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Abstract

Several formulations of the transshipment model from Operations Research

are proposed for the optimal synthesis of heat exchanger networks. The

linear programming versions are used for predicting the minimum utility cost,

and can handle restricted matches and multiple utilities. The mixed-integer

programming version yields minimum utility cost networks in which the number

of units is minimized, while allowing stream splitting and selection of most

preferred matches. It is shown that the transshipment models can also be

incorporated easily within a mixed-integer programming approach for

synthesizing chemical processing systems. Several numerical examples are

presented which show that the proposed models are computationally very

efficient.

Scope

A major component affecting the overall performance of processing

systems is the heat recovery network. The task of a heat recovery network

is to exchange the available heat of all process streams in order to reduce

the consumption of heating and cooling utilities. Since the cost of

utilities is usually the dominant item, there is a great incentive to

design heat recovery networks that integrate efficiently process streams.

There are several practical considerations involved in the synthesis of

efficient heat recovery networks. First of all, there are different utilities

that can be used for providing the necessary heating and cooling of process

streams. For example fuel, steam at different levels (high, medium and low

pressure) and hot water can be employed as heating utilities, while cooling

water and refrigerants can be used as cooling utilities. Since all these

utilities have different cost per unit heat, it is very important to

synthesize heat exchanger networks for which the utility cost is at a
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minimum. Another important aspect in the design of heat recovery networks

is stream splitting which is often necessary to attain better heat

integration in the network. In some cases this can also be achieved by

allowing multiple matches between certain pairs of streams, which then

lead to cyclic networks. Finally, another consideration is the specifica-

tion of forbidden matches between certain pairs of process streams. This

restriction usually arises in practice because of the plant layout, safety

requirements, or process control difficulties. Therefore, it is important

that a procedure for the synthesis of efficient heat recovery networks

should account for all the above considerations.

The main difficulty in the heat recovery problem is its inherent

combinatorial nature since usually there is an enormous number of possible

networks. In the last fifteen years a large number of methods have been

proposed for tackling this synthesis problem. A review of all the previous

research work is beyond the scope of this paper, and the reader can find an

excellent coverage on this subject in a recent journal review by Nishida

et al# [13]. The purpose of this paper is to present an approach for the

systematic synthesis of heat recovery networks which is based on different

transshipment model3. These models provide efficient procedures for

synthesis, and can be incorporated in a natural form within the HELP

formulation for the synthesis of total processing systems that is given

in the third part of this series of papers [15].

Conclusions and Significance

The transshipment models that have been presented in this paper

provide a systematic framework for the optimal synthesis of heat exchanger

networks. The models for minimum utility cost have the advantage of involving

linear programming problems of small size which can be solved with
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little computational effort. Also, as has been shown these models can be

extended readily in order to be incorporated in synthesis procedures of

processing systems that are based on mixed-integer programming. The model

for minimum number of units which involves a mixed-integer linear

programming problem, can be used for deriving network configurations that

involve stream splitting and selection of most preferred matches. For the

latter aspect a special weighting scheme was developed which allows the

designer to specify different levels of priority for the matches. The

numerical examples have shown the proposed approach to be very efficient

and powerful.
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Introduction

As discussed in the first part of this series of papers [14], the

heat recovery network is one of the crucial components in a total processing

system since its task is to exchange heat among the streams of the chemical

process in order to reduce the consumption of utilities.

The heat recovery network synthesis problem that will be considered

in this paper can be stated as follows. In a processing system there is

a set H » {i|i=l,NH} of hot streams that have to be cooled, and a set

C = {j|j=l,Nc} of cold streams that have to be heated. Each hot stream i

has mass flowrate F., heat capacity (c ) , and has to be cooled from supply

temperature T? to target temperature T.. Similarly, each cold stream j has

mass flowrate F., heat capacity (c ). and has to be heated from supply

temperature T. to target temperature T.. Since the total heat content of

the hot and cold streams is usually unequal, and because of thermodynamic con-

straints in the transfer of heat, auxiliary heating and cooling is assumed to be

available from a set S = {m|m-l,NS) of hot utilities (e.g. fuel, steam), and

a set W = Cn|nrl,NWJ of cold utilities (e.g. cooling water, refrigeration).

The objective of the synthesis problem is then to develop a network of

countercurrent heat exchangers that satisfies the specifications at minimum

investment and operating cost (e.g. in annualized form).

Due to the large number of possible network configurations and to the

nonlinearities involved in the investment cost function of the heat

exchangers, the main approach that has emerged in the last few years is to

develop design objectives that will simplify and reduce the size of this

synthesis problem. Although these objectives cannot guarantee rigorous

cost minimization, they have the property of generating networks with

maximum heat recovery which often corresponds to optimal or near optimal



- 5 -

solutions. The most important objectives can be summarized in three major

results that can be used for the design of energy efficient networks. The

first two objectives were first identified by Hohmann [10] and later by

Linnhoff and Flower [ll], while the third one was proposed by Umeda et al.

[16].

Minimum Utility Consumption. This is the most important

design objective for an efficient heat exchanger network, since it

corresponds to the maximum heat integration that can be attained in a

feasible network.for a fixed minimum temperature approach. Also, since

the cost of utilities is commonly the dominant cost item, this objective

allows the elimination of many network configurations which are inefficient

and costly. The prediction of minimum utilities can be performed prior to

developing the actual heat recovery network structure [ll] . This design

objective can be further refined as the prediction of minimum utility cost.

This is necessary because in actual networks there is usually a variety of

hot and cold utilities employed, and each utility is priced at different cost

(i.e. fuel, heating steam at different pressure levels, hot water, cooling

water, refrigerants, etc).

