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FEASIBLE PATH OPTIMIZATION

WITH SEQUENTIAL MODULAR SIMULATORS

L. T. Biegler and R. R. Hughes

ABSTRACT

Optimization of large process simulations has typically been inefficient

because many time-consuming flowsheet evaluations are usually required. Here

we present three optimization methods based on the efficient successive

quadratic programming (SQP) algorithm of nonlinear programming. Quadratic/

Linear Approximation Programming (Q/LAP) and the Reduced and Complete Feasible

Variant algorithms (RFV and CFV) perform efficiently and interface easily with

most current sequential modular simulators. Two simple flash problem studies

illustrate the mechanics of these algorithms and demonstrate their rapid per-

formance. These results also help in formulating heuristics for the specifi-

cation of algorithmic tuning parameters.

SCOPE

Virtually all steady-state chemical process simulators now in actual productive

use are of the sequential modular type. The flowsheet is divided into unit

modules which are connected by streams; units are modelled by pre-programmed

subroutines in a large computer program where input describes the process

flowsheet and problem. Calculation proceeds from module to module with

trial-and-error iteration of recycle loops, using robust but not always

efficient convergence algorithms.

Because the calculation sequence is largely determined by the flowsheet

topology, little flexibility remains for design and optimization studies;

these are often performed by repeated case studies simulating the process.

Alternately, in order to optimize a process automatically, some investigators

have treated the entire simulation as a "black box" subrout d
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direct search algorithms which require no derivative information. [1,2,3,4]

Optimal designs have been obtained, but the computation has usually been

lengthy. This is due both to the relative inefficiency of direct search

methods, and to the need for convergence of the model for each trial point

evaluated.

Hughes [5] and Parker and Hughes [6,7] have shown that faster optimiza-

tion techniques can be developed if approximations to derivative information

can be calculated. Their method, Quadratic Approximation Programming (QAP),

required about 6*± simulation time equivalents to optimize an eleven-variable

ammonia synthesis process.

In a recent paper [8] we outlined the development of sequential modular

optimization and presented Quadratic/Linear Approximation Programming (Q/LAP),

based on Successive Quadratic Programming (SQP)[9]. As an application we

optimized the ammonia process of [6] in less than twelve simulation time

equivalents. —

More recently we developed an infeasible path optimization method (1POSEQ)

[10] which converges and optimizes flowsheeting problems simultaneously.

Though radically different from Q/LAP, IPOSEQ also uses SQP methods as its

nucleus•

In this paper we restate the Q/LAP algorithm in detail and study the

algorithm's tuning parameters. We also Introduce two new algorithms that

are feasible variants of IPOSEQ. Like Q/LAP the Complete Feasible Variant (CFV)

and Reduced Feasible Variant (RFV) algorithms obtain a converged simulation for

each function evaluation (i.e., each step).

CONCLUSIONS AND SIGNIFICANCE

Three feasible path optimization algorithms have been shown to be effec-

tive and simple to implement and use in a sequential modular framework: Q/LAP
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[8], and two new algorithms (CFV and RFV) that combine the best features of

Q/LAP and IPOSEQ.

From analysis of these algorithms and repeated optimizations of two

simple modular problems, we postulate the following heuristics about the

algorithmic tuning parameters:

1. Scale the design variables so that the initial objective function

gradient elements have absolute values between ten and one hundred.

2. Set perturbation sizes large enough to make stream variable responses

in gradient calculation larger than the recycle convergence errors

in the function evaluation.

3. Choose an optimization closure tolerance,6, at least as large as

the objective function responses in gradient calculation. [For CFV,

increase the minimum tolerance to allow for the tear-equation error

term, |vh|, in equation (11), below.]

The feasible variant algorithms~can be programmed as self-contained

subroutines that easily substitute for the recycle convergence algorithm. The

calculation sequence is the same for the simulation and gradient evaluation

steps and no changes are needed in the simulator executive.

Finally, based on the limited results of this study, it appears that RFV

is probably the most efficient algorithm for sequential modular optimization,

especially if gradients are calculated by numerical perturbation.

I. Method Development

Simulation problems typically involve many thousands of variables. In

sequential modular simulation most of these are internal to self-contained

unit modules. To keep the number of variables in the optimization problem

small, we need only to specify the variables directly involved in evaluating

the objective function and constraints. Thus, in the sequential modular

environment, the optimization problem may be written as:
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Min <Kx,r) (D
x

s.t. g(x,r) £ 0 (2)

c(x,r) - 0 (3)

h(x,y) = 0 (4)

r » r(x,y) (5)

where:

<j> - objective function

g - m inequality constraints
c " m^« design (equality) constraintseq

h - I stream interconnection constraints

y - I vector of stream variables

x - n vector of design variables

r - dependent variables (only those that directly calculate

<t>, g and c. Note r is a function of x and y)

The design variables, x, and the"functions <j>, g and c are specified by

the user as part of the optimization problem. Dependent or retention vari-

ables, r, are then added for direct calculation of these functions. In order

to get this problem to a form small enough for successive quadratic program-

ming, we make use of equations (4) and (5) to supply derivative information

for <(>, g and c.

In Q/LAP,we first obtain a converged simulation and then decompose the

flowsheet into component modules as shown in Figure 1. By perturbation of the

k k
inputs, x and y , we construct a linear model for each module, k, of the

form:

DkAxk £AAy

Using flowsheet interconnection relationships we then combine these module models to

form a large,sparse linear system that approximates equations (4) and (5).

