THEIR
SUEJECT 1IS:

HELP - THIS FUNCTION!

HELPBKADD - ADDING BREAK POINTS

HELPBKDROF - DROPPING BRERK PCINTS

HELPBKUTILS - RESPONDING TO UTILITIES MENU AFTER BREAK
POINT

HELPBREAK - SPECIFYING BREAK POINTS AT INITIAL INPUT

HELPC - SFECIFYING CAPACITORS

HELPCON - SPECIFYING DESIGN CONSTRAINTS

HELPDEFN - DEFINING NONLINEAR MODELS

HELPDEP - SPECIFYING DEPENDENT SOURCES

HELPDROP - DROPPING ELEMENTS

HELPGYRA - SPECIFYING GYRATORS

HELPI - SPECIFYING CURRENT SOURCES




P

16

HELPINP - LISTING CF ALL Q ROU T ELEMENT | NPUT HELP FI LES

HELPI NPDEC - RESPONDI NG TO TYPE CF | NPUT QUESTI ON

HELPL - SPECQ FYI NG | NDUCTCRS

HELPVACRO - SPEQ FYI NG MACRCS

HELPNCDEQUT - SPEQ FYI NG NCDE VOLTAGES FCR QUTPUT

HELPQUTFI LE - WRITING TO EXTERNAL FI LE

HELPQ - SPEC FYI NG NO\LI NEAR ELEMENTS

HELPR - SPEQ FYI NG RES| STORS

HELPREAD - HAVING FI LE READ BY Sl MLATCR

HELPRI NT - SPEQ FYI NG PR NTI NG | NFCRVATI CN

HELPSI M - CHOCSI NG TYFE CF S| MULATI ON

HELPTRAN - SPEQ FYI NG TRANSI ENT SOURCES

HELPUTI LS - RESPONDI NG TO GENERAL UTI LI TI ES MENUJ

HELPV - SPEQ FYI NG VOLTAGE SOURCES

VCURSXPLAI N - SPEQ FYI NG CCDED OURRENT AND VOLTACE
NUMBERS

In case this on-line help is not sufficient, a more extensive source of help is the ASP
User's Manual listed in Appendix C.

3.2 Input Overview

Before moving on to discussions of specific elements and features, the ihput language of
ASP will be briefly reviewed. A line of element input is used to specify the following

infor mation:
» the element type
e the element number
» the nodes which the element is between

« and the value of the element or information to determine element definition.

Some typical element specifications would be

R 1 2 1000
@ 39 50 1E N&b

VI 987 34 10
Other types of input are accepted by ASP as well. The user may choose to specify break
points, design constraints or simulation time and printing information. These structures as
well as a more comprehensive review of element specifications can be found in the ASP

User's Manual which is Appendix C.




17
3.3 Nonlinear Elements

Another special feature of ASP is the flexibility it has with regard to nonlinear
elements. The user may specify nearly any type of nonlinear element for ASP to process.
The only restrictions are:

1. The user must be able to write equations to express each element current in
terms of node voltages.

2. The user must be able to write equations to express the partial derivatives of
each element current with respect to the involved node voltages.

Many well known models lend themselves easily to this format The Ebers-Moll
transistor model and the simple diode model are especially useful and easy to specify. It
is possible to specify many different models and to save these models in the workspace
for future use. It is also possible for the user to specify a nonlinear element with as
many nodes as necessary. -There is no limit to number of terminals on an ASP nonlinear

element.

We now give a thorough discussion of how nonlinear elements are handled in ASP. A
nonlinear controlled source is specified in the input language by the statement*
QK NI N2 . . . NN MODEL PI P2 . . . PM

* where Q signifies a nonlinear element

* M is the number of the nonlinear element.

« NI, N2, . . . NN are the nodes to which the nonlinear element is connected,
« MODEL is the name of the function which contains the model definition,

« and PI, P2, . . . PM are parameters to be used by the model function.

Before entering ASP, the usér should have created thé two defining functions and saved
them in the ASP workspace. In our example, the function MODEL is specified so the
two functions should have been called MODEL and DMODEL (The derivative function
name should always correspond to the current function name preceded by a 'DM. MODEL
specifies N-I element currents in terms of the N node voltages. The Nth current can, of
course, be determined from.the first N-1 currents. DMODEL specifies the derivatives of
each current with respect to each node voltage. That is MODEL returns an N-l vector
of currents and DMODEL returns a N-I x N matrix of derivatives. Both of these two
functions may accept and use the P parameters as part of the nonlinear model. Using
these two functions and the user input shown above, ASP can accurately model the
nonlinear element according to user épecificati‘ons. )




18

In Chapter 2, it was shown that a diode can be modeled by a parallel combination of a
resistor and a current source. It is possible to use this same technique with any
nonlinear - element.  For example, suppose the equation of a noniinear element can be
expressed as:

i Sf<v,yv,...vVv) (3.D
m m 1 2 N

for m=I1,2, . . . N-I

-V is choseny a Ta>rlor
NO

If-an initial guess of Yig»',g« o e series expansion can be

done to linearize the equation.

i =i e (di /dv >V -V ) (3.2)
m.| m.O m.O 1 11 10
e (di /dv )<v -vo) .
m.O 2 2 20
e (di /dv )(v -v >
m.O N NI N.O

As before, it is possible to notice that there are two types of terms in the above
equation. One type consists of all terms which must be calculated at the zeroth iteration.
Because these terms are known, they effectively add a current source to the circuit The
other type consists of terms which are dependent on the node voltages at the first '
iteration. Since these terms are unknown and relate the current tc the node voltages, they
effectively add a resistance to the circuit. In this way, the stamp for a nonlinear element
can be determined. MODEL and DMODEL calculate all the necessary terms to add the
stamp to the jacobian.  After each iteration, the stamp is updated until the solution

conver ges.

The function NEWRAP is used to implement the Newton-Raphson iteration in ASP.
The first function to be called by NEWRAP is NOQSAVE. This function saves the
elements of the jacobian which will be altered by any nonlinear stamp. NOQSAVE is
necessary so the jacobian can then be restored after the iteration calculation is done.
UPDATQ is then called to update the nonlinear stamp. UPDATQ calls the model
function and the derivative function, creates the stamp, and adds it to the jacobian. The
matrix equation is then solved and the difference between the new solution and the
solution from the previous iteration is measured. The maximum voltage and current errors
are found and these are compared with an absolute and relative voltage and current error.
If either error is too large. NOQRESTOR is called to restore the jacobian and another
iteration is don;. If the error is tolerable, NOQRESTOR is called, time is updated, and
the simulator can then take another step. A function level description of ASP can be

seen in Appendix B.




19

As the user specifies nonlinear elements, checks are run to ensure that input language
syntax has been followed. ASP also checks that the necessary functions have been
defined. No checks are done on the model definition function because of the great
flexibility which the user has. The user must be careful to define the correct number of
currents and derivatives and the user is responsible for the accuracy of the functions. It
is anticipated that a user will only need to develop a few nonlinear models and can then
store these models in his/her ASP workspace.

3.4 Macros

To augment the extensive nonlinear element capability, ASP also allows the user to
define macros or groups of elements. Macros become significant when the user needs to
expand models to include energy storage elements. Since no capacitors or induclors can
be expressed in a nonlinear model. macros are necessary to allow more sophisticated
modeling. It is anticipated that any complex transist'or models will be expressed as

macros consisting of some nonlinear elements and some capacitors and resistors.

The specification of a macro is done by the statement:
MACM N1 N2 . . . NN ELEMENTS P1 P2 . . . PX

® where MAC signifies a macro,

® M is the element number of the macro,

N1, N2, . . . NN are extgrnal nodes to which the macro is connected,

ELEMENTS is the name of the function which defines the macro elements,

and Pl, P2, . . . PT are the parameters of the macro elements.

Previously, the user should have created the function (ELEMENTS in this case) which
contains the elements of the macro. The syntax for listing macro elements is only slightly
different than the regular element specification syntax. Function defin:tion and macro
input are discussed in more detail in t.he ASP User’s Manual.

When specifying a macro, ASP allows the user to specify parameters. and internal and
external noces for the macro. Parameters can be specified as VAL[1], VAL[2], . . .
VAL[M] corresponding to P1, P2, . . . PM. Parameter passing allows the same macro
to be us;d for many elements of the same form but with different specs. Internal nodes
are specified as (INTERNAL), (INTERNAL+l), etc. ASP uses numbers greater than

7000 to refer to internal nodes. For more information on nods and current syntax. see




20

Appendix | of the User's Manual. Elements of the macro refer to internal nodes in the
above manner. After each macro is added to the data base, the global variable
INTERNAL is updated so it is greater than the highest node specified thus far. This
allows the user to specify internal nodes without any knowledge of which numbers have
been used. As long as the user specifies nodes greater than INTERNAL, there should be
no problem. External nodes are specified as <EXTERNAL[1]), (EXTERNALJ[2]>,

(EXTERNALJ[N]> corresponding to NI, N2, . . . NN. Specifying external nodes in this
manner allows the macro to be interchangeable. The user can of course specify a node

directly however this seems to defeat the purpose of macros.

Macros are implemented in ASP through the function ADMAC. This function looks at
the user-defined ELEMENTS function and assigns numerical values to the variables
EXTERNAL, INTERNAL, and VAL. ADMAC then pieces together these values and
forms a character string which is of the same format as the regular element specifications.
Finally, ADMAC calls the function CHANGE which calls the appropriate function to add

the specific element.

*Very few checks are done on macros. The input specification is checked for duplicate
elements and a minimal number of external nodes. A check is also run to make sure the
function containing the macro elements exists. No checks are run on this ELEMENTS

function so the user must be careful.

3.5 Dedgn Constraints

Since it is expected that ASP will be used as a design tool, a capability to evaluate

design constraints has been included. Specifically, ASP can evaluate any function of the

<) |

[ - || f&W.h) dt (3.3)

form:

where f is a function of the node voltages V. and the branch
currents h
and T is the ending time of the simulation.