Minimum Number of Units. Another important objective is

determining the minimum number of heat exchanger units that is required in

the network. This objective attempts to minimize indirectly the investment

cost of the network since the cost of each exchanger is assumed to be a

concave function of the area. As noted by Hohmann [lO], the minimum

number of units is usually one less than the total number of process streams

and necessary utilities.

Modification of Pinch Points. A pinch point can be regarded as a bottleneck

that prevents further heat integration in a network. An example of a pinch
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point is shown in Fig. 1, in which the composite hot and cold streams of

a process are plotted in a temperature/enthalpy diagram. Note that the

presence of the pinch point limits the maximum heat integration that is

possible. Therefore, it is important to identify the location of pinch

points prior to developing a network, in order to consider changes in the

process that can eliminate or modify these bottlenecks so as to enhance

heat integration [16].

The first two design objectives have been used in previous methods

for the synthesis of efficient heat exchanger networks. Flower and

Linnhoff [6] proposed the thermodynamic-combinatorial algorithm (TC)

which will generate all minimum utility usage networks with the minimum

number of heat exchanger units and with no stream splitting. The first

step of the TC algorithm is to divide the entire temperature range of the

streams into temperature intervals according to partitioning rules that

allow feasible heat exchange. Next, the minimum heating and cooling

utilities are predicted using the procedure of the problem table as given

in Linnhoff and Flower [11]. The last step is to generate all networks

that require minimum utilities and have the fewest number of units.

A similar strategy for the synthesis of heat recovery networks has

been proposed by Cerda et al. [3],and Cerda and Westerberg [4], [5].

In the initial phase the minimum utility usage problem is considered*

The temperature range of all the streams is partitioned into temperature

intervals, but then the problem is modeled as a transportation problem where

all possible routes are considered in which heat is shipped from the hot

streams to the cold streams. Since heat can only flow from a hot stream

at a higher temperature to a cold stream at a lower temperature, large

cost coefficients are assigned to routes that are thermodynamically
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infeasible. This linear programming transportation model can be modified

if necessary to account for restricted matches among certain streams, and

is solved using the northwest corner algorithm. The next phase is to

determine minimum utility networks involving the least number of units.

This is done by reformulating the transportation problem as a mixed-

integer linear program (MILP), and then relaxing the integrality constraints

in order to solve it as a linear program. The final structure of the

heat recovery network is derived often by hand, and stream splitting can

be performed if necessary.

Several example problems have been solved successfully using the

two synthesis methods described above. Although these methods cannot

guarantee minimum cost of the heat exchanger networks, they obtain

efficient designs that are in most cases optimal or near optimal solutions*

Therefore, the design objectives of minimum utilities and minimum number

of units provide very powerful targets in the synthesis of heat recovery

networks•

In this paper a number of transshipment models will be proposed for

the synthesis of heat recovery networks. The linear programming versions

can be used for predicting the minimum utility cost with and without

restricted matches. The mixed-integer version can be used for developing

networks that involve a minimum number of heat exchanger units with

possible splitting and mixing of streams, and where preferences.can be

assigned to the matches. The main advantage of these models is that they

can be solved with very little or modest computational effort. Also,

these models can easily be connected with the MILP model proposed by

Papoulias and Grossmann [15] for the synthesis of chemical processing

systems. Therefore, by incorporating the transshipment models it is
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possible to account for changes in the chemical process that enhance heat

integration and can lead to improved heat recovery networks* This

objective cannot be attained using the TC method of Flowers and Linnhoff [6]

which does not account for process stream changes that alter the heat

exchanger network. The transportation model of Cerda et al. [3] can be

incorporated in principle within an optimization framework that allows

for process stream changes. However, the large size of the transportation

model makes it difficult to include it in an integrated system,

and the northwest corner algorithm cannot be used any more in this case

for obtaining the optimal solution.

The Transshipment Model

One of the models that is widely used in the field of Operations

Research to solve network problems is the transshipment model (see

Garfinkel and Nemhauser, [7]; Hillier and Lieberman, [9]). The

transshipment model is a variation of the well known transportation

problem, and deals with the optimum allocation of resources. In particular,

the transportation model seeks to determine the optimum network for

transporting a commodity (e.g. a product) from sources (e.g. plants)

directly to destinations (e.g. markets). On the other hand, the

transshipment model investigates the optimum network for shipping the same

commodity, but from sources to intermediate nodes (e.g. warehouses) and then

to destinations.

The following analogy with the transshipment model can be made for

the heat recovery problem. Heat can be regarded as a commodity that is

shipped from hot streams to cold streams through temperature intervals that

account for thermodynamic constraints in the transfer of heat. In

particular the second law of thermodynamics requires that heat flows
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only from higher to lower temperatures, and therefore these thermodynamic

constraints have to be accounted In the network model. This can actually

be done by partitioning the entire temperature range into temperature

intervals according to rules proposed by Linnhoff and Flower [11] ,

Grimes [8], and Cerda et al. [3]. these partitioning procedures guarantee

the feasible transfer of heat in each interval of the network, given the

minimum temperature approach ATmin^ In this way, as shown in Fig. 2,

it can be considered that heat flows from hot streams to the corresponding

temperature interval, and then to cold streams in the same interval with

the remainder going to the next lower temperature interval. Therefore,

the transshipment model for the heat recovery network has the hot streams

and heating utilities as sources, the temperature intervals as the

intermediate nodes and the cold streams and cooling utilities as the

destinations. The heat flow pattern for each temperature interval shown

in Fig. 3 is then as follows:

a) Heat flows into a particular interval from all the hot streams and
heating utilities whose temperature range includes the temperature
interval.

b) Heat flows out of a particular interval to the cold streams and
cooling utilities whose temperature range includes the temperature
interval.

c) Heat flows out of a particular interval to the next lower temperature
interval. This heat is the residual (excess) heat that cannot be
utilized in the present interval, and consequently has to flow to a
lower temperature interval.

d) Heat flows into a particular temperature interval from the previous
interval that is at higher temperature. This heat is the residual
(excess) heat that cannot be utilized in the higher temperature
interval.

