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ABSTRACT

and a program for evaluating the first derivatives of a polynomial of

degree n. In this Paper we analyze that family of a2lgorithms and present

A program for selecting the optimal value of q under the constraint
that q divides n+] is given. We also analyze a Program that eliminates
that constraint and a simple program that selects a good, but not always
optimal, value of 9. We derive bounds on how close to optimal the "good"
value will be,

The above results apply for n > 12, ye extend the results to all n
by tabulating the cost function for n < 12,

Some open questions on extensions of our results are stated,



1. INTRODUCTION

We have previously presented a one parameter family of algorithms for
evaluating the first m derivatives of a polynomial [Shaw and Traub, 1974].

In this paper we analyze that family of algorithms and present a practical
algorithm for selecting optimal or good values of the parameter.

The classical algorithm for evaluating a polynomial and its derivatives
is Hornmer's Rule, which requires O(mn) additions and O(mn) multiplications.
In 1972 we presented an algorithm which requires the same number of additions
but is linear in multiplications and divisions (M/D) [Shaw and Traub, 19727,
This result and concurrent research on applications of fast algorithms re-
lated to the discrete Fourier Transform led to an improving sequence of

asymptotic results for the special case of all derivatives. The first of

these was O(n 1og3 n) in total arithmetic operatioms [Borodin, 1972]; this
was reduced to O(n log2 n) by Kung [1973], Strassen {1972], and Borodin £19731].
New results by Aho, Steiglitz, and Ullman [1974] and Vari [1974] are O(n log n).
The algorithms analyzed in this paper differ from most fast algorithms
in that the benefits can be obtained for small as well as large n; 3n-2 M/D
suffice for any value of n,
Furthermore, our algorithms are applicable for all m, whereas the asymp-
totic fast methods apply only if all derivatives are calculated. On the other

hand, the most important cases in practice are for small m and for m=n,

There are many open questions on extensions of these results. Questions

concerning only the calculation of all derivatives include:

1. 1Is there an algorithm using only a linear number of additions?

2. It is easy to show at least n+l multiplications are required. An
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upper bound is 3n-2 multiplications and divisions. Can these
bounds be tightened?
3. How many multiplications are required if divisions are not per-

mitted?

Let P denote a polynomial of degree n. Define a normalized derivative

i)y, . . . .
as P( )/11. When we refer to derivatives in this paper we always mean norm-

(0)

alized derivatives. We consider P itself to be the zeroth derivative P .

To compute the first m derivatives of P, let

n
P(x) = £ a_ .x,

let p and q be such that n+l = pq, and define
S(J) = (n'j) mod 9, j=0)1:---:n-

Then Shaw and Traub [1974] presented the

Algorithm
(1.1 T;] = ai+]xs(1+”, i=0,1,...,n-1
T; - aOXS(O)’ 3=0,7,...,m
j j-1 j s(i-1)-s(i-j-1)+1 L.
Ti B Tg_-] + Ti-]}( ( ) ) ’ J=0,]""Jm’ 1=J+],oo-,n

and proved that P(j)(x)/jl = Ti/xj mod 91,

Stewart [1971] has performed an analysis of the effects of rounding er-
rors in the use of the iterated Horner's rule for root shifting. This corresponds
to the special case ¢=1, m=n. He concludes that zeros near the shift are

not unduly perturbed., Despite the divisions used to obtain the derivatives

J

from Tn’ Wozniakowski [1974] has established a similar result for the family

defined by the algorithm,



A program (Program D1) to perform this calculation was presented
previously, and the number of operations required to evaluate P(x) and its
first m derivatives was established [Shaw and Traub 19747. The number of
additions is (m+])(n~%) independent of q. In this paper we consider only
the number of M/D required, and we show how to choose optimal or good values
for q.

Given n and m, we showed that the best choice of q can be obtained by
minimizing the function

n+1 r2+r+2

=n - . +
fm n,r(q) n-1+m 1 (mt2)r + q >

3

where r = [m/qj and q is an exact divisor of ntl. For fixed n, the cost func-
tion is a surface in three dimensions with coordinates m, g, and fm,n,r(q)'
" The requirement that g divide n+1 will be relaxed in Section 4. It is main-
tained until then to simplify the analysis.
Known results on the evaluation of polynomials and their derivatives are
special cases (often for poor choices of the parameter q) of this family of
algorithms, These examples were presented as special cases in [Shaw and

Traub, 19743}, They are summarized in Table 1; the m and q coordinates are

displayed and the surface fm n

r(q) is suggested by specific values,
] »

Special properties of the algorithm allow a saving of one M/D each in
column n+l and row n. These savings are not shown in Table 1, nor will
they be included in the analysis below except where mentioned explicitly,

In Section 2 we view f (q) as a piecewise continuous function of

m,n,r

m and q. This continuous model is used in later sections to help explain
the behavior of the discrete parameter case,
In Section 3 we restrict m and q to integer values, and analyze the

selection of q for Program D1. We present a rule (Program S1) for selecting
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Number of M/D Required by Some Members of
the Family of Algorithms for Computing

Polynomials and Derivatives
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an optimal value of q for n > 12.

In Section 4 we relax the constraint that q divide n+l., We present
and analyze a new program (Program D2) that works without the constraint.
We show that for Program DZ a simple rule (Program S2) selects a good, but
not always optimal, value for the parameter, and we derive bounds on how
close to optimal the ''good" value will be. Given m and n such that n > 12
and 0 <m < n, the following program selects a good value a as the family

parameter for Program D2:

PROGRAM S2:

begin

if m = 0 then Q « 1

else if m < E%l then a < round (mﬁ(n+l))

R

end

The theorems developed in Sections 2, 3, and & usually apply for n > 12,
In Section 5 we extend the results to all n by tabulating fm 0 r(q) for n = 12,
kRt |

For comparison purposes, we also tabulate the function for a few representative

values of n > 12,



2., THE CONTINUOUS MODEL

If we relax the requirement that m and q be integers, we can use
techniques of calculus to understand the behavior of the function fm,n,r(q)'
Restoring the integer constraint then forces us to consider only particular
achievable points., For example, the minima of the continuous function do not
always correspond to integer values of m and gq, but knowledge of the locations
of those minima can guide the search for the minima of the discrete function.

2.

Since the optimal result for m = 0 is known to be q = 1, we assume m 2 1

I

Note, however, that r is always a nonnegative integer, r

unless otherwise noted. We assume throughout that m < n., Also, since q is
treated as continuous we always have nt! = p.q for some p.

We now study the locations of the minima of

2
2.1 £ _(q) =n-1+ %ﬂ)— - r(m+2) + g (r;g*zl
] 2

for given m and n.
let n,m be fixed, Then r is determined by q., For each value of r,

fm n r(q) is a rational and continuous function of q. The m-q plane
2

is divided into regions by the values of r, These regions are specified by

(2.2)

The cost function f
m,n

r(q) is piecewise continuous,
3y

In the remainder of this paper we often abbreviate fm a r(q) by fr(q).
3




We investigate the minimum value of fr(q) in each of the r-regions. Now,

2
' _ m{n+1) r +r+2

Denote by Qr the points at which f;(q) = 0, Then

4| Zm(n+1)
@9 q —J 2eri2

and

- ‘
(2.6) £.(Q) = n-l-r(mt2) + ?‘%ﬁz-\l m(n+1)

Observe that if n is fixed, then the graph of Qr as a function of m is a para-

3
bola for each value of r, Since f"(q) = (Zm(n+1))/q > 0,

there is at most one interior minimum, If it exists, this interior minimum

lies at Qr' The following theorem describes the location of the minima of

fr(q).

THEOREM 2.1. The minimum of fr(q) is:
1, at the interior point Q0 ifr=20,
2, at the interior point Q] ifr=1, m >

mifr=1andm =< E%l,

3. at ¢q

n

4, at g % for r = 2.

PROOF

i. Let r = 0, Then m < q < n+l,

Now,

fo(n+1) =1 «—=>0

frm) = 1 - mntl)



Hence fo(q) has an interior minimum at Q. ={m(nt+1).
_ n+l
2. Let T = 'I,m>——2 . Then;—]d(q < m.
£l =2 - ntl .

m
1 2 (n+1)
' = - -
£ (§m+) 2 Q m>\ 0.
Hence f1(q) has an interior minimum at Q] =\l-;-m(n+1) .

3, Letr=1,msﬂzt‘—
. - otl
f](m)— - 0

1
Therefore f (q) is monotonically decreasing for ;m < q < m and the minimum lies

at q = m,

4., Let r = 2. Note that

m
1 . r (x+1)
fr (?+_1>_ (r+1) [2 - {r+1) " ] + 1 <0 for vr =2 0.

We show f'£§)< 0, vr = 2. Now,

. 2
fé(‘-“-): - {otl) L TEE L e w(r)
T m 2
Hence
2
w(r) = r (;—-x) +§+ 1,
where x = E-ntl' Since

w(®) < 0, w(2) < 0,

1 1 1
W(l‘)=2r(§')+5<0, forxz1, rz2



we conclude
w(r) = f'(E) <0, vr = 2,
nr 4

Hence for r =z 2, the minimum of fr(q) lies at q = m/r. QED

Theorem 2,1 shows how to find the minimum when given a region. The next

three theorems show how to choose a region, We first show that only two regions

are interesting, then give a rule for deciding between those two regions.