To specify a design constraint, the user types in:

CONK CONFUNC
\'

 where CON signifies a design constraint,

* M is the number of the constraint.




21
« and CONFUNC is the name of the design constraint function.

To define the function CONFUNC, the user must once again be familiar with the node
and current syntax found in Appendix | of the User's Manual. CONFUNC should be a
function of node voltages and branch currents and should return the value of the design

constraint

ASP treats design constraint evaluation as a current source of value CONFUNC
charging a capacitor of value IF. Using the numerical integration scheme mentioned in
Chapter 2, it is possible to model the capacitor as a current source in parallel with a
resistor. Design constraint. evaluation then reduces to the problem of analyzing a circuit
with two current sources in parallel with a resistor. ASP solves this simple circuit and
returns the results of the function‘integration.

CONFUNC is defined with the aid of the ASP function NUM. This function takes the
number of a node voltage or branch current and.returns the present value of this voltage
or current NUM allows the user to conveniently specify values of voltages and currents
as opposed to names. CONFUNC then returns the value of the current source to be used
in the circuit explained above.

Function evaluation is done in parallel with solution of the main circuit After a step
is accepted, first and second order predictions are made to the value of the design
constraint. The correction is then done as explained above. The user need not specify
the design constraint as output since it will automatically be shown if constraints have
been specified. ' .

Once again, no checks are done on the user-defined function. The user must be careful
to specify the proper voltages and currents and to return the proper value of the design
constraint function. The user is reminded, however, if the specified constraint function
does not exist

- 3.6 Break Points

Another special feature of ASP is its ability to process break points. Break points are
user-specified halting points in the simulation. They are use;‘ul when the -user can
determine the success or failure of hisher test case before the simulation has finished.
The user may wish to change the value of one element and then simulate the same circuit
again. Break points facilitate manipulations such as this.




22

Break points are specified by the input line:
BREAK T1 T2 . . . TN
Break point times need not be specified in ascending order however, they will be serviced

in ascending order.

When ASP reaches the-initial break point, voltages and currents will be calculated as
usual and the break point utilities menu will be called. This menu gives the user seven
options.

1. Add break points - The user may add new break points to the present list.

This capability is useful if the user would like to continue the unbrokea
simulation for some time longer than expected.

(8]

. Dezlete break poiins - The user may delete break points from the list. This is
useful if the user decides that the simulation is rucning well and no more
break points are necessary.

3. Examine break points - The user may examine all break points specified so
far.

4. Examine values of constraints, voltages or currents - The user may examine
the current status of any constraints. voltages, or currents.

5. Change circuit element data - The user may temporarily return to the main
utilities menu to add or drop circuit elements. This capability is useful if the
user would like to change one or two circuit elements while keeping the rest
of the circuit the same. After these modifications are done, ASP attempts to .
use the old dc solution for the new circuit. In the case of minor circuit
modifications, this would save the user a substantial amount of time. If the
attempt fails, ASP solves for the new operating point

.O\

Continue with simulation - The user may continue with the simulation as if
the break point was never serviced.

7. Exit - Finally, the user may simply choose to exit from ASP.

3.7 Interactive Checks

The final special feature of ASP to bz considered is interactive checking. During the
input phase. the user has the option of choosing interactive input or file reading input. If
the user chooses to imput circuit data interactively, each element specification will be
examined for syntax errors. Appropriate error messages will be displayed and the user
can make immeédiate corrections and reenter the elements. In the case of file reading
input, the user will see a list of errors. The user then has the option of entering the

interactive input mode to make corrections.




23

Element specifications are checked for:

e omission of element numbers

e unacceptable characters (alpha or numeric)

e incorrect number of nodes sp.eci_fied

» shorted element specified

* node numbers or element number greater than 999
e non-integer node numbers

e and the existence of duplicate elements.

In addition, more specific checks are made on some elements. For example, a check is
run to detect O-valued resistors. More extensive checks are also ruh on transient source

information.

A more general checking function is also included in ASP. The function HANGELCK
checks for hanging nodes, omission of simulation type information, omission of end time
hand printing increment information, failure to specify any elements, and failure to define a
specified design constraint =~ HANGELCK must be successfully completed before a

simulation can be run.




24




25

CHAPTER 4
DESIGN DECISIONS

One of the most difficult problems encountered while programming ASP involved the
resolution of two important design decisions. To discuss these decisions, one must first
understand some of the problem constraints. One of the mgor advantages of ASP was to
be its interactive nature and the extent to which the user's input was checked for errors.
In conflict with this goad was the necessity to make ASP a flexible and useful tool as
well. The second trade-off involved simulation time and truncation error. In order to
rin a fast simulation, one must relax the error constraints. In order to run an accurate
simulation then, one must be willing to sacrifice somewhat in the area of CPU time. In
this chapter, these irade-offs will be discussed and the ASP project will be summarized.

4.1 Flexibility vs. Interaction

Two of the main areas where the flexibility vs. interaction conflict -came into focus
- were the definition of nonlinear elements and the definition of macros. For nonlinear
elements, it would have been possible to define one or two often used nonlinear elements
as part of the package. Although the user would be confined to using these predefined
models, he/she could be assured of correct syntax. Macros would not be alowed due to
the difficulties involved with syntax checking. ASP chooses the aternate option of
flexibility. The main reason for this choice is that the user is free to define any type of
nonlinear element/macro combination. The user is not a all limited by predefined models
or dement types. In addition, macros can be used to define blocks of elements which
may be redundant in a circuit, thus saving the user input time.

The cost of these advantages was seen as very minimal. The use of parameter passing
in macros and nonlinear elements increases the flexibility of each model. Workspaces in
APL aso allow for easy storage of old models. Definition procedure was aso simplified
so tha a user with some basic familiarity with APL should have very little trouble
defining models.. Any “initid difficulties the user may have seem insignificant when one
views model definition as essentially adding a new, more exact eIement' to the simulator's
capability.




26

Extensive syntax checking is done when any other element is entered by the user. These
checks are listed in the User’s Manual following the specific element syntax. Thke only
known way for the user to be unexpectedly expelled from the simulation package is when

the user incorrectly defines nonlinear models or macros.

4.2 Run Time vs. Error Tolerances

The other importan: trade-off involves run time and error tolerances. ASP has a step
size control mechanism which ties step size to truncation error. If the user is willing to
allow large amounts of error., ASP will take relatively large steps. Conversely, if the
user will not tolerate much error. ASP will take relatively small steps. Because APL has
no ccmpiler, run times can sometimes become excessively long if a tight error criterion is

specified.

To illustrate the relationship between truncation error and step size, a dc simulation test
case was run using three different error tolerances. The data below shows the effect

which error tolerances have on CPU time.

rial 1:
EVABS = .0001 V(3) = -0.1
EVREL = .00l
EIABS = 1lE.NG7 V(2) = 9.922115064
EIREL = .00l
V(1) = 10

CPY time = 14:05 (in minutes:seconds)
V(4) = 5.75843106
1919006

Operation count
v(6) = =10

Statement ccunt 5502'_72

V(7) = -0.4014731114

1(3001) = 1.714295548E-5
1(3002) = -C.009598526889
I1{3003) = -0.008638907752




27

Trial 2:
EVABS = .001 V(3) =-0.1
EVREL = .01
El ABS = 1E. N66 - V(2) = 9.922115064
EIREL = .01
V(l) =10

CPU time = 6:30 (in minutes:seconds)

V(4) = 5.758431061
Operation count = 969950
V(6 = -10
Statenent count = 278226
V(7) = -0.4014731123
1(3001) = 1.714295548E-5
1(3002) = -0.009598526888
K30Q3) = -0.008638907751
-Trial 3: ) -
EVABS = .01 . V(3) =-0.1
EVREL = .1
El ABS = 1E. NG5 V(2) = 9.922115122
EIREL = .1
V(l) =10

CPU tinme = 5:00 (in m nutes:seconds)
V(4) = 5.75843422

Operation count = 685241
V(6) =-10
Statement count = 195558
. V(7) = -0.4014802619
1(3001) = 1.714294262E-5
1(3002) = -0.009598519738
| 1(3003) = -0.008638901316

The above data indicates a small correlation between error and correctness of the
solution however, this will not always be the case. Obviously, for this circuit and similar
circuits, the user should use a relatively lenient set of error paraméters. For more
complex circuits though, especially those with many energy storage elements, the user will

probably want to enforce a tighter error constraint.

The correlation between CPU time and allowable error makes it clear that the user will
want to choose the most lenient constraints possible which still yield useful results. It is

also clear that even with lenient constraints, CPU times are very substantial.  ASP




28

alleviates this problem by giving the user enough flexibility to eliminate all unnecessary
simulation time and error constraints. The user can choose his/her own error tolerances
simply by setting the global variables EVREL, EVABS, EIREL, and EIABS in the ASP
function. These variables correspond to the allowable relative and absolute voltage and
current errors. ASP also eliminates any unnecessary dc simulations by prompting the user
for the operating point before a transient simulation. The user can either specify the
operating point or ak ASP to determine it. If the user can specify the operating point,
the CPU time necessary for a dc simulation can be applied to more constructive problems.
In addition, ASP allows the user to specify break points to eliminate unnecessary
simulation time. The user can then continue or stop the simulation dependent on the
previous results. Finally, after a bresk point has been reached, the user has the option of
easily changing circuit data. If only minor changes have been made, ASF will iterate to
the new operating point without ramping the independent sources. This will also save a

considerable amount of CPU time.

ASP then was created as a relatively efficient simulator in a slow APL environment.
Many' features have been added to increase the productivity of the simulator and to
eliminate unnecessary CPU usage. It is hoped that the combination of these features with

the interactive checking and on-line help will make ASP a useful tool.




APPENDIX A
STAMPS

Current Controlled Current Source Stamp

CCCSK N> N2 N3 N4 X

In the above stamp svntax, Nl...N4 indicate nodes,
100M indicates a CCCS current in the ASP syntax,
and RHS indicates the right hand side terms.