It should be noted that this network flow pattern is a special case of the

general transshipment model [7], [9], since all the flows of heat from hot streams

to temperature intervals,and from temperature intervals to cold streams are
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normally fixed. In such a case the only variables in this transshipment network

are the residual heat flows from one temperature interval to the next lover

temperature interval, and the flowrates of hot and cold utilities.

There are different mathematical formulations of the transshipment

model that can be employed for the systematic synthesis of heat recovery

networks. As it will be shown in the next sections, these formulations

can be used for predicting the minimum utility cost and for deriving

networks with minimum number of units.

Minimum Utility Cost Problem

One of the design objectives employed in the synthesis of heat

exchanger networks is to determine the minimum utility cost for a set

of hot and cold process streams. This problem will be formulated as a

transshipment problem assuming that there are no restricted matches

among any pair of streams.

The first step is to partition the entire temperature range of all

streams into K temperature intervals for which any suitable partitioning

method can be used ([3],[8],[11]). The intervals are labeled from the highest

level (k=l) down to the lowest level (k«K) of temperature, with each interval k

(k=l,2,...,K) having a temperature change of ATfe. The following sets are defined

in order to identify the location of all streams and utilities relative to the

temperature intervals:

Hfc " {*- l h o t stream i is present in interval k}

C, - {j |cold stream j is present in interval kl

Sfc • |m I hot utility n is present in interval k)

Wfc * jn | cold utility m is present in interval k}

H
Let Q^ be the heat load of hot stream i entering temperature interval

k. This heat load is given by,
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where AT, is the temperature change of stream i in interval k.

Similarly the heat load Q?, flowing to cold stream j from temperature

interval k is calculated as,

Q - W A X

All utilities are placed in the appropriate intervals depending on their

inlet and outlet temperatures. If Ahtnk is the enthalpy change of hot

g
utility m in temperature interval k then the heat load Q m^ entering

interval k is given by,

W
Similarly, the heat load Q - of cold utility in temperature interval k is,

QW = F W A h , (5)

xnk n a nk '

By denoting the residual heat flowing out of interval k as R-, and

by performing a total heat balance on each interval k (see Fig. 3), the

transshipment model for minimum utility cost is given by

minimize Z « Y s FS +Y w FW

Lt m m Lt n n

m*S new

s.t. (PI)

«ik

'k

F ^ O m e S , F > O n c W

where s , w , are the unit costs for the hot and cold utilities. In them* n

case that these cost coefficients are set to one the above formulation

will yield a solution for minimum utility consumption. Such a solution will

be equivalent to a minimum cost solution if only one type of heating and

one type of cooling utility is considered. The optimal values of the hot and

cold utility flowrates (FS , m = l,NS,and FW,n - l.NW) and the residual

m n
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heat load IL of each interval k can easily be determined by solving the

linear programming problem (Pi). The occurrence of any pinch points takes

place between the temperature intervals with no residual heat flow, or

equivalently at the point where the residual heat load R, is equal to zero.

Note that since the residuals IL do not correspond to any particular

stream, but rather to the aggregate of the hot streams, the formulation

in (Pi) is equivalent to merging the streams in composite hot and cold

streams as in Fig. 1.

The above transshipment model (Pi) is an alternative formulation to

the reduced transportation model proposed by Cerda et al. [3] for

predicting minimum utility usage in a heat recovery network without any

restricted stream matches. However, it should be noted that the size of

the transshipment model is considerably smaller than the reduced transporta-

tion model that has NS + Ntf + [(K)(K+l)/2] variables and 2K rows. The

size of the transshipment model (Pi) is:

a) Number of variables - N S + N W + K - 1

b) Number of rows • K

i This leads to a linear program of small size even for large number of

streams. For example, given 20 process streams, 3 hot utilities and 1 cold

utility the maximum number of temperature intervals is 23 according to the

partitioning procedure by Grimes [8]. Therefore, the maximum size of the

transshipment model is only 26 variables and 23 rows, while the maximum

size of the reduced transportation model of Cerda et al. [3] is 280

variables and 46 rows.

Minimum Utility Cost with Restricted Matches

A practical consideration in the design of some heat recovery networks

is the specification of forbidden matches between certain pairs of process



-13-

streams. This case typically arises because of safety and control

considerations, or because a pair of streams is located too far apart in

the plant. Since the transshipment model (Pi) does not account for

restricted matches, it is necessary to develop a new formulation*

The model for restricted matches is conceptually similar to (Pi), but the

difference is that only the unrestricted hot and cold streams can be merged

since the restricted streams must be treated separately. This is necessary

because the forbidden matches must be prevented from exchanging heat in the

formulation of heat balances in each interval.

In order to derive the model, assume that the set of restricted

matches is specified for only some process streams and is given by

P = {(i,j)|ieH, jeC, match between i and j is forbidden} (6)

The streams involved in the set P can then be identified by the subsets

HP = U|i*P}, CP = {j|jeP} (7)

The remaining process and utility streams can be considered to be merged

in hot stream h, and cold stream c. If the partitioning of temperatures

is performed on all the original process and utility streams as in problem

(PI), the heat content of the merged hot and cold streams in each interval

k will then be given by

ieH meS. j€C n«W.

