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A SEMANTIC NETWORK OF PRODUCTION RULES

IN A SYSTEM FOR DESCRIBING COMPUTER STRUCTURES

Abstract. A novel implementation of the basic mechanisms of a semantic network is

presented. This constitutes a merging, in terms of the underlying language architecture, of a

powerful problem-solving mechanism, production-rule systems, with a proven representation

formalism. Details are presented on the most basic aspects of the network, namely on

representing nodes and on mechanisms for their access. Commands for definition,

modification, and search-based displays of network information are discussed. The relations

of the network are divided into six groups: taxonomic, structural, functional, descriptive,

means-ends, and physical. The importance of uniformly representing methods and network as

rules, and the importance of distinguishing temporary from permanent states are discussed.

There is sketched a production system position on a number of relevant issues for advanced

capabilities. The domain of application is the symbolic description and manipulation of

computer structures at the PMS (processor-memory-switch) level. The system will ultimately

be used for computer-aided design activities.

1. SYMBOLIC DESCRIPTION AND MANIPULATION AS A TASK FOR AI

1.1. Motivation and research context

One aspect of computer-aided design is the manipulation of symbolic descriptions of

physical systems. Problems in this area have been discussed by Eastman [4] and by Sussman

[15]. Other Al research has discussed mechanisms that may be applicable to design systems

while maintaining a general viewpoint and vocabulary, eg, Rieger's Commonsense Algorithms

[113 ™d Moore's MERLIN [10]. The present research* aims to deal with the following

problem areas:

1. Describing the basic system components.

2. Organizing those components into structures.

3. Establishing hierarchies of components and structures ranging from abstract ones
to various concrete realizations.

'This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 3597,
monitored by the Air Force Avionics Laboratory Under Contract F33615-78-C-1551. The views and conclusions
contained in this document are those of the authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Defense Advanced Research Projects Agency or the US Government.



2 1: Symbolic Description

4. Comparing structures and putting them into correspondence with each other
(mapping).

5. Analyzing structures and determining effects of changes.

6. Synthesizing structures from elementary components, trying to fulfill functional
specifications.

7. Coordinating multiple viewpoints of the same system.

8. Searching the design space.

9. Simulating system behavior symbolically, to ascertain dynamic properties.

The system presented here addresses the first three topics, with a clear intention to

proceed soon to others.

An approach to these problems would be applicable to a wide range of systems: buildings,

software systems, chemical processes, cities, etc. The techniques are not restricted to the

analysis and synthesis problems of the design area: they could provide a central mechanism

(or diagnostic, tutorial, explanatory, and theory explication systems. Such systems have been

called "understanding systems" by Moore and Newell [10]. This is a virtually unexplored

application area for AI research, and it appears to be rich in significant problems. Design is a

ubiquitous phenomenon in science and engineering (see, for instance, Simon [14]). AI

researchers need to gain more exposure to the basic concepts, and should try harder to

develop a working familiarity and vocabulary with it.

Computer structures can be explored at many levels: logic circuitry, register-transfer level,

instruction-set processor level, and processor-memory-switch (PMS) level. The PMS level is

the subject domain of the IPMSL (Instructable PMS Language) system. The basis is that of

Bell and Newell [2]. In particular, the following abstract components are considered:

C Computer L Link
P Processor D Data-operation
M Memory N Network
S Switch X External (non-digital)
K Controller T Transducer
H Port

Knudsen's [9] work in the PMS area is a direct predecessor to the present effort, with

strong influences from Barbacci and Siewiorek [1].
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1.2. A potential specific problem domain

A particularly important application of IPMSL is the hardware configuration problem, which

focuses on evaluating specific configurations of peripheral and other devices for some

computer.* Such a problem is posed by listing a set of components that a user or customer

requires for his facility. IPMSL must then relate the customer's specification to known

workable configurations and determine: which components are missing from it, if any (eg, due

to hardware or software prerequisites); which component combinations give rise to the need

for further hardware (as a result of component interactions); which component combinations

give rise to the possibility of failure or low reliability; and whether the concrete configuration

is a suitable match with the user's computing requirements. This list of capabilities is not at

all exhaustive.

