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FEASI BLE PATH CPTI M ZATI ON

WTH SEQUENTI AL MODULAR S| MLATCRS

L. T. Biegler and R R Hughes

ABSTRACT

ptim zation of large process simulations has typically been inefficient
because nmany time-consumng flowsheet evaluations are usually required. Here
we present three optimzation nethods based on the efficient successive
quadratic programming (SQ@) algorithmof nonlinear programmng. Quadratic/
Li near Approximation Programming (Q LAP) and the Reduced and Conpl ete Feasible
Variant algorithns (RFV and CRV) perforﬁ1efficiently and interface easily with
nost current sequential nodular sinulators. Two sinple flash probl em studies
illustrate the nechanics of these algorithns and denonstrate their rapid per-
formance. These results also help in formulating heuristics for the specifi-

cation of algorithmc tuning paraneters.

SCOPE

Virtually all steady-state chem cal process sinulators now in actual productive
use are of the sequenti al nDduIar.type. The flowsheet is divided into unit
nodul es which are connected by streans; units are nodel | ed by pre-programred
subroutines in a large conputer programwhere input describes the process
flowsheet and problem Calcul ation proceeds fromnodule to nmodule with
trial-and-error iteration of recycle |oops, using robust but not always
efficient convergence algorithns.

Because the cal culation sequence is largely determned by the fl owsheet
topology, little flexibility remains for design and optinization studies;
these are often perforned by repeated case studies simulating the process.-
Alternately, in order to optinmze a process autonatically, some investigators

have treated the entire simulation as a "bl ack box" SUbrouhaﬁiiﬁ?ﬂtﬁﬁﬁé d
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direct search algorithns which require no derivative information. [1,2,3,4]
Opti mal designs have been obtai ned, but the computation has usually been
lengthy. This is due both to the relative inefficiency of direct search
nmet hods, and to the need for convergence of the nodel for each trial point

eval uat ed.

Hughes [5] and Parker and Hughes [6,7] have shown that faster optim za-
tion techniques can be devel oped if approximations to derivative infornation
can be calculated. Their nmethod, Quadratic Approximation Programm ng (QAP),
required about 6*+ sinulation tine equivalents to optimze an el even-variabl e
ammoni a synt hesi s process.

In a recent paper [8] we outlined the devel opnment of sequential nodul ar
optimzation and presented Quadratic/Linear Approxinmation Programmng (Q LAP),
based on Successive Quadratic Programmng (SQP)[9]. As an application we
optinized the ammoni a process of [6] in less than twelve sinulation time
equi val ent s. —

More recently we devel oped an infeasible path optinization method (1PCSEQ
[10] which converges and optim zes flowsheeting problens simultaneously.

Though radically different from@Q LAP, |PCBEQ al so uses SP nethods as its
nucl euse

In this paper we restate the QLAP algorithmin detail and study the
algorithms tuning paraneters. W also Introduce two new al gorithns that
are feasible variants of IPCBEQ Like QLAP the Conpl ete Feasible Variant (CGFV)
and Reduced Feasibl e Vari ant (RFV)' algorithns obtain a converged sinulation for

each function evaluation (i.e., each step).

QONCLUSI ONS AND _SI GNLFI CANCE

Three feasible path optimzation algorithns have been shown to be effec-

tive and sinple to inplenent and use in a sequential nodul ar framework: Q LAP
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[8], and two new algorithns (CGFV and RFV) that conbine the best features of

Q LAP and | PCBEQ

From anal ysis of these algorithnms and repeated optinizations of two
sinpl e modul ar probl enms, we postulate the follow ng heuristics about the
al gorithmc tuning paraneters:

1. Scale the design variables so that the initial objective function

gradi ent el enents have absol ute val ues bet ween ten and one hundred.

2.  Set perturbation sizes |arge enough to nake streamvariabl e responses

in gradient calculation larger than the recycle convergence errors
in the function eval uation.