Since the reduced set of streams to be analyzed is given by

'H' » |i|i»h, liHP) , c' - {j | j-c, j e CP) (9)

each hot stream ieH' will be assigned an individual heat residual R .

as shown in Fig. 4. Also, the heat exchanged between hot stream 1?H' and

cold stream j«c' in the temperature interval k will be denoted as

It then clearly follows that for the forbidden matches Q ., - 0, (i,j)*P,
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1C L } Jm } 0 • m1\.»

It should be noted that there is the possibility that a hot stream

t i

i?H will exchange heat with cold stream j?C ,(i,j) i P, in an interval k

where stream i is actually not present. This can happen if hot stream 1

is present at a higher temperature interval k < k, so that the exchange

of heat takes place through the residual R.** Therefore, it is convenient

to define the subsets of streams for potential heat exchange in each

interval k, which are given by
t f _

H. - li|icH , stream i is present in interval k^ k}
• r i ' i ( 1 0 )

Cfc * ij| J*C , stream j is present in interval kj

By performing individual heat balances for the reduced set of hot

and cold streams in each interval (see Fig. 4), the minimum utility cost

problem for restricted matches will be given by the following transshipment

model,

m i n i m i z e Z » Y s F S + Y w F W

Z_j m m CJ n n

meS neW
s.t.

Jl

Y c f

L Q i i k m Q ik j e Ck f k = s l > 2 >"* K

i t H k

L Qi*
ieH
ie'HP K

q\ « V (£ + Y FW

ck Lt jk Li n

jtfcp

F n > ° m e S, F * > 0 n « W
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It should be noted that in the implementation of this model the

variables Q?,, QCfc> can be eliminated with the third and fourth

equality constraints in (RPl). Therefore, the variables for this

model are F*\ P* • Q. 41r, and R41r Although
m n ijK IK

the actual size of the transshipment model is dependent on the particular

problem data, it is possible to calculate the following upper bounds

on the number of variables and rows:

a) Maximum number of variables = NS + NW + (NHP + 1)[(NCP + 2)K - 1]

b) Maximum number of rows = (NHP + 1) (NCP + 1) K

where NHP is the number of restricted hot streams, and NCP is the number

of restricted cold streams* For the example of 20 process streams, 3 hot

utilities, 1 cold utility and 1 restricted match, and with 23 temperature

intervals, the maximum size of the restricted transshipment model is 140

variables and 92 rows. The number of actual variables however, will be

lower since many of the variables Qi-k will be set to zero either because

some matches are forbidden, or otherwise because they dre thermodynamically

infeasible. it should also be noted that the size of model (RPl) is much,

smaller than the transportation model for restricted matches proposed by .

Cerda et al. [3].

Minimum Number of Heat Exchanger Units

The objective of the previous transshipment models is to determine

the minimum utility cost and location of any pinch points in a heat

recovery network. However, because there are often many minimum utility

cost networks, a desirable objective is to obtain from among these networks

one that has the minimum number of heat exchanger units since this will

usually correspond to an optimal or near optimal solution*

At this point it is assumed that the minimum utility cost will have

been determined with either of the transshipment models (PI) or (RPl).
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Since the utility flovrates and their corresponding heat contents will

then be known, the utility streams can be added to the sets of process

streams so as to define the augmented sets H « {H,S} and C = {c,w} of

hot and cold streams. Also, in general the optimal solution to (Pi) or

(RP1) will indicate the existence of one or more pinch points in the

network, in which case the problem can be partitioned in subnetworks

as no heat will flow across each pinch point [8]. More specifically,

if NL - 1 pinch points occur, the K temperature intervals can be

partitioned in NL sets of intervals above and below each pinch point

that define the boundary of the subnetworks. The subsets of temperature

intervals corresponding to each subnetwork 4, will be denoted by

SN^, I = 1,2,...NL.

In order to satisfy the minimum utility cost solution only the

streams within each subnetwork I should be allowed to exchange heat

as otherwise heat would be transferred across the pinch points, and hence,

the utility usage increased* It is therefore convenient to denote as

H- C H and C, CC the hot and cold streams present in subnetwork I.

Following a similar treatment as in the problem of restricted matches

(RP1), the heat residuals of the hot streams ieH, will be represented

by R.i_, keSN,, I = 1,NL, while the heat exchanged between the streams

in the subnetwork will be represented by Q ieHXkf ^*Cik> k*SNX» where

H« =* {ilisH,, stream i is present in interval k «s k; k, k * SN.}

Cj k » ij| jeC^, stream j is present in interval k « SN^j

The 0-1 binary variable y § can then be introduced to denote the
IJXr

existence of a match between streams ieBjg, and jeCjj, in subnetwork X.

It is assumed here that each one of these potential matches is associated
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to a potential heat exchanger unit* Since the total heat exchanged

between the given pair of streams is given by the sum of their heat

exchange taken over the intervals of the subnetwork, the binary variables

can be related to the variables Q .,, through the inequalities
IjK

ijk (12)

(13)

corresponds to the upper bound on the heat that can be exchanged* Note

that when the binary variable y ., in (12) takes a zero-value no heat

can be exchanged, but when it is set to a value of one any amount of heat

that does not exceed U,.. can be exchanged. The problem of minimizing

the number of units in the heat exchanger network can then be formulated

as the following mixed-integer transshipment problem,
NL

minimize Z

s.t.
U H jeC

i e H.

I 4 * Cjtk

(P2)

Jtk

Hjk - U

I - 1,2,...NL

,, j » C . I = 1,2,.. .1

i e H.