We first prove

LEMMA 2,1

If n>2, r 22, then
m m
fr(r) < fr+] r+D *

PROOF

2
£(D) = @D+ - e,

LU W - m 2 T
fen(Gan) = @D ) - seloatr) - Lo,

L S AL r m, 2 11
fl’-H r+'|> fr(r) n-1 - +1] m + z(r -r-2) [I‘-r'f']J >0 QED

THEOREM 2.2, Let n 2 12. Then the minimum value of fr(q) lies in one of the

regions r = 0 and r = 1.
PROOF. The proof is divided into three cases:

', Ifn212, msn, r 23, then fr(%)> £,(Qy)-

2, Ifnz3, n < n=2 = 2 u
s » T =2, then fZCO.n) > £4(Qy).
3. Ifnz= 9, n-2 <m < n, r = 2, then f2<g) 3 fT(Q])°

When we have established these three cdses, it then follows that at least one

f : m
° £fO(QO)’ £,Q;)} is smaller than fr(;j’ Mm, ¥r = 2. The theorem then follows

immediately,
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By Theorem 2.1, the valuaes of f considared in this proof are the minima
of £ in their respective regions for the values of m in question,

1. We first establish

Now £5(3) > £Q.

fB(‘;_l).. fO(QO) = 3(n-1) - %m - 2, m(nt1),

The worst case is at m = n; in that case the expression above 1is

positive when lg-nz - 18n + 9 > 0 which is true if n = 12, By Lemma 2.1,

£(3) (3 =4

which completes the proof of Case 1,
m
2. fz(f) - fO(QO) = 2(n-1) - 2/m(nt+1) .

Now,(n-])2 - m(nt1) is linear in m. Thus, when n is fixed there is
. . my . , ;
only one peoint at which f2(2> = fO(QO)‘ This point lies between

m = n-2 and m = n-3. Hence
m
fz(i) > fO(QO) for m < n-2,

3. Let a(m) = £3) - £,(@)) = 2n +m - 2./ 2m(at]) .
We consider m = n, n-1, n-2,
Atm = n, A(n) = 3n - 2J5;?;:TT 3
Then A(n) > 0 when 9n2 - 8n(mt+1) > 0, which holds for n > §,
At m = n-1, A(n=1) = 3n - 1 - 2,2(0-1) (ot1) .
Then A{n-1) > 0 when n2 - 6n + 9 > 0, which holds for all n % 3,
At m = n-2, An-2) = 3n - 2 - 2,2(n-2) (rt1) .

Then A(n-2) > 0 when n2 - 4n 4+ 20 > 0 which holds for all n. " QED
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] .
THEOREM 2.3 Let n 223, m < E(n+]). Then the minimum value of fr(q) lies

in the r = 0 region at Q0 = uﬁ(n+1) .

PROOF. From Theorem 2.2 the minimum value of fr(q) lies in one of the regions
r=0and r = 1. From Theorem 2.1, it lies at QO ifr=0and at q =m if r = 1,
m < %(n+1). We need only compare fO(QO) and f](m). We show under the

hypotheses of this theorem that fO(Qo) < f](m). Now

A(m) = fO(QO) - f](m) = 2ym(ntl) - (otm-1),

]
If m is small, A(m) < 0. The WOorst case is at m = 5(n+]). Then

A(%(nﬂ)) = n(/f—%) + W24 ;—_which is negative for n = 23, QED

]

THEOREM 2.4 Let n 2 23, m - >(n+1).  Then:

1
1. If m is near E(n+1), the minimum value of fr(q) lies in the r = 0

region at Q0 = Mm@+, I1f m is near n, the minimum value of fr(q)

o+
lies in the r = 1 region at Q] =/ Ejgrllu

2, TFor n fixed, there is a unique value of m where the crossover from
r=0tor =1 occurs. The trossover point is given by
m+ 2+ 21 - Vﬁ)dﬁ(n+]) =0, As n =~ =», this Crossover moves to

w/n = 4(3 - 2,0) & 686,

PROOF

1. By Theorems 2,1 and 2.2 we need only compare fU(QO) and f](Q1). Now,

Am = £0(Q)) - £,Q) = @ + 2 + 2(1-B) aarTy .
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. 1
Since A((—§—9+) < 0 for n 2 23, A(n) > 0 for n = 0,

the conclusion of Part 1 follows
Since

Ay = 1+ (oL

1
is positive for E(n+1) < m <n there is, for fixed n, a unique
value of m at which the crossover of the minimum from the r = 0

to the r = 1 region occurs, This crossover is given by

Am) =0 =m+ 2 + 2(1-/D) m(ntl).

As n = =, the crossover moves to m/n = 4(3 - 2/2) & .686,

QED



=13~

3. THE DISCRETE PARAMETER CASE

In the previous section we treated fm,n,r(q) as if it were continuous
in m and q. However, the function makes sense in the intended interpretation -
multiplication counts for an algorithm - only if m and q are integers. 1In
this section we constrain m, n, and q to integer values, and further require
¢ to be an integer divisor of n+l. We will relax this divisibility restric-
tion in the next section, In order to distinguish evaluations of f on the
restricted values of q from the general evaluations of the previous section,
we denote by q* the values of q that are restricted to integers,

Given m and n, the optimality problem for the discrete parameter case

80 as to minimize f (a ).
m,n,r

is to select an intege: value Q

It is not sufficient to select an integer q ' close to the value of q (q'=lq],

for example) that minimizes the continuous case; there may be another integer,

i - 1
n,r(q') < f (a").

q", such that f
m m,n,r

>
The development in this section parallels Section 2, We first show
(Theorem 3,1) that the best q lies in one of the regions
r =0and r = 1, We then show in Theorems 3.2, 3.3, and 3.4 how to select
the best q: within a region. Next, we show how to choose between the regions
r=20and r = 1 (Theorem 3.5). Finally, we present an algorithm for choosing
Q* given m and n,
Throughout this section we prove results for moderate to large n - at
worst, n > 12. Precise statements for smaller n can be made by carrying
more detail in the proofs or by enumeration. We do not take advantage of

the special cases m = n and @ = n+l; a one-multiplication saving can be

made in each of these cases,
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THEOREM 3.1, Let n > 12 and assume qw[(n+1). Then the minimum value_of

*
fr(q ) lies in one of the regions r = 0 and ¥ = 1,

PROOF, We will show that if m < n, n> 12, r 2 2 then fﬂ(n+1) < fr(qﬁ).

it follows that the best choice of q" will lie inr =0 or r = 1,

From the analysis of the continuous case we have the results

. m

(a) for r 22, min fr(q) = fr(;
m quE
r+1 T

There are two cases: m <n - 4 and n - 3 £m < n,

Case 1; m <= n -~ &

%
Note that q’ = nt+1 always lies in the region r = 0. If m £ n - 4 then
m +* *
£ (xt]) = 2nm < 3n-3 = fz(—z-) < £,(q ) for any q in the region r = 2,

Since fz(‘zﬂ) < fr(%) for r > 2,

AN . * > 7
fo(n+1) < fr(i) mmln% mfr(q ) for r
r+1 1 £¥

Case 2: n -3 =<=m=n

Case 2a: r 23, n> 12

By the same reasoning as for Case 1,

2 _ *
£ (nt1) = 2ntm < 4(a-1) - §m = £5(3) < £5(q)

for any q“ in the region r = 3, provided n > 12.
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Case 2b: r =2, n =12

o

When v = 2, q may assume values in the following ranges:
m=n %<q*5§
m=n - 1 2-%<q*5§-%
m=n - 2 %-%(q*sg'-]
m=n -3 $-1<qs3-3

Since the integer divisors of nt+] are q = o1 for these cases (and provided

k 3
. * o ontl 7 11
n 2 11) the only possible value for q is -"'3— But f (n+1) 2nt+m < gn-l-m -3
= fz(E;—] when n = 12 and so f (n+1) < f (q ) QED

Theorem 3,2 shows how to select a Q from feasible values in a given

region,
THEOREM 3.2. Let y < v be factors of n+l] and fix r. Then

<n+1> < f ( >1f and only if m < (n—l—T)r +r+2 .

2uv

nt+i +1
PROOF. Note that fixing r restricts the range of m to r(T) fm< (r+1)(£lv—)-

Now,
(2
ntl) _ o+l et
fr(T) =n-1+mk - (m+2)r+(k)\ 7
+1 +1
Let A(u,v) = fr(Lu) - fr(——-nv)

2
(v-u) (n+])<%zfﬁi%) -
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Since v-u > 0,

A(u,v) > 0 exactly when m < (nt1)

For the only two cases of interest, this specializes
f Ll-_+_—]-><f-rl--tl> Whenm<—t]—
o\ v O\ u uv

f.&tl)<f El) when m < 240t1)
I\v T\ u uv

The next theorem further restricts the values of

sidered when selecting Q within the region r = 1.

r2+r+2

2uv

to

wta
iy

QED

g that must be con-

THEOREM 3.3. Assume ntl is non-prime, Let u be the smallest divisor of mtl

greater than 1 and v be any other divisor. For values of m3 5 T < n:] < EEl £ m,
+ +

we have f&’%s £ (—u) QED
u TV

PROOF. If u > 1, thenu 2 2 and v = 3 and by Theorem 3.2 f <n+7) < f ( )

if and only if m < _Lﬂill. But if it were the case that m < gﬁg%ll we would

uv
n+1 2 nt+1

n+!

have m < ,whlch contradicts the assumption m & s Hence

.