We can now perturb the design variables of the linear system, in lieu of the



actual flowsheet, and obtain responses for the dependent variables, r. Here

the Jt-vector y contains all stream variables in the decomposed flowsheet and

typically has a dimension of several hundred or more. This decomposition

strategy yields "reduced" gradients of <J>, g and c with respect to x but

requires a sparse matrix solver and a special interface that alters the cal-

culation sequence during the approximation calculation.

The feasible variant algorithms use the gradient calculation strategy

of IPOSEQ which requires no special interface, just an optimization module

that substitutes for the recycle convergence algorithm. As in Q/LAP, these

algorithms converge the flowsheet for each function evaluation. However,

they use a calculation sequence like that shown in Figure 2, i.e., one that

includes all design and dependent variables in the convergence loop. The

perturbation steps use the same calculation sequence as the flowsheet pass

because only the tear and design variables are perturbed. Thus, the ^-vector y

is much smaller than for Q/LAP. (typically, there are ten to one hundred

tear variables) Equation (4) is modelled by linear approximations to the

tear equations. Equation (5) remains embedded in the modules and is solved

directly in the perturbation and simulation steps.

Once gradient information is obtained, we can set up the quadratic pro-

gramming problem. For Q/LAP and RFV, we obtain gradients with respect to x

only and write the quadratic program as:

Min [V d>Td + 1/2 dTBd] (6)
d T <s.t. g(x) + V g(x)\i i 0x

c(x) + V c(x)Td « 0
X

Here the linear coefficients from the approximation to equation (4) are used

to convert the finite difference derivatives into the desired gradients in

x-space, at a given value of x. For Q/LAP, the coefficients from equation (5)

are also needed, to eliminate the retention variables r.
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For CFV we include the variable increments for both x and y in the

quadratic program and add the recycle tear equations (4) as equality con*

straints. Because I is small the quadratic program is written as:

Min[V<f>V + 1/2 d'TBd"] (7)
d' T

s.t. g(x,y) + Vg(x,y)V < 0

c(x,y) + Vc(x,y)V = 0

h(x,y) + Vh(x,y)V - 0

In both cases, the B matrix is approximated by quasi-Newton updating.

The increment vector d in equation (6) is an n-vector search direction; d^ in

equation (7) is of dimension n + £.

In the next section the three algorithms are formally stated. Then,

there is a brief description of algorithmic tuning parameters. Finally, we

show algorithmic performance and the effect of these tuning parameters by

way of two simple flash optimizations.

II Algorithm

The statement of the Q/LAP, CFV and RFV algorithms follows below. Because

many steps are shared among the algorithms, a single statement is given, with

differences highlighted where they occur.

Set-up

Step JL. Define the process problem and outline the block diagram to simulate

the process model.

Step 2^. Choose an objective function <J>, n decision variables x, m inequality

constraint functions g, m equality constraint functions c, and retention

(dependent) variables r. The vector r should include only those dependent

variables needed, with the decision variables, to calculate the objective

and constraint functions.



Step 2- For Q/LAP:

a) Choose a calculation sequence and tear streams which will result

in the fastest convergence of the nonlinear full function evaluation (FFE)

for a given x vector.

b) Decompose the block diagram into N modules (Figure 1). Parker

and Hughes [6] suggest that for the best decomposition, each module either

should have one input stream and no decision variables or should consist of

a single unit operations block with its associated cost block.

For CFV and RFV:

a) Choose a calculation sequence that contains all decision and

retention variables, x and r, and all recycle loops within a single outer

calculation loop (Figure 2). Frequently, the optimization problem is posed

in a way that permits use of the natural calculation sequence for the simu-

lation problem.

b) Tear the calculation and internal recycle loops, and choose I

tear variables, y. As with IPOSEQ [10], these are usually the component flows,

pressure, and specific enthalpy for each tear stream. If the pressure is

fixed, or used as a decision variable anywhere in a loop, the pressure of

the corresponding tear stream may be omitted.

Step 4. Set 1 « 1, x « x , initialize the tear variables, and converge the

flowsheet simulation to yield (at x • x ), a full function evaluation, defined as:

FFE: •(x1
fr

i)f!g(x
1
fr

1), c(x±,ri)

where r s r(x ,y )

and y1 satisfies h(xi,yi) = yi-w(xi,yi) % 0

[For CFV and RFV, w(x ,y ) are the calculated tear stream values, given assumed

values y ; for Q/LAP, w are the module output stream values, and y the

module input stream values. After iterative convergence of the nonlinear



simulation all elements of h are either zero (for non-tear streams with Q/LAP)

or smaller than the specified convergence tolerance(s) (for tear streams with

any of the algorithms)]

Iteration

[Except where otherwise specified, x, y, and other variables are assumed to

have values corresponding to the current iteration, i.]