Consideration of this problem arises from the knowledge that this problem is a serious one

for most mini-computer manufacturers. Such computers have a great deal of configurational

flexibility, and the demands placed on such computers by customers tend to exploit that

flexibility. This leads to problems at several locations in the computer delivery bureaucracy:

at the sales level, where costs of final systems have to be quoted to a customer (the

manufacturer usually absorbs the cost of mistakes here, which can be sizeable);, at an

engineering and assembly level, where configurations are built and tested out initially; and at

the installation level, where there can be problems of supplying in timely fashion all the

various parts and devices.

Though alternative formulations are possible, the representation of knowledge as a

semantic network, along with its accompanying "technology1*, is the basis for IPMSL A recent

survey of this aroa of Al is given by Brachman [3J See also Fahlman's discussion of typical

problems encountered in such systems [5].

2. THE IPMSL SYSTEM: BASIC SEMANTIC NET REPRESENTATIONS

IPMSL (Instructable PMS Language) is a set of production rules for building semantic net

structures in response to user commands.** IPMSL starts out as a set of "procedural1*

productions that perform the basic net-building operations. The net itself is composed of

"declarative" productions whose contents are the net's facts. There are a few "procedural11

productions devoted to constructing the "declarative" ones, on command and also as a result

'Much of the specific knowledge needed for this domain it being developed by John McDermoU.

" A n expanded version of this paper is available from the author, under the same title.
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of other processing. Both kinds of productions are interpreted according to the same basic

recognize-act cycle. The user sees the information he enters being structured into a

semantic network, while underneath, that information is stored as, and manipulated by, rules.

2 .1 . Underlying problem-solving architecture

A production system architecture (PSA) [6, 12, 17] has four components: Working Memory

(WM), Production Memory (PM), the Recognize-Act Cycle (RAC), and the Conflict Resolution

procedure (CR). WM contains the dynamic state of the system, and is the "blackboard" where

production rules make tests of patterns and make changes representing additions or

modifications to the knowledge state. WM elements are transitory, so WM cannot be used for

long-term storage of facts. PM contains the set of production rules, and is a permanent

memory. RAC consists of an infinite repetition of three steps: testing the patterns (left-hand

sides) of all rules in PM, to see which ones are true of the current WM (recognition step);

deciding among the true rules which one(s) are to be executed on this cycle, which is done by

CR; and executing the actions of the chosen rule(s) (action step). The result of an action step

is a new WM state, and control returns to the recognition step, where a new set of rules can

now become true, and so on.

The production system architecture of IPMSL is OPS2 [6\ OPS2 is a LISP-based system

whose WM is a set of list structures (S-expressions). Each WM element has an associated

"time tag", and OPS2 periodically deletes from WM the oldest elements, a strategy which

amounts to placing an upper bound on the size of WM. IPMSL currently has a "retirement"

age of 1000 WM transactions. PM in 0PS2 is an unstructured set of productions. That is, the

rules are not organized into subroutines. Rather, all rules take part equally in each

recognition. CR in 0PS2 is done by considering the following criteria in order: (1) Refraction:

repeated execution of the same rule using the same true pattern of WM elements is

suppressed; (2) WM Recency: rules are preferred that use more recent WM elements (sorting

is lexicographic by "time tag"); (3) Special Case: rules that use more WM elements, or that

test such elements more precisely, are preferred; (4) PM Recency: the more recently created

rule is preferred; (5) Arbitrary: if there is still a conflict, a rule instantiation is selected

arbitrarily. This particular set of CR principles is quite instrumental in providing control

adequate for the IPMSL task.