Hik

k « SN,

X =• 1,2,...NL

0,1 i« 1,2,...NL.
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Note that in the objective function (P2), each binary variable

is multiplied by the weight e. ., t h a t c a n acc<>unt for the cost or preference

of the match between the steams. Since cost coefficients are difficult

to derive because of the nonlinearities that are involved in the

temperatures, it is more practical to think of these weights e..£ as

coefficients that reflect preferences of the matches. If there are no

particular preferences all the weights can be set to one, in which case

problem (P2) will provide a solution with minimum number of units.

However, since very often there will exist more than one such solution

the objective of selecting preferred matches becomes important. This

is particularly true when for the various pairs of matches there are

significant differences in heat transfer coefficients, materials of

construction, or when pairs of streams are located in different sections

of the plant. In such cases, weights can be derived so that the optimal

solution in (P2) exhibits always the minimum possible number of heat

exchangers, but if there is a choice, the preferred stream matches are

selected. The derivation and formulas for these weights are given in the

Appendix for the cases when levels of priority are assigned either to

individual matches or to groups of matches. It should also be noted that

forbidden matches can be handled readily in (P2) by setting the variables

y^i = °> (*>J)*Pf 4=1,2,...NL. Clearly these forbidden matches would have

to be the same as the ones specified in the model (RPl).

The MILP given by (P2) can be solved either in its full form, or

otherwise it can be decomposed into the NL smaller subproblems for each

subnetwork, and in each case standard branch and bound enumeration codes

can be used. Cerda and Westerberg [4] developed also a MILP based on the

transportation model for deriving networks with minimum number of units,

but they propose to use several LP relaxations to avoid solving the
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original mixed-integer problem.

The Transshipment Model for Integrated Systems

Another important objective in the synthesis of heat recovery networks

is to consider feasible changes in the structure or parameters of the

chemical plant that can improve heat integration [16]. As it was described

in the introduction section, these improvements correspond to the modifica-

tion or elimination of pinch points in the heat recovery network in order

to further reduce the utility cost* However, these improvements are only

feasible whenever it is possible to alter certain process stream flowrates

and/or temperatures. Therefore, the above requirement necessitates that

the heat recovery network model should be included within a mathematical

framework for the synthesis of a chemical processing system, such as the

MILP approach proposed by Papoulias and Grossmann [ 14], [15]. In order to

accomplish this task, it is proposed to incorporate the heat recovery

network in the chemical processing system with the minimum utility cost

models (Pi) or (RPl), since this will ensure that the optimal design of the

integrated system is energy efficient. The actual derivation of the

network structure can then be performed separately using the MILP model (P2)

after optimizing the integrated system.

The transshipment models for minimum utility cost can be extended

easily so that they can be incorporated within a MILP synthesis model for

arbitrary chemical processing systems. All that is required is.to treat

the flowrate compositions of the process streams as variables that will

account for the interactions between the chemical processing plant and the

heat recovery network. Also, if it desired to investigate several discrete

inlet and outlet temperatures for some of the process streams in a MILP

formulation [14], individual streams can be defined for each temperature
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condition. If the set of components for each stream i is denoted by

D. = {d}, by performing the temperature partitioning on all the streams,

it follows from (PI) that the minimum utility cost transshipment model

for unrestricted matches will be given by

minimize Z * ^ s F +

msS neW
s.t.

I 1 Fid<Cp>idk*Tk+ I * i * W + »k-l (P3)

0 m e s F
m » n

F W > 0 n e W
n ""

The above formulation is a linear programming model and can be

included in a MILP model for the chemical processing plant by adding the

objective function and the constraint set of (P3). Also, it is possible to

add an annualized investment cost for all heat exchangers by considering

this cost to be proportional to the total heat transferred in the network.

A numerical example for the synthesis of a chemical processing plant and

its associated heat recovery network is presented by Papoulias and Grossmann [15],

Clearly, the model for restricted matches can be derived similarly as (P3).

The Synthesis Procedure

The transshipment models developed previously in the paper can be used

in the following procedure for the synthesis of heat exchanger networks:

Step 1. Develop Temperature Intervals

In the first step the entire temperature range of all the streams is
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partitioned into temperature intervals. The partitioning methods

proposed by Linnhoff and Flower [11], Grimes [8] and Cerda [3] can

be used for this purpose. However, the first procedure yields approximately

twice as many intervals for the same problem when compared with the other

two methods. Therefore, the partitioning procedure first proposed by Grimes

and then modified by Cerda is the most efficient to use, since the

resulting model has fewer temperature intervals which in turn reduces the

size of the transshipment models. In particular, the following rules are

applied in the method by Grimes [ 8] :

Rule 1. Decrease the supply temperature of each hot stream/utility by the

specified minimum temperature approach AT .

Rule 2* Place the decreased supply temperatures of all hot streams/utilities

as well as the original supply temperatures of all cold streams/utilities in a

list. These temperatures that define the partition for cold streams, are

arranged in order of decreasing values. The temperatures of the hot streams/

utilities in the list will then be given by increasing the temperatures of the

cold streams/utilities by ATm# . Note that the highest temperature (first

entry in the list) should correspond to a hot utility, and the lowest

temperature (last entry in the list) should correspond to a cold utility

to ensure that heating at the highest level and cooling at the lowest level

are always available*

Rule 3. The temperature intervals k are numbered in increasing order,

k - 1,2,...K, starting from the highest pair of temperatures on this list.