The next theorem further restricts the values of

ered when selecting Q“ within the region r = 0. Recal

*
THEQREM 3.4, If QO is an integer, min ,f_ {(q } is at

m < q 0

QED

q that must be consid-

1 Q

o

q,‘ _

= min f (CI) _m-

m< q

QO. Otherwise let

n+1 n+1
v. < v. be the integer factors of n+l such that — — and -, are adjacent to

1 2 V1

* n+1
and on opposite sides of QO. Then Q 1is either . °r

1
is either £ (%) or £ (21 .
0 \.r1 0 v2

PROOF. f

ot
ry

0

n+]

V)

is concave up in this region, with minimum at QO'

that is, min f (q )
m<q

If Q0 is an integer,

q = Q0 is clearly optimal, Otherwise, of two points on the same side of QO’ the

point of evaluation closer to QO will yield the lower value.
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*
Now we consider the selection of Q from values that correspond to dif-
ferent values of r, From Theorem 3.1, we know that the values correspond

tor=0and r = 1,

THEOREM 3.5, Let u < v be factors of ntl, Let n > 12, Consider only values
1
of m3y - < ~ =m< - (That is, let u correspond to r = 0 and v cor-

respond to r = 1), Then

+
{(a) f] (“V_il>< f0 Eu—] when

]
Lo
3

]

(ii) u=1, v

(iii) u=1, v>3, m= o

+
(1Y u=1, v= 3, m= Egl + 2
(ii) u=1, v=4, n= Efl'+ 1

n+1 n+1
(c) f](;;;> > fo(i;%> otherwise,
S 2 oty _ 2T
PROOF., Let A(u,v) = f](:v‘> - fO(;u,> (n+T)(&—€> + mv-u-1) - 2

Case 1 establishes parts a and b and a portion of part ¢, Case 2 establishes

the remainder of part c.

Case 1: u =1 ]
+
A(l,v) = (n+1)(%-1) + m{v-2) -2 = 65-5;5)(v-2) -2

By enumeration for v < 4,
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A1,2) = =2 <0
A(1,3) = m - E%l -2 so A(1,3) <0 form = E%l, Egl + 1
A€1,3) = 0 for m = E%l + 2
A(1,3) > 0 otherwise
b(1,4) = 2m ”E-ZL]_" 2 so A(1L,4) <0 form=gz—]
oti

A(1,4) = 0 form o + 1
A(1,4) > 0 otherwise

For v > 4,

AT, v) = ('E:,i (v-2) - 2 so A(T,v) <0 form = n_-\l;l

A(1,v) > 0 otherwise

Case 2: u 22

Since A(u,v) is an increasing function of m, it suffices to show Au,v) > 0

+1
for m - E;—. Substituting for m, let

21
Rwsw) = (n+1)(%-;> LD o,

where  and v are potentially continuous. We show 3(u,v) > 0 for all u, v for

which v > u and both u and v divide ntl.

+ +
Let j = E;l and w = %1%. Then w = u for integers u, u < v. Since
2
_5_2 3(u,\)) = —2(n+1)/p,3 < 0,
o
1

the minimum value of K(Q,v) for 2 € p £ w must occur at y = 2 or p = w. Now,

il

1
8(2,v) (n+l)(?-%> -2>0,v=z3,nz12

vn-n-1
Bew,v) = S - 2.

. 3 +1
Since == 3(u,v) = E“i(u-1) >0, u> 1,

v
n-11
n+5

R(w,4)

>0, n=12
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we conclude

Rew,v) >0, v24, 0212

which completes the proof. QED

The results of this section can be summarized in

o .
PROGRAM 51, [ selects Q , an integral divisor of atl, to minimize f (q*)]
m,n,r
Given n,m such that n > 12 and 0 <m < n, this algorithm gives Q.
Let u be the smallest factor of n+1 3 u > 1 (if m+l is [Theorem 3,3}

ﬂ+])o

prime, u

Let Q0 = Mﬁ(n+1). If m = 0 set v, = a, v, = 1. 1If Q0 is 2 positive

n+1

integer, set vy =, = HEE; Otherwise, set v, and vz(v] < vz) to
+
adjacent factors of n+l 3 E;l < Q0 < Esl. [ Theorem 3,4 ]
N 2 1
To find Q
begin [(Horner's Rule]
if m = 0 then Qw ~ 1 else
if m2 Tl then
ir a =2en
begin
, * o+l ;
if u =2 then Q@ + =o— [Theorem 3,5a(i) ]
*
else if u = 3 and Ml ocns E%l + 1 then Q « E§l {Theorem 3.5a(ii)]
. + % +
else if m = Eal then Q@ + Eal [Theorem 3.5a(iii)]
else Q & n+ [Theorem 3,5b and
end 3.5¢]
else
begin
if m < =>— then Q « otl (Theorem 3,2]
172 V2
*
else Q@ « ukatl
Y1
end
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4, RELAXING THE DIVISIBILITY CONSTRAINT

The algorithm (1.1) for computing the value of a polynomial and some
derivatives does not depend on g being an integer factor of ntl. However,
Program D1 [Shaw and Traub, 1974] requires that q divide n+l, In this sec-
tion we present a program (Program D2) for which g need not divide nt+l: we
establish the operation counts for this program; and we develop a simple
rule {(Program S2)} for selecting q without regard to the factors of n+l.

When using Program D1, the number of M/D required to evaluate some of
the derivatives of P depends strongly on the factors of n+l, If there is
no factor near Q0 or Q1 then the cost may be much higher than the contin-
uous model of Section 2 might suggest. Even though Program D2? exacts a
penalty in extra multiplications for using a g that does not divide nt+],
it is often less expensive than using Program D1, This is particularly true
when m is small and n+! is prime. For example, when n+l = 23, the best se-
lection of q for each program results in the following number of multiplica-

tions:

Program D] Program D2
m q # mult q # mult
0 i 22 1 22
1 i 43 4,5, or 6 31
2 23 46 6 or 8 35
3 23 47 8 38
4 23 48 8 or 12 41
5 23 49 12 43
6-10 23 m+44 12 2m+33
11-12 23 mtad 12 m443

PROGRAM D2 [for evaluating m derivatives of P of degree n, given q]

begin
[Given: n, the degree of the polynomial

m, the number of derivatives required

g, the splitting parameter
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a(i), i=0,...,n, the coefficients
X, the point of evaluation (x % 0)]
[Choose p,t such that n+] = p-q +t, 0 <t < q,
) L‘RJ
r q ‘
x(i) will be x"
T(i,j) will be Tg}
[(When t = 0, this program specializes to Program DIl.]
x(0) « 1
x(1) « x
for i = 2,3,...,q
x(1) = x * x(i-1)

[powers of x require q-1 multiplications]

for i = 0,1,2,...,t-2
T(i-1, =1) « a(i) * x(t-i-1)
T(e-2, -1) < a(t-1)

[this step requires t-) multiplications; it is not executed if t = 0]

end
for i = t, t+q, t+2q,...,t+(p-1)*q
for k = 0,1,...,q9-2
T(i+k-1, -1) « a(i+k) * x(q-k-1)
[inner loop requires q-1 multiplications each time]
T(i+q-2, -1) « a(i+q-1)

[this step requires total of P * (q-1) multiplications]

end
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[entire initialization requires (p+1)(q-1) multiplications if t = 0
or {pt1)(q-1) + (t-1) multiplications if t > 0]
for 3 =0,1,...,m
begin
[ 441 will be the number of complete groups of gq-1 additions and
one multiplication]
§ - I.EKH;JL-I_J -1
q
T(3,3) <« T(G-1, 3-1)
if t > 0 then
begin
for i = j+1, j+2,...min(jte-1, n)
T(i,j) « T(i-1, j-1) + T(i-1, 1)
if j+t < n then
T(jtt, 3) < T(j+e-1, j=1) + T(+e-1, 3) * x(q)
end
for i = t+jtl, thitgrl, tHjt2qtl,. .., cHjta*qH]
begin
for k = 0,1,...,q9-2
T(i+k, j) < T(i+k-1, j=1) + T(i+k-1, j)
T(i+q-1, j) « T(i+g-2, j-1) + T(itq-2, j) * x(q)
end
for i = t+j+(&HIY¥q+t, erj+ (D *qt2,...,n
T{i,j) < T(i-1, j-1) + T(i-1, i)
end
[recurrence reqiires (m+1)(n-%m) add itions independent of t and
{(m+1) (p-x-1) +%q-r(r+1) multiplications if t = 0 or

(m+1) (p-r-1) +lq-r(r+1) + (n-1) miltiplications if t > 0]
2
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[T(n,j) is now xj mod q P(j)(x)/j:]
for j = 0, q, 29,00.,(r-1) ¥ q
for k =1, 2,...,q9-]
T(n, j+k) « T(n, j+k)/x(k)
for j = r¥q+l, rrgt2,...,m
T(n,j) « T(n,3j)/x(j-r*q)
[m-r divisions used to obtain normalized derivatives in T(j,n) ]

end

Operation Counts

The arithmetic operation counts for the program are indicated by comments
in the program.

Let
nt+] = pe.g+t 0 =t<gq

at

1
The number of additions required is (m+1)(n-5m), independent of q. This is
the same number as for Program D1. The number of multiplications and divi-

sions required is given by:

t=290 t> 0 step
(p+1) (g-1) ; (pt1) (q-1) + (t-1) initialization
(m+1) (p-r-1) + Eqr(r+1) (m+1) (p-1) + Eqr(r+1) recurrence
m-r m-r divisions to normalize T(i,3)

Now, let fm o r(q) denote the total number of M/D required to calculate the
3

first m derivatives of a polynomial of degree n if Program D2 is used with

splitting parameter q, Then
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if £ = 0,
: (@ = (pF1)(@-1) + (mH1) (p-r-1) + mqr(r+l) + m-r
m,n, 2
nt] 242
= n-1 + m—— - (M+2)r + ————
q 2
= fm,n, (a)
if t > 0,

%m’n’r(q) = (1) (q-1) + (£=1) + (@HD) (p-r) + pqr(rt]) + m-r

2
+1 -t r4rk2
=1 + Gl_n a-ty _ - =
n m\ + P ) (mt2)r + q 5

q-t
foon SCURSL q

Rt J
so for all t,

E r(q) = f r(q) + miﬂ:ElEEﬂ_ﬂ

3 >

We abbreviate fm n,r(q) by fr(q)'

>
Program D2 can be slightly improved in three special cases, Two are
jdentical to the special cases for Program D1: a savings of one M/D when

m=n and when g = ntl. In addition, when t = 1, the first operation for

each derivative is T;+1 = T§'1 + 1 x3. Since all T are equal, Tgxq need
not be recomputed, This is a saving of m multiplications., As before, the
special cases are not considered in the analysis.