Step Ju For Q/LAP:

a) By forward-difference perturbation of input streams and design

variables, construct the following linear models for each module k:

Nin
Awk « DkAxk + 7 Ak Ayk (8)

p-1 P P

Nin
Ark « D'k Axk + 7 A'k Ayk (9)

P P

where w - vector of output streams for module k

r - retention variables of module k

y - input stream p for module k

N - number of input streams for module k

x - vector of design variables for module k

Each stream vector is made up of all the component flows, stream pressure

and the specific enthalpy. Perturbing the enthalpy yields smoother responses

in retention variables. If temperature were perturbed, discontinuous changes

in enthalpy would occur at phase changes.

b) Combine equation (8) with the input-output stream interconnec-

tions: w = y if output stream q of module o is used as input stream p of

module k. The result is a large sparse system of linear equations:

RAy = X (10)



Here Ay - vector of combined output streams, Ay for all p and k.

R - sparse coefficient matrix of the form I - A . A is a sparse

matrix consisting of blocks of the A coefficient matrices

from equation (8), ordered according to the stream sequence.

X - n columns, each corresponding to perturbations of one design

variable. Depending on stream order, column j of x ̂ as elements

k
of either D Ax, or zero.

Process feed streams are fixed and cannot be incremented, except when feed

stream elements are used as design variables. Thus feed stream increments,

if they occur, affect only Xt the right-hand side of equation (10). Process

output stream increments are ignored unless they are defined as part of the

retention vector.

c) Using each column of x in turn, solve for (Ay)^ for each numerical

perturbation Ax.. For the specified Ax and the calculated (Ay)% select proper

contributions for equation (9), and find:

N N

(Ar)J E I (ArV = £
k=l k=*l

N.
in

Evaluate the objective function gradient elements as:

| ^ - ^ — l = fi(x + Ax.,r + (Ar)j) - <J)(x,r)l
3xj Axj L J J

Evaluate the constraint function gradients from similar equations in g(x,r)

and c(x,r).

For CFV and RFV:

a) Starting from the tear stream, move backward along the calcula-

tion loop until an unperturbed design variable x. is encountered. Perturb

this design variable and calculate responses of the dependent and tear variables
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in that module and all downstream modules of the calculation sequence.

Dependent variables of upstream modules remain unaffected. Evaluate the

gradients of <f>, g, c, and h from equations of the form:

where Ax. = £x.

£ - a fractional perturbation factor

r* = r values from the perturbed calculation

Repeat this step (5(a)) for each element of x.

b) One at a time, perturb the tear variables y , evaluate dependent

variables and tear equations and calculate gradients of <J>, g, c, and h from

equations of the form:

3<f>/3y. - [<{>(x,r*) - <(>(x,r)]/Ay.

For the RFV algorithm calculate the reduced gradients of <J>, g, and c as follows:

i - l
vx* z _dx "~ L3xJ " L3xJL3yJ L3y.

Since the desired path maintains h(x,y) % 0, the reduced gradient of h is also

zero.

Step 6. Update the Hessian matrix, B , using the BFGS [11] equation: (if

i-l, B =B°)

NOTE: Default value of B° is I, the identity matrix. Other B° matrices may

be specified if desired, but they should be positive definite. One

useful form is a diagonal matrix with weighted diagonal values.
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If 1>1, apply the BFGS [11] equation:

z s

T T
1 if a Y > 0.2 s B

if sTr i 0.2 A " .

For Q/LAP and RFV: B has dimensions n x n, s and Y ar© n-vectors:

i i-1
S * X -X

i i-1
» u t

i-1 i-1 .i-
,u ,tY - V

L(x,u,t) - <J>(x) + ug(x) + tc(x)

For CFV: B has dimensions (n+Jl) x (n+Jl), s and Y ox (n+Jl)-vectors:

i"

m , i i i-1 1-1, i-1. m / i-1 i-1 i-1 ^i-1 i
Y - VL(x ,y ,u ,t *v ) - VL(x ,y ,u ,t ,v

ax

3y

L(x,y,u,t,v) ug(x,y) + tc(x,y) + vh(x,y)

In the above equations, u,t, and v are the QP multipliers from Step 7

of the previous iteration.

Step ]_' Solve the quadratic program, using the gradient values from Step 5

and the matrix value from Step 6:

For Q/LAP + RFV;

Min (V <|>)Td + 1/2 d V d
d X T
s.t. (V g)Ad + g < 0

(V c)Td + c = 0
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For RFV only;

Evaluate u)

-1

a«

For CFV:

Min
d'

(V<j))Td' + 1/2 d ' V d '

s.t. (Vg) d' + g < 0

(Vc)Td" + c - 0

(Vh)Td' + h = 0

Step 8. Closure test: (Here the closure tolerance £> 0 has the same units

as the objective function, <J>. The vectors d, d% u, t and v come from the

solution of the quadratic program in step 7.)

For Q/LAP and RFV:

If ICV^x 1)) 1*! + lugCx1)! + ItcOc1)! < e , stop. (10)

(x ) is within tolerance of a Kuhn-Tucker point.

For CFV:

i i | | i 1 | + I t c ^ . y 1 ) ! (11)

iyi)

If

+ |vh(xi,yi)| < e, stop.

y(x ,y ) is within tolerance of a Kuhn-Tucker point.

Step 9. Find a stepsizeA along the search direction, (d or d') that decreases P(x),

an exact penalty function, or, if the exact penalty function has decreased

monotonically in previous iterations, decreases a modified Lagrangian. (This

is a modification of the "Watchdog" technique. For a more detailed description

see Biegler [ 12 ])

For Q/LAP and RFV:

- P(x i ) 0.1A

[max(0,g,)l +
3
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for the modified

V

For CFV:

P[(xi,yi)+:

P(xi,yi) •

Lagrangian:

. m
.y1) + I i

for the exact penalty

2|tJ
i|sgn

O.lX{V<j>(xi,y1)Td'
m

ISy 1) + I n. [max (o,g )] + I T c. + [ v

for the modified Lagrangian for the exact penalty

i . i.