The implementation language for IPMSL uses the 0PS2 architecture but extends its

usefulness for this task by changing its external appearance. The extension is named

0PS3RX. The primary capability afforded by 0PS3RX is the ability to represent data elements

as sets of attribute-value pairs. This allows patterns to select more flexibly various subparts

of elements, and enhances the expressiveness and readability of the production rules.
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0PS3RX makes things look much more like "schemas" or "frames", and it is expected that

further development of the language will continue in this direction. In fact, production rules

seem to be an ideal way of expressing procedures in a frame-based system. Given the

retirement limit of 1000 mentioned above for WM elements, there are usually about 100

attribute-value sets in WM, each containing about five attribute-value pairs.

The architecture as it is used in IPMSL has a rather novel appearance, at least among

semantic network implementations. Rules are used to implement both the interpreter of the

network and the network itself. WM serves both to hold onto various processing goals and to

accumulate temporary network structures. A network rule contains the facts for only one

node in the network, including pointers to other nodes. When some goal* requires the

expansion of the net in WM along some direction (eg, in order to search for some piece of

information), a subgoal appropriate to going in that direction is formed, resulting in a rule's

execution. This causes appropriate structures to be hooked into existing WM structures, both

by creating new WM nodes and by using pattern matching to detect appropriate linking

locations. How this works in detail will be explained shortly.

2.2. Basic network design

IPMSL divides its knowledge about computer structures, and about itself, into six subnets,

each containing a particular sort of knowledge:

- Structural. Parts, Partof, and Coparts relations. A component of a computer can
be considered as a black box, or as an assemblage of known parts. Components
are related to each other at the same structural- hierarchy level with the
Coparts relation.

- Taxonomic. FSs and FSof relations. "FS" stands for "further specification", as
used in the Merlin system [10]. An object is an FS of another if it can be viewed
as the other with some additional characteristics (cf "ISA"). More precisely, the
set of attributes in the description of the FS is a superset of those that describe
the parent, and the values of those attributes may be modifications of the
corresponding ones in the parent.

- Descriptive. This category includes various attributes that don't fit elsewhere,
eg, cycle time, memory size, and bandwidth. Further classification may occur
later.

- Physical. This includes: cabinet size, power supply requirements, cooling
requirements, and noise, to name a few.

- Functional. Here are collected properties having to do with how a component

*A foal ia a WM object consiatirtf of attrfcute-value paira that deacribe what it aima at and how it ta profraaamf.

5
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functions or behaves within an assembly of other components. Specifications of
inputs and outputs are examples (see [8]).

- Means-ends. Relations in this subnet directly correspond to the language for
expressing methods (discussed below).

Figure 1 depicts a fragment of a network including three of the subnets (the structural

subnet is represented graphically; this picture is manually generated). The computer that is

partially depicted there is the DEC VAX-11/780, a recent medium-scale computer.

V A X - 1 1

PflRTOF

PORTS-*
<P.C VAX-11>

DESCRIPTION:
(EFFECTIVE-HP-CYCLE

(298 NSEO)
(NON-CRCHE-HP-CYCLE

(1880 NSEO)
TAXONOMY*

(FSOF P.C)

4-PARTOF
<«.CACHE VAX-11>

TAXONOMY:
(FSOF f i . CACHE)

-PARTS | DESCRIPTION:
COPARTS (TECH BIPOLAR)

(BANDUIDTH 8)
(SIZE (8 KBYM

i
*• VII

I
RTS

1
4-PARTOF

<P.ALU VAX-l i>

TAXONOflY:

(FSOF P.ALU)
DESCRIPTION:

(INTERRUPTS 32)
. . (REGISTERS 16)

Figure 1: A fragment of a PMS network

The figure suppresses some details about the actual node and link structure; it is intended

primarily to be an example of the kinds of information dealt with, and of how the six subnets

partition them. Note that the division into subnets essentially assigns one set of nodes and

interconnects them using six different sets of relations. As will become evident from details

below, the implementation actually attaches six subnet nodes to each main node, one for each

subnet, and then attaches relations emanating from that node to the appropriate subnet

nodes. Relations coming into a node from others in the net all point at the one main node,

however (ie, they use only the name of the node).