We establish a bound on Er(q). Since the optimal result for m = 0 is

known to be q = 1, we again assume 1 =m < n, The proof of the following

result is straightforward.

THEOREM 4.1

s - (g-t)mod ¢ -
fr(q) < fr(q) fr(q) + m q < fr(q) +m, 1 £m £n, q=1,...,n+

and

if £ > 0 then fr(q) < fr(Q)
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The effect of the algorithm is as if q-t leading zero coefficients had been
added (enough to make q factor n + (q-t)}+ 1) and the multiplications by co-
efficients known to be zero eliminated. The temrm mgéE is a penalty for
selecting a q that is not a divisor of ntl, As illustrated above, this
penalty may be substantially smaller than the cost of choosing an inappropri-
ate divisor q*.

As before, we must distinguish evaluations of f and f on a restricted
set of values for q from general evaluations of f and £, Let q be any
integer, 1 < 4 < ntl,

Let a denote the value of § which minimizes ?r(Q)- The next three

theorems establish the best selection of § for most values of m, Since we

~ +1
frequently use certain values of fr<IE§:[), we tabulate them here,

r = 0, ntl odd: £ ol ) - n-1 + 2m + o2 gn + 2m, m < ntl
2 2 2 ? 2
= - 4.5 A R n,1._3 1 ntl
r = 0, nt] even: f0 > ) n-1 + 2m + ot y=omn+t 2m-2, m <
~ |ntl
r =1, ntl odd: f] < |)= n~1 +2m -m-2+n+2=2n+m-1,mz=z

I
]

n-1+2m -m -2 +n+1 Zn+m -2, mz

s [nti
r =1, ntl even: f1 "E“J

Note that the value for even values of n+l is always less than the value for

odd values of nt+]l with the same r., We remind the reader of the relations

ntl = p.§+tandm=r1-§ + s

THEOREM 4.2 Consider only § such that [hii] < § < ntl. Then

2
s n+] a
f —_— ~

n+1
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Pl

PROOF. For these values of §, p=1and t = o+l - § > 0. Let

2
Ay AT 142 nt1
Ar(q) = n-1 + 2m - (@m+2)r + q——aﬂ——-fr(f;i;j).

~ {1 n+1
Since f(F%rj)is smaller for even ntl than for odd, it suffices to show

Ar(ﬁ) > 0 for n+1 odd.

+
Case 1: m< Eal, +1 odd

For these value of § and m, r = 0, Thus

Bo(@ = n-1 4 2m + - Go+m=g- G+

. N n+1 n L
Since q > —E;] 5 + 1, Ao(q) = 0,

Cage 2: m & [é%i], nt+1 odd

For these values of q and m, T

I
[=
E
r

i

Case 2a: r =1

(@ = n-) o 2m - (w2) 24 - (2n +m - 1)= 2(4-1) - n.

o

Since § > 5+ 1, ,31(61“) >0

Case 2b: T =0

AN ~ 3 o~
Ao(q>—n-1+2m+q-(5n+2m)=q-1_g—.
Since § > =+ 1, 4.(§) -
q>5 > by () = 0. QED
THEOREM 4.3 ﬁ %q)ﬂfwﬂ),15msn

~ nd ~ 41 ~ )
PROOF. Let A(q) = %in+1) —er?%gl) and show 4A(g) = 0; the details are

similar to the proof of Theorem 4,2, QED
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— < m £ n. Then

6

PROOF,

o)

for nt+l odd. Note that § <

Case 1:

ff(IégiI) < fr(ﬁ)

~ 2 oA 2 + .
Let Ar(q) = fr(q) - fr<I£§lj>. As in Theorem 4.2, since

§ < E%l, and

is smaller for even nt+! than for odd, it suffices to show Ar(ﬁ) 20

n+1

n+1 n+1

6 me T

2
Ar(a) =p.g+t -2+ m(p+1) - (m+2)r + §£€;£ig - (%n + 2m)

Ar2+r+2 n+] _ dr+]

= m(p-T-r) + § 5 -5 -
Case la: p =z r+}

, . n+1 ad) ”

Substituting _E-< m and E;T-< q,

p-T1-r r2+r+2 1 4r+1

A (D) > ( 6 | Z(ptl) 2‘)(““) T

or

- n+1 2 2 4r+1

Ar(q) > 6(p+1)(P - (r+3)p + (3r +2r+2)) - >

For sufficiently large n, Ar(Q) > 0 provided
2 2
R(p) = p~ - (r+3)p + (3r +2r+2) > 0, p =2

The roots of R(p) are

p =5l + /<r+3)2-4(3r2+2r+2))

For r 2 1, the roots are imaginary, so R(p) > 0 wp,

For r = 0, the roots are p = %(31#9-8) = {1,213,
so R(p) > 0 for p > 2. At p=2, 4§~ Egl, so

R L Y S ]
o (@) 6§ T3 "7 3= 3.

2 T P =2 and that, by definition of §,

n+1
pti

N

< 4.
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Since Ao(a) assumes only integer values, Ao(ﬁ) = 0.
To establish the bound on n, note that the worst case occurs when
the coefficient of (n+1) in the approximation to Ar(a) is small-
est, Tedious but straightforward operations in algebra and

calculus yield n > 10,

Case 1b: p < r+]

Since p 2 2, r 2 2, Substituting

n+1 nt+l ~
m < 7 nd pFi < {,

2
~ p-r  r 4r+2 _ Art]
A (@) > (2 +2(w4) D(wﬂ) —

or

(nt1) 2 4r+1
Ar(q)- 2(p+1)( - (rf)p + 7)) - 2

For sufficiently large n, Ar(q) > 0 provided
2 2
R(p) = p - (x+l)p +1r >0, p =2,

But, by inspection, R(p} > 0 for p =2 2, Wvr.

The bound n > 12 is established as for Case la,

Case 2: ot <m £ n (necessarily, r = 1)

Z
2
B =ped +t-2+mpH) - (mD)r + ‘E—Jzi-r-ﬂ (2ntm-1)
r2+ +2
= m(p-r) + ﬁ—T?E—— {(n+1) - 2r

Case 2a: p 2T

o+l ntl
Substituting —5— =<m 2 nd —;T-< g,

2
A p-r , I +r+2 _ ) .9
Ar(q)g> ( 3 + S Tpt1) 1) (nt1) r,

] 2 2
8 > —— - (r+1 + r Y(nt+t1) - 2r,
or Ar(q) 2(p+1)(P (r+Dp }(
For sufficiently large n, Ar(ﬁ)z 0 provided

2
R(R)=p2—(r+1)p+r >0, p =2
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But (by inspection), R(p) > 0 for p = 2, wr.

The bound n > 12 ig established as for Case 1b,

Case Z2b: p<r
~ m ... A n+] < A it
By definition of r, 4 < = By definition of g, ;;T q.

follows that r -Z p+1, Hence the case p < r can never occur,
The previous three theorems can be summarized as

THEOREM 4.5 For n > 12 and E%l< m<n, §= [égi}is optimal.

+ ~
For m = E—l, the selection of Q depends strongly on the factors of n+l.

6

We do not attempt to andlyze the selection of the optimal 6, but Theorem 4,1
assures us that we can choose a value of a for which f(a) is not much larger

than the minimum predicted by the continuous model of Section 2, By choos-

ing a = round (/m(n+1)), we have

A o ~ n+]
fO(Q) = fO(Q) < fO(Q) + m, T =m S'6—

Since 6 is close to QO = f(nt1) and £(q) is flat near its

minimum, fO(Q) is close to the minimum number of M/D. Small further im-

provements can often be made by selecting 6 = Eiil for a small value of

k 2 2, The analysis of such selections is not pursued here,

The results of thig section can be summarized in the

PROGRAM S2 [for selecting Q to give good values of f N r(6)]
m,n,

Given n,m such that n >12 and 0 <= m < n, this algorithm gives 6

To find a:
begin
if m = 0 then 6 «~ 1 else
if m < E%l then Q « round (Vi (n+1)) else

,I‘D
ju]
[N

QED
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5. NUMBER OF M/D FOR SMALL n

Most of the theorems in the previous sections have assumed n > 12, In
this section we deal with n = 12 by tabulating the functions f and %. We also
give examples for a few larger values: n = 13, 14, 15, 23,

For each value of n we present all the values of f and E. In the tabula-
tions of f, labelled "Continuous and Divisible Cases,” the columns correspond-

ing to attainable q" (that is, q 3 q|n+]) are flagged with asterisks, the value

of q corresponding to the minimum of f for each m is circled, and the values

%

of q corresponding to attainable minima are shaded. Note that non-integer
values appear in the unflagged columns. These represent values of the contin-
wous function f that are not meaningful in terms of the actual algorithm. In
the tabulations of E, labelled "Arbitrary Divisor Case,' the minimum value of
f for each m is shaded. Since there is no divisibility constraint, each cor=-

responds to an attainable q.
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N = 1 Continuous and Divisible Cases
Rkl fngks