30

Current Controlled Voltage Source Stamp

CCVaM NI N2 N3 N4 X

NI N2 N3 N4 200M 200M RHS

Capacitor Stamp in Element Form

KN N X

The second order stanp for a capacitor of this formis:
a current source of value

(X{1])#(1st order prediction of capacitor voltage)
+ (X% 2])#(2nd order prediction of capacitor voltage)

inparallel with

a conduct ance of val ue
(ZxE{1])+(X%H[2])




31

Inductor Stamp in Element Form

LK NI N2 X

The second order stanp for an inductor of this formis:
a voltage source of val ue

(X{1])#(I st order prediction of inductor current)
o (XU 2})#(2nd -order prediction of inductor current)

in series with

a conduct ance of val ue
(XsH[1])+(XsH[2])

Gyrator stanp
GRAK N N2 N3 M X




32

Current Source Stamp

IK NI N2 X
NI N2 RHS
NI -X
: N2 X

Resistor Stamp

RM NI N2 X

NI N2 RHS




Voltage Source Stamp

VM N1 N2 X

Voitage Controlied Current Source

VCCSM N1 N2 N3 N4 X




-~

34

Voltage Controlled Voltage Source

VCVSM NI N2 N3 N4 X

NI N2 N3

N4

400H

RHS




35

- APPENDIX B
FUNCTION LEVEL DESCRIPTION OF ASP

In order to facilitate modifications to ASP and to enhance the readability of the APL
code, the following function level description has been written. Functions will be grouped
according to functionality and-each group will be briefly described.

B.1 M ainstream Functions

ER AR RN AR IR EA T A AN AN A R AR AR AN AN ERAA A AR TR R R Rk ke R o * % x %

* ASP *
* The introductory function. ASF initializes variables*
* and asks the user for his input type choice. *
* ASP then calls one of the INPUT functions. *
ER R R R SR SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE LR

-+

s

-+
MEERAERAREAENE AR AR E AN EAA AR EE A AN EA TR R EARARATIERERARARNEEARNRA AR AN E RN
* I NPUT *
* The INPUT functions allow the user to input circuit *
* data. INPUT functions are: |INIERI NP and FI LEREAD. *
* |NPUT functions set MDE to 'add' and call the CHANGE *
* function. *
************************************X*********************

-+

+

+
R SRR SRS SRS E SR SR SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE R
Cx CHANGE *

*  The CHANGE function deci des what type of elenent the *
* user is trKiGn? to specify. CHANGE then calls the pro- *
CKI u *

* per GE nction.
kkhkxkhkkkhkkkkhhkkhkhkhkhkhkkhkhkkhkhkkhkkhkkhkkhkkhhkhhkhhkkhkkhkkhkk kk kkhkk,kkkkkkkk*x*%x
+
-+
o+
AR A A E A R A R A A A R A AN A T R A AN T E I AN AN AR IE A ANEARRER NS
* CHECKI NG *

Y *  The CHECKING functions check el enent specifications *
* for proper syntax. CHECKING functions are: TWXCHECK, *
* FOURCHECK; QOHECK, TRANCHECK, CONCHECK: PRNTCHECK, *
* BREAKCHECK, and MACHECK. If proper syntax has not *
*

been followed, the user will be given an error nessage *




36

= and the INPUT function will attempt to read the next =
* line. If proper syntax has been followed, CHANGE will =

= call the appropriate ADD function. ®
RRRRRR R R AR R R AR AR AR RRARR R RN RRRARRRARRANRRARNRRRRZIRARNRNRRRRRARARARRRRARRR

’ +

-+

<+
ttitatt*tttt!tttt*tttt*t*ttt***ttt*ttt!**ﬁ*tt:atw*t*ttttt*

] ADD ®
= The ADD functions add element stamps to the jacobian =
= matrix. ADD functions are: ADVCVS, ADVCCS, ADV, ®
= ADCCVS, ADCCCE, ADI, ADRES, ADGYR, ADQ, ADCL, and *
= ADMAC. Some of the simple element additions are ®
* handled in the CHECKING functions. AZter the ADD =
= functions are finished, the INPUT functions attempt to =
= read the next line of input. x
ARRRER R ERR RN R AR R R R RR R R R R RN R R ARRRRRANRN XN LR R IR R RRARRRARRRRRREZERRRRRR
-+
<+
-+
If there is input or the next line, CHANGE is called
and the process repeats until all input has been
entered. Once this occurs, the UTILITIES function
taxes over.
-+
+
<+
(2 2 X222 2222222222222 2232222222222 2 8322222222222 2222 2 2
UTILITIES
The UTILITIES function allows the user to choose one
of the following seven opticns:

Option 1 - Add more circuit elements.
UTILITIES calls INTERINP and the user can add
elements as before.

Cption 2 - Delete some existing elements.
UTILITIES cails the functaion CROP. This
function sets MODE to 'drop' and calls the
CHANGE function. The CHANGE function then
calls tne proper DELETE function.

-+
DELETE functions drop element stamps
from-the jacobian matrix. DELETE func-
tions are: DPVCVS, DPVCCS, DPV, DPCCVS,
DPZCCS, DPI, DPRES, DPGYR, DPQ, DPCL,
DPTRAN, DPMAC, DPCON ané DPBREAK.

Option 3 - Examine the input to date.
UTILITIES exhibits the variable INP which
contains all user inpat tc date.

Option 4 - Write the input to an external file.
UTILITIES calls the function OUTFILE which
allows the user to write the input tc an
external file.

*OR R R X R ¥ % % X % % % X X XN X B R % X % % X X N X %

R JEE JNE TN NEE NN N N NN BN NN NEE NN NN NEE BN NEE BEE JEE NN NS I B 2R B B




37

Option 5 - Continue processing.
UTILITIES calls the SETSIM function (see
below) to set up the sinulation.

* 0% %k X X W
* % * X X B

* Option 6 - Exit
' Leave the ASP package

*
*
Option 7 - Return to breakpoint menu if applic- *
abl e. *
The user will return to a previous nmenu if *

*

*

possi bl e.
RAEARAAREE AR R AAR AN N EREARAAREAN R ARANARXRAAAARAFEXEAAAAN KA S N R

Y

-’

-+

AR AR E R A AT R AR R E RN A AR A AT I AR XA NN EREAA R AR AN R AN AARA T AN
SETSI M

SETSI M does the following to prepare for simnulation:

E I T .

- Calls the function HANGELCK to check if all
necessary information has been specified.
HANCELCK al so checks for hanging nodes in the
circuit.

* % o % M Ok X X

- Calls the SEGREGATE function to distinguish
bet ween node voltages and branch currents.
This is done to allow separate criteria for
vol tage and current error.

- Calls the PIVOT function which is part of the
sparse matri x package. Pl VOT pivots the
jacobian to reduce fill.

- In the case of a transient analysis, the user
is pronpted for the operating point. If it is
known, a dc analysis can be elimnated. |If
the operating point is unknown, ASP solves for
it using the DCSIMfunction.

A ERERE A A E AR R AR A AN E RN AN XA R AR N EIARN AN EANARET AR AR E AR NR
+

(Note: If a dc analysis is being done, DCSIMw Il be

called. DCSIMis also called in case of an unknown oper-

ating point. DCSIMis not called when a transient

anal ysis is being done and the operating point of the

circuit is known to the user.)

-

ELREE . R e T R B R R B R B T

T . T R T R

MEAERXERXRE A A E R AN EER AN AN AN R E RN E AN AR AN EA RN AR AR ARNEAARAAR AN FA AN T TN N
DCSI K

DCSIM is the function called to provide a dc Simla-
tion. DCSI M transforns each constant source into a
transi ent source which reaches its value at tine=.1s.
Each transient source is then transforned into a tran-
sient source which reaches its 0 value at tinme=.1Is.
That is each source is ranped up to its 0 value over a
.Is interval. Each of the 'transient® sources begins
with a value of O. The solution of the circuit is
obvious at- this point. By taking small tinme steps ana

* % ok % X X X X F X
* % k% X X %k kX W




36

doi ng an eval uation at each point, the dc solution can *
be found. DCSIM sets up this transient sinulation *
and calls TRANSIK to inplement it. After the dc *
solution is found, TRANSIM may be call ed. *

R S I S R R O R R I R I S Rk I O

* % 3k k%

+

(Not e: If only a dc sinmulation is being done, ASP stops
at this pointe Continue for nore on transient sinula-
tions.)

QUTASK is called here to ask the user which voltages or
currents should be printed.
'+
************************************X********************

TRANSI K -
.TRANSI K does the following to inplenent a transient
simul ati on:
- Initialize variables necessary for sinmulation.

- Call the STARTUP function to start off the
simul ation. STARTUP essentially does three
first order corrections while the error
estimation facility is being initialized.
STARTUP initially calls the NOCLSAVE function
whi ch saves the values of positions in the

. jacobian which are affected by capacitors and
i nduct ors.

EE R S I T N N N

- BEGA N the LOOP
Reset vari abl es.

Call UPDATRAN to update transient source
st anps.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* Call PRED to predict using the Van Bok-
* - hoven al gorithm described in Chapter 2.
*

* Call CORRECT to correct using the Van
* Bokhoven al gorithm from Chapter 2.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Call NEWRAF tc inplement the Newton-
Raphson al gorithm
NEWHAP cal |l s NOQSAVE to save val ues of
positions in the jacobian which are af-
fected by nonlinear elenents. A loop is
t hen begun: "
NOQRESTOR is called tc restore
the jacobian to its pre-stanp
condi tion.

UPDATQ is called to update the
nonl i near st anp.

v GAUS is called to do the LU fac-
torization. BACK and FOR are
called to do backward and. for-

" ward, substitution.

* % % ok ok K sk ok %k ok ok ok X ok ok Sk K ok ok kK ¥ %k 2k %k F x X ¥

Error is then checked to see if




39

the iterations should continue.