^ = 2|tj
1|8gn(cj)

Vj-Vj j Wj = 2|Vj

Each point along the line search requires a full function evaluation, as defined

(for i«l) in Step 4. The initialization of the tear variables for the iterative

convergence is:

For Q/LAP: y (or stored values from previous point of the line search)

For RFV : y1 + Xo)1 (from Step 7)

For CFV : y* + Xd\. k=l,i

Step 10> If the line search succeeds, save the resulting FFE as point 1+1f then

increment i, and retutn to Step 5.

If the line search fails, or the QP of Step 7 does not generate a

direction of descent, reset B =B° (usually • I), and return to Step 7.

If re-initialization of B fails, with no further improvement, terminate

calculation.



-14-

III • Adjustable Parameters for Optimization Algorithms

In this section we describe several tuning parameters that must be specified

appropriately for efficient performance.

First a suitable scale factor must be found for the design variables.

All of these variables have prespecified bounds* A scaling vector is chosen

such that each design variable is divided by its corresponding element in the

scaling vector. The elements of the scaling vector also multiply respective

elements of the objective function and constraint gradient vectors.

The reasons for scaling are twofold. Some variables may have very large

or very small gradients. Over the course of the optimization an accumulation

of roundoff error can cause design variables with small gradients to be under-

emphasized. If gradients are too large, the updating information for the

Hessian is also large and can lead to a matrix that is ill-conditioned in the

quadratic programming step. Also, for convenience the initial Hessian approxi-

mation is set to I_. If this approximation is poor, the quadratic program may

make poor progress initially or even generate a search direction that causes

the line search to fail. Appropriate scaling of the gradients prevents

these problems from occurring.

Perturbation factors need to be carefully chosen in the gradient cal-

culation step. The perturbation factor is a small prespecified parameter £

such that

Ax = max(£x ,q) or (12)

Ay.. = max(^,q)

where q is a small preset number that prevents the perturbation from being

zero. If the perturbation size is too large, Taylor series error due to

nonlinear functions may be introduced. A perturbation size too small may

lead to a response obscured by convergence error in recycle calculations.
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Thus this factor must always be specified relative to the magnitude of the

recycle convergence tolerance. If nondifferentiable or discontinuous func-

tions are present, choosing an appropriate perturbation factor is often

difficult and arbitrary because considerable error results from nonsmooth

functions.

Finally, a Kuhn-Tucker convergence tolerance must be chosen for the

optimization stopping criterion. This parameter has the same units as the

objective function. The K-T error (LHS of equation (10) or (11)) is mainly

influenced by the magnitude of the last search direction and the degree of

infeasibility at the last base point. The search direction is in turn

affected by any error in objective function and constraint gradients. Thus

the K-T tolerance is difficult to determine and often is best determined

a posteriori. By setting the tolerance to zero and allowing the optimiza-

tion to run until a line search or quadratic programming failure occurs, the

K-T error may then be examined at the last few base points.
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IV. Example Problem

To illustrate the mechanics of the three algorithms and study some of

their tuning parameters, a simple process problem was simulated and optimized.

SPAD[13] installed on a UNIVAC 1100/82 computer, was used as the simulation

framework for the optimization study. This simulator is small and flexible

enough for interfacing with the optimization algorithm,and changes in the

program executive can easily be made. Like large process simulators it has

the same unit operations, stream handling and convergence capabilities for

material and energy balances and equipment sizing. Unlike other simulators,

however, SPAD could easily be installed on small inexpensive computers and

executed cheaply with completely accessible code.

A flowsheet for the simple process problem is given in Figure 3. Hydro-

carbon feed is mixed with a recycle and flashed adiabatically. The overhead

is withdrawn as product and a fraction of the bottoms is removed. The rest

is pumped around a recycle. This problem, although very simple, has many

characteristics of complex sequential modular simulations. Recycle calcula-

tions are needed to converge a flowsheet made up of modules connected by

streams. Iterative calculations are performed for the flash separation as

well as for stream enthalpies. Also, an underlying set of subroutines is

accessed for calculating physical properties. In this case, because hydro-

carbons are present, simple physical property relations are used. A block

diagram of this process as simulated on SPAD is given in Figure 4.

For the optimization problem the flash pressure and the two bottoms

splits were chosen as design variables. A linear equality constraint forces

the sum of the two split fractions to unity. Bounds are also placed on the

design variables.

Two different objective functions were used for the optimization study.

Note that a special optimization block substitutes for the convergence

block when feasible variant algorithms are used. Q/LAP retains the recycle

convergence block but requires a separate interface to the simulator.
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In the first set of optimizations, the objective was to maximize the amount

of propane in the vapor product. The second objective was to maximize a

nonlinear expression containing the first five component flow rates of the

vapor product. Problem specifications are given in Figure 4.