3. Choose an optimzation closure tolerance, 6, at least as large as

the objective function responses in gradient calculation. [For CRV,
i ncrease t_he mninumtolerance to allow for the tear-equation error
term |vh|, in equation (11), below ]

The feasible variant algorithns~can be programmed as sel f-contai ned
subroutines that easily substitute for the recycle convergence algorithm The
cal cul ation sequence is the sane for the sinulation and gradi ent eval uation
steps and no changes are needed in the simulator executive.

Finally, based on the limted results of this study, it appears that R~V
is probably the nmost efficient algorithm for sequential nodul ar optim zation,
especially if gradients are cal culated by numerical perturbation.

Met hod Devel opnent

Simul ation probl ens typically involve many thousands of variables. In
sequential modul ar sinul ation nost of these are internal to self-contained
unit nmodul es. To keep the nunber of variables in the optimzation problem
small, we need only to specify the variables directly involved in eval uating
the objective function and constraints. Thus, in the sequential nodul ar -

envi ronment, the optim zation problemmay be witten as:




Mn <Kx,r) (D
X
s.t. g(x,r) £0 (2)
c(x,r) - 0 (3)
h(x,y) =0 (4)
ro» r(x,y) (5)
© where:
$ - objective function
g m inequality constraints
c " Mg design (equality) constraints
h - | stream interconnection constraints
y - | vector of streamvariables
X - nvector of design variables
r - dependent variables (only those that directly calculate

4> gand c. Note r is a function of x and y)

The design variables, x, and the"functions 4> g and c are specified by
the user as part of the optimzation problem Dependent or retention vari-
ables, r, are then added for direct calculation of these functions. In order
to get this problemto a formsmall enough for successive quadratic program
mng, we nake use of equations (4) and (5) to supply derivative information
for < g and c.

In QLAP,we first obtain a converged sinmulation and then deconpose the
fl owsheet into component nodules as shown in Figure 1. By perturbation of the

i nputs, xk and yk, we construct a linear model for each module, k, of the

form
Awk K py K k
= DFAXK + E,%S\yp
Ark P
Using flowsheet interconnection relationships we then conbine these nodul e nmodels to
forma large,sparse linear system-that approximates equations (4) and (5).

Ve can now perturb the design variables of the linear system in lieu of the




actual flowsheet, and obtain responses for the dependent variables, r. Here
the Jt-vector y contains all streamvariables in the deconposed fl owsheet and
typically has a dinension of several hundred or nore. This deconposition
strategy yields "reduced" gradients of < g and ¢ with respect to x but
requires a sparse matrix solver and a special interface that alters the cal -
cul ati on sequence during the approximation cal cul ation.

The feasible variant algorithns use the gradient cal cul ation strategy

of 1 PCBEQ which requires no special interface, just an optimzation nmodul e
that substitutes for the recycle convergence algorithm As in QLAP, these
algorithns converge the flowsheet for each function evaluation. However,
they use a cal cul ation sequence like that shown in Figure 2, i.e., one that
i ncl udes all design and dependent variables in the convergence |oop. The
perturbation steps use the sane cal cul ati on sequence as the fl owsheet pass
because only the tear and design variables are perturbed. Thus, the ~-vector y
is much snaller than for QLAP. (typically, there are ten to one hundred
tear variables) Equation (4) is nodelled by linear approximtions to the
tear equations. FEquation (5) remains enbedded in the nodules and is sol ved
directly in the perturbation and sinmul ation steps.

Once gradient information is obtained, we can set up the quadratic pro-
gramming problem For QLAP and RFV, we obtain gradients with respect to x
only and wite the quadratic program as:

M n [de>Td + 1/2 d'Bd] (6)

- d
s.t.  9(x) +V,Xg(x)-\ri Fo

c(x) +V.e(x)™d « 0
X
Here the linear coefficients fromthe approximation to equation (4) are used
to convert the finite difference derivatives into the desired gradients in.