;] 1
[ ] 3
% If not, NOCRESTCR is called again to ]
® restore the jacobian. *
* *
" Error is checked to see if the step *
= shoul d be accepted or rejected. If the =
* step is rejected, cut the step in half, =

restore the jacobian to its original »

condition and return to the beginning of =
Ik the loop. |If the step is accepted, »
* continue wth: »
. |
Ik Restore each transient current source =
Ik Wth TRAN RESTCR S
Ik =
Ik Eval uate the design constraint if nec- =
Ik essary. »
1k =
Ik Increment tine and restore the jacobian =«
Ik usi ng NOCLRESTOR x
Ik =
. Accommodat e any printing requests or ]
Ik break point requests. x
* Cal cul ate a proposed step size using x
Ik HCALC and continue the loop until the *
- end tine is reached. »

AERA AR AN EE R E AN AR AN T AN R R E AN T AN AN EA A IN AN AN EANARNEAEEREANAANT RN

B.2 Utility Functions

In addition to the functions already mentioned, there are other Utility functions in ASP.
These functions handle small tasks which are necessary for the Mainstream functions to
work effectively. A list of these functions and a small discussion on each will now be

given.

ASSIGN - taxes the user-specified nodes and converts theminto
node nunbers which the sinulator can user ie.
consecuti ve nunbers.

BKPNTADD - pronpts the user for break points to be added.
This function is called from BKPNTUTI LS.

BKPNTDRCP - pronpts the user for break points to be dropped.
This function is also called from BKPNTUTI LS.

BKPNTUTI LS - gives the user options to change break point data,
change circuit elenment data, or continue with
si mul ati on. :

CAPV - determnes voltage across two nodes for a given order of
prediction.




40

COWPACT - drops unused nodes from consideration. ‘

CREATE - is called by PIVOT to create tenporary fill elenents,
(SPARSE NATR X FUNCTI QN)

DESTROY - destroys positions in the jacobian.
(SPARSE MATR X FUNCTI QN)

EXAM NE - allows the user to exam ne present val ues of design
constraints, voltages, or currents. This function is
call ed from BKPNTUTI LS.

FASTADI - adds a current source for a capacitor stanp.

FASTADRES - adds a resistor for a capacitor or inductor stanp.

FINDNP - finds total element infornmation when given type and
nunber of el ement.

FN3EVAL - eval uates the objective function at a given ti me.

FPW. - returns value of PW function when given time and
par anet er s.

FSIN - returns value of SN function when given time and
par anet ers.

FUNCK - checks if a given function exists in the workspace.

INCR - increnents values of elenents of the jacobian.
(SPARSE MATR X FUNCTI QN)

IKIT - initializes vari abl es.
( SPARSE MATRI)_( FUNCTI ON)

LOOKUP - | ooks up elements in the jacbbi an when gi ven row and

col um i ndi ces.
(SPARSE MATR X FUNCTI QN)

*HK - returns current value of the given voltage or current.
PRINT - prints out the ASP workspace.
PUT - puts a given value into a specified row and colum in the

j acobi an.
(SPARSE MATR X FUNCTI ON)

'PW.CK - checks the PW portion of a PW transient source.

REDUCE - renoves a row and colum pair fromthe jacobian.
(SPARSE MATR X FUNCTI QN)

RON- calculates a given row of the LU factorization.
v (SPARSE MATR X FUNCTI QN)

*3NXK - checks the SIN portion of a SIN transient source.

TRANSBACK - does the back substitution for the transposed




-

41

jacobian problem.
(SPARSE MATRIX FUNCTION)
TRANSFOR - does the forward substitution for the transposed
jacobian problem.
(SPARSE MATRIX FUNCTION)

TRANSOL - solves the transpose problem.
(SPARSE MATRIX FUNCTION)

TRANSPOSE - obtains column-wise representation of pivoted L and
U matrices.
(SPARSE MATRIX FUNCTION)

This list does omit all of the HELP functions which were previously listed. HELP
files ali begin with the letters "HELP".




42




43

APPENDIX C
ASP USER S‘MANUAL




ASP
APL SIMULATION PACKAGE

A User’'s Manual

ASP is a simulati()n package written in APL by

Gregory D. Jordan




TABLE OF CONTENTS

1. Introduction
2. Getting Started
3. Input Syntax

3.1. Resistors
3.2. Capacitors and Inductors
3.3. Gyrators
3.4. Linear Current Controlled Current Sources
3.5. Linear Current Controlled Voltage Sources
3.6. Linear Voltage Controlled Current Sources
3.7. Linear Voltage Controlled Voltage Sources
3.8. Congtant Voltage Sources
3.9. Congtant Current Sources
3.10. Transient Voltage Sources
3.11. Transient Current Sources .
3.11.1. Allowable Types
3.12. Nonlinear Elements
3.12.1. Mode Definition
3.13. Macros
3.13.1. Macro Definition

4. Necessary Input

4.1. DC Analysis
4.2. Transient analysis

5. Optional Input

5.1. Break Point Specification
5.2. Design Constraints
5.2.1. Function Definition

Appendix |. Explanation of Voltage and Current Numbering System *

Appendix Il. Test Cases

CoOooooo~NooCOhbdbd 0N B




| -

1. INTRODUCTION

This manual is intended for use with ASP which is now implemented on the CMU TOPSC
system. A large amount of on-line help is available, however this manual is in most cases a
more extensive source of information. Some knowledge of APL is valuable if the user would
like to explore all of the capabilities of ASP. As a general tool, however, ASP can be used and

enjoyed by everyone.




[ 9]

2 GETTING STARTED

Before loading the ASP workspace, be sure to increase the allowable workspace size by typing:
JMAXCORE 200

Next, to enter the simulator package, type:

)LOAD ASP
ASP

The user will now be asked to input data. There are two possible input methods. The user may
wish to copy data from a previously created external file or the user may wish to input data
interactively.  The syntax for each element remains the same in both cases. The user will
probably want to use interactive input until he/she is familiar with ASP syntax. When naming
external files for ASP to read, it is important to keep file names shorter than 8 characters or

else an eror will result.




3. INPUT SYNTAX

In this section, each type of eclement will be examined and input syntax will be discussed.

Some general points should be made first.

1.

That is, current always flows from the positive to the negative terminal of an element.

addition. the ASP convention is that the positive terminal is always defined first.

Error tolerances can be set by the user by altering the variables EVREL. EVABS,
EIREL, and EIABS in the ASP funclion. These variables are ths relative and
absolute error allowable for voltages and currents. That is, the simulator checks that
the maximum voltage error at each time step is less than:

EVABS + EVREL#(the voitage which corresponds to the largest
voltage error term)

A similar calculation is done for current error.

Scientific notation is acceplable to ASP, however abbreviations are not. That is 1E3
and 1E.NGIZ ars acceptabls, however 1K and IM are not. When using a TTYV
terminal, vou will not be able to specify any macro eclement parameters or values less
than .0001. In short, this occurs because TTYs convert the (.NG) character to the
totally different (-) character. To avoid this problem. either switch to an APL
terminal or use individually specified elements rather than macros.

Node numbers and eclement numbers must be positive integers less than 1000. The
ground node must be labeled mode O. This is due to an ASP convention for handling
internal nodes and currents. No hardship should result since ASP is not designed to
handle hundreds of nodes or elements.

An acceptable input file consists of circuit elements and a DC or TRANSIENT line
to indicate dc or transieni simulation. If transient simulation is chosen, the user
must also specify a PRINT statement. 1In addition, the user has the optior of
specifying breax points using a BREAK statement or design constraints using the CON
statement.

ASP uses the following convention for defining elements:

N,
4

careful of this when defining current sources.

w

In

Be especially



3.1. Resistors
The basic form of resistor input is:
RMN1 N2 VALUE

» where R dgnifies resistor,
« M is the number of the resistor,
* NI and N2 are the nodes which the resistor is between,

* and VALUE is the value of the resistor in ohms.

Typical resistor specifications are:

R 1 2 10000
R50 67 734 200

Checks are run for O-valued resistors, unacceptable alpha characters, node or eement numbers
which are not integers or are out of bounds, incorrect number of nodes entered, shorted elements,
and duplicate elements, where duplicate means two resistors with the same element number.

3.2. Capacitors and Inductors

" The basic form of capacitor or inductor input is: -
LM NI N2 VALUE '

CM NI N2 VALUE

« where L and C signify inductor and capacitor respectively,
* M is the number of the capacitor or inductor,
* NI and N2 are the nodes which the capacitor or inductor is between,

 and VALUE is the value of the capacitor or inductor in farads or hsnrys.

Typical capacitor and inductor specifications are:

Cl 1 5 .00001
L90 35 0 .5798

Checks are run for unacceptable apha characters, incorrect number of node numbers entered, node
or element numbers which are not integers or are out of bounds, shorted elements, and duplicate
elements, where duplicate means two capacitors or two inductors with the same element number.

3.3. Gyrators
The basic form of gyrator input is:
GYRAM NI N2 N3 N4 VALUE

« where GYRA dignifies'gyrator.

* M is the number of the cvrator.




-

th

* NI, N2, N3, and N4 are the nodes which the gyrator is connected to,
 and VALUE is the value of the unitless multiplier.

A brief discussion is in order here. NI and N3 correspond to the positive ends of the voltages
and N2 and N4 correspond to the negative ends. The equation of the gyrator can be written as.

| * -(VALUEHV1-V2)
17 * (VALUEXV3-V4)

That is, the current on each side of the gyrator is proportional to the voltage on the other side.
The proportionality constant is' «7- VALUE. '

Typical gyrator specifications are:

GYRA1 10 3 0 5
GYRA43 9 15 34 22 10

Checks are run for for unacceptable alpha characters, element numbers or nodes which are not
integers or are out of bounds, incorrect number of nodes specified, shorted gyrators, and duplicate
elements, where duplicate means two gyrators with the same element number.

3.4. Linear Current Controlled Current Sources
The basic form of linear current controlled current sources is:
CCCSM NI N2 N3 N4 VALUE ’

» where CCCS indicates a linear current controlled current source,
e M is the number of the current controlled current source,
« NI, N2, N3, and N4 are the nodes which the CCCS is connected to,

e and VALUE is the value of the unitless multiplier.