For Q/LAP the flowsheet was first decomposed into the modules shown in

Figure 4. Linear module models were constructed by perturbation of input

streams and design variables. The models were then collected to form a large

sparse linear system of equations. The incidence matrices of this system are

presented in Figure 5. Here the blocks numbered horizontally and vertically

correspond to the stream labels in Figure 4. The X's in the incidence matrix

are the nonzero terms; an off-diagonal block of Xfs represents the coefficient

matrix with output streams of the vertical label and input streams with the

horizontal label. Note that the feed is not considered in this system because

it is fixed throughout the optimization. As can be inferred from Figure 4

and the incidence matrix in Figure 5, row block 1 contains the models of the

mix module; row blocks 2 and 3 contain flash module models; row blocks 4 and 5

contain split models and the last row block contains the pump model. Diagonal

elements are, of course, equal to 1. Because the flowsheet has already been

converged for the modelling step, the Wegstein block is removed and the torn

stream is joined.

The three right-hand side columns correspond to perturbations of the three

design variables. Note that the nonzero column elements only occur in the

rows corresponding to the module where the design variable is present.

For CFV and RFV the set-up was much simpler. Here the tear

algorithm or convergence block in, Figure 4 was merely replaced

with an optimization block. Otherwise, the same flowsheet calcula-

sequence was used as with simulation. The additional steps for

optimization are all internal to the optimization block and do

not affect the simulator's structure.
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Monotonic Function Optimization

The first problem has a monotonic objective function with respect

to the design variables. The optimum, as can be seen by inspection, is

found at the lower bounds of the bottoms product split fraction and

the flash pressure. A contour plot of this objective funciton for

these two degrees of freedom is given in Figure 6. Note that the

effect of the split fraction in the contour plot is very slight. This

is due to the small enthalpy change in the pumping module. If the loop

were completely adiabatic, the split fraction would have no effect on

the objective function.

A summary of results is given in Tables 1, 2 and 3 for Q/LAP, RFV

and CFV, respectively. Here, different values of the recycle

convergence tolerance, perturbation factor and variable scaling vector

were tried from two different starting points. The best result for

Q/LAP required only one new base point and only 2.51 simulation time

equivalents (STE's). Total CPU time was 6.426 seconds. The best

monotonic problem solution with CFV required 5.812 CPU seconds, 2.27

STE's and also, only one new base point. RFV was the most efficient

algorithm for this problem. It required only 4.613 CPU seconds, one

new base point and 1.8 STE's.

Ridae Function Optimization

This problem has an optimum at the upper bound of the bottoms

split fraction and at an intermediate flash pressure of 22.8 psia. A

contour plot for this objective function with these two degrees of

freedom is given in Figure 7. Again, different perturbation factors,

convergence tolerances and scale factors were tried from two starting

points. These are also listed in Tables 1 to 3. Here the best run for

Q/LAP required six new base points, 12.811 CPU seconds and 18.98

STE's. CFV required almost twice as much effort as Q/LAP with 22.24

CPU seconds, 32.95 STE's and 10 new base points. RFV, on the other
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hand, was only slightly slower than Q/LAP with 6 new base points, 13.2

CPU seconds and 19.5 STE.'s. Note that in Figures 6 and 7 the three

algorithms follow the same path on the monotonic problem but diverge

slightly on the ridge problem. In Figure 7 both Q/LAP and RFV follow

similar paths while CFV takes smaller steps and requires more time for

the optimiztion.

Because Q/LAP and RFV use the same quadratic programming step,

any difference in performance is merely due to the accuracy of the

gradient calculation strategy. CFV, on the other hand, solves a larger

quadratic program that includes tear variables and equations at each

step. Here, in addition to specifying bounds on design variables,

restrictions on tear variables (e.g. molar flows ^ 0) are also

imposed. Thus the search direction generated by CFV is more restricted

than with RFV because tear variable bounds may be active. While this

quadratic program generates smaller search directions, it also

prevents large extrapolations on highly nonlinear surfaces.
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V. Analysis of Adjustable Parameters for Flash Problems

The results in Tables 1, 2 and 3 offer some limited guidelines

and heuristics for the determination of adjustable algorithmic

parameters.

To scale the variables, a good rule of thumb for all three

algorithms was to choose a scale vector with elements of integral

powers of 10 such that the initial gradient has elements with absolute

values between 10 and 100. Apparently, this heuristic makes the

identity matrix a satisfactory approximation to the initial Hessian

for these problems. Experience with these two process problems has

shown that algorithmic performance is not very sensitive to small

changes in scaling, but large deviations from a good scale vector

(such as in run C-23 in Table 3) may lead to poor performance or

premature termination.

Choosing an appropriate perturbation factor is especially

important for Q/LAP and RFV. in both cases we use the interconnection

(or tear) equations, h(x,y) = 0, to obtain reduced gradient

information. However, we ignore the recycle convergence error during

this step. Here:

T T
£21 *h

where II h || < 7j and 7j is the convergence tolerance. For each

perturbation of x , we get:

dx

Now if j( *h/ax ) T| is not >>|h/Ax | , then dy/dx will be in

error. Also because.
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. _ • A!
dx dr I «Jy dx J x I £x

dg = £g^ |Yr dy + ^ivj + i_ĝ
dx dr I dy dx ^x I ^x

T -i
^r dy ar
<) y d x J x I

T I T "1

dx £r Ldy dx TxJ yy~

the recycle convergence error affects all of the reduced gradients.