Ma 1 2
? '- 2.8 N= 5 Continuous and Oivisibla Cages
1 (n} 3.0 Rk ook Nokdokak Sk
ma 2 3 4 5 6
8 : ) 6.9 7.8 80 3.8 l8.8
N=3 1 PArbitrary Divisor Case 1 ' @ 8.5 18.2 1l.8
M\Q 1 2 2: 12.9 CI][} 11.8 1t.8 11.4 12.8
e : .8 2.9 3: 4.8 12.8 1B 12.5 12.6 13.9
Lt t.e 38 6: 150 @2.DA2.H 2D 13.8 4.0
5: 15,8 13.8 130 2.5 13.8 15.8
N = 2
N=; 5 Arbitrary Divisor Case
Ma ma 1 2 3 4 5 B
8 : e : 5.8 6.8 7.9 8.8 8.9 18,8
1 1 8.6 9.8 9.8 0.8 11.8 1l.q
2 . 2: 12.8 18.¢ 1l.8 12.8 13.0 12.8
3:  14.0 12.8 1l.86 14.8 15.8 13.9
4 r 15.8 2.8 2.8 14.0 17.8 14.9
N=t 2 Arbitrary Divisor Case S: 15.0 13.¢ 13.8 15.8 17.8 15.¢
M\Q 1 2 3
? : ::: g:g ;:g N = & Continuous and Divisible Cases
2: 38 5.8 6.0 R FEaa
ma 1 2 3 4 S § 7
e: (.0 7.9 s, 2.8 18.8 1l.0 12.9
N = 3 Continuous and Divisibieg Cases L li.€ 18.5 6.7 1.4 12,2 13.8
AR PR I 2: 5.8 12.7 12.5 12.8 13.3 14.8
M 4 3: 18,8 14.5 14.3 14.2 14,5 18,8
o 6.0 4 : 20.8 15.¢ 14.3 15.6 15.7 ' 46.89
1 7.8 S+ 21.8 16.5 15.7 (4.8 15.8 16.8 ane
2. 8.8 6: 21.6 16.8 (5.® 155 15.4 16.0 18.8.
3 9.9
N=: 8 Arbitrary Divisor Cass
N=: 3  Arbitrary Divisor Case fi\a L 2 3 4 5 6 7
M\Q 1 2 3 4 g : 8.8 7.6 8.8 9.0 10.8 1l.8 12.8
8 : 3.8 4.8 5.8 G6.p 1l 1.8 11.4 11.8 1.8 (2.8 13,8 13.9
1: .58 6.8 7.8 7.8 2 15.8 13.8 14,0 13,8 14.8 15.8 14.
2 8.8 8.9 9.9 3.8 3: 18.8 16.8 15.8 15.8 16.8 17.0 5.8
3: 8.8 7.6 9.9 9.0 4: 200 17.8 17.2 15.8 18.8 9.8 16.¢
S: 2L.8 19.¢ 19.0 48,8 18.8 21.8 17.8
6: 21.8 19.80 19.¢ 17.@ 19.8 21.9 18.8
N = 4 Continuous and Divisibla Cases
ok ek Lol 1
M\Q 1 2 3 4 5 N = 7 Continuous and Divisible Cases
a8 5.8 6.8 7.0 8.8 ddopda dopkdy Ll 42 far2 -2
1 7.5 7.7 8.3 as.g ma ! 2 8 4 5 8 7 g
2 ‘9.9 9.3 9.5 1.8 8 1 fm 8.6 9.8 le.e 11.8 12.8 13.8 14.0
3: 188 9.5 G0 18.7 11.8 1 28 12,8 13.3 4.1 15.8
4d: 18.8. Q.0 9.7 18.8 12.8 2 14,2 14,7 15.3 16.8
3 15.8 156.80 16.4 17.8
4 : 17.4 17.3 17.6 18.8
N=t 4  Arbitrary Divisor Case 5 ) 18.7 18.7 19.8
M\a 1 2 3 4 5 § 1 18.8 19.9 23.9
8: 48 5.8 5.6 7.9 s.8 7 18.3 3.8 218
1: - 7.8 88 8.8 9.8 8.8
2: 8.8 9.0 10.8 11.9 ip.0
3: 8.8 1l.8 1B.@ 13.8 11.8
4+ 18.8 11.8 11.0 13.0 12.9
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Ne: 7 Arbitrary Divisor Lase

M\ 1 2 3 4 5 B 7 3
e: -7, 8.8 9.8 18.6 11.8 12.8 13.2 14.8
1 13,8 12.912.86 2.8 13.8 14.8 15.0 15.8
2: 18.8 14,9 15.0 14.8 15.0 16.8 17.0 16.8
3: 22.8 17.¢ :16.8 15.8 17.¢ 18,8 19.8 17.8
4: 25.6 18.8 18.8 -16.8 18.e¢ 28.8 21.8 18.9
& : 27.8 28.8 29.8 17.0 19.% 22.8 23.8 139.8
6: 28.8 28,0 28.0 18.8 20.8 22.8 25,8 20.8
7: 28.8 21.8 21.8 19.8 21.8 23.¢ 25.8 21.8
N = 8 Continucus and Divisible Cases
L334 ?**ﬂ# ek
ma 2 3 4 5 3 7 8 9
8 : @ sa 18.8 1i1.8 12.8 13.9 14.8 15.9 16.8
1: 15.e 13.5 G3.® 13.3 13.8 14.5 15.3 16.1 17.8
2: 21.8 18.8 16.8 {5.5 15.6 16.8 16.6 17.2 18.8
3: 26.6 19.5 G7.D 17.8 17.4 17.5 17.9 18.4 19.8
4 : 38,8 21.8 18,0 19.2 19.8 19.1 19.5 28.0
5 : 33.8 23.5 21.% 19 3 (19.8) 26.5 28.4 28.6 21.8
6+ 35.8 24.8 2i.8 28.5 8.8 28.8 21.7 21.7 22.9
7+ 36.8 25.5 22.8 21.7 20.5 Q0. 21.8 22.9 23.8
8 : 36.8 25.0 23.0 21.4 ZL.® 21.3 22.0 24.8
H=: 8 Arbitrary Divisor Case
M\a 1 2 3 4 5 B 7 8 9
8 1 8.8 9.0 10.8 1l.e 12.8 13.8 14,8 15.8 16.8
1: 15,8 14.8 13,8 14.8 14.6 15.8 l6.e 17.8 17.8
2: 21.8 17.e .18.¢ 17.8 16.8 17.8 18.8 19.8 18.8
3: 26.8 21.8 ‘47,8 20.8 18.8 19.8 20,8 21.8 15.8
4: 38.8 23.8 .19.8 21.8 28.8 21.8 22.8 23.8 28.8
5: 33.8 26.0 21.8 23.0 2.8 23.8 24.8 25.8 21.8
: 35.8 27.9 21.8 25.8 21.8 23.9 26.8 27.8 22.9
7+ 36,8 29.8 22.8 27.6 22.@ 24.0 26.8 29.8 23.0
8: 36.0 29.8 23.8 27.8 23.9.25.8 27.8 29.0 24.0
N = 9 Continuous and Divisible Cases
feolededon ek ok RERRE
ma 2 3 4 5 3 7 8 9 18
e : m 1.8 11.8 12.¢ 13.8 14,8 15.8 16.8 17.8 18.8
it :aa- 15.5 15.8 15.7 16.4 17.2 18.1 19.9
2 18.8 17.7 - [7.8) 17.3 17.9 18,5 19.2 20.8
3 22.8 8. 19 5 ¢§§K)® 19.3 19,7 20,3 21.@
4 : 24,8 21.3 21.8 237 20.7 21.8 21.4 22.8
5 : 27.8 23.7 215 9&) 223 22.1 22,3 22.6 23.9
B : 28.8 26.8 23.8 Q2,.0Q2.® 23.6 23.5 23,7 2.8
71 38.8 25.3 24.5 23.8 EE!E. 23.8 24.8 24.8 25.9
8 : 38.8 26.7 24.0 24.8 23.4 24.8 25.9 26.8
91 31.8 26.8 24.5 25.8 249 @3.9 26.2 25.0 27.¢
N=: 9 AHArbitrary Divisor Case
ma & 5 3 7 8 9 19
8 : 12.8 13.8 14,8 15.@ 16.8 17.8 18.8
1 : 18.9 15,9 .15.8 16.0 17.9 .18.8 19.2 19.8
2 18.9 19.9 18.0 “17.8 18.8 19.0 20.0 21.0 28.8
3 22.0 21.¢ z2l.e 4@ 20.8 21.8 22,8 23.¢ 2l.8
4 ¢ 24,8 24.8 22.8 21.9 22.8 23.8 24.8 25.8 22.8
5 27.8 27.6 24.9 21.8 24.8 25.¢ 26.0 27.8 23.8
6 : 28.8 28,8 26.8 -22.8° 24.8 27.8 28.8 29.8 24.8
7 3@.8 38.0 28.¢ 23,8 25.@ 27.8 38.84 31,8 25.9
8 : 3.8 32.0 28.8 24.8 26.8 28.¢ 30.6 33.8 26.8
9 31,0 32.8 29.¢ 25.4 27.6 29.8 3i.8 33.0 27.¢
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N = 18 Continuous and CGivisible Cases
Lo kR
ma 1 2 3 4 5 & 7 8 9 18 1l
o : QOB 11.8 12.0 13.8 14.0 15.0 16.8 17.8 18.8 19.0 290.9
l: 19.8 165 (5.2 15.8 15.2 18.8 17.6 18.4 15.2 20 21.0
2: 27.8 20.8 13.3 18.5 18.7 19.1 19.7 20.4 21.2 22.8
3: 34.8 26.5 21.8 21.3 20.p @8.5 20.7 2.1 21.7 22.3 2.8
41 40.8 27.8 23.7 Q2.B) 22.8 23.3 22.3 22.5 22.9 23.4 4.0
5: 45.8 38.5 26.3 23.8 24,2 23.9 23.3 24.1 24.5 25.8
6+ 49.9 32,8 27.9 25.5 24.2 Q4. 25.4 25.3 253 25.6 26.8
71 52.8 34.5 28.7 27.3 25.4 (4.8 25.8 26.6 26. 26.7 27.4
8 : 54.8 35.89 38.3 27.9 26.6 25.7 (5.8 26.0 27.8 27.8 28.8
9 ¢+ 55.8 35.5 38.8 27,7 27.8 25.5 (26.D 26.4 27.8 28.9 29.¢
18 :+ 55.8 36.8 36.7 28.5 27.8 27.3 @.DE6. D 27.2 23.8 38.8
N=: 1@ Arbitrary Divisor Case
ma 1 2 3 4 5 6 7 8 5 18 11
8: 18,8 1.0 12.8 13.8 14.0 15.0 16.0 17.8 138 19.¢ 20.8
12 19.8 17.8 16.0 18.0 .17.¢ 17.0 18.6 19.0 20.0 21,8 2.8
2: 27.6 21.8 20.6 18.6 20.0 19.8 20.8 21.8 22.8 23.8 22.8
33 34.8 26.8 22.2 22.8 23.0 21.8 22.0 23.8 26.9 25.8 23.9
4: 48.2 29.0 25.0 23.@ 26.0 23.8 26.8 25.0 26.0 27.6 24.8
S: 45,8 33.0 28.8 25.8 27.8 25.8 26.0 27.0 28.¢ 29.8 26.8
§: 49.8 35.8 29.6 27.8 29.8 25.8 28.9 29.0 300 31.8 256.8
73 52.8 38.8 31.8 29.8 31.8 26.2 28.8 3l.¢ 320 33.8 27.8
8+ 54,0 39.8 33.8 20.8 33.2 27,8 20.p 350 34.8 35.8 28,90
91 55.8 41.8 33.8 30.8 35.0 28.8 30.8 32.0 340 37.8 29.9
18 : 55.8 41.8 3.8 31.8 35.8 29.8 31.8 33.8 35.8 37.8 3¢.8
N= 11 Continuous and Divisible Cases
Rk Ak ok e ek ok
MaQ 1 2 3 4 5 3 7 8 9 18 i1 12
8 : 12,8 13.0 14.8 15.8 16.8 17.0 1.8 19.8 20.8 21.8 22.8
1o 2Le 188 7.D@.D 17.4 18.0 18.7 19.5 20,3 21.2 22.1 23.9
Z2: 30.8 22,8 210 20.8 (13.5) 26.9 26.4 21.6 217 22.4 23.2 24.0
3+ 38.8 27.8 23.8 23.8 27.2 22.1 22.5 23.8 23.6 24.3 25.8
4: 45.8 30.8 26.0 24.8 26.5 24.8 @D 26.8 26.3 24.8 25.4 25.9
5 : 518 36,8 29.0 26.8 (Z5.0 5.8 256 255 25.7 26.8 26.5 27.9
6: 56.0 36.8 30.0 28.8 25.4 CBB.B) 27.3 27.0 27.8 27,2 27,5 28.8
7+ 68.8 39.8 32.8 38.9 27.8 @7.9Q7.8) 28.5 28.3 28.4 28.5 29.9
8: 63.8 48,0 34.0 30.8 29.2 28.9 @7.7) 28.8 29.7 29.5 29.7 30.9
9 : 65.8 42.8 34,8 31.8 30.5 29,8 28.5 29.8 30.8 38.8 3l.@
18 :  86.6 42.8 35.9 32.0 30.8 38,8 29.1 (29.9 29.3 38.8 31.3 32.0
11+ B6.8 43.8 35.8 33.0 30.4 3.8 29.9 Q9.5) 29.7 36.2 31.9 33.8