Nodes NI and N2 are connected to the controlled source. Nodes N3 and N4 are connected to
the controlling current NI and N3 denote <> nodes and N2 and N4 denote <> nodes. It is
important to note that N3 and N4 :are actually shorted nodes. That is, no other eement may
connect nodes 3 and 4 since the simulator internally puts a O-valued voltage source across these
nodes to determine current The equaiion of the CCCS may be written:
| = (VALUE)!

That is, the current on one side of the CCCS is proportional to the current on the other side.
The proportionality constant is VALUE.

Typica CC(\ZS specifications are:

CCCS1 1 2 3 4 50 *
CCCS67 23 456 32 123 2

Checks are run for unacceptable alpha characters, demenl numbers or nodes which are not
integers or are out of bounds, shorted CCCSs (note that nodes 3 and 4 may not be the same




node number), incorrect number of nodes specified. and duplicate elements, where duplicate means

two CCCSs with the same element number.

3.5. Linear Current Controlled Voltage Sources
The basic form of linear current controlled voltage source input is:
CCVSM N1 N2 N3 N4 VALUE

® where CCVS signifies current controlled voltage source,
® M is the number of the current controlled voltage source,
® N1, N2, N3, and N4 are the nodes which the CCVS is connected to,

® and VALUE is the value of the multiplier in ohms.

Nodes N1 and N2 are connected to the controlled voltage scurce. Nodes N3 and N4 are
connected to the controlling current. N1 and N3 denote (+) nodes and N2 and N4 denote (-)
nodes. Once again, nodes 3 and 4 are shorted because of the internal O-valued voltage source.
The equation of the CCVS may be written:

(V1 - V2) = (VALUE)IBQ‘
That is, the voltage on one side of the CCVS is proportional to the current on the other side.
The proportionality constant is VALUE. ’

Typical CCVS specifications are:

CCVS1 1 2 3 4 10
CCVS34 €8 323 52 772 2 .

Checks are run for unacceptable alpha characters, element numbers or nodes which are not
integers or are out of bounds, incorrect number of nodes specified, shorted CCVSs tnodes 3 and
4 may not be the same number), and duplicate elements, where duplicate means two CCVSs with

the same element number.

3.6. Linear Voltage Controlled Current Sources
The basic form of linear voltage controlled current sources is: .
VCCSM N1 N2 N3 N4 VALUE
® where 'VCCS signifies voltage controlled current source.
® M is the number of the voltage controlled current source,
\
® NI, N2, N5, and N4 are the nodes whick the VCCS is connected to,
® and VALUE is the value of the multiplier in mhos.

Nodes N1 and N2 are connected to the controlled current source. Nodes N3 and N4 are




connected to'the controlling voltage. NI and N3 denote (+> nodes and N2 and N4 denote (->
nodes. Any element may be placed between nodes 3 and 4. The equation of the VCCS may be
written: _ '

I]_z - VALUE(V3 - V4)

That is. the current on one side of the VCCS is proportional to the voltage on the other side.
The proportionality constant is VALUE.

Typica VCCS specifications are

VCCS1 2 34 5 10
VCCS23 34 56 67 87 2

Checks are run for unacceptable apha characters, element numbers or nodes which are not
integers or are out of bounds, incorrect number of nodes specified, shorted VCCSs and duplicate
elements, where duplicate means two VCCSs with the same edement number.

3.7. Linear Voltage Controlled Voltage Sources
The basic form of linear voltage controlled voltage source input is:
VCVSM NI N2 N3 N4 VALUE

« where VCVS sdignifies voltage controlled voltage source.
* M is the number of the voltage controlled voltage source,
« NI, N2, N3, and N4 are the nodes which the VCVS is connected to,

» and VALUE is the value of the unitless multiplier.

Nodes NI and N2 are connected to the controlled voltage source. Nodes N3 and N4 are
connected to the controlling voltage. NI and N3 denote (+) nodes and N2 and N4 denote (->
nodes. Any element may be blaced between nodes 3 and 4. The equation of a VCVS may be
written as:

(VI - V2) = VALUE(V3 - V4)
That is, the voltage on one side of the VCVS is proportional to the voltage on the other side.
The proportionality constant is VALUE.

Typical VCVS specificaﬁons are:

VCVS1 1 2 3 4 10
VCVS34 45 65 789 12 2

Checks are run for unacceptable apha characters, eement numbers or nodes which are not
integers or are out of bounds, incorrect number of nodes specified, shorted VCVSs, and duplicate
elements, where duplicate means two VCVSs with the same eement number. )




3.8. Congtant Voltage Sources
The basic form of constant voltage source input is:
VM.N1 N2 VALUE

* where V dignifies constant voltage source,
« M is the number of the voltage source.
« NI and N2 are the nodes which the voltage source is between,

* and VALUE is the value of the voltage source in volts.

NI is the positive node of the voltage source and N2 is the negative node. The voltage source
current is defined as flowing from node 1 to node 2. Typica voltage source specifications are:

VI 105
. V23 456 34 15

Checks are run for unacceptable aIpHa characters, node or element numbers which are not integers
or are out of bounds, shorted elements, incorrect number of nodes entered, duplicate constant
voltage sources and duplicate transient voltage sources, where duplicate means two voltage sources
with the same eement number.

3.9. Constant Current Sources
The basic form of constant current source input is:
IM NI N2 VALUE

» where | signifies constant current source.
* M is the number of the current source,
« NI and N2 are the nodes which the current source is between,

* and VALUE is the value of the current source in amps.

The current from the current source is defined as flowing from node 1 to node 2 through the

current source. Typical current source specifications are:

125
134 27 0 10

Checks are run for unacceptable apha characters, node or éement numbers which are not integers
or are out of bounds, incorrect number of nodes entered, shorted elements, duplicate constant
current sources and duplicate transient current sources, where duplicate means two current sources .
with the sama element number.




3.10. Transient Voltage Sources
The basic form of transient voltage source input is:
TRANVM NI N2 TYPE PARAMETERS

» where TRANV sdignifies transient voltage source,

M is the number of the transient voltage sou}ce, )

NI and N2 are the nodes which the transient source is between.

TYPE indicates the type of transient source, (one of PWL &. SIN)

and PARAMETERS are parameters required by the specific type.

NI is the positive node of the voltage source and N2 is the negative node. Current flows
through the transient source identically to the constant source. For TYPE specifications, see
section 3.11.1 on alowable type information.

Typica transient voltage source specifications are:

TRANV1I 1 O PW 0O C1 10 2 10 3 20
TRANV34 45 93 SINO 11 00

Checks are run for unacceptable apha characters, element numbers or nodes which are net
integers or are out of bounds, incorrect number of nodes specified, shorted transient sources,
incorrect numbers of parameters specified, incorrect types specified, duplicate transient voltage
sources and duplicate constant voltage sources, where duplicate means two voltage sources with

) the same edement number.

3.11. Transient Current Sources
The basc form of transient current source input is:
TRANIM NI N2 TYPE PARAMETERS

* where TRANI ggnifies transient current source,

e M is the number of the transient voltage source,

NI and N2 are the nodes which the transient source is between,

TYPE indicates the type of transient source (one of PWL 4: SIN),

» and PARAMETERS are parameters required by the specific type.

For TYPE specifications, see the following section on allowable types. NI is the positive node
of the current source and N2 is the negative node.

Typical transient current source specifications are:




10

TRAN1 1 0O PM OO 1102 10 3 20
TRAN34 45 93 SIN0 1100

Checks are run for unacceptable apha characters, element numbers or nodes which are not
integers or are out of bounds, incorrect number of nodes specified, shorted transient sources,
incorrect numbers of parameters specified, incorrect types specified, duplicate transient current
'sources and duplicate constant current sources, where duplicate means two current sources with
the same element number.

3.11.1. Allowable Types

PWL - indicates a plecewise linear source. Some even number of parameters must be
specified ie(TI VI T2 V2 . . TN VN). At Tl and before, the value of the source is VI.
From Tl to T2, ASP linearly interpolates to find the appropriate voltage or current At T2. the
vaue of the source is V2. ASP continues the linear interpolation until the end of the simulation
is reached. If TN is reached before the end of the simulation, the source value remains VN. Ts
are specified in seconds and Vs are specified in volts or amps.

SIN - indicates a sinusoidal. source. Five parameters must be specified ie.(offset, amplitude,
frequency, delay, damping factor) Parameters are specified in volts or amps, Hi, and seconds.
The value of the source can be determined by the eguation:

V = offset « (amplitude>e™ ™"V (sinpart)

where sinpart is:
sinpart = sin( 2(pi X frequency >td>
and td is

(lime - ddays

3.12. Nonlinear Elements
The basic form of nonlinear eement input is:
QM NI N2 N3 ... NN MODNAM Pl P2 ... PM -

* where Q dignifies nonlinear element,

e M is the number of the nonlinear eement,

NI, N2, . . . NN are the nodes connected to the nonlinear €lement,

MODNAM is the name of the modd used for the element,

and PI, P2. . . . PM are parameters to be used by the mode function.




11

For model definition information, see section 3.12.1. Parameters should omly be specified for a
model function which expects parameter input. If the function doss not expect parameters. none
should be specified.

Typical nonlinear element spscifications are:

Q1 34 21 52 EMOLLA .000000C2 56 32
Q43 °8 2 DIODE

Checks are run for illegal characters in the node number portion. too few nodes specified.
clement numbers or nodes which are not 1ategers or are out of bounds. use of undefined model
functions and duplicate noalinear elemen:s, where duplicate means two nonlinear elements with the

same element ‘number.

3.12.1. Model Definition

Two APL functions must be crealed in crder for ths user to define a nonlinear element model.
For purposes of illustration, the first function shall be called MODNAM and the second function
shall be called DMODNAM. The. only actual constraint on these two function names is that they
should not contain any numeric characters and DMODNAM should always be the samie as
MODNAM with a 'D’ in fronl. Some examples of model function names are DIODE,DDIODE
and EMOLL.DEMOLL.