Note in the above equations that the gradient error due to h becomes

smaller as A x . increases. Thus, a rule of thumb is to choose the

perturbation factors for y and x so that the effect of the

perturbation is larger than the convergence tolerance. As an example,

consider the monotonic flash problem solved by Q/LAP. Here the bottoms

split has only a slight influence on the objective function. Thus its

small gradient may easily be obscured by error if the perturbation

size is too small. As seen in Figure 8, a perturbation size of 0.1

(run Q-3) approximates the true response surface well and leads to

efficient location of the optimum, even though the convergence

tolerance is only 10"4. With a perturbation factor of 10" 2 (run Q-7),

however, the bottoms split has almost no effect on the approximated

surface and this case terminates before locating the optimum.

For the ridge problem, the objective function gradients are not

small and, as seen in Table 1, the optimum is always found as long as

the perturbation factor is larger than the convergence tolerance.

Figure 9 illustrates how Q/LAP successively approximates the response

surface for run Q-10 in Table 1. Figures 10 and 11 show how the

surface approximations are altered if the perturbation factor is too

large (run Q-14) or too small (run Q-13).

For RFV, all of the unsuccessful runs in Table 2 had perturbation

factors less than or equal to the convergence tolerance. In run R-14

in Table 2, RFV terminates at the optimum with the perturbation size

and convergence tolerance both set to 10 . Here, however, the
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gradient at the optimum is so inaccurate that the algorithm fails to

recognize the optimum as a Kuhn-Tucker point (K-T error = 59.1) and

concludes with a line search failure.

The perturbation factor is less difficult to choose for CFV than

for RFV, but it still must be selected with caution. Herer tear

equations are now part of the quadratic program and the values of h

are included in the QP calculation. However, convergence error is also

included in the Hessian update and in the termination criterion. While

CFV is not as sensitive as Q/LAP or RFV in dealing with convergence

error, choosing a larger perturbation factor does seem to help

performance. To compare cases, consider run C-6 in Table 3 and run R-9

in Table 2. Both runs have perturbation factors and convergence

tolerances of 10" . Here, the CFV run requires five base points but

terminates at the optimum while the RFV run falls short of the optimum

because of gradient inaccuracy.

Tables 1, 2 and 3 also give the Kuhn-Tucker error at the optimum

for all of the successful runs. For the RFV and Q/LAP runs the K-T

error for the monotonic problem is obviously small because the

solution lies at a vertex. For both problems, choosing a K-T tolerance

of the same order of magnitude as the perturbation factor worked

reasonably well. For CFV, tear equation values form part of the

Lagrangian and the K-T tolerance must be chosen a little larger. In

Table 3 one sees the K-T error is about the same as the convergence

tolerance. Here, care must be taken in choosing the K-T tolerance

because the quadratic program seeks a point where the tear equations

are exactly satisfied. Consequently if the K-T tolerance is chosen too

small, CFV will merely spend a lot of time trying to enforce h(x,y) = 0

at the optimum.

In summary, the following heuristics are proposed for adjusting

the parameters of the three algorithms:
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1) Scale the variables so that the elements of the initial gradient

vector have absolute values between 10 and 100.

2) Choose a perturbation factor such that its response is larger

than the recycle convergence error.

3) Choose a K-T tolerance that is about the same as the objective

function response to the perturbation factor. For CFV, this

tolerance must be large enough to include the recycle error at

the optimum.

On the above test problems the RFV algorithm is superior to CFV.

The reasons for this are:

1) The inclusion of tear variables in the quadratic program leads to

longer CPU times for the quadratic programming step in CFV.

2) Restricted search directions are calculated for CFV because

bounds are imposed on the tear variables.

Several improvements suggest themselves from the analysis in this

section. For CFV, an obvious improvement would be removal of the tear

equations from the Lagrangian terms, the termination criterion and the

updating equations. RFV and Q/LAP could be improved by including the

convergence error in the calculation of the reduced gradients. Both

improvements require additional implementation and should probably be

made after further testing establishes the effectiveness of these

algorithms.
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VI. Comparison of Flash Problem Results

Table 4 presents a summary of flash problem results for five

algorithms. In addition to the best runs of Q/LAP, RFV and CFV, we

include results for IPOSEQ [10] from two starting points. We also

present four optimization runs solved by CPX, a modified Complex [14]

method that treats the simulation as a black box. Although CPX is much

slower than any of the other algorithms, it is included because similar

strategies are most often chosen for optimization of industrial problems

[15]. Clearly, use of any of the other four algorithms results in

significant savings in computational effort.

The RFV algorithm was generally the fastest on these simple

problems. CFV tended to be slower because the additional bounds on

tear variables led to smaller search directions. Q/LAP performed

reasonably well in all four cases. Its main disadvantage, however, is

the requirement of a more complicated gradient calculation strategy

and interface to the simulator. Finally, in three of the four

comparisons RFV was significantly faster than IPOSEQ. This suggests

that feasible path algorithms should be considered if gradients are

evaluated by extensive numerical perturbation.

In considering these feasible path methods over IPOSEQ, it is

apparent that there could be trade-offs in performance. Both

approaches require roughly the same effort from the simulator to set

up the quadratic program. IPOSEQ does this at every iteration while

the feasible path algorithms set up the QP at converged base points.

Since IPOSEQ generally (but not always) requires more iterations, we

find ourselves trading the effort required to converge the flowsheet

(with feasible path) for the effort of evaluating the gradients and

solving the QP (with IPOSEQ).