X-space, at a given value of x. For QLAP, the coefficients fromequation (5)

are also needed, to elimnate the retention variables r.
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For GV we include the variable increnents for both x and y in the

quadratic programand add the'recycl e tear equations (4) as equality con*

straints. Because | is small the quadratic programis witten as:
Mn[\V<f>V + 1/2 d' "Bd"] (7
dl
T

s.t. g(x,y) +Vg(x,y)v<DoO
. - c(x,y) +Ve(x,y)v=0
h(x,y) + Vh(x,y)V- 0
In both cases, the B matrix is approxi mated by quasi-Newt on updati ng.
The increnent vector d in equation (65 is an n-vector search di rection;, d" in
equation (7) is of dinensionn + £
In the next section the three algorithns are formally stated. Then,
there is a brief description of algorithnic tuning parameters. Finally, we
show al gorithm c performance and the effect of these tuning paraneters by
way of two sinple flash optirrizations_.
|l Algorithm
The statement of the QLAP, GV and R-V algorithns follows bel ow Because
many steps are shared anong the algorithns, a single statenent is given, with

di fferences highlighted where they occur.

Set - up

Sep J Define the process problemand outline the bl ock diagramto sinulate

the process nodel .

Step 2%. Choose an objective function < n decision variables x, minequality
constraint functions g, meq equality constraint functions c, and retention
(dependent) variables r. The vector r should include only those dependent
vari abl es needed, with the decision variables, to calculate the- obj ective

and constraint functions.




&_gp_g- For _Q LAP:

a) Choose a calculation sequence and tear streans which will result
in the fastest convergence of the nonlinear full function evaluation (FFE)
for a given x vector.

b) Deconpose the block diagraminto Ng modul es (Figure 1). Parker
and Hughes [6] suggest that for the best deconposition, each nodule either
shoul d have one input stream and ﬂgldeci sion variables or should consist of
a single unit operations block with its associated cost bl ock.

For CFV and RFV:

a) Choose a calculation sequence that contains all decision and
retention variables, x and r, and all recycle |oops within a single outer
calculation loop (Figure 2). Frequently, the optimzation problemis posed
in awy that permts use of the natural calculation sequence for the sinu-
lation problem

b) Tear the calculation and internal recycle |oops, and choose |
tear variables, y. As with IPOSEQ [10], these are usually the conponent flows,
pressure, and specific enthalpy for each tear stream If the pressure is
fixed, or used as a decision variable anywhere in a |oop, the pressure of

the corresponding tear streammay be omtted.

Step 4. Set 1 « 1, o« xl, initialize the tear variables, and converge the
fl owsheet sinulation to yield (at xi- xl), a full function evaluation, defined as:
EEE: o (xMr')pg(xtrt), c(x*r')
wher e risr(xi,yj)
and y! satisfies h(x',y') = y"-wx',y') %0
[For CFV and RFV, w(xi,yi) are the calculated tear streamval ues, given assumed

val ues yi ; for Q LAP, V\? are the nodul e output streamval ues, and yi t he

podul e input streamvalues. After iterative convergence of the nonlinear




simulation all elements of h are either zero (for non-tear streans with Q LAP)
or smaller than the specified convergence tolerance(s) (for tear streans with

any of the algorithms)]

~lteration
[ Except where otherw se specified, x, y, and other variables are assuned to

have val ues corresponding to the current iteration, i.]

Step J':u For _Q LAP:

—_—

a) By forward-difference perturbation of input streams and design

variables, construct the following linear models for each nodul e k:

N.

in
AW « DFAXK + 2 AF AyK (8)
P P
p-1
Ni n
Ark « DK AXM+ 7 A'F"‘Ay: (9)
p=1 -
where w - vector of output streans for nmodul e k
r - retention variables of module k
yp - input streamp for nmodule k
Nin - nunber of input streams for module k
X - vector of design variables for mdule k

Each streamvector is made up of all the component flows, streampressure
and the specific enthal py. Perturbing the enthal py yields snoother responses
inretention variables. |If tenperature were perturbed, discontinuous changes
in enthal py would occur at phase changes.

b) Combine equation (8) wth the input-output streaminterconnec-
tions: mg = y: if output streamq of nodule o is used as inpuf stream p of

modul e k. The result is a large sparse systemof |inear equations:

RAy = x - (10)




Here Ay - vector of conbined output streans, Ayl_j for all p and k.