N=: 11 Arbitrary Divisor Case

ma 1 2 .3 4 5 B 7 8 9 18 1 g2
8: 11,8 12,8 13.9 14.8 15.9 15.p 17.8 18.8 19.0 28.8 21.8 22.9
1: 21.0 18.6 7.8 17.0 13.8 138 19.6 2¢.8 21.8 22.¢ 23.8 23.9
2: 38.8 22.0 2.8 28.2 21.8 28.8 21.8 22.8 23.8 24.0 25.8 24.8
3: 38.8 27.8 23,8 23.9 24.0 :22.8 23.0 24.8 25.8 26.9 27.9 25.p
4+ 450 30.0 26.8 26.0 27.8 ‘2.8 254 26,8 27.8 28.2 29.¢ 26.8
5t 51.8 34.8 29.9 28,4 28.8 26.8. 27.8 28.8 29.2 30.0 31.8 27.8
6: 56.8 36.8 38.0 23.2 3g.p 26,8 29.6 30.8 31.0 32.0 33.2 288
7+ 60.8 39.8 32.8 30.9 32.8 27.8 29,0 32.8 33.¢ 34.0 35.5 29.9
8: B3.8 40.0 34.8 38.8 34.5 28.8 3a.p 32,8 35.8 36.8 37.8 3¢.8
9 65.86 42.8 34.8 31.8 35.p 28.8 31.8 33.¢ 35.0 38.0 39.9 3.9
18+ 66.9 42.8 35.8 32,0 35.p 20,8 32.0 34.0 36.8 38.8 4l.8 32.8
11+ 86.8 43.8 36.0 33.2 37.p 8i.9 33.8 35.8 37.0 39.8 41.8 33.9
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12 Continuous and Divisible Cases
e e xeR
12 3 8 5 6 7 8 9 18 1i
: @ 13.8 14,0 15.8 16.8 17.8 18.8 19.9 20.8 2i.e 22.e
: 288 18.5 18,3 18.6 18.2 18.9 20,6 21.4 22.3 23.2
:  33.8 24,0 22.7 21.5 21.3 21,7 22.3 22.9 23.6 24.4
.  42.8 29.5 25.0 24.8 23.8 (3.5 23.6 23.% 24.3 24.9 25.5
: ©56.@ 33.0 28.3 26.8 26.4 25.7 (25.%) 25.5 25.8 26.2 26.7
: 57.8 37.5 31.7 28.2 Z7.®) 27.8 27.3 27.1 27.2 27.5 27.8
: 63.¢ 48,9 33.8 38.5 28.8 29.1 28.8 28.7 28.8 23.1
: 68.2 43,5 35.3 32.8 38.2 29.2 (9.9 38.4 36.1 3.1 38.3
+  72.8 45.8 37.7 33.8 31.8 38.3 9.9 36.8 31.6 31.4 31.5
: 75.8 47.5 38.8 34.3 33.4 31.5 38.7 (30.6) 3L.8 32.7 32.6
s 77.8 48.8 38.3 35.5 33.8 32.7 31.6 Gl.3) 31.4 32.8 33.8
:  78.8 49.5 48.7 36.7 33.6 33.8 32.4 GLDAL.9 32.3 33.8
: 78.8 49,8 4@.@ 36.8 34.2 33,8 33.3 32.5 (32.3) 32.6 33.2
12 Arbitrary Divisor Case
1 2 3 4 5 & 7 8 9 e i1
: 128 13.8 14.0 15,08 16.8 17.8 18.8 19.¢ 26.8 21.8 22.9
:  23.8 2.0 19,8 ©19.6 ‘19.0°20.6 28.8 21.8 22.0 23.8 24.8
:  33.¢ 25.0 24.8 23.80 22,8 23.0 22,8 23.8 24.8 25.8 26.8
: 42.8 31.8 27.9 27.8 25.8 26.8 24,8 25.¢ 26.8 27.@ 28.8
. 58,8 35.8 31.0 29.8 28.8 29.8 28,8 27.8 28.8 29.8 38.0
+ §7.8 48.9 35.8 32.8 29.8 32.8 23,9 29.8 38.8 31,0 32.8
:  ©3.8 43.8 37.8 35.8 31.8 33.8 38.8 31.8 32,0 33.8 34.8
. 8.8 47.8 48.8 38.8 33.8 35.0 ‘38,8 33.0 34.8 35.8 36.8
:  72.8 49.¢' 43,8 39.8 35.8 37.8 31,8 33.8 36,8 37.8 38.9
: 75.8 52.8 44.0 41.8 37.8 39.8 32.8 34.8 36,8 39.¢ 40.0
. 77.8 53.8 46.8 43.8 37.6 41.8 33.0. 35.¢ 37.¢ 39.8 42.8
: 78.8 55.8 48.8 45.8 38.8 43.0 34,8 36.¢ 38.8 48.0 42.9
. 78.8 55.8 48.8 45.8 39.8 43.8 :35.8 37.0 39.8 41.8 43.8
13 Continuous and Divisible Cases
fefefesede fedohesx Feedoled
4 5 3 7 8 9 18 il
: 16.8 17.9 18,8 19.8 26,8 21.6 22.8 23.8
: 19.8 20.3 /208217 22.6 23.4 24.3
: 23.8 22.7 23.8.°23.5 24,1 24.8 25.5
: 26.5 25.4 (35.8)(35.8Y 25.3 25.7 26.2 26.8
: 28.8 28.2 27.3 Q7.8) 27.6 28.1
: 38,5 29.8 29.7 268 29.8 29.4
: 33.0 36.8 (30.0)31.8 36.5 36.3 38.4 30.6
: 35.5 32.6 31.2 (31,8 32.3 3L.9 3L.8 3.9
: 36.6 34.4 32.7 (32.8)(32.8) 33.4 33.2 33.2
: 37.5 36.2 34.0 33,8.(2.8) 33.8 34.6 34.5
3 39,8 36.8 35,3 34.8:(B3.5 33.6 34.0 35.7
t 48.5 36.8 36.7 35,8 343 Q4D 34.4 35.0
: 49.9 37.6 36.8 38.8 35.8 3.8 35.3
; 48.5 38.4 36.3 378 G5.2G5.2) 35.5
8 8 9 18 1l
: ] 18.9 20.9 21.8 22.8 23.9
! ).8::20.0 2.8 22.8 23.8 24.8 25.8
: 24.8 ‘24,8 7 ‘24,8 25.8 26.8 27.8
1 28.8 27.9 ' 26.e 27.8 28.8 29.8
t 30.8 30.9 ©28.8 29.9 3@.0 3l.@
: 33.e 33,8 3g.e 31.8 32.8 33.8
: 36.8 3.8 81,8 32.8 33.06 34.@ 35.8
: 39.8 34.8 36.8 34,8 35.2 36,0 37.8
. B81.2 50.8 44.8 48.9 36.0p 38.0 32,8 34.8 37.0 38.8 38.0
s 85,8 53.8 65,8 642.8 38.8 48.8 35.8 37.9 40.8 4l.8
: 88.8 54,8 47.8 46.8 38.8 42.8 . 36.6 38.8 48.8 43.8
: 86,8 56.8 49.8 46.8 39.9 44.0 . 37.8 39.8 41.8 43.@
: 91,8 56.8 49.8 45.9 49.8 44.0 - 38,0 40.0 42.8 44.8
: 91.8 57.8 58.8 47.8 41.8 45.8 ° 39.8 41.8 43.8 45.8