The MODNAM function defines the currents which leave each node of the nonlinear element.
If an N terminal element is specified. only N-1 currents neec to be defined though because of
Kirchhoff’s Current Law. MODNAM should in this case return an N-1 element vector which
defines the current leaving the first N-1 nodes and flowing through the element. Each current is
a function of the node voltages which can be accessed as V[1], V[2] . . . VI[N]. Parameters
can be passed to the functions if they are listed in the nonlinear specification. If no parameters
are to be passed, the functions MODNAM and DMODNAM should not expect any.

As an example of a diode specification with one parameter passed:
QM N1 N2 DIODE .000000001

The DIODE function is:

.DL FUNC_DIODE VAL

FUNC_1.R0 O
FUNC{1]_VAL#((.NGl)+=(V[1]-v[2])%.0285)
.GO 0

.DL

\
Important features to note include:
e DIODE takes VAL as an argument. In this case, VAL is a scalar. If the user

wishes to pass more than one parameter, VAL could be a vector with parameters
accessed as VAL[1]. VAL[2], elc.




* Since the diode is a two terminal eement, DIODE returns a one €ement vector.

» The voltace at node NI is accessed as V[I]. The voltage at node N2 is accessed as
VI[2].

* FUNC[1] refers to the current leaving node NI and flowing through the diode.

The othe function to be specified is the DMODNAM. This function specifies the derivatives
of each current with respect to each node voltagez. DMODNAM then should return a N-1 x N
matrix where the [P;Q] dement refers to the derivative of the Pth current with respect to the
Qth voltage. |

Condder again the specification for diodes.
The DDIODE function is:

«DL DFUNC _DDI ODE VAL

DANC 1 2RO C |

DFUNCII;] %VAL%.OZG)#(’.*(V[I}-V 2])% .026)
DFUNCII;2]~((0-VAL)% .026)#(* (V[[]-V[2])%.026)
GO 0 _

DL
3.13. Macros
The basc form of macro input is:
MACM NI N2 ... NN FUNCNAME PI P2 .. . PT

* where MAC sdggnifies a macro,

e M is the numbe of the macro,

NI, N2, . . . NN are external nodes to which the macro is connected,

FUNCNAME.- is the name of the function which defines the macro (see 3.13.1),

and Pl, P2, . . . PT are the parameters of the macro.

Macros are clusers of predefined eements. Macros are useful when defining sophisticated
trandgor modds or when a circuit is very repetitive. Definition of macros is more difficult than
normal input however, 0 the usx chould be very careful and expect some difficulty. When
usng the same macro modd more than once, the user should NOT drop a macro which contains
voltage or current sources. These sources presnt difficulties because each source current wiil
ha§/e the same number in the ASP current numbering sysem (see Appendix I).
Typical macrc; specifications are

MACL 1 2 KACRO 1.2 3.87

MAC87 65 80 71 6 MACNAME 1 10 100 .
Checks on macro qoecificali-ons are not very extensve because of the great flexibility the use
has Checks are run for fewer than two nodes, node and dement numbers which are not mteeers




13

or are out of bounds, nonexistent FUNCNAME functions, and duplicate macros, where duplicate
means two macros with the same element number.

3.13.1. Macro Definition
To define a macro, one must define a function which lists all the elements of the macro.
Basically, the syntax is the same as for normal input however there are some exceptions.

e Usually a macro uses internal nodes. To indicate an internal node, use the global
variable INTERNAL. That is, dlowable interna nodes are (INTERNAL* 1),
(INTERNAL+45) etc. * Never use an internal node that is numbered less than
INTERNAL.

» To specify an external node, use the variable EXTERNAL. This variable is a vector
which contains the nodes NI, N2, . . . NN which were named in the macro

specification.  Allowable external nodes are (EXTERNAL[1]>, <EXTERNAL[2Z]), . .
. <EXTERNAL[N]>.

* All nodes must be enclosed in parentheses. All numbers and numeric expressions

must be separated by commas. No parentheses should be used when specifying
parameters. -

» Parameters which are passed to the macro may be used by referring to them as
VALI[1], VAL[2] . .. VALET].

An example of an acceptable two external, two interna node macro is:
MCL 1 2 MAONAME 1.2 3.87

AND

.OL MACRO
R, (BEXTERNAL[I 3), (I NTERNAL), VAL[ I ]
TRANVL, (INTERNAL), (INTERNAL+1) PW 0,0, |, VAL[ 2]
R2, (1 NTERNAL+1),( EXTERNAL[ 2] ), 1000
oL
The resulting circuit entry from this macro would be:
RI 1 7001 1.2
TRANV1 7001 7002 PAL O O 1 3.87
R2 7002 2 1000

where 7001 and 7002 refer to internal nodes according to ASP syntax.




14

4. NECESSARY INPUT

The user must choose between a dc anmalysis and a transient simulation. The operating point
must be fcund for each type of simulation. If a transient simulation is chosen however. the user
will have the option tc suppiy the operating point. This will then save the user a needless dc
simulation. If the user does not know the operating point, ASP will solve for it and the
transient analysis will follow.

4.1. DC Analysis .
To specify dc analysis, the user must input the line:
DC

A dc analysis will be done and all node voltages and the currents from inductors, voltage sources
and some dependen! sources will bs displayed. For an explanation of the output svntax - for
currents, see Appendix I.

.2. Transient analysis

To specify a transient analysis. the user must input the line:
TRANSIENT

It is also necessary to specify the time of simulation and the printing increment desired. These
can be set using the format
PRINT PRINTINCR EXDTIME

® where PRINT indicates that the user is setting print parameters,
e PRINTINCR is the time interval between each time ASP prints out results,
® and ENDTIME is the time when the simulation should halt.
ASP will only print out the voltages and currents which the user specifies. The user can
specify volltages and currents to output after all circuit elemants have been entered and the choice

is made to continue simulation. For ap explanation of the output syntax for currents, see
Appendix 1. "




15
5. OPTIONAL INPUT

5.1. Break Point Specification _

In the course of the simulation, bresk points may be specified where ASP hats and the user
has options to change previous simulator input Suppose the ENDTIME of the simulation is 1
sec. Furthermore, suppose the user will be able to determine the success or failure of the test
before the simulation is complete. Usng ASP, the user may specify a bresk point at say .3 sec.
and decide if the simulation should continue.

To specify bresk points, use the format:
BREAK TI T2 ... TN

» where BREAK indicates that the user is setting bresk points,

e and TIl, T2, . . . TN are times at which the user would like the simulator to halt.

When ASP hats at a break point, the user will have the option to add, delete, or examine
current breakpoints, examine values of constraints, voltages, or currents, change circuit element
data, exit, or continue with the present simulation. The user may only change future break
points; he/she may not add or delete break points which have aready been passed. If the user
decides to change circuit dement data, ASP will try to use the old DC solution for the new
circuit as well. If this attempt fails, ASP will fmd the new operating point and then begin
another transient simulation. If the user chooses the last option, the simulation will continue as
if the break had never occurred.

5.2. Design Constraints

The user also ‘has the option of specifying design constraints for the simulator to integrate over
time. Design constraints have no effect during the DC analysis however, during the transient
analysis, the functions are integrated over time and the results are printed out with the remainder
of the output. The user need not ask the simulator to output the design constraint calculations.
If a design constraint has been specified, the user will see the value at each printing increment.
If no constraint has been specified, no design constraint data will be presented.

To specify a design cons'train.t, use the format;
CONM FUNQNAM

» where CON indicates that a design constraint is being specified,
* M is the number of the design constraint,

* and FUNCNAM is the name of the function containing the design constraint.




-

16

For help in defining a design constraint see 5.2.1.

Typical design constraint specifications are:

CON1 TEST
CON999 FUNC

Checks are run for duplicate constraint numbers, undefined constraint functions, and constraint
numbers which are not integers or are out of bounds.

5.2.1. Function Definition

To use a design constraint, the user must define a function which returns the value of the

constraint at a specific time point To
serves as an interface between the user
simulator has calculated. NUM accepts
returns the vaue of these voltages and
voltages and currents, see Appendix I.

A typica design constraint definition is:
CON1 RUNC

and

. DL RESULT_FUNC

facilitate this, ASP contains the function NUM which _
defined nodes and currents and the values which the
numbers which refer to node voltages or currents and
currents at the present time. For help in specifying

RESULT (((NUK 1)-2)*2) + (((NUM 3001)-.001)*2)

.0
.OL




.

APPENDIX |

EXPLANATION OF VOLTAGE AND CURRENT NUMBERING
SYSTEM

e Currents and voltages are specified as follows:

* Voltages will appear as their node numbers and can be as high as 999.

e Currents will appear differently depending on the type of element generating the
current

CCCS currents - 1000 ¢ element number

CCVS currents - 2000 + element number o
voltage source currents * 3000 + element number
VCVS currents - 4000 + element number
inductor currents - 5000 + element number
inductor voltages - 6000 + element number

Numbers greater .than 7000 indicate internal nodes. The only feasible way for the
user to determine these is to run the simulation.

Some examples would be
e 3001 would indicate the current due to voltage source number 1.
e 2048 Wou]d indicate the current due to CCVS number 48. -

e 7092 would indicate an internal node.