R - sparse coefficient matrix of the form I#- Ap. Ap is a sparse
matrix consisting of blocks of the A:: coefficient matrices
fromequation (8), ordered according to the stream sequence.

X - n colums, each corresponding to perturbations of one design

variable. Depending on streamorder, colum j of x "2 elenents
of either DkAx,J or zero.
Process feed streams are fixed and cannot be increnented, except when feed
streamel ements are used as design variables. Thus feed streamincremnents,
if they occur, affect only Xt the right-hand side of equation (10). Process
output streamincrements are ignored unless they are defined as part of the

retention vector.

c) Wsing each colum. of x in turn, solve for (Ay)" fo? each nurreri cal

perturbation Ax:]. For the specified Ax, and the cal cul at ed (Ay)*% sel ect proper

b
contributions for equation (9), and find:

N N N.

1IN
(M) E I (AV= £ [okaxk « T akayh)
k=l k= I pmp PP

Eval uate the objective function gradient elenments as:

¥ Aiixj:_ fifx + &1+ (A))) - Qx| ra,

3X]

Eval uate the constraint function gradients fromsimlar equations in g(x,r)
and c(x,r).

For CFV and RFV:

a) Starting fromthe tear stream nove backward al ong the cal cul a-
tion loop until an unperturbed design variabl e x.-1 is encountered. Perturb

this design variable and cal cul ate responses of the dependent and tear variabl es
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in that module and all downstream modules of the calculation sequence.
Dependent variables of upstream modules remain unaffected. Evaluate the

gradients of ¢, g, ¢, and h from equations of the form:

LI [¢(x+ij,r*> - ¢(x,r)] 73

ox
h|
where Ax, = &x,
T
(3 = a fractional perturbation factor
r* = r values from the perturbed calculation

Repeat this step (5(a)) for each element of x.

b) One at a time, perturb the tear variables yi, evaluate dependent
variables and tear equations and calculate gradients of ¢, g, c, and h from
equations of the form:

/3y, = [6(x,x%) - ¢<x,r)1/Ay}

For the RFV algorithm calculate the reduced gradients of ¢, g, and ¢ as follows:

e = % L[] ()] (2]

Since the desired path maintains h(x,y) ~ 0, the reduced gradient of h is also

zZero.

Step 6. Update the Hessian matrix, Bi, using the BFGS [11] equation: (if

NOTE: Default value of B is I, the identity matrix. Other B® matrices may
be specified if desired, but they should be positive definite. One
useful form is a diagonal matrix with weighted diagonal values.




-11-

If 1>1, apply the BFGS [11] equati on:

L] £ 01 ~ §-1
1 1-1 ZZ B 58 B
7Ts sl lg

z =08y + (l—B)Bi_ls

T T1-1,
1 ifavy>02s8B
_ T.i-1 ]
6= ———0.}811” =2 ifsTi 0.2A" .
8B s-8'Y

For Q LAP and RFV: Bi has dinmensions n x n, s and Y2 © n-vectors:

I -1
S * X -X

Y- VL'
L(x,u,t) - <X + ug(x) + tc(x)
For CFV: Bi has dimensions (ntJl) x (ntJl), s and Y ox (n+Jl)-vectors:

l'lt.ti_l -1 1-1 |-1)

) -V L(x' U

i-1
8= - i-1
¥y
Y - WL’(x' ,y' ,ul-l,tl-l,*vl-l). ) W()'(l ,)|/-1 ’L|]-1 ”§[|-1’V| .—1)
]
v = ax
3y

L(X,y,u, t,v) = ¢(x,y) + ug(x,y) + tc(x,y) + vh(x,y)