12

24.9
25.2
26.3
27.5%
28.7
29.8
31i.8
32.2
33.3
34.5
35.7
36.8
36.9
36.2

12

24.8
26.8
28.8
36.8
32.9
34.6
36.8
38.0
46.0
42.8
44.0
46.0
46.0
47.8

13

24.8
25.9
26.8

27.8
28.8

29.8
g

31.9
32.8
33.@
34.0
35.8
36.8

13

25.2
26.1
27.2
28.2
28.3
30.4
31.5
32.5
33.6
34.7
35.8
36.8
37.8
37.8

13

25.8
27.8%
29.8
31.0
33.0
35.8
37.e
39.0
41.9
43.0
45.8
i7.8
43.8
49.0

ik
14
26.9
27.8
28.8
29.¢0
38.8
3i.e
32.8
33.8
35.8
35.8
36.8
37.8
38.8
39.0

14

26.9
27.8
28.8
29.8
30.8
31.9¢
32.9
33.8
3.9
35.8
36.0
37.8
38.8
33,8
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14 Continuous and Divisible Cases

-35-

e Rl LR34
1 2 3 4 5 6 7 8 9 18 11 12
15.8 16.8 17.8 13.8 19.8 206.8 21.6 22.¢ 23.8 24.8 25.@
27.8 22.5 2L 0.D 21.8 21.5 22.1 22.9 23.7 24.5 25.4 26.2
39.8 28.8 26.8 24.5 QL.OCLD 24.3 24.8 25.3 26.8 26.7 27.5
50.8 34,5 29.8 28.2 273 26.5 (6.6 26.6 27.@ 27.5 28.1 28.8
68.8 39.8 33.8 38.8 30.8 29.2 2B.6 (28.5) 28.7 29.8 29.5 30.8
69.2 44.5 37.8 32.8 31.8 31.5 38.7 32.4 (30.3) 38.5 30.8 3.3
77.8 48.6 39.8 35,5 33.8 (32,8 32.9 32.3 GLOGLD 32.2 32.5
84,8 52.5 42.8 38.3 35.8° 33.5 (B3, 3.1 337 33.5 33.5 33.7
90.8 55.8 45.8 3%.8 37.8 35.2 34.1 (34.0) 35.3 35.8 34.9 365.8
95.8 58.5 4.8 48.7 39.8 35.5 35.3 (34.9) 35.2 36.5 36.3 36.3
99.8 68,8 48.8 62.5 39.8 38.8 36.4 35.8 (35.7) 36.8 37.6 37.5
192.8 B2.5 58.0 44.2 48.8 39.5 37.6 36.6 (36.3) 36.5 37.8 38.7
184.8 ©3.8 58,8 44.0 41.2 39.8 38.7 37.5 G7.00G7.0) 37.4 38.8
185.8 64.5 51.8 44.8 42.8 38.5 239.9 38.4 37.7 (37.5) 37.7 38.3
185.8 B4.8 *S52.8 45.5 43.6 48.8 39,8 39.2 38.3 (38.0) 38.1 38.5
14  Arbitrary Divisor Case
3 4 5 3 7 8 9 18 11 12
14,8 15.8 16.0 17.0 18.6 18.8 20.8 21.¢ 22.8 23.8 24.8 25.9
27.8 23.0 21,8 2i.80 21.9 22.8 23.0 23.8 24.8 25.0 26.8 27.9
39.8 29.8 26.8 25.8 24.8 25.8 26.8 25.8 26.6 27.¢ 28.8 29.8
59.8 36.80 29.8 29.e¢ 27.8 28.8 29.6 27,8 28.8 29.8 38.0 31.8
60.8 41.8 33.8 31.6 38.8 31.0 32.2 28,8 38.8 31.8 32.e 33.8
63.8 47.8 37.0 34,8 31,8 34.0 35.8 3L 32.0 33.8 3.8 35.9
77.6 51.8 39.8 37.¢ 33.8 35.6 38.8 39,8 3.8 35.8 36.¢ 237.0
84.86 56.8 42.8 48.e 35.8 37.8 39.9 95,8 36.6 37.0 38.8 39.8
98.8 59.8 45.8 41.8 37.8 39.8 41.0 “85.@ 38.8 39.0 48.8 41.9
95.8 63.8 46.8 43.9 39.8 41.8 43.9 38.8 38.9 41.0 42.0 43.8
99.8 65.8 48.0 45.8 39.9 43.8 45.8 37.0 38.8 41.8 44.8 45.8
182.8 68.8 S8.8 47.8 48.8 45.8 47.0 88.8 40.0 42.8 44.0 47.0
164.8 £9.8 58.8 47.2 41.0 45.8 49.5 39.8 41.8 43.8 45.9 47.9
185.8 71.8 51.8 48.8 42.0 46.8 51.0 4§.8 42.8 44.8 46.8 48.0
185.8 71.8 52.8 49.8 43.8 47.8 51.8 41.@ 43.8 45.8 47.0 49.8
15 Continuous and Divisible Casas
Ffoffek fkdolok ook
2 3 4 5 o2
8 16.8 17.8 18.9 19.9 25,8 26.9
29.8 24,9 22.3 (2.9 22.2 26.5 27.3
42,8 38.8 27.7 26.8 25.4 27.9 28.7
54.8 37.8 31.0 36.8 28.6 29.4 38,0
§5.8 42.8 35.3 32.8 31.8 38.8 31.3
75.8 48.8 39.7 35.8 33.8 32.3 32.7
84.8 52.8 42.8 38.8 35.2 33.7 34.8
92.8 57.8 45.3 41.8 37.4 35. 35.2 35.3
99.8 68.0 48.7 42.8 39.6 137.3 36.6 36.7
185.8 64.8 58.8 46.8 41.8 39.8 38.1 38.8
118.8 66.8 52.3 46.8 42.08 48.7 39.5 39,3
114.8 69.8 S54.7 48.8 43.2 42.3 39.8 48.7
117.8 78.8 55.8 48.8 44.4 42.8 (39.2) 39.5 48.8
119.8 72.8 56.3 49.0 45.6 42.7 (39.8) 39.9 40.3
128.8 72.8 57.7 58.9 46.8 43.3 - 40,9 (48.4) 8.4 40.7
128.8 73.8 57.8 51.8 4E.8 44.9 h# 41,7 41,2 @0.8) 41.9

13

26.9
27.2
28.3
29.5
38.6
31.8
32.9
34.1
35.2
36.4
37.5
38.7
39.8
39.9
39.2

13

26.0
28.8
30.8
32.8
34.8
36.0
38.0
40.@
42.8
44.0
i6.¢
48.0
50.0
50.0
51.8

13
27.

N
o

L= LT L T, B S

29.
38.
31.
33.
34.
35.
36.8
38.1
39.3
48.5
41.8
4l.8
41.2
41.5

14

27.8
29.9
3l.e
33.0
35.¢
7.8
3g.g

41.8 ¢

43.0
45.0
47.@
49.8
5t.8
53.9
53.¢

14

28.8
29.1
38.3
31.4
32.6
33.7
34.9
36.8
37.1
38.3
39.4
40.8
41.7
42.9
42.8
2.1

15

28.8
29.0
38.8
3.0
32.8
33.0
34 . 8

36.
37.
38.
39,
48,
a1,
42,

15

29,
38.
31.
32.
33.

