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1 ABSTRACT

A decomposition technique has been developed which greatly reduces the time and

computer memory space required to implement the Han-Powell Optimization

Algorithm. The technique requires the solution of a Quadratic Programming Problem

(QPP) in the space of the decision variables only, rather than in the space of the

entire set of variables as in the original algorithm published by Powell.

2 INTRODUCTION

Early attempts at optimal flowsheet simulation utilized a flowsheeting system in an

''inner loop" to converge the equality constraints defining a flowsheet while an

optimizer in the "outer loop" chose values of the parameters over which the

flowsheet was optimized (see for example Friedman and Pinder, 1972). The optimizer

generally used a pattern search method such as the Complex Method (Box, 1965) to

choose values of the decision variables. Such methods are usually dependable, but

require much computation and have trouble handling inequality constraints.

Recently, techniques have been developed which converge the equality constraints

defining a flowsheet while moving towards the optimal values of the decision

variables. The equality constraints may only be satisfied at the last iteration, at

which time the decision variables reach their optimal values. One such technique is

that developed by Powell (1977) based on work done by Han (1975). A quadratic

program with linearized versions of the flowsheet equality and inequality constraints

is set up and solved at each iteration. The quasi-Newton approximation to the

Hessian Matrix for the QPP is the size of the number of variables in the problem,

and is not generally sparse. A problem with 1000 variables would require 1,000,000

storage locations for the approximate Hessian Matrix.

Bema, Locke, and Westerberg (1980) developed an efficient implementation of

Powell's algorithm to be used with a simulation program based on equation solving

methods. That algorithm decomposes the computations for the problem so that the

required Hessian is never handled directly. Biegler and Hughes (1981, 1982) have

implemented the Han-Powell algorithm with a sequential modular simulation package.

In their work the QPP is set up in the space of the decision variables and the torn

variables of the recycle streams. Murtagh (1982) has developed a Lagrangian based

optimization procedure (Robinson, 1974) which also simultaneously solves and

optimizes flowsheet equations. The method uses the MINOS/AUGMENTED nonlinear
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programming system (Murtagh and Saunders, 1980) to solve and optimize the

flowsheet equations. The technique seems quite promising when the flowsheet

equations are mostly linear.

The technique presented here is a variation of Powell's algorithm (1977). As

mentioned previously, this algorithm sets up a QPP in the space of the decision

variables. It is computationally more efficient and conceptually cleaner than the

algorithm described in Berna, Locke, and Westerberg (1980). The algorithm is very

similar to an incorrect algorithm reported by Berna and two of the present authors

several years ago (Berna, Locke, and Westerberg, 1978). Unfortunately that algorithm

included an incorrect step, and it failed when tested on large problems. Work done

by Edahl (1982) on the Han-Powell algorithm includes this algorithm as a subset of a

broader class being investigated.

3 THEORY

The optimization problem can be stated as follows:

min 4Kz)

s.t. g(z) = 0

z . £ z £ z
mm max

z € En+r

g: En+ r •* En

<*: En+r -» E1

The Lagrangian of this problem is:

T "TmJZ,nin " Z>

(P1)

with r the Lagrange multipliers on the equality constraints and * . and * the** ** mm max

Kuhn-Tucker multipliers on the lower and upper bounds of z, respectively.

The Kuhn-Tucker conditions for this problem are:

* . [z . - z] = 0
mm mm



* [z - z] = 0
max max

« . , « £ 0
mm max

For a typical flowsheet calculation of the type we are considering, n may be on the

order of 10,000, with r on the order of 10. This formulation is quite general as

general inequality constraints can be converted to equality constraints through the use

of bounded slack variables.

Powell's approach to solving this problem is to linearize the equality constraints,

assume a quadratic approximation to the objective function, and solve the resulting

QPP. Variables are then updated by taking the step

Az = ad

where d is the step calculated by the QPP.

As stated previously, the disadvantage of using Powell's method is the size of the

Hessian Matrix for the QPP. For a problem with 10,000 variables, the Hessian

contains 100 million elements, far too many for even the most advanced machines to

handle. By partitioning the variables into two sets, the independent or decision

variables, u, and the dependent or pivoted variables, x, we now show how a QPP can

be set up in the decision variables only.