In the above equations, u,t, and v are the @ multipliers fromStep 7

of the previous iteration.
Step] ' Solve the quadratic program using the gradient values fromStep 5

and the matrix value from Step 6:

For—QLLAR + RV
Mn (V<42d + 1/2 dvd
d X T
s.t. (vygd+g<o0
(V.c)ld+c =0
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For RFV only; - 1 .
Evaluate u) = “gl;] [-3—2-—] d
For CFV.
M (W)Nd + 12 d' vd"

S.t. (Vg)Td' +g<0
(Me)d" +c¢c -0

(Vh)Td'" +h =0

Step 8. QOosure test: (Here the closure tolerance £> 0 has the sane units

as the objective function, <& The vectors d, d%u, t and v come fromthe
solution of the quadratic programin step 7.)

For Q LAP and RRV:

IfTCVAXY) )L+ Jugtx)! + Itecl)! < e, stop. (10)
(xi) iswithin tolerance of a Kuhn- Tucker poi nt .
For RV
I |9e(x' .9 )" + Juglx Ly ) + Itch.yh)! (11)

+ | vh(x\yiy')| < e, stop.

(xi,y/i) is within tolerance of a Kuhn-Tucker point.

Step 9. Find a stepsizeA along the search direction, (d or d') that decreases P(x),

an exact penalty function, or, if the exact penalty function has decreased
nonotonical ly in previous iterations, decreases a nodified Lagrangian. (This
is a nodification of the "Watchdog" technique. For a nore detailed description
see Biegler [ 12])

For OLAP and RFV:

peiad) - P(x) g 014 [V ety Taretxh) - peed)

. _
PeY = 0 + ) w [mx(0g)1 ¢ § T
j=1 3 j=1 i3
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i
H =1 = i‘
3 i Ilj 2|uj
V'ti T. = 2|ty |sgn (c.)
3 i J g j
For CFV_:

PL(x,y)+Ad"] - Bext,vY) € 01XV >(x', y)Td + oxt,yhy - pext,yi))

. ; m ”‘rq
P(x',y') o= ¢(KSYy9)1'F| |n._[nax(0,g)] + 1| Tg. -_I_[ Vj hj

for the nodified Lagrangi an for the exact penalty
uy = uy y =208 ]
Ty =ty ~ = 2Itt8gn(g)
VR J'! w = 2|y JLIagn(hj)

Each point along the line search requires a full function evaluation, as defined
(for i«l) in Step 4. The initialization of the tear variables for the iterative
convergence is:
For Q LAP: yi (or stored val ues .from previous point of the line search)
For RV : y'+ Xo)' (fromStep 7)

+
For GV : y& + Xd\. k=l , i

Step 10> If the line search succeeds, save the resulting FFE as point 1+1; then

increment i, and retutn to Step 5.
If the line search fails, or the QP of Step 7 does not generate a
direction of descent, reset Bi=B° (usually « 1), and return to Step 7.

If re-initialization of B fails, with no further inprovenent, termnate

cal cul ati on.
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['1l » Adjustable Parameters for Optim zation Al gorithms

In this section we describe several tuning paraneters that nust be specified
appropriately for efficient performance.

First a suitable scale factor nmust be found for the design variabl es.

Al of these variables have prespecified bounds* A scaling vector is chosen

such that each design variable is divided by its corresponding element in the
scaling vector. The elenents of the scaling vector also multiply respective

el ements of the objective function and constraint gradient vectors.

The reasons for scaling are twofold. Sone variables may have very |arge
or very snmall gradients. COver the course of the optimzation an accunul ation
of roundoff error can cause design variables with small gradients to be under-
enphasized. |f gradients are too large, the updating information for the
Hessian is also large and can lead to a nmatrix that is ill-conditioned in the
quadratic programming step. Also, for convenience the initial Hessian approxi-
mation is set to I. If this approximation is poor, the quadratic program nay
make poor progress initially or even generate a search direction that causes
the line search to fail. Appropriate scaling of the gradients prevents
these problenms from occurring.