The number of partitioned temperature intervals K with the above

procedure will then be given by, K £ NH + NC + NW •+ NS - 1.
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Step 2. Prediction of Minimum Utility Cost

In this step the minimum utility cost for a given problem is determined

using either the transshipment model (Pi), or otherwise when there are

restricted matches the model (RP1). These two transshipment models are

essentially network flow problems that can be solved efficiently with

special purpose algorithms (Bradley et al. [1]) or with standard linear

programming codes. The optimal solution of the transshipment models (Pi)

and (RP1) does not give the actual*network design (i.e. actual matches

among streams), but rather has embedded all networks that exhibit minimum

utility cost. Therefore this step of the synthesis strategy reduces

significantly the number of heat recovery networks from further consideration

without excluding any energy efficient designs.

Step 3. Improving Heat Integration in the Network

This step is associated with the elimination or modification of

bottlenecks (pinch points) in the heat recovery network, in order to further

reduce the utility cost. This improvement can be only done if it is possible

to alter certain stream flowrates and/or temperatures. Consequently, the

implementation of this step is optional since in many cases it is not allowed

to alter any problem data* In the case that certain stream flowrates and

temperatures are allowed to vary, the minimum utility cost problem can be

formulated as the transshipment model (P3). However this transshipment

model should be connected and solved simultaneously with the MILP model of

the chemical processing system that accounts for all variations in process

stream flowrates and temperatures as discussed in Papoulias and Grossmann [15]

Step 4. Selecting Networks having Minimum Number of Units

After predicting the minimum utility cost the transshipment model (P2)

is employed to determine the minimum number of units and the actual matches
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that should take place in the network. As noted before, weights can also

be used to assign preferences to the matches. Problem (P2) involves the

solution of a MILP which can be solved with standard branch and bound

codes [7], [9], and with the option of decomposing the problem into

subnetworks.

It is important to point out that the MILP transshipment problem (P2)

does not provide directly the heat exchanger network configuration. However,

the optimal solution of (P2) contains all the necessary information to

derive the network by hand. Specifically, the solution will indicate the

pair of streams involved in each match, the corresponding amount of heat

that is exchanged, and the temperature intervals over which the exchange of

heat takes place. The derivation of the network configuration will often be

a simple task since no work is required for merging manually heat exchanger

units. Furthermore, since in the derivation of the model (P2) no

assumption was made to forbid stream splitting or cyclic networks, by knowing

for instance the temperature intervals over which the actual matches take

place one can determine easily whether stream splitting is required. Clearly,

there will be instances in which one or more different networks can be

derived since the optimal solution of (P2) will not necessarily define a

single configuration and/or parameters for the network. In this case a

detailed analysis of the different networks could be performed to select the

final solution.

Numerical Examples

The application of the transshipment models presented in this paper

is demonstrated on four different example problems. The first problem has

two cold and two hot process streams, and is referred in the literature as

the 4SP1 problem [2], [8]. The data for the 4SP1 problem are shown in
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Table 1. The minimum temperature approach required at all points of the

network is specified as 10°C. In the absence of any restricted matches,

the minimum utility consumption for problem 4SP1 is determined using the

transshipment model (Pi), which is shown in Fig. 5 and consists of five

temperature intervals. The optimal solution was obtained using the

LINDO [12] computer code on a DEC-20 computer in less than 2 seconds*

The minimum heating required is 128 KW and the minimum cooling is 250 KW.

The pinch point for this problem occurs between the first and second

temperature interval (249°C - 239°C). Next, the MILP model (P2) is used

in order to obtain the minimum number of heat exchanger units for problem

4SP1. This MILP transshipment model has 7 binary variables, 21 continuous

variables, 30 rows, and the optimal solution was obtained with the LINDO

computer program in less than 6 seconds on a DEC-20 computer. In Fig. 6

the heat recovery network having the least number of units (5 units) is

shown. The minimum utility usage and number of units is identical to the

solution reported by Cerda [2].

The second numerical example is again problem 4SP1, but in this case

the match between cold stream 1 and hot stream 2 is forbidden. The minimum

utility consumption for this problem is determined using the restricted

transshipment model (RP1) which was solved using LINDO in less than 2 seconds

(DEC-20). The minimum heating required is 260 KW and the minimum cooling

is 382 KW, which are identical to the values reported by Cerda [2]. The

final network for the restricted 4SP1 problem having the least number of

units (5 units) is shown in Fig. 7, and was obtained in less than 5 seconds.

The next example is the 7SP4 problem, which has 6 hot streams and

1 cold stream. The minimum utility cost problem was solved first and the

optimal heating and cooling utility requirements found are included with
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the problem data in Table 2. The minimum temperature approach required at

all points in the network is specified to be 20°F, and there is a pinch

point at 430°F - 410°F. The MILP model for problem 7SP4 has 14 binary

variables, 54 continuous variables and 58 constraints. The optimal

solution was obtained in 10 seconds with the LINDO code, and is shown in

Fig. 8. This design represents a minimum utility cost network with the

least number of heat exchangers (10 units). Note that splitting of the

cold stream is required above and below the pinch point, and there are

two cyclic matches in the network (C1-H2, C1-H4). Therefore, it is clear

that the MILP model (P2) has embedded in it all minimum cost utility

networks with or without stream splitting and with cyclic matches.

The last problem solved was the 10SP1 problem [2], which has 5 hot

and 5 cold process streams as shown in Table 3. This particular problem

requires cooling water as the only utility, since there is excess heat

at all points of the heat recovery network and no pinch point occurs.