Nodes in WM are temporary and consist of temporary symbols with attribute-value pairs

attached. There is a main node for each object in the network, and a subnet node for each
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subnet that is defined and evoked. Figure 2 shows the WM elements for a typical component,

with Lisp internal formats translated to a more readable graphic arrangement

S8123 S0136 S8138

KNOWLEDGE-ABOUT P.C KNOULEDGE-ABOUT P.C KNOULEDGE-ABOUT P.C

ROLE MAIN NET S8123 NET S8123

STRUCTURE S8136 SUBNET STRUCTURE SUBNET TAXONOMY

TAXONOMY S8138 PARTS (D.ALU M.REG) FSOF P

PARTOF C FSS (<P.C LSI-11> <P.C VBX-11>>

STRUCTURE P189 TAXONOflY P282

Figure 2: WM elements for a typical component

Figure 2 includes a main node and two subnet nodes for the P.c (central processor)

component: SOI23 is the temporary name for the main node, S0136, for the structure subnet

node, and SO 138, for the taxonomy subnet node. Each node is identified by the

"knowledge-about" attribute - this serves to name and to tie together the three nodes (all of

which are "knowledge-about" P.c), in such a way that pattern- matching in rules can easily

collect together the separate nodes. The main node has two pointers to its subnet nodes,

and each subnet node has a pointer back to the main node. The two subnet nodes include, as

values of "structure" and "taxonomy" attributes, the names of the productions that built them,

so that long-term modifications can be done. (The main node is built by a general production,

so it doesn't need such a pointer.)

The production that builds the subnet node for the structure of P.c is the following:

P190: IF THE GOAL iS KNOULtDGE-ABOUT THE STRUCTURE SUBNET OF P.C
AND THERE IS KNQULEOGE-ABOUT THE NODE OF P.C UITH THE MAIN ROLE,

THEN BUILD A KNOULEOGE-ABOUT P.C SUBNODE UITH SUBNET STRUCTURE, UITH
NET THE NODE OF P.C UITH THE MAIN ROLE, UITH PARTS (D.ALU M.REG),
AND UITH PARTOF C,

AND MARK THE GOAL SATISFIED
AND ROD TO THE NODE OF P.C UITH THE MAIN ROLE THAT STRUCTURE IS

THE NEU SUBNODE.

The syntax used here is a hand translation from the list-structure version, for readability.

Some clumsiness remains, due to the effort to retain as much of the attribute-value flavor of

the representation as possible. "Of" and "with" denote a relation between a pair and the

object name to which the attributes apply.

All such network-information rules have a similar structure: a simple "if" part that detects
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the goal to access the knowledge and gets from WM existing information about the main node

for the component desired; and a "then" part that constructs the appropriate dynamic node

for the particular subnet, along with updating pointers back and forth.

Two general productions are involved in accessing network knowledge, one to build the
Mmain role" node when it is absent from WM, and the other to notice that the knowledge

desired is already in WM, and thus to mark the "knowledge-about" goal to be satisfied. These

are P98 and P99, respectively, and are displayed below:

P98: IF THE GORL IS KNOULEDGE-RBOUT SOME SUBNET OF SOME OBJECT
flWQ THERE IS NO KNOULEOGE-ABOUT THE NOOE OF THAT OBJECT UITH

THE HRIN ROLE,
THEN BUILD P KNOULEDGE-RBOUT NODE FOR THPT OBJECT UITH ROLE MAIN.

P99: IF THE GORL IS KNOULEDGE-ABOUT SOME SUBNET OF SOflE OBJECT
RNO THERE IS KNOULEOGE-RBOUT THE NOOE OF THRT OBJECT HITH

THE HRIN ROLE UITH THRT SUBNET BEING SOME SUBNODE
RND THERE IS KNOULEDGE-RBOUT THRT SUBNODE,

THEN ttflRK THE GORL SATISFIED.