Perturbation factors need to be carefully chosen in the gradient cal-
culation step. The perturbation factor is a small prespecified paraneter £
such that

| Amj = nax(Exj,q) or (12)

Ay = max(”,q)
where q is a snmall preset nunber that prevents the perturbation fron1being
zero. If the perturbation size is too large, Taylor series error due to
nonlinear functions nay be introduced. A perturbation size too small may

lead to a response obscured by convergence error in recycle calculations
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Thus this factor nust always be specified relative to the magnitude of the
recycl e convergence tol erance. If nondifferentiable or discontinuous func-
tions are present, choosing an appropriate perturbation factor is often
difficult and arbitrary because considerable error results from nonsnooth
functions.

Finally, a Kuhn;Tucker convergence tol erance nust be chosen for the
optimization stopping criterion. This parameter has the sane units as the
objective function. The K-T error (LFB of equation (10) or (11)) is mainly
i nfluenced by the magnitude of the last search direction and the degree of
infeasibility at the last base point. The search direction is in turn
affected by any error in objective function and constraint gradiehts. Thus
the K-T tolerance is difficult to determine and often is best determ ned
a posteriori. By setting the tolerance to zero and allowi ng the optiniza-
tion to run until a line search or quadratic programming failure occurs, the

K-T error may then be examined at the last few base points.
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Exanpl e Probl em

To illustrate the mechanics of the three algorithnms and study sone of

their tuning paraneters, a sinple process problem was sinulated and optim zed.
SPAD[ 13] installed on a UNIVAC 1100/82 conputer, was used as the sinulation
framework for the optinization study. This simulator is small and flexible
enough for interfacing with the optinization algorithmand changes in the
program executive can easily be made. Like | arge process simulators it has
the same unit operations, stream handling and convergence capabilities for

mat eri al and energy bal ances and equi prent si zi ng. Unl i ke other sinmulators,
however, SPAD could easily be installed on small inexpensive conmputers and
executed cheaply with conmpletely accessjblé code.

A flowsheet for the sinple process problemis given in Eigure 3. Hydro-
carbon feed is mxed with a recycle and flashed adi abatically. The overhead
is withdrawn as product and a fraction of the bottons is renpbved. The rest
is punped around a recycle. This problem although very sinple, has many
characteristics of conplex sequential nodular sinulations. Recycl e cal cul a-
tions are needed to converge a flowsheet nmade up of nodul es connected by
streamns. Iterative calculations are perforned for the flash separation as
well as for streamenthal pies. Also, an underlying set of subroutines is
accessed for cal culating physical properties. In this case, because hydro-
carbons are present, sinple physical property relations are used. A block
di agram of this process as sinulated on SPAD is given in Figure 4.

For the optim zation problem the flash pressure and the two bottons
splits were chosen as design variables. A linear equality constraint forces
the sumof the two split fractions to unity. Bounds are also placed on the
design vari abl es.

Two different objective functions were used for the optinization study.

Note that a special optimzation block substitutes for the convergence
bfock when feasible variant algorithms are used. Q LAP retains the recycle

convergence block but requires a separate interface to the sinulator.
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In the first set of optinizations, the objective was to naxi m ze the anpunt
of propane in the vapor product. The second objective was to maxim ze a
nonl i near expression containing the first five conponent flow rates of the
vapor product. Probl em specifications are given in Figure 4.

For QLAP the flowsheet was first deconposed into the nodul es shown in
Figure 4. Li near nmodul e nodel s were constructed by perturbation of input
streans and design variables. The nodels were then collected to forma |arge
sparse |linear system of equations. The incidence matrices of this system are
presented in Figure 5. Here the bl ocks nunbered horizontally and vertically
correspond to the streamlabels in Figure 4. The X's in the incidence matrix
are the nonzero terms; an off-diagonal block of X's represents the coefficient
matrix with output streanms of the vertical |abel and input streams with the
hori zont al Iabel. Note that the feed is not considered in this system because
it is fixed throughout the optim zation. As can be inferred fromFigure 4
and the incidence matrix in Figure 5 row block 1 contains the nodels of the
m x modul e; row blocks 2 and 3 contain flash nodul e nodels; row blocks 4 and 5
contain split nodels and the last row bl ock contains the punp nodel. Di agonal
elements are, of course, equal to 1. Because the flowsheet has already been
converged for the nodelling step, the Wegstein block is renoved and the torn
stream i s joined.