Finally, it should be noted that feasible path algorithms, unlike
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IPOSEQ, offer the advantage of providing usable and improved solutions,

even if the algorithm fails to converge. This feature and the

performance characteristics observed above illustrate the potential

attractiveness of these algorithms for process flowsheet optimization.

The authors express appreciation for the support of the Paul A.

Gorman Fellowship from the International Paper Company Foundation

(for L.T.B.) and of the Engineering Experiment Station of the
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Run No. §E££iIi££t!°.!!! 5£*Hll£ -
Scale . Conv. . Perburb. K-T Best CPU*7 Base Total

Start* Index_ I9.I2.JL* 2IL Ir±£ !

Monotonic Objective

Successful runs

Q-1

Q-2

Q-3

Q-4

Q-5

Q-6

Unsuccessful

Q-7

Q-8

Q-9

A

A

A

A

A

B

runs

A

A

A

Ridge Objective

Successful runs

Q-10

Q-U

Q-12

Unsuccessful

Q-13

Q-14

A

B

B

runs

B

B

031*
n

••

000

030

031

031*

032

020

021*
«t

«i

11

H

10-4

10-3

10-*

10"*

lO"1

10-2

10-1

II

It

It

10-2
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It

lO"2

•1

10-3

io-*

10"1

<io"7

<io"7

<io"7

<io- 1 0

<10'7

<io"A

0.13

0.090

0.094

<10'3

<io"*

<10"*

<io-3

3.71

7.233f)

II

II

tl

II

tl

7.130

7.130

7.124

6.935

6.937(>
M

6.013

5.840

7.090

6.104

5.981

20.144

10.624

6.426

13.594

14.446

14.205

28.981

14.860

12.811

25.687

27.149

2

2

2

9

4

2

3

3

3

10

7

6

6

4

2. 77

3.88

3.80

7.86

4.15

2. 51

5.30

5.64

5.54

42.9

22.0

19.0

38.0

40.2

10- 4

10- 4

Table 1

Notes

a) Two staring points were used:

A - x - {0.5,40,0.5}

B - x - {0.4,30,0.6}

b) Scale index: each digit (numbered from the left) is the logarithm of the scale factor
(i.e. the power of 10) applied to the corresponding variable as a divisor, and thus to
the funtion gradient element as a multiplier.

(* indicates scale factors have been chosen to make the absolute value of the Initial
scaled objective function elements, |(y^) I* fall between 10 and 100).

c) Tolerance fraction for iterative closure of tear variables at each base point calculation.
d) Perturbation fraction,£ , In equation (12)
e) The value of the left-hand-side of equation (10) or (11) when the calculation terminates.

In these calculations, the test value, e, was set at zero, the calculation runs terminated
with either line search or quadratic programming failure.

f) Maximum or optimum value closely approximated .
g) On UV-Madison Univac 1100/82.
h) STE = CPU time/t , where t - CPU time for simulation at the optimum. Value of t used

depends on problem, and Convergence tolerance fraction, as follows

2ZIt_l££_i££-£i5.i£ti££-.l—£EliHH
Convi^t^o 1 _fjrac . H£H£i.!i!*i£_£l£A££LiY.£ Ridge objective

10"3 1.575 0.513
10"4 2.563 0.675



Run No. §£££ij[i£££.i211£ R e s u l t s

a ) S c a l e b ) Conv. c ) P e r t u r b . K ~ T
G } B e s t CPUg) Base T o t a l

S t a r t_ I n d e x 1 2 I J L _ I I J . II££.L__ IlI£I__ 2^1 J._ ¥ i L i Sees . P t s . STE's

Monotonic Ob^ec tive

Successful runs

R-l

R-2

R-3

R-4

R-5

R-6

R-7

R-8

Unsuccessful

R-9

Ridge Objective

A

A

A

A

B

B

B

B

run

B

Successful runs

R-10

R-11

R-12

R-13

R-14

R-15

Unsuccessful

R-16

R-17

Foot notes - s

A

A

B

B

B

B

runs

A

A

ee Ta

*
031

032

031*
II

032

031
II

*

031

*
021

II

II

it

-

022

021

"

ble 1

1. 97
_ o o

II 2 . 6 6

10" 3 " <10~ 7 7.232 4.256 2 2.70

10" 4 10" 1 <10~ 7 7.233 4.613 2 1.80

-7

-8

-7

-7

-7

-7

-6

-7

7

7

7

.233 f )

II

.232

.233

II

II

II

II

5.059

6.814

4.256

4.613

8.237 i

7.893

4.978

6.232

2

3

2

2
1 5

5

2

2

10" 3 10" 2 <10 ' " 8.237 i 5 5.23

1 .94

1 0 " 1 <10 ' " 6.232 2 2.43

i o " 3 : : i o " 3 < i o " 5 7 .039 3 .075 2 1 .95

10" 4 10~ 3 <10~ 3 6.938 f ) 28.491 11 42.2

10" 2 <10" 2 6.929 26.895 9 39.8

10~ 3 <10~ 4 6.937 f ) 13.200 7 19.6

10~ 3 10" 2 <10~ 3 6.935 11.211 6 21.9

10~ 3 59.1 6.935 20.155 9 39.3

"3 6.937 f ) 15.550 10 23.0

10~ 3 <10" 3 5.924 26.292 10 51.3

10~ 2 " <10" 3 6.392 14.001 9 32.4



Run No.

a)

f i
Conv.