Note that "some* and "that" refer to unrestricted pattern variables in the actual

productions; the word following them is not a semantic restriction on values assumed by the

variables, but enhances human readability only. The way that these three types of

knowledge-access productions work together is dependent on the conflict resolution strategy

of OPS2, particularly the special-case criterion, by which the rule that matches more data is

preferred. P9S is the least special-case of the three, and its condition is explicit enough that

it will be true only when the others cannot be, so special-case is not so critical for It. But

neither P I 9 0 (and all others of its type) nor P99 has any negative conditions, so P I90 can be

true af the same time as P99, and here the special-case criterion makes the difference.

One other form of access is used: access to a particular attribute of an object, where the

particular subnet is not known, an example of which is PI45:

P 1 4 5 : IF THE GOflL IS KNOULEDGE-RBOUT THE PRRTS RTTRIBUTE OF SOflE OBJECT,
THEN ROD TO THE GORL THRT THE SUBNET IS STRUCTURE.

There is a production like PI45 for each attribute that is known to the system. Note that

P I 4 5 remains true even after it fires, but that conflict resolution prevents it from repeating

in a couple of ways (one is sufficient, of course): the refraction principle inhibits such

repetition explicitly; lexicographic recency will give preference to other rules whose

8
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conditions include the subnet information that P145 adds - the productions displayed above

are all good candidates so that those others will fire next.

The Kind of action done by P145 is typical of the production system style used here: a goal

is a symbol structure to which a variety of rules can contribute small pieces, until enough is

accumulated to make the goal satisfied.

2.3. Basic IPMSL methods

The above has sketched the mechanisms of basic access of information in IPMSL Now we

turn to three central IPMSL commands, which build on the basic access to form actions with

wider effects.

A user causes the construction of new network nodes with the DEFINE command. The

method for doing this involves taking the information from the user and embedding it in the

fixed structure common to all knowledge-access productions, of which PI90 above is an

example.

Modification of existing net structures is done with the LET command, which includes the

attribute and the new value of the symbol to be modified. WM structures are modified

directly. PM (Production Memory) structures are accessed via the appropriate pointers in

WM (ie, rule names that are kept with each node) and then their actions are edited so that

future executions will result in the modified structures being built in WM. Usually the Let

command has the proper subnet filled in by rules that know which attributes are part of

which subnets, eg, PI45 above. This subnet inferral is done in the process of accessing the

knowledge, as part of Let. The purpose of this access is to check that the Let command is

actually specifying a change to existing information.

The user can evoke a region of the network and have it displayed in a tree format by

using the SHOW command. This command sets up goals to search from a starting node

through all nodes related to it in specified ways. At each node visited, information is

collected into a tree structure, and after the search is completed, this tree is printed. The

Show command has a number of options, which specify what kind of additional information is

to be collected at each node.

To summarize, the basic IPMSL commands provide access (query), definition, modification,

and search-and-display capabilities. Generality has been maintained: there is very little in

IPMSL that is specific to the division into six types of subnets, or to the PMS domain. Also,

the methods, expressed as rules, have proved to be easily modifiable. Two other design

issues can be mentioned:
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The net is divided into six subnets for several reasons: to make rules a
reasonable size, to avoid extra information being added to WM, to impose some
structure on knowledge as it comes into the system from the user, and to
modularize the methods that work with the net.

Efficiency is a concern, since IPMSL is intended to be worked with interactively.
Response times for network definition commands are in the range of one to two
minutes on our time-shared DEC KL-10. This is usually significantly exceeded by
the time it takes a user to decide how to formulate the next piece of network to
be added, and is therefore a tolerable response delay.

3- THE IPMSL APPROACH TO INSTRUCTION AND AUGMENTATION

IPMSL started out as a small set of productions (less than 50) called Kernl2 (Kernel, version

2). Kernl2 allows simple kinds of interaction to take place, including interaction that leads to

adding new rules. The first interactions with Kernl2 involved adding to and improving

Kernl2's capabilities, while later ones were more and more devoted to adding the basic IPMSL

commands. Kernl2's essence is a set of methods for interpreting and executing user inputs

that are expressions in a simple method language. This method language allows the user to

designate elementary components of a method. After a number of such designations, the user

gives a command essentially saying that the method is ready to be formed into productions,

and Kernl2 does the rest of the work: keeping track of what is designated and finally putting

it together into rules. Kernl2 also includes rules that describe itself in a declarative way.