In order to obtain the network structure requiring the minimum number of

units the MILP model for 10SP1 is solved. This MILP model has 30 binary

variables, 172 continuous variables and 119 constraints and was solved

in less than 30 seconds using LINDO on a DEC-20 computer. The optimal

solution corresponds to an unsplit network with 10 heat exchanger units

as shown in Fig. 9. It is interesting to note that the MILP transportation

formulation of Cerda and Westerberg [4] for the 1OSP1 problem, has the same

number of binary variables and rows but requires 357 continuous variables.

Finally, to illustrate the application of weights for preferred

matches in problem 10SP1, it was assumed that four different levels of priority

were assigned to the 30 possible matches shown in Table 4. As can be
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seen the highest level of priority p«l , was assigned to the matches

with cooling water because of the advantage of controlling directly the

target temperatures of the hot streams. For the remaining matches it was

assumed that the 10 process streams were located in three different

sections of the plant. Therefore, the level of priority p-2 corresponds

to matches that take place within each of the three sections in the plant,

the level p=3 corresponds to the matches that take place between the

adjacent sections, and the lowest level p=4 takes place between the two

sections that are furthest apart. By using the weights shown in Table 4,

(with a=6 as discussed in the Appendix), the network that was obtained is

shown in Fig. 10. Note that this network has 10 heat exchanger units and

involves 3 matches with p=l, 5 matches with p=2, and one match for both

p=3 and p=4 priority. Therefore, with respect to the configuration in

Fig. 9, there are 3 more matches at the level p=2 and only one at the

level p=3, thus resulting in a system that requires less integration

among the three sections in the plant. The computer time requirements

for this problem were considerably higher ( 9 min.) due to the existence

of a large number of networks with minimum number of units. It should

be noted that when the weights were set to one for simply obtaining a

network with minimum number of units, the computer time was much smaller

because the LINDO computer code would determine as the optimal solution

the first network in the enumeration with 10 units.

Acknowledgement

The authors would like to acknowledge financial support provided by

the Exxon Education Foundation and by the National Science Foundation

under Grant CPE 79-26398. The helpful suggestions of Professor Lorenz

Biegler on the presentation of the paper are greatly appreciated.



-27-

References

[1] Bradley, G.H., G.G. Brown and G.W. Graves, "Design and Implementation
of Large Scale Primal Transshipment Algorithms11, Management
Science, 24, (1) 1-34 (1977).

[2] Cerda, J., "Transportation Models for the Optimal Synthesis of Heat
Exchanger Networks", Ph.D. Thesis, Carnegie-Mellon University,
Pittsburgh (1980).

[3] Cerda, J., A.W. Westerberg, D. Mason and B. Linhoff, "Minimum Utility
Usage in Heat Exchanger Network Synthesis - A Transportation
Problem11, Technical Report DRC-06-25-81, Carnegie-Mellon University,
Pittsburgh (1981).

[4] Cerda, J. and A.W. Westerberg, "Network Flow Models for Heat
Exchanger Network Synthesis: Part 2 - Finding Minimum Match
Solutions", Technical Report DRC-06-26-81, Carnegie-Mellon
University, Pittsburgh (1981).

[5] Cerda, J. and A.W. Westerberg, "Network Flow Models for Heat Exchanger
Network Synthesis: Part 3 - Solutions with Stream Splitting and
Cyclic Structure", Technical Report DRC-06-27-81, Carnegie-Mellon
University, Pittsburgh (1981).

[6] Flower, J.R. and B. Linhoff, "A Thermodynamic-Combinatorial Approach
to the Design of Optimum Heat Exchanger Networks", AIChE J., 26,
1 (1980).

[7] Garfinkel, R.S. and G.L. Nemhauser, "Integer Programming", John Wiley,
New York (1972).

[8] Grimes, L.E., "The Synthesis and Evaluation of Networks of Heat
Exchanger that Feature the Minimum Number of Units", M.S. Thesis,
Carnegie-Mellon University, Pittsburgh (1980).

[9] Hillier, F.S. and G.J. Lieberman, "Operations Research", Holden-Day
Inc., San Francisco (1980).

[10] Hohmann, E.C., "Optimum Networks for Heat Exchange", Ph.D. Thesis,
University S. California, Los Angeles (1971).

[11] Linhoff, B. and J.R. Flower, "Synthesis of Heat Exchanger Networks,
Part I. Systematic Generation of Energy Optimal Networks",
AIChE J., 24, 633 (1978).

[12] Schrage, L.E., "User's Manual for LINDO", The Scientific Press,
Palo Alto (1981).

[13] Nishida, N., G. Stephanopoulos and A.W. Westerberg, "Journal Review:
Process Synthesis", AIChE J., £7, 321 (1981).



-28-

[14] Papoulias, S. and I.E. Grossmann, "A Structural Optimization
Approach in Process Synthesis. Part I: Utility Systems11,
submitted for publication (1982).

[15] Papoulias, S. and I.E. Grossmann, "A Structural Optimization
Approach in Process Synthesis. Part III: Total Processing
Systems11, submitted for publication (1982).

[16] Umeda, T., T. Horada and K. Shiroko, "A Thermodynamic Approach
to the Synthesis of Heat Integration Systems in Chemical
Processes11, Computers and Chemical Engineering, j3, 373 (1979).