Let xk and uR be the values of the dependent and independent variables respectively

at the present iteration. Linearizing the equality constraints about this point gives:

g(xk + l ,uk + 1) ~ g(xk,uk) + Og/3xT)kAxR + Og/3uT)kAuk

Setting 9 < x
k + r

u
k + 1 ) equal to 0, and requiring that 0g/8xT)k be nonsingular yields:

AxR = - Og/3xT)k"1{g(xk,uk) • Og/3uT)kAuk>

For any choice of Aufc, a value for A^ can be calculated. The problem can then be

stated as one to calculate Auk*, the optimal change in the decision variables:

min F(Auk)

U m . X " Uk



Og/auT)kAuk} * X m a x - x,

(P2)

where
F(Auk)

Expanding F(AuR) in a Taylor series about the point Aufc 3 0 yields the following

QPP associated with (P2h

min {(Q(Auk)|Q(Auk)

S-1- Umin * Uk

- Og/3xT)k"10g/3uT)kAuk ^ x ^ - xk + Og/3xT)k

(P3)

Auk € Er

g: En+r -> E"

The vector b is the reduced gradient 3#/3u, calculated by doing a Taylor series

expansion on the objective function:

4Kx+Ax, u+Au) = 4Kx,u) + 04>/3xT)Ax + 0*/3uT)Au

but



Ax = - 0g/3xTr1{g(x,u) • @g/3uT)Au}

then

A* = - O*/8xT){(3g/8xT)-1{g(x,u) • Og/3uT)Au}} • «4>/3uT)Au

= -»*/8xTX©g/axTr1g<x.u) • {(34>/8uT) - (34>/3xTX(3g/3xTr1(3g/3uT)}Au

The coefficient of Au gives the constrained derivative of • with respect to u:

bk = 6*1 Su = O*/du) - {og/SxV'Og/Su1)}7©*^.

The fact that g(x,u) is not 0 does not effect the term bR. It simply adds something

to the scalar a .

The matrix C is an approximation to the Hessian of the Lagrange Function formed

from the problem:

min ${u,x(u))

s.t. u £ u £ u
mm max

Xmin * X { U ) * Xmax

(P4)

x(u): g(x,u) = 0

u e Er

x e En

The Lagrange of (P4) is:

L = #{u,x(u)) - B1 . [u . -^ u] + J3T [u - u]
r mm mm ^ mav1- mav J

C is initialized to the identity matrix and updated each iteration using the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) updating formula, as suggested by Powell.



We also follow Powell's suggestion in calculating the step-size parameter, a:

Define V(a) as:

where

uimax - u.| • H c ^ J u . - uim.J

i.max • i.max i • —' ' i.min • Xi " Xi.min I

u# = uk •

x # = x -

in' vi.max' 3 n d Vi.min 3 r e d e f i n e d

/ i . s m a x { | X . | , Vi (/##. + | X . | ) }

imax = max{U i m a x | . u (c* j m a x • u j m a x | ) }

•i.min = m a x { l>* i .minl ' V> «' i.min + I A.min I »

v. = max{|,r. I , Vt (v*. + lar. I)}
i,max I i,max' i.max ' i.max'

v. . = m a x { U . I , Vz {v*. . * \n. I ) }
i.min ' i.min • i.min ' i.min'

Note that values with a • indicate the value of that parameter at the previous

iteration. X. is the current value of the Lagrangian multiplier for the equality

constraints of the original problem, (P1). X is calculated by:

it and it are the Kuhn-Tucker multipliers associated with the inequality
max mm

constraints derived from upper and lower bounds on the pivoted variables x and are
calculated by the QPP associated with problem (P2). 3 and 3 . are Kuhn-Tucker' r t- max ' mm



multipliers associated with the upper and lower bounds of the decision variables, and

are also calculated by the QPP. At each iteration the value of a used is the first

one found which satisfies VfclOftO). Usually a is 1, except perhaps for the first

iterations.

4 THE ALGORITHM

Step 0: Initialization

i) Set k=0, 0^=1, /iQ=0 (with C^I, the first direction

predicted is the steepest descent direction).

ii) Initialize all variables z^Cx^u ]

Step 1: Compute the Jacobian and Reduced Gradient

i) Increment k

ii) Evaluate (d*/dz), g(z) and Og/3zT) at zR

iii) Perform forward Gaussian elimination to
partition the Jacobian and find the L/U
factors for (8g/dxT) •

iv) Perform backward substitution to solve

Og/8xT)[vk, Ak] = [g, Og/3u
T)]k

for [vk, Ak]

and solve OgT/3x)X*k = O*/8x) k for X*k

v) Compute the reduced gradient

vi) If k<2, go to Step 3; otherwise go to Step 2.