Thus, a user can both construct methods of his own for new goals and access the Kernl2

network to understand and augment Kernl2 itself. Both of these operations have in fact

taken place as IPMSL has grown.

The Kernl2 approach to growing a system, ie to instruction, builds on two previous

independent approaches: that of the Instructable Production System project [13] and that of

Waterman's Exemplary Programming [16].* The idea behind having Kernl2 be a part of what is

basically a semantic network system has three aspects. First, the method language of Ke*nl2

allows a user to easily build up new system behavior, ie, it is a means to making the system

fully extensible. Second, method construction takes place within a dynamic WM context that

is similar to that in which the method will work after it is finished. Third, all of the

above-mentioned method language facilities are available both to the user and to internal

methods built from rules.

The basic IPMSL system is composed of 316 rules, of which about a third are network

4The interested reader should consult those references end the detailed version of this fMper, available from the
author.

10
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rules, another thir^ are Kernl2 rules, and the remainder are 1PMSL methods. The scope of

the PMS and VAX networks (95 rules) is as follows: basic taxonomic information about the

abstract single-letter components (described at the beginning of the paper); taxonomic

information about other abstract components, eg, P.c (central processor) and M.p (primary

memory); structural, taxonomic, and descriptive information about the VAX-11, except for

peripheral I/O devices (these would ordinarily be given during specification of various

saleable configurations).

Some auxiliary software has been added to aid the direct coding of rules, bypassing the

method language approach to growing the system whenever this seems expedient. This

includes a facility for abstracting and displaying all or a select part of the rules in a

particular method in a relatively small screen space; more flexible rule entry and editing,

including the ability to copy information from one rule into another (thus one can make a new

rule HlikeN another, and then edit in the discriminating elements); and the ability to make

listings of the rules organized according to method. With these aids, it is possible to grow

and debug the system at a rate of about two to five rules per on-line hour.

4, ADVANTAGES AND DISADVANTAGES OF USING RULES FOR A NETWORK

My evaluation of production rules as a basis for a semantic network system consists so far

of a set of subjective impressions and design characteristics. The existing implementation of

a net is an unusual mix of procedural and declarative components. The net is active in a real

sense, though controlled by particular activation goals. Control in general for the net can be

distributed around, as rules, but since WM is global and inspectable at all cycles by all rules,

there can be global (centralized) control to a large extent. As yet, there has been no

problem of searches in the net getting out of control, and in particular, unexpected rule

firings have not interfered with processing.

The following lists a number of specific advantages that production-rule systems seem to

have for network systems.

- WM serves as a large dynamic context. It records uniformly both the state of
methods that are being executed and the state of the network as it is searched.

- The single shared dynamic state allows flexible control of searches. That is,
ordinary searches can be monitored by global, general rules, by specific search
heuristics, and by control knowledge that is distributed throughout the net - a l l
expressed as rules.

- WM is useful for growing large, hybrid, temporary structures and mappings -
things that one would not necessarily want to become a permanent part of the
net.

11



12 4: Advantages and disadvantages of rules

- Rules can bring together (by recognition) complex patterns of diverse knowledge,
thus making it possible to integrate information in new ways.

- The rules are readily organized into an instructable structure.

- Searching methods and others can themselves be described using the same
network conventions as the subject domain.

- Goals are interrelated in ways that can be much more open (heterarchical) than
conventional recursive (hierarchical) forms: the goals are global structures in WM
that can be processed in varied orders, can be satisfied in accidental ways, and
can be examined and re-ordered flexibly.

- Existing efficiency techniques for production-rule systems can be immediately
carried over to network searches. In fact, the rules in OPS2 are compiled by
converting their patterns into a very efficient network structure, developed by
Forgy [7\

- The recognition part of the execution cycle is amenable to simple parallel
implementation.

