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ABSTRACT

We give a simple upper bound on k for k-path-hamiltonianness of a graph.

Also given are exact values for maximal planar graphs.
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1. Introduction

In this paper we consider only finite undirected graphs without loops

or multiple edges, and our terminology and notation is standard (i.e.,

[4] and [1]) except as indicated.

A path P with k edges is called a length k_ path. Following Kronk [5],

a graph G is k-path-hamiltonian if every length k path of G lies on

a hamiltonian cycle. Such graphs are characterized in [5]; however,

these conditions are similar to Dirac [2] type sufficient conditions

for a graph to be hamiltonian. Let k*(G) be the largest 1c for which

the graph <G iŝ  k-path hamiltonian. In this paper we shall present a

simple upper bound on k* and discuss exact values for maximal planar

graphs.

2. Upper Bound on k*

A path P = (V ,E ) in a graph G is called separating if G - V is

disconnected. Let n . (G) denote the length of the shortest separating
m m

path in the graph G. (It is possible that the path is closed.)

Theorem 1: k*(G) < n . (G)
— — — - — min

Proof; Let G = (V,E) be a 2-connected graph, and let P = (V ,E )
———~~ n n n

be any shortest separating path in G (i.e., n-1 = n . (G)).
nun

Let G_ and G- be two components of G1 = G - V . Now let± z n

v. and v- be any pair of vertices in G and G-, respectively.

Clearly, there exists no v -v path in G1. Thus G can not

contain any cycle C = (V ,E ) such that (V U {v, ,vo}) C v .

c c n 1 2 c



The upperbound above is, clearly, the best possible. The graph G of

Figure 1 can be separated by the path v v v ; hence n ^ - 2. Note

that even though G is 1-path-hamiltonian, there exists no hamiltonian

cycle containing the v v v path. A simple consequence of the above

result is a necessary condition for a graph to be k-path-hamiltonian:

Corollary 1.1: A k-path-hamiltonian graph can not be separated by

deleting the vertices of a length k-1 path.

We now state some auxiliary results:

Lemma 1 (Harary [4, p. 104]): If G is a planar graph, then G has at

least four vertices of degree not exceeding 5.

Lemma 2 (Harary [4, p. 104]): If G is a maximal plane graph, then

every face of G is a triangle.

It follows from Lemma 2 that;

Lemma 3: If G is a maximal planar graph and v. is any vertex of

G, then the set of the vertices adjacent to v. induce a

cycle in G.

Let K(G) denote the connectivity number of the graph G.

Lemma 4 (Whitney [7]): If G is maximal planar, then 3 < <(G) < 5.



Finally we need the following auxiliary result:

Lemma 5; If G = (V,E) is a maximal planar graph and S C v is a

minimal separating set, then S induces a cycle in G.

Proof; Let s - |s|. Clearly, 3 <_ s £ 5 (Lemma 4). Let

S = {u ,u2,...,\i} where k = s. Given any embedding of G

in the plane, let C1 = V̂ #E1> and G2 = (V2'
E2^ b e t h e

components of G-S, as shown in Figure 2(a). Clearly,

exactly two vertices in S must lie in the exterior face of

G, say.u. and u . Now; suppose that, in G, neither G

nor G- lies in the interior of a cycle induced by S.

Then, since V.,V- ^ 0, the exterior face of G can not be

triangular, thereby contradicting Lemma 2. Thus, u. must

be adjacent to u , as shown in Figure 2(b) or 2(c).s —̂—̂ —

Suppose (u.,u ) is as shown in Figure 2(b)« Since S is
x S

a separating set, there can not be an edge (v',v")eE as

as shown in Figure 2(c). Then, via Lemma 2, u. must be

adjacent to u^ in G. Using similar arguments, we can show

that G contains a u.u . ..u path of length (s-1). Thus S
1 A S

induces a cycle in G. I

Another consequence of Theorem 1 deals with maximal planar graphs:

Corollary 1.2: If G is maximal planar, then k*(G) £ 3*

Proof: It follows from Lemmas 1 and 2 that, nmin(G) £ 4. Hence,

via Lemma 5 and Theorem 1, k*(G) < 3. /



3. Exact Values of k*(G), G Maximal Planar

Theorem 2: Let G = (V,E) be a maximal planar graph. Then

3 if and only if K(G) = 5

k*(G) 2 if and only if K(G) = 4

1 or 0 if and only if K(G) = 3

Proof; Suppose K(G) = 5. Let v v v v be any path in G. It
•————— r s t. u

can easily be shown that the elementary contraction G
St

of G obtained by replacing v and v with a new vertex
S w

v is a 4-connected maximal planar graph. (Since

K(H) = 1 + min K(H - v) if H is connected (see Exercise 5.21
veH

in Harary [4]), delete v from G, replace s b y w , and join

v to the vertices that were adjacent to v. in G). Since
w t

4-connected planar graphs are 2-path hamiltonian (follows

from Theorem 2 in Tutte [6]), G contains a hamiltonian

cycle C containing the path v v v . Clearly, the union of

the path C - v C G t and the path v v v v is a hamiltonian
* n w s t * r s t u

cycle of G. Thus G is 3-path hamiltonian if K(G) = 5.

On the other hand, it follows from Lemma 5 that k*(G) = 3

implies K(G) ̂ 5 : the subpath induced by S ̂  (any vertex

in s} can not lie on a hamiltonian cycle if |s| - 3 or 4.

Thus \s\ = 5 is necessarily true, and, therefore K(G) = 5.

Now suppose K(G) = 4. Then G contains at least one separating

4-cycle (Hakimi and Schemeichel [3]). Hence k*(G) £ 2

via the first part above. But 4-connected planar graphs are



2-path hamiltonian; thus K(G) = 4 •» k*(G) = 2. On the

other hand; k*(G) = 2 •• K(G) ̂ > 4 (Lemma 5). Hence, together

with the first part, k*(G) = 2 ** K(G) - 4. The third part

follows from the first two parts. I

We have thus established that there exists k-path hamiltonian maximal

planar graphs, k = 2,3, with p vertices for all p j> 10.

We next investigate maximal planar graphs with k*(G) = 0 or 1. We can

construct either types of graphs easily. Start with any 4-connected

maximal plane graph G with p ̂  6 vertices and insert a vertex in each

one of exactly p faces of G, and join each new vertex to the vertices

of the triangle bounding the respective faces. Let G denote the

resulting graph (Figure 3). It can easily be shown that G. is hamiltonian.

However, G can not contain any hamiltonian cycle containing any edge

of at least one of the face-bounding triangles common to both G and

G.; for otherwise, if we insert a vertex in that face as well, the

resulting graph would also be hamiltonian. However, G. would, then,

have 2p + 1 vertices and the deletion of the vertices common to both G

and G would result in a K , thereby contradicting the 1-toughness
x p +x

(see Theorem 4.2, Bondy and Murty [1]) of hamiltonian graphs. Thus

k*(G1) = 0.

On the other hand, start with any 4-connected maximal plane graph G and

insert one vertex in any face of G and join it to the vertices of the

triangle bounding that face. Let G be the resulting graph (Figure 4).

Since G is 2-path-hamiltonian, it is clear that G. is 1-path-hamiltonian.

However, k*(G.) = 1 because G. can not contain any hamiltonian cycle



containing two edges of the triangle bounding that face of G in which

a vertex was added, since the degree of the new vertex is 3.

We would also like to add that since k*(G) £ 1 implies that K(G) = 3,

characterization of these cases would, in effect, be equivalent to

characterizing hamiltonian maximal planar graphs, which remains a

rather difficult unsolved problem.



Figure 1; A 1-path hamiltonian graph
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Figure 2(a)

Figure 2(b) Figure 2(c)

Figure 2(d)



Figure 3; Constructing a hamiltonian maximal planar
planar graph not every edge of which lies
in a hamiltonian cycle

V0
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Figure 4: Constructing a connectivity 3
1-path-hamiltonian maximal
planar graph
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