Start X Y Tol. Fr.c)

Successful runs

C-l

C-2

C-3

C-4

C-5

C-6

C-7

C-8

C-9

A

A

A

A

B

B

B

B

B

U n s u £ £ £ s £ £ u jL _ r u n
C-1O " A

Successful runs

222

323

013
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2433334

1311113
it

2224334

2433334

C-ll

C-12

C-13

C-14

C-15

C-16

Unsuccessful

C-17

C-18

C-19

C-20

C-21

C-22

C-23

Footnotes -

A

A

B

B

B

B
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B

B

B

B

B

B

B
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see Table 1
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3
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6. 936
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6.057
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6.103

6.040

5. 957
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5.961

48.

39.

26.

22.

43.

33.

23.

22.

19.

27.

10.

58.

10.

227

442

046

240

886

833

598

823

662

363

409

433

400

24

17

13

11

22

14

9

6

10

15

6

21

6

71.4
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38.6

33 .0

$5.0

50.1

60.5

44 . 5

29.1

40 . 5

15.4
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15 .4



Table 4

(Lowest No. of STE's for Successful Runs)

K )Starting CPU No. base points

A RFV 4.613 2 1.80

CFV 5.812 2 2.27

IPOSEQ 6.620 5 2.58

Q/LAP 7.090 2 2.77

CPX 82.129 273 52.1

B RFV 4.978 2 1.94

CFV 7.734 3 3.02

IPOSEQ 6.660 5 2.60

Q/LAP 6.426 2 2.51

CPX 49.279 70 19.2

Ridge

Ob^ect^ive

A RFV 26.895 9 39.8

CFV 39.442 17 58.4

IPOSEQ 12.856 10 19.0

Q/LAP 28.981 10 42.9

CPX 119.873 393 177.6

B RFV 13.200 7 19.6

CFV 22.240 11 33.0

IPOSEQ 17.366 14 25.7

Q/LAP 12.811 6 19.0

CPX 126^4 6 8 46 3 2 02 . ^

Footnotes - see Table 1



Fig. 1 Flowsheet Module and Variables for Q/LAP

Fig. 2 Calculation Sequence and Variables for Feasible
Variant Algorithms

Fig. 3 Flowsheet of Simple Flash Process

Fig. 4 Problem Data and Block Diagram

Fig. 5 Incidence Matrix for Q/LAP Solution of Flash Process

Fig. 6 Paths for Monotonic Flash Process

"RFV
CFV
[Q/LAP

Fig. 7 Paths for Ridge Flash Process
— RFV

CFV
Q/LAP

Fig. 8 Monotonic Problem - Effect of Perturbation Factor
for Q/LAP

• Actual Surface
Q/LAP Approx. w/pert.=0.1
Q/LAP Approx. w/pert.=0.01

Fig. 9 Ridge Problem - Q/LAP Approximated Surface w/perturbation of 0.01
Iteration 1
Iteration 2
Iteration 4

Fig.10 Ridge Problem - Q/LAP Approximated Surface w/perturbation of 0.1
Iteration 1
Iteration 2
Iteration 4

Fig.11 Ridge Problem - Q/LAP Approximated Surface w/perturbation of 10
Iteration 1
Iteration 2
Iteration 3
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PROPANE
1 - BUTENE

N - BUTANE
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FEED
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P = l50ps»a RECYCLE

OVERHEAD
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ALGORITHM*

FEED M IX
0

FLASH

PUMP

SPLIT

©

Component Flows

(lb-moles/hr) in Stream

e - Propane

e'- 1-Butene
e - n-Butane
e.- t-2-Butene
e g- c-2-Butene

x^ - spli t fraction

of ©
Xp - flash p r e s s u r e

( p s i a )
x 3 - s p l i t f r a c t i o n

of (T

Monotonic Objective:
Max ( e ] )

Nonlinear Objective:
. O 9 9 1-

Max ( ^]^2"e]~e3 + ea"'eS ^

s.t. 0.2 ̂ x 1 ̂ "0.8

10. *-x2 sr50.

x1 + x3 « 1.0

* for Q/LAP - Recycle Convergence Algorithm

for RFV and CFV - Optimization Algorithm
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MODULE K

Pk -

Input steam vector
Design variable vector
Fixed equipment parameters
Dependent (retention) variable vector
Output steam vector



x - Design variables for kth module
rk - Retention (dependent) variables for kth module
y - Tear variable vector (guessed)
w(x,y) - Calculated tear stream vector
h(x,y)=y-w(x,y) = 0, tear equations



Feed (lb-moles)
Propane

1 - Butene

N - Butane

Trans - 2 - Butene

Cis - 2 - Butene

Pentane
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15
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Feed
T 100 F
P 150 psia Recycle

-Overhead

Adiabatic flash
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Feed

Component Flows
(lb-moles/hr) in stream(2)

e1- Propane
eg- 1-Butene
e3- n-Butane

34- t-2-Butene
ê - c-2-Butene
x2- split fraction of ^D
x2- flash pressure (psia)
x - split fraction of ©

3

Monotonic Objective:
Max (ex)

Nonlinear Objective:
M ( f 2 |

s. t. 0.2<X!<0.8
10.<x2<50.

x3= 1.0

for Q/LAP - Recycle convergence algorithm
for RFV - Optimization algorithm
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