- The net ne^d not be uniformly encoded: one could do various arbitrary things to
evoke information (or to respond to it) in special cases.

The above positive features can be balanced with the following disadvantages.

- Space usage seems high: a few attribute-value pairs require a good bit of
surrounding rule structure. But any such network requires some space
overhead.

- Search is serial: nodes are developed one at a time. But as mentioned above,
given a parallel processing architecture, production systems are favorable for
exploiting it.

5. CONCLUSIONS

In concluding, a few major points can be re-emphasized. Implementing the network as

production rules has allowed the fruitful merging of two hitherto separate technologies: a

problem-solving procedure formalism and a semantic net representation formalism. The

network organizes both domain information and information about the methods of the system

itself. The latter system network is usable both by an instructor of further methods {as

information about existing system structures) and by the system itself in identifying items

from an input sentence with the internal requirements of methods (ie, It infers which

attributes to attach to values specified in an input). More advanced self-manipulation

capabilities based on the network are subjects of further research. Using production rules

12
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allows the system to take advantage of recent progress in techniques for growing such

systems, as is evident in the discussion of the method language commands above.

The production system architecture provides a number of useful features. Methods and

network share the same working space (WM), so that rules are readily applicable both to

control the evocation of network information and to provide useful information for methods to

use. The network need not be entirely of the rigid formats illustrated above, but can mix the

access of information with arbitrary methods. The existence of the large dynamic state

makes it convenient to build elaborate temporary structures and to dynamically organize

network fragments into larger units, an ability emphasized as important in many recent

network designs. Rules are a natural way to express a large variety of search control

strategies, an issue whose importance becomes critical in very large, diverse networks. The

pattern-matching power of the rules allows such control to take into account much more than

just a local search context, and affords the opportunity to integrate diverse pieces of

information.

Advantages of using a semantic net implemented as production rules appear to outweigh

the disadvantages, and examination of problems that can be expected when more demands

are made of the system supports the continuation of this line of work. IPMSL has so far

proven effective for defining, updating, and displaying a network for the DEC VAX-11

computer. Research is currently proceeding on using the basic ingredients presented here to

provide IPMSL with higher-level capabilities, approaching operations that will prove useful to

its intended domain of computer-aided design. It may eventually be able to improve or

supplement human abilities to manipulate and maintain very complex structures, at least in

certain problem areas. The work so far has advanced knowledge on at least two fronts:

First, in formulating knowledge precisely so that a system such as IPMSL can encode it, one

inevitably improves the basic knowledge of the domain, in organization, precision of detail,

and explicitness of assumptions. Second, there is expansion of knowledge about the

requirements that demanding intellectual tasks place on the production system architecture

and on a larger body of AI concepts and techniques.

5.1. Addendum

As of the time of final revision of this paper, IPMSL has grown to a size of 610 rules with

no degradation in its overall manageability, and with very little decrease in efficiency of

interpretation. The total system size relative to the PDP-10 is becoming much more of a

problem: it is expected that another 200-300 rules will consume all the remaining space

addressable by a user; also the size of the present system poses a significant load for the

time-sharing system, resulting in longer response times. Of the new rules, about 237. are

13
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network, as compared with 307- in the system detailed above, with the remainder being new

methods. Additions to the functional capabilities include a number of new display, editing,

inference, and data-checking capabilities. The system understands considerably more about

the abstract attributes and values that are used to describe computers, and is able to

interactively expand and correct that body of data as new computers are described. This

new understanding has been applied to updating parts of the VAX-11 description that was

initially entered to test the basic capabilities described above. Additions to the network part

of the system include a network that holds information about attributes and values (used in

data-checking), descriptions of abstract computers, and help facilities for the new methods.

Construction of the higher-level methods to deal with general and specific aspects of the

hardware configuration problem will begin soon. This next phase will build to a considerable

extent on the existing framework.
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