Appendix

Weighting scheme for preferred matches

In the formulation of the transshipment model (P2) for minimizing

the number of units, the weights e .̂  were included in the objective

function to denote the preference or priority level of matching hot

stream i and cold stream j in subnetwork <&• As shown in this Appendix,

these weights can be selected so as to obtain networks with minimum

number of units but containing stream matches with highest priority*

This procedure is useful in the case when several or many networks exist

with minimum number of units*

Firstly, assume that the designer specifies a different priority

level p to each triplet (i,j,^), i e H,, j « C,, t - 1,2,...NL, where

p = 1,2,...N, and N is the cardinality of the triplets. The value

p-1 will denote the highest priority level, whereas the value p=N

corresponds to the lowest priority. Therefore, p is a one-to-one

mapping from each triplet (i,j,^), and therefore one can define the

weights y *-n decreasing level of priority as

In order to obtain the weights y given specified priorities p, for

each individual triplet, the following functional form is assumed

Yp
 s CT + p/N p = 1,2,...N (A2)

The parameter a in (A2) must be chosen so that it can be guaranteed that

the weighted objective function in (P2) will lead to networks containing

matches with highest priority, but with the smallest number that is possible.

This can actually be achieved by requiring that the sum of the q + 1 weights

of highest priority be larger than the sum of the q weights of lowest



priority for any q < N; that is

q+1 N

£ Y > £ Y f or 1 * q < N (A3)
p«l p=N-q+l N * 2

q

Since £ P - (q) (q + D/2 (A4)

by substituting (A2) and (A4) in (A3), the inequality can be written as

(q+l)a + (q+l)(q+2)/2N > aN + (N+l)/2 - (N-q)a - (N-q) (N-q+l)/2N

(A5)

which in turn can be simplified to yield,

a > [q(N-q-l) - 1]/N (A6)

Since the right hand side of (A6) is maximized at q - (N-l)/2, the

inequality in (A6) will hold for all q, q - 1,2,...N-1 if

a > [(N-l)2 - 4]/4N (A7)

Therefore, a choice of a satisfying (A7) will guarantee that the weights as

given by (A2) will produce networks with minimum number of units but with

the most preferable matches. It should be noted that if N is too large

the proposed choice of a may be higher than needed since it is sufficient that

(A6) holds for a valid upper bound q on the number of matches. Since the

right hand side increases monotonically in q, for q£ (N-l)/2, the choice

of q is justified if it lies below this value. Also, since the right hand

side in (A7) is smaller than N/4, a practical choice for large N is given by

a > min CqU(N-qD-l)/N, N/4} (A8)

In the case that priority levels are assigned to groups of matches and

not to individual matches the procedure must be modified somewhat. For this

case, assume that the N matches are partitioned in NG groups, where each



group G - C(i,j,*)|p - (i,j,*)}, has cardinality a . and priority level

p • 1,2,...NG. If an upper bound q is given, it is convenient to define

the indices r and t as follows:

a) r is the largest integer such that ) CT £ q +1

P«l

NS

b) t is the smallest integer such that Y CT -<L q

p«t

Assuming that the weights y are given as

+ P/NE p - 1,2,...NS <A9)

and by following a similar reasoning in imposing the inequality in (A3),

the parameter a that must be chosen to guarantee minimum number of units

with most preferred matches is given by

NS NS

a> (1/NS) I p%-+(qn-

r

<rp)(t - 1)

(A10)

UFinally, to test the validity of the upper bound q , it is necessary to

check whether the right hand side in (A10) decreases when evaluated at

q - 1. If the test fails, the upper bound q must be reduced*



Table 1. Data for Problem ASP1

Streams

Cl (Cold)

HI (Hot)

C2 (Cold)

H2 (Hot)

S (Steam)

CW (Cooling water)

Fcp (KW/°C)

7.62

8.79

6.08

10.55

60

160

116

249

270

38

T* (°C)

160

93

260

138

270

82

Q 080

+762

-589

+876

-1171



Table 2. Data for Problem 7SP4

Streams Fc (Btu/°F) Is (°F) T* (°F) Q (Btu)
P

Cl (Cold)

HI (Hot)

H2 (Hot)

H3 (Hot)

H4 (Hot)

H5 (Hot)

H6 (Hot)

CW (Water)

F (Fuel)

47.0

15.0

11.0

4.5

60.0

12.0

125.0

11.03

8,390.0

60

675

590

540

430

400

300

80

800

710

150

450

115

345

100

230

140

801

+30,550

-7,875

-1,540

-1,912

-5,100

-3,600

-8,750

6,618

-8,390



Table 3. Data for Problem 10SP1

Streams Fcp (KW/°C)

Cl (Cold)

C2 (Cold)

C3 (Cold)

C4 (Cold)

C5 (Cold)

H6 (Hot)

H7 (Hot)

H8 (Hot)

H9 (Hot)

H10 (Hot)

W (Water)

7.62

6.08

8.44

17.28

13.90

8.79

10.55

14.77

12.56

17.73

42.66

60

116

38

82

93

160

249

227

271

199

38

160

222

221

177

205

93

138

66

149

66

82

+762

+644

+1545

+1642

+1557

-589

-1170

-2378

-1532

-2358

1877



Table 4. Preferred Matches for Problem 10SP1

Cl C2 C3 C4 C5

H6

H7

H8

H9

H10

4

3

2

3

2

3

2

3

4

1

Level of priority

P - 1

p - 2

P - 3

p - 4

Weights

6.25

6.5

6.75

7



Figure 1. Maximum heat integration for composite hot and cold streams

Figure 2. Analogy of heat recovery network with transshipment model

Figure 3. Heat flow pattern in each temperature interval of (PI)

Figure 4. Heat flow pattern in each temperature interval of (RPl)

Figure 5. Result of model (PI) for problem 4SP1

Figure 6. Optimal heat recovery network for problem 4SP1

Figure 7'. Optimal heat recovery network for restricted problem 4SP1

Figure 8. Optimal heat recovery network for problem 7SP4

Figure 9. Optimal heat recovery network for problem 1OSP1 with no preferred
matches

Figure 10. Optimal heat recovery network for problem 10SP1 with preferred
matches
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