Step 2: Update C (a la Powell's suggestions)

ii) let ,

where
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6 = 1 . i f «T . v £ . 2 a T . C 4i^ .
k-1'k k-1 k-1 k-1

and otherwise

set

9 - c - 8 ' T f c - , c
k - i ' k V

ill) Set Ck = V i - [C

+ ^

Step 3: Solve Associated QPP

i) Define Q(Au ) = Q(x ,u ) + (a*/«uT)Au + %AuT C Au

ii) Let dk be the solution to the following QPP:

min Q(Au )

A

s. t. - AkAuk £ X M X - xk • vk

A^Au^ S x. - x . - v.
k k k min k

U A - U, ^ Au, ^ U - U.
min k k max k

Step 4: Compute Step Size Parameter, a

i) Calculate X, = Og T /3x)" 1 [* - v A ] - X
k max mm

i i ) Set pk = Akdk + vk

i i i ) Set , i k = m a x { | X i k | , hi,i{k_,} * \\J)}

"ik.max = " " ^ ' i k . n - x l ' *{ " 1 (k-1) .max + K k . m a x l ) }

V i k . m i n

* *iv) Select «kG[O,l] such that ¥(x*,u*,//k) <
k

where ¥(x,u,/i) = 4>(x,u) + //T |g(x,u)|



+ C T | u - u I + C , T | u - u 4 I
max • max 1 1 win • 1 win1

+ v T | x - X J I + v J
 T | x - X . I

max ' max 1 • m1n ' 1 m m 1

v)

v i )

Set i

Let i

*
x =

« • -

0 = (

\ " tfPK

Step 5: Clieclc for Convergence

If (dT
k<*k + 9T

k9k) < « then go to step 6;

otherwise go to Step 1

Step 6: Stop

The only differences between this algorithm and the one published by Berna et al.

(1978 occur in Step 2 part i (calculation of yk> and in Step 4 part i (calculation of

V-

5 DISCUSSION

It is of interest to compare this algorithm with both the Berna et al. 1980

algorithm and the one used in MINOS/AUGMENTED. We can do this by examining the

final C* matrix that is approximated by the three algorithms, where C* is the Hessian

matrix projected into the subspace of the decision variables u. The C* matrix for all

three algorithms is given by:

-AT] fo2L/au3uT) @2L/8u8xT)
Ud2UdxduJ) (d2UdxdxT)

where matrix A is calculated from

A = {dgldxJ)~HdglduT)

and
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L(x,u,X) = 4Kx,u) - XTg<x,u)

and all functions are evaluated at the solution, (x*, u*, X*). For clarification we are

ignoring the terms added to the Lagrange function by upper and lower bounds. These

terms drop out when second derivatives are taken.

In the Berna et al. 1980 version, the current point (x , u , X ) and the previous

point (XQ, UQ) are used to update the matrix HQ in such a way that H1 satisfies the

secant relationship, where H is an approximation to the Hessian matrix:

- Uxo, uQ,

d/dxCUx,, ur X,) - LUo. uo

One of the variable metric method (VMM) update formulae is used to calculate matrix

H,. The desired H* is then

u

X

1

1

- u
o

" X o _

S

H"

evaluated at (x*. u#, X*).

O2L/3udxT)
O2U3x8xT)

C1 is constructed by computing

[I -A 1 ] H,
-A

In MINOS/AUGMENTED, the current point (x.,, u^ X^ is used to generate a new

function, f { u | (x^ u^ X^}:

f { u | (xy uy X,)} = • { (x 1 - (A ,{u - U i ) , u> - XT
1g{(x l - (A),{u - u,)). u}

where (A)1 indicates matrix A evaluated at the point ( x r u^.

By using gradients of f at various values of u, the Hessian of f is approximated by

VMM updating formulae. The Hessian of f at x1 is given by:

» /du) f {uJ ( x r u r X^} = 8/8u{4Kxru1) - XT
1g(x l,u1)}

+ XT
lg(x1.u1)}(A)1
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0 2 /au3uT ) f {u 1 | (x1# u r X,)} = [ I , -(A),]

where L1 is L evaluated at the point (xy uy X^.