17



APPENDIX II
TEST CASES

18




The first test case shows user input and simulator output for a dc simulation.
Error parameters are currently:

EVABS s .001
EVREL = .01
EIABS = .000001
EIREL s .01

The circuit is shown below:

TEST CIRCUIT #1

R1: 500 0hms
R2: 500 ohms
R3: 1k ohms

V1: 0.1 volts
V2: 10 volts
V3: 10 volts

Q1,Q2 model: Emoll




LAy

@pl
termnal..TTY
APL- 20 DECSYSTEM 20 APLSF 2(504)

~TTY134)  0:12:41 WEDNESDAY 22-JUL-81 &COC [ 4, 452]

CLEAR VS
) MAXCORE 200
WAS 40P
) LOAD ASP
SAVED 23:39:22 21-JUL-81 169P
 ASP
WELCOME TO THE APL S| MULATI ON PACKAGE! | F YOU ENCOUNTER ANY PROBLEMS
ALONG THE WAY, PLEASE FEEL FREE TO TYPE "HELP-.
WHI CH TYPE OF | NPUT WOULD YOU PREFER?
0 - READ FROM AN EXTERNAL FILE
1 - ENTER DATA | NTERACTI VELY

I NPUT MODE: 1

YOU WLL NOW BE ASKED TO I NPUT THE CIRCUI T DATA. HELP IS AVAI LABLE
IN THI'S MODE | F YOU WOULD LIKE. EACH ENTRY WLL BE CHECKED FCR
ERRORS AND AN APPROPRI ATE MESSAGE W LL BE SENT. |F AN ASTERI SK
APPEARS, THE S| MULATOR |'S READY TO ACCEPT NEW DATA. TO
EXIT THE | NPUT MODE, TYPE 000. PLEASE ENTER YOUR DATA NOW
* V| .

THERE |'S AN | NCORRECT NUMBER OF NODES SPECI FI ED.

Y

PLEASE REENTER THI S ELEMENT AS | T HAS NOT BEEN ADDED.

* V.1 1030 1 -

TEE SECOND CHARACTER MUST BE NUNERI C.

V.1 1030 1

PLEASE RSENTER THI'S ELEMENT AS | T HAS NOT BEEN ADDED.

* VI 1050 0 10

NODE NUMVBERS GREATER THAN 999 ARE NOT PERM SSABLE.

VI 1050 0 10

PLEASE REENTER TH' S ELEMENT W TH APPROPRI ATE NODE NUMBERS.
* VI 03 .1

* VI 06 10

A DUPLI CATE ELEMENT EXISTS FOR

VI 05 10

PLEASE REENTER THI'S ELEMENT UNDER A NSW NAME.

* V2 06 10

* V3 10 10 10

YOU HAVE SPECI FIED THE SAVE NODE TW CE.

V3 10 10 10

PLEASE REENTER THI S ELEMENT AS | T HAS NOT BEEN ADDED.

* V3 10 10

R 2 1 500

500

1000

3 EMOLL

0 EMOLL

P,
N

1
6
7
7

L T T R
8RLA
AN P

o
o
o




YOU MAY NOW SELECT ANY OF THE OFTIONS BELOW TO MODIFY THE INPUT
OR CHECK THAT THE SIMULATION HAS COMPILED ALL THE DAT2.

TO CONTINUE PROCESSING, SIMPLY SELECT OPTION 5. IF YOU CHOOSE
ANOTHER OPTION, YOU CAN EXIT THAT OPTION AND RETURN TO THIS
MENU BY TYPING 00O.

OPTION 1 - ADD MORE CIRCUIT ELEMENTS

OPTION 2 - DELETE SOME EXISTING ELEMENTS

OPTION 3 - EXAMINE THE INPUT TO DATE

OPTICN 4 - WRITE THE INPUT TO AN EXTERNAL FILE

OPTION 5 - CONTINUE PROCESSING

OPTION 6 - EXIT

OPTION 7 - RETURN TO BREAKPOINT MENU IF APPLICABLE

OPTION => 5
OPERATING POINT NOW BEING DETERNINED




L

THE RESULTS OF THE DC SI MULATI ON ARE:
NODE VOLTAGES:

V( 3) = 0.1

V(2) = 9. 922115064
V(1) = I D

V( 4) = 5. 758431061
V( 6) = -10

V(7) = -0.4014731123

BRANCH CURRENTS:

| (3001) = 1. 714295548E- 5
1 (3002) = -0. 009598526888
1(3003) = -0. 008638907751
) SAVE
0:42:02 22-JUL-81 166 PGS ASP <C75> [4, 452]
) OFF HOLD

TTY134) 0:42:15 22-JUL-81
CONNECTED 0:29:34 CPU TI ME 0: 06: 30
278226 STATEMENTS 969950 OPERATI ONS

EXIT
@




The second test circuit is a simple amplifier. An initial dc analysis is done to
determine the operating point. Finally, the transient analysis is done. Error
parameters for this test case are the same as for the first test case. The
amplifier circuit is shown below:

va

P
4
5 R2 R4
{ s
! 2 ?:1 3 a1
: s
V1 :0 ‘ S r3 e

TEST CIRCUIT #2

R1: 100 ohms
R2: 4K ohms
R3: 1K ohms
R4: 2K ohms
R5: 1K ohms

C1l: 100uF
C2: 1 uF

V1. .Ssin2(pi)t
V2: 15

Q1 model: Emoll




@A\?L
termnal..TTY
APL-20 DECSYSTEM 20 APLSF 2(504)
TTY134! 5:12: 25 WEDNESDAY 22-JUL-81 GICC [4, 452]
CLEAR W5
) MAXCORE 200
WAS 40P
) LOAD ASP
SAVED 4:08:01 22-JUL-81 170P
ASP -
WELCOVE TO THE APL SI MULATI ON PACKAGE! | F YOQU ENCOUNTER ANY PROBLEMS
ALONG THE WAY, PLEASE FEEL FREE TO TYPE - HELP".
VWH CH TYPE OF | NPUT WOULD YOU PREFER?
0 - READ FROM AN EXTERNAL FI LE
1 - ENTER DATA | NTERACTI VELY

I NPUT MODE: O

ENTER THE | NPUT FI LENAME: SI' M DAT
I NPUT FI LE HAS BEEN READ.

(The file simdat contains tHe follow ng input;
TRANV1I 1 0 SINO .51 00 .

15

100

1E. NG4

4000

1000

3 EMOLL

2000

1E3

1E. NG6

ENT

.01 .15

gQE}?ﬁQEBEQZS
ZgoorowWANRE
T oo OoOWWNO

T
P,
C




YOU MAY NOW SELECT ANY OF THE OPTIONS BELOW TO MQDIFY THE INPUT
OR CHECK THAT THE SIMULATION HAS COMPILED ALL THE DATA.

TO CONTINUE PROCESSING, SIMPLY SELECT OPTION 5. 1IF YOU CHOOSE
ANOTHER OPTION, YOU CAN EXIT THAT OPTION AND RETURN TO THIS
MENU BY TYPING 000.

OPTION 1 - ADD MORE CIRCUIT ELEMENTS

OPTION 2 - DELETE SOME EXISTING ELEMENTS

OPTION 3 - EXAMINE THE INPUT TO DATE

OFTION 4 - WRITE THE INPUT TO AN EXTERNAL FILE

OPTION 5 - CONTINUE PROCESSING

OPTION 5 - EXIT

OPTION 7 - RETURN TO BREAKPOINT MENU IF APPLICAELE

OPTION =)> 5




|F THE DC SOLUTI ON IS KNOWN, PLEASE ENTER THE SOLUTI ON VECTOR
IN THE FOLLOW NG CRDER:

3001 1 3002 4 2 365

OTHERW SE, SIMPLY ENTER A 0.

0

OPERATI NG PO NT NOW BEI NG DETERM NED.

THE RESULTS OF THE DC SI MULATI ON ARE:

NODE VOLTAGES:

V(1) = 0

V( 4) = 15

V(2) = 6. 62032S710E- 8
V( 3) - 2. 805124689

V( 6) = 2. 437090328
V(5) = 10. 61300629

BRANCH CURRENTS:
1(3001) = 6.620329710E- 10

1(3002) -0. 005242215684




TYPE | N DESI RED NCDE VOLTAGE QUTPUTS ON SEPARATE LI NES.

I F NO MORE ARE DESI RED, ENTER A 0.
*5
*G

TYPE I N DESI RED CURRENT QUTPUTS ON SEPARATE LI NS,
F NO MORE ARE DESI RED, ENTER A O.
0

o+ —




TI ME V( 5)
0.01 10.56251037
0.02 10.52135796
0.03 10. 48598946
0-.04 1G. 45456504
0.05 10.42767043
0.06 10.4046288
0.07 10.38531285
0.08 10.36940854
C.09 10. 35672836
0.1 1C. 34705207
0.11 10.3402017
0.12 10.33600056
0.13 10. 33429029
0.14 10.3349194
0.15 10.33774642

0.16 10. 34263609
) SAVE
5:21:19 22-JUL-81 166 PGS ASP <075> [4,452]
) OFF HOLD
TTY134) 5:21:20 22-JUL-81 -
CONNECTED ~ 0:09:55 CPU TIME  0:08: 22
438849 STATEMENTS 1514205 OPERATI ONS




The final test circuit is a simple circuit with a resistor, diode, and capacitor.
This test shows the use of macros, design constraints, and break points. Once
again, error parameters are the same and the circuit is shown below:

"0 NS o T o

JEST CIRCUIT #3
R1: 1M ohms / 50K ohms

C1: 100 uF
V1: sin 2(pi)t

Q1 model: Diode




@\PL
termnal..TTY
APL-20 DECSYSTEM 20 APLSF 2(504)
TTY134) 23:34:29 TUESDAY 21-JU.-81 GQICC [4, 452]
CLEAR VS ‘
) MAXQORE 200
WAS 40P
) LOAD ASP
SAVED 23:34:16 21-JU.-81 170P
ASP
WELOCOME TO THE' APL S| MULATI ON PACKAGE! | F YOU ENCOUNTER ANY PRCBLEMVB
ALONG"THE WAY, PLEASE FEEL FREE TO TYPE "HELP'. .
VWH CH TYPE CF | NPUT WOULD YOU PREFER?
0 - READ FROM AN EXTERNAL FI LE
1 - ENTER DATA | NTERACTI VELY

INPUT MODE: O

ENTER THE | NPUT FI LENAME  TRTEST, DAT
I NPUT FI LE HAS BEEN READ.

i

(The file trtest.dat contains the follow ng input:
TRANVI 1 0 SSNO 1100
R 12 1E6
MACL 2 0 TRANVAC . 0001
TRANS| ENT
PRINT .01 .15
CONL  TRANCBJ
BREAK .05 .1




(Another note: The macro and design constraint defi nitions were
previously declared in the workspace. They are now |listed bel ow
for the purpose of this exanple.