W N = - @

35.4
36.5
37.5
38.8
38.7
48.7
il1.8
42.9
43.9
43.8

oo e o m:'

L 224 3
i8
3e.8
31.¢
32.8
33.0
34.8
35.8
3.8
37.0
38.8
39.8
48.8
él.8
42.8
43.9
i4.8
65.¢@
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N=: Rrbitrary Divisor Case
H\Q 2 3 5 B 7 9 18 11 12 13
e . 16.8 17.9 18.8 28.9¢ 2.9 23.8 24.2 25.8 26.8 27.8
i 24.8 23.8 23.8 23.8 24.8 25.8 26.8 27.¢ 28.8 29.8
2 36.8 29.8 26,8 27.9 28.8 27.8° 27.e 28.8 29.0 30.¢ 31.8
3 37.8 33.8 30.8 31.8 29.8 30.0 29.8 3¢.¢ 31.8 32.8 33.¢
4 42.8 38.8 32.8 35.8 32.8 33.8 31.8 32.¢ 33.@ 34.8 35.8
5 48.8 43.8 35.8 37.9 35.8 36.2; 33,8 34.8 35.8 36.e 37.0
<] 52.8 45.8 38.8 46,8 36.8 3%.0 35.8 36.8 37.8 38.¢ 39.8
7 57.8 58.8 41.9 43.8 38.8 46.8 . 37,8 38.4 39.9 48.8 41.8
8 68.8 54.8 42,8 46.8 48,8 42.8 ¢ 39.80 40.8 41.8 42,8 43.9
9 B4.8 55.8 44.8 49.8 42.8 46.8 33.8 42,8 43.8 44,8 45.0
i8 66.8 59.8 46.86 58.2 44.8 46.8 48.8 42.8 45.0 46.8 47.8
11 69.8 62.8 48,8 52.8 46.8 48.8 41.8 43.2 45.@ 48,9 48.0
12 78.8 63.8 48.0 S4.8 45.8 58.8 42.0 44.0 46,8 48.8 51.8
13 ; 119.86 72,0 65.8 49.8 56.8 47.86 52,8~ 43.8 45.8 47.8 48.@ Sl.8
14 : 128.8 72.8 67.6 58.8 58.8 48,8 52.8° L 464.8 46,8 48.¢ 50.8 52.8
15 ¢ 128.8 73.8 67.8 51.80 S58.8 49,8 53.0 45,8 47,8 49.8 51.8 53.8
N = 23 Continuous and Divisible Cases
HERER FFFER PRSEN BRWAW (11223 BREERN nEERN
moe i 2 3 @ 8 10 11 42 13 14 15 16 1?2 1B 18
0: EEPe0 5.0 . 9.6 30.¢ 31.8 32.0 33.0 3+.0 35.0 350 300 3. 39.0 9.0 4.0
1: 45.0 3.0 33.8 g z.+ 33.6 33.7 3.0 3.8 37.7 28.6 39.5 0.4 41.3 42.3
2:. B5.8 45.0 +1.0 38.0 36.6 99:@¢3557%.0 363 39,0 36.7 39.4 0.2 41.0 41.8 42.7 43.5
A g5.4 S?.0 7.0 .0 41.4 4D.0 39.3 . . 40,0 40.5 41.1 41.8 42.5 43.2 4+.0 4+.8
4 : 165.0 B6.0 54.0 48.0 46,2 44.9 47.7 iAZ®: 41, 242 L4 440 44.6 45.3 46.1
5: t23.¢ 76.2 B51.9 @ 43.8 4B.0 46.1 45.2 4.3 44.0(33.0D .8 45.5 46.1 416.7 47.3
B : 140.9 B4.0 B6.0 58.0 SI.B 50.0 43.6 4B.0 47.9 6.4 45.] & 47.0 47.5 48.@¢ 0.6
7 : 156.8 93.04 72.8 B3.0 56,6 53.0 51.0 51.0 43.7 48.8 48.3 .2 48.5 48.9 49.3 43.8
@ : 171, 1A0.0 7B.0 66.0 BA.4 56.9 53.4 S52.4 5.3 51.2 52.5 .8 53.3 50.7 S5i.1
2 : 1B5.4 1#8.0 B8Z.0 .8 B4.2 53.8 55.9 G54.0 53.2 53.6 52.6 .5 5i.7 52.0 5.4
19 : 198.0 114.0 7.0 .8 66.0 &£2.64 58.3 56.7 54.7 54.0 54.8 : .1 53.3 53.86
11 219,08 1Z1.0 92.0 .8 G8.B B5.¢ E@.7 SB.0 56.3 55.9 55.9 } 1 65,3 54.9 5+.6 .7 54.9
12 : 271.8 126.6 95.8 8.0 71.6 66.0 3.1 B0.0 58.0 56.B 56.2 57.2 56.6 56.2 G6.0 56.8 56.2
13 : 231.0 132.8 99,4 B83.0 74.4 G8.2 65.6 B2.9 53.7 5B.2 574 ; 3 574
14 240.9 136.9 183.4 & 77.2 70.@ G6.4 B4, Bl.3 99.6 5B.5 .? 58,7
15 + z48.9 §41.9 105.4 B9.8 78.@ V2.0 57.9 66.0 53.4 61.8 59.7 5% .8 59.9
16 255.9 144.0 169.0 .3 7a.4 74.0 B8.9 56.0 64.7 BZ.4 60.9 E8.9; .3 B1.2
17 261.0 148.6 111.9 .3 H1.6 ?65.0 70.3 67.8 G65.3 B3.8 6I.1 Gl-‘f- .7 B2.5
18 : Z66.0 159.0 117.8 9.0 B83.4 76.2 71.7 6B.0 66.06 65.2 63.3 62.9 0 63.7
19 1 270.0 153.0 114.0 96.0 85,2 77.¢ 73.1 69.8 66.7 66.6 B4.5 63.8 .3 B30
2¢ . 273.8 154.0 116.0 96.8 B5.8 78.9 7.6 70.8 57.3 GB.0 G5.6 54.0 .7 63.3
21 : 275.8 156.0 116.8 97.0 85.8 79.0 74.@ 71.0 GE.0 6G6.4 65.8 66.0 .8 §1.5
Zz : 276.0 §56.@ 117.6 98.0 6.5 80.8 7.4 72.0 6B.7 66.8 66.2 EA.@ .3 63.8
73 . 276.9 157.9 418.@ 99.4 B7.4 B1.8 74.9 73.0 69.3 §7.2 B6.Z W@ 7 641

N=: 23 #Arbitrary Diveisor Case

Mg 1 2z 3 19 15 16 1?7 18 19
8 : MW 248 5.0 .8 g ar.o .0 8 37.0 38.0 39.9 40.0 +1.0
i+ 45.0 36.0 33.9 : N 0 35.0 .0 @ 39.0 40.0 +1.0 42.0 43.0
2+ 66.0 46.90 4i.9 N ©37.9 n 38,8 39.9 @ 41.0 42.0 43.8 44.0 45.9
3. 86.9 57.0 47.0 .8 40.9 41.0 008 3 41.0 42.0 0 43.0 44.0 45.8 46.0 47.0
4 : 105.0 B6.0 5%.9 a4 44.8 45.0 i, 43.9 4.0 45.0 Q0 45.0 45.0 47.0 48.¢ 49.¢
5 : 123.4 7.0 B6L.0 B 48.@ 49.2 45.0 46.9 47.@ 4B.0 g 47.0 48.2 49.¢ S50.0 S5l.@
& : 140.9 B4.0 65.8 .8 50.0 53.0 4B.@ 9.0 50.9 K] @ 49.0 50.0 51.6 S2.0 53.0
?: 156.8 93.8 72.@ .6 53.4 55,4 51.8 52.9 53.0 B i ® 51. 52.0 G2.0 S4.0 55.0
B: 171.016a.86 78.Q .4 56.4 53.8 57.9 L5.8 G56.9 .8 @ 53.0 54.0 55.0 56.0 57.@
9 : 185.0 {6B.0 62.8 .@ 53.0 6.0 54.0 55.9 59.4 .9 @ S5.¢ 56.0 57.9 58.0 Sd.@
16+ 198.0 114.@ 87.0 ¢ 62.0 B+.9 56.8 5B.0 6.0 £3.8 " ¢ 57.6 58.9 59.¢ 60.0 £l.@
11+ 218.8 121.0 92.9 @ B5.0 57.0 58.6 6R.¢ 62.06 6+.9 @ 59.4 608.9 61.9 62.9 B3.0
12 = 221.0 126.8 95.0 .84 65.9 7A.0 6@.0 6.9 64.0 65.0 9 6l.0 62.9 €3.0 64.¢ 65.0
13 : 231.@ 132.0 99.9 .0 BB.¢ 73.0 62.0 64.0 6B.9 .8 a 63.6 64.0 B5.08 B6.@ 67.9
14 : 240.@ 136.8 193.0 7.9 70.0 74.0 54.8 B6.0 66.9 8 2 65.8 66.0 67.0 GB.8 £9.0
15 ; 248.9 141.8 105.9 .0 72.2 76.0 B6.0 68.6 70.0 .83 9 65.0 68.8 69.8 70.80 ?1.9
16 1 255.@ i44.@ 108.9 .8 74.6 73.8 BG.B 0.0 72.8 .8 8 65.0 6B.0 ?1.8 ?2.0 73.e
17 + 261.9 1468.8 111.9@ P 76.0 BA.8 B72.0 72.9 74.0 76.8 9 §7.0 69.9 ?{.¢ 74.8 5.9
18 : 266.2 150.9 112.9 .8 76.8 B2.0 B8.8 72.@ 75.0 7.0 @ 68.0 70.0 2.8 4.4 V7.0
19 : Z70.9 153.0 11+.0 8 77.0 B4.¢ B3.8 73.0 78.0 B0.0 9 69.¢ 71.¢4 73.0 5. ??.@
20 : 273.0 154.68 116.0 .8 7B.¢ B6.0 0.8 1.9 V8.9 0 a 7a.0 72.0 4.6 76.0 78.@
21+ 275.0 156.9 116.9 .p 79,9 BG.0 ?71.9 V5.4 79.0 .B a 7.0 73.@ 75.9 72.@¢ ?9.0
22 : 276.0 i156.2 117.@ .3 BR.Q §7.4 2.8 8.0 BO.@ .8 @ 72.0 74.6 76.6 V8.4 B80.9
23 : 276.9 157.8 118.8 .8 B1.0 B3.A ?3.0 ?7.0 @1.0 o 73.6 75.0 ?7.@ 78.¢ 6l1.@
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