It is easily seen that for both of these algorithms the matrix A plays an important

part in the approximation of C*. Under the assumption that f(u| ixy uy X,) and L(x,

u, X) are quadratic functions (actually that the quadratic approximation is locally

sufficient), then the C matrix is a quadratic approximation to L(x*, u*, X*) projected

onto the subspace where x - x = - (A^u - u ).

Now consider the algorithm given here. Examine the parametric programming

problem:

P(u): min
x

g(x,u) = 0

Since it is assumed that g<x,u) has a unique solution x(u) for each u, P(u) has a unique

optimal solution. Define $*(u) as the value of P(u). It is known that:

1. 34>*(u)/3u

2.

- XT(u)3g<x,u)/au

t\. a2L/8u3uT 32L/3u3xT

a2L/8x3uT 32U3x3xT

I

-A

where x = x(u)

X(u) = -8/8x{g(x(u),u)}8/8x{4»{x(u)#u)}

L evaluated at the point (u, x(u), X{u)).

Note that C* = a2{<f>*(u*)}/8u3uT. If it is assumed that **(u) is quadratic, then a VMM
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update formula using d$*(u)/du at various values of u should construct an

approximation to C*. The algorithm presented here proceeds in this manner (except

of course that x(u) may not be computed exactly). It attempts to construct C*

directly — not as a quadratic approximation to the Lagrangian projected onto a

subspace. Hence the curvature of x(u) is taken into account.

6 SAMPLE PROBLEMS

In this section we present the results of two test problems solved using the

algorithm described in the previous section. The algorithm has been imbedded into

the ASCEND-II flowsheet system (Locke, 1981). Modules describing these test

problems were written and added to the system.

6.1 DETAILED SOLUTION OF A SMALL PROBLEM

We wish to solve the problem:

min{4>}

s.t. ab + be - 1 = 0 = g 1

• - a2 - b2 + c = 0 = g2

0 £ a,brc £ 1

Throughout the calculations variables * and a were the pivoted variables, while b and

c were the independent (decision) variables. Initial values were: a=0, b=1, c=1, $=0.

Also, at the start we set /*Q
s0, and C^ l .

The starting point gives an initial Jacobian Matrix of:

31
9* P

b
1
-2

c
1
1

0
1

T\ :.With <t» and a as pivoted variables, the matrix (dg/dx ) is the identity matrix.

The initial right-hand-side vector (g) is [0,0], so the vector v is also [0,0], while

the matrix A is calculated to be:
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1
-2

The initial QPP is:

min [2 -1] fAbi • Vz [Ab Ac]
[ACJ

s.t. -1 £ Ab £ 0
-1 £ Ac £ 0

"i Jiur.» ilk

r2 1J
The solution to this QPP is [-1,0]. The Lagrange multipliers on the original equality

constraints are [0,-1]. Table 1 summarizes the search for a such that YU) < Y(0).

Table 1: Search for a

0.0

0.25

0.5

0.75

1.0

0.0

-0.375

-0.5

-0.375

0.0

Za

0.0

0.125

0.5

1.125

2.0

0.0

-0.25

0.0

0.75

2.0

Using a step size of .25, the variable values after the first iteration are: a=.25, b=.75,

c=1., 4>=-.5

Throughout the remaining iterations, c=1 and <x=1. The constrained derivative for

iteration 2 is: £4>/£u=[-.6667, -1.5] and the Hessian Matrix after the first update is:

f5.33 2. 1
L2.0 1.891J

Table 2 shows the progress of the calculations to the solution.
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Table 2: Progress of the Calculations

Iteration

0

1

2

3

4

5

6

7

8

9

10

a

0.0

0.25

0.5417

0.3910

0.3947

0.3308

0.3780

0.3815

0.3807

0.3803

0.380278

b

1.0

0.75

0.6250

0.7101

0.7170

0.7498

0.7248

0.7238

0.7242

0.7245

0.724492

RHS

0.0

0.0988

0.0757

0.0232

5.4E-5

3.9E-3

2.2E-3

9.6E-6

5.7E-7

2.1E-7

7.6E-13

•

0.0

-0.5

-0.4170

-0.3738

-0.3301

-0.3345

-0.3346

-0.330514

-0.330501

-0.330501

-0.330500

6.2 OTHER COMPUTATIONAL EXPERIENCE

The algorithm has been applied to several flowsheeting problems. The largest

contained 156 generally non-linear equations with 161 calculated variables, leaving 5

degrees of freedom. The algorithm was able to find the optimal solution to this

problem without difficulty. Typical convergence was in 10 to 20 iterations for all

problems.
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