.DL RESULTJTRANGBJ -
RESULT ((NUM 2)-.5)*2

00"
DL

DL TRAKMAC
. (EXTERNAL[ 1] ), ( EXTERNAL[ 2] ) DI ODE
" (EXTERNALO ] ), ( EXTERNAL[ 2] ), VAL

qQ
a
DL

YQU MAY NOWN SELECT ANY OF THE OPTIONS BELOW TO MODI FY THE | NPUT
OR CHECK THAT. THE SI MJULATI ON HAS COWPI LED ALL THE DATA.

TO CONTI NUE PROCESSI NG, SIMPLY SELECT OPTION 5. |F YQU CHOOSE
ANOTHER OPTION, YQU CAN EXIT THAT OPTION AND RETURN TO TH' S
MENU -BY TYPI NG 000.

CPTION 1

CPTION 2 -

CPTION 3 -

CPTION

3
CPTION 4 -
5

CPTION 6 -

CPTION 7
CPTION =>

ADD MORE Cl RCUI T- ELEMENTS

DELETE SOVE EXI STI NG ELEMENTS

EXAM NE THE- | NPUT TO DATE

WRITE THE INPUT TO AN EXTERNAL FILE
CONTI NUE PROCESSI NG

EXIT

RETURN TO BREAKPOI NT MENU | F APPLI CABLE




IF THE DC SOLUTION IS KNOWN, PLEASE ENTER THE SOLUTION VECTOR
IN THE FOLLOWING ORDER:

3001 1 2 _

OTHERWISE, SIMPLY ENTER A O.

000

TYPE IN DESIRED NODE VOLTAGE OUTPUTS ON SEPARATE LINES.
IF NO MORE ARE DESIRED, ENTER A O.

=2

=]

=0

TYPE IN DESIRED CURRENT OUTPUTS ON SEPARATE LINES.
IF NO MORE ARE DESIRED, ENTER A O.

*3001

=0




TI ME

0.01

0.02

0.03

0.04

0.05

V(2)
5. 606510942E- 6
1. 515055727E- 5
3. 032184939E- 5
5. 262128233E- 5

8. 048330394E-5

V(1) 1(3001) CON1L

0. 06279046656 -6.278436005E-8 0. 002499950576
0.1553331283 -1.253179777E-7 0. 004999844466

0.1873811582 -1.873503363E-7 0.007499603524

0. 2486896815 -2.436370603E-7 0.009999172553

0. 309016742 -3.089362587E-7 0.01249849235

YOU MAY NOW SELECT ANY OF THE OPTI ONS BELOW TO MODI FY THE | NPUT OR
BREAKPO NT DATA.
BREAKPO NT MENU:

OPTION 1

OPTI ON

- ADD BREAKPO NTS

2 - DELETE BREAKPO NTS

OPTI ON 3 - EXAM NE BREAKPO NTS TO DATE

OPTION 4 - EXAM NE VALUES OF CONSTRAI NTS, VOLTAGES OR CURRENTS

OPTION 5 - CHANGE ClI RCUI T ELEMENT DATA

OPTI ON

OPTION 7 - EXIT

OPTION => 6

0. 05

0. 06

0. 07

0. 08

0.09

8. 048330394E-5

0. 0001156700412
0. 0001554051144
0. 0002007531253

0. 0002515734686

6 - CONTINUE W TH TRANSI ENT SI MULATI ON

0. 309016742 -3. 089'362587E- 7 0.01249849235
0. 3681242566 -3.680085866E-7 0.01499764316
0. 4257789554 -4.256235503E-7 0.01749629043
0.481753302 -4.815525489E-7 0.01999450144

0. 5358263917 -5.355748182E-7 0.02249222838

0.1 0.0003076779324 0.5377848229 -5.874771450E-7 0.02498942013

0.1 0.0003076779324 0.5877848229 -5.874771450E-7 0.02498942013




s

YOU MAY NON SELECT ANY CF THE CPTI ONS BELON TO MO FY THE | NPUT CR
BREAKPA NT' DATA.
BREAKPO NT' MENU:

CPTION 1 - ADD BREAKPO NTS

CPTION 2 - DELETE BREAKPA NTS

CGPTION 3 - EXAM NE BREAKPA NTS TO DATS

CPTION 4 - BEXAM NE VALUES OF QONSTRAINTS, VOLTAGES OR GURRENTS
CPTION 5 - CHANGE O RCU T ELEMENT DATA

CPTION 6 - CONTI NUE WTH TRANSI ENT S| MULATI ON

CPTION 7 - EXIT

CPTION => 5-

YQJ MAY NOW SELECT ANY CF THE CPTI ONS BELONVTO MDD FY THE | NPUT
OR GECK THAT THE SI MALATI ON HAS COWPI LED ALL THE DATA

TO GCONTI NUE PROCESSI NG SIMPLY SELECT CGPTION 5. | F YQU CHOCSE
ANOTHER CPTION, YOJ CAN EXIT THAT CPTION AND RETURN TO TH S
MENU BY TYPI NG 000.

CPTION 1 - ADD MORE A RCU T- ELEMENTS

CPTICON 2 - DELETE SOME EXI STI NG ELEMENTS

CPTION 3 - BEXAM NE THE | NPUT TO DATE

CPTION 4 - WRITE THE | NPUT TO AN EXTERNAL FI LE

CPTION 5 - CONTI NUE PROCESSI NG

CPTION 6 - EXT-

CPTION 7 - RETURN TO BREAKPO NT MENU | F APPLI CABLE

CPTION => 1




YOU WLL NONBE ASKED TO INPUT THE G RCU T DATA HELP |'S AVAI LABLE
INTHS MXDE | F YOU WOULD LIKE. EACH ENTRY WLL BE CHECKED FCR
ERRCRS AND AN APPRCPRI ATE MESSAGE WLL BE SENT. | F AN ASTER SK
APPEARS, THE SI MLATCR IS READY TO ACCEPT NEWDATA. TO

EXIT THE INPUT MODE, TYPE 00C. PLEASE ENTER YOUR DATA NOW

* R2 1 2 50000

* 000
CPTION 1 - ADD MORE A RQUI T ELEMENTS

CPTION 2 DELETE SOVE EXI STI NG ELEMENTS

)

CPTION 3 - EXAMNE THE | NPUT TO DATE

CPTION 4 - WVRITE THE I NPUT TO AN EXTERNAL FI LE

CPTION 5 - GONTI NUE PROCESSI NG
CPTION 6 - EXIT

CPTION 7 - RETURN TO BREAKPO NT MENU | F APPLI CABLE

CPTION => 2

ON SEPARATE LINES, PLEASE LI ST THE ELEMENTS YOJ W SH TO DELETE.:
TOQU T, TYPEH000".

* R

* BREAK .05 .1

* 000




OPTION 1 - ADD MORE CIRCUIT ELEHENTS

OPTION 2 - DELETE SOME EXISTING ELEMENTS
OPTION 3 - EXAMINE THE INPUT TO DATE

OPTION 4 - WRITE THE INPUT TC AN EXTERNAL FILE
OPTION 5 - CONTINUE PROCESSING

OPTION 6 - EXIT

OPTION 7 - RETURN TO BREAKPOINT MENU IF APPLICABLE

OPTION => 7

0.01 1.255809319E-12 0.05275046656 -1.255809331E-6 0.0025

0.C2 2.505662553E-12 0.1253331283 -2.506662565E-6

0.03 3.747623151E-12 0.1873811582 -3.747623164E-6

0.04 4.973793619E-12 0.2486896815 -4.973793631E-6
0.05 6.180334628E-12 0.309016742 -6.180334840E-€
0.06 7.3624851Z0E-12 0.368.242566 -7.362485132E-6
0.07 8.515579097E-12 0.4257789554 -8.515579108E-6
0.08 9.635066030E-12 0.481753302 -9.635056041E-6
0.09 1.071652782E-11 0.5358263917 -1.071652783E-5
0.1 1.175569645E-11 0.5877848229 -1.175569546E-5
0.11 1.274847079E-11 0.6374235393 -1.274847080E-5
0.12 1.359093282E-11 0.6845466417 ~1.369093283E-5
0.13 1.45793630%E-11 0.7289681551 -1.457936310E-5
0.14 1.541025537E-11 0.7705127692 -1.541025538E-5
0.15 1.618023052E-11 0.8090165265 -1.618033053E-5
0.16 1.688654940E-11 0.8443274705 -1.688654941E-5
\ )SAVE
23:39:22 21-JUL-81 165 PGS ASP <075> [4,452]
)OFF HOLD
TTY124) 23:39:31 21-JUL-81

CONNECTED 0:05:02 CPU TIME 0:01:20
50436 STATEMENTS 177797 OPERATIONS

0.005

0.0075

0.015
0.0175
0.02
0.0225
0.025
0.0275
c.03
0.0325

0.C35




[ Gohen 78]

[H 75]

[ Qustavson 72]

[ Markowi tz 57]

44

Ref er ences

Cohen, E.; Madmrescu, A, and Pederson, D. 0.,
User's Quide for SPICE

University of California, College of Engineering
Version 2E. 0, August 15, 1978.

Ho, C# Ruehli, A E., and Brennan, P. A

The Modified Nodal Approach to Network Analysis,
| EEE Transactions on Grcuits and Systens

CAS-22, pp. 504-509, June 1975.

Qustavson, F. G,

Some Basi c Techni ques for Sol ving Sparse Systens of
Li near Equati ons,

in Sparse Katrices and Their Applications

D. J. Rese and R A WI I oughby, Ed.

New York: PlenumPress, 1972, pp. 41-53.

Markowitz, H K

The Bimnation Formof the Inverse and its Application
to Linear Progranmm ng,

Managenent Sci ence (3):255-269, April 1957.

[ Van Bokhoven 75] Van Bokhoven, W M G,

Linear Inplicit Dfferentiation Fornulas of Variable
Step and Order,

IEEE Transactions on Circuits and Systems, :

Vol. CAS22, pp. 109-115, February 1975.