The three right-hand side colums correspond to perturbations of the three
desi gn vari abl es. Note that the nonzero c‘oI um el ements only occur in the
rows corresponding to the modul e where the design variable is present.

For CFV and RFV the set-up was much simpler. Here the tear
al gorithm or convergence block in, Figure 4 was merely replaced
with an optim zation block. Otherwi se, the same fl owsheét cal cul a-
sequence was used as with simulation. The additional steps for |
optim zation are all internal to the optim zation block and do

not affect the simulator's structure.
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Monot oni ¢ Function Optimzation

The first problem has a nonotonic objective function with respect
to the design variables. The optinmum as can be seen by inspection, is
found at the |ower bounds of the bottons product split fraction and
the flash pressure. A contour plot of this objective funciton for
these two degrees of freedomis given in Figure 6. Note that the
effect of the split fraction in the contour plot is very slight. This
is due to the small enthal py change in the punping nodule. If the |oop
were conpletely adiabatic, the split fraction would have no effect on
the objective function.

A summary of results is given in Tables 1, 2 and 3 for Q LAP, RFV
and CFV, respectively. Here, different values of the recycle
convergence tol erance, perturbation factor and variable scaling vector
were tried fromtwo different starting points. The best result for
Q LAP required only one new base point and only 2.51 sinulation tine
equi val ents (STE' s). Total CPU tine was 6.426 seconds. The best
nonot oni ¢ probl em solution with CFV required 5.812 CPU seconds, 2.27
STE's and al so, only one new base point. RFV was the nost efficient
algorithmfor this problem It required only 4.613 CPU seconds, one
new base point and 1.8 STE's.

Ridae Function Optim zation

Thi s problem has an optimm at the upper bound of the bottons
split fraction and at‘an internediate flash pressure of 22.8 psia. A
contour plot for this objective function with these two degrees of
freedomis given in Figure 7. Again, different perturbation factors,
convergence tolerances and scale factors were tried fromtwo starting
points. These are also listed in Tables 1 to 3. Here the best ruh for
Q LAP required six new base points, 12.811 CPU seconds and 18.98
STE's. CFV required alnmost twice as much effort as Q LAP with 22.24

CPU seconds, 32.95 STE' s and 10 new base points. RFV, on the other
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hand, was only slightly slower than Q LAP with 6 new base points, 13.2

CPU seconds and 19.5 STE's. Note that in Figures 6 and 7 the three
algorithns follow the same path on the nonotonic problem but diverge
slightly on the ridge problem In Figure 7 both QLAP and RFV foll ow
simlar paths while CFV takes snaller steps and requires nore tinme for
the optim ztion.

Because Q@ LAP and RFV use the sanme quadratic programmng step
any difference in perfornance is nerely due to the accuracy of the
gradi ent calculation strategy. CFV, on the other hand, solves a Iarger
quadratic program that includes tear Qariables and equations at each
step. Here, in addition to specifying bounds on design vari abl es,
restrictions on tear variables (e.g. nolar flows ~ 0) are also
i nposed. Thus the search direction generated by CFV is nmore restricted
than with RFV because tear variabl e bounds may be active. Wiile this
quadratic program generates smaller search directions, it also

prevents |arge extrapolations on highly nonlinear surfaces.
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Analysis of Adjustable Parameters for Flash Problems

The results in Tables 1, 2 and 3 offer some limited guidelines
and heuristics for the determination of adjustable algorithmic
parameters.

To scale the variables, a good rule of thumb for all three
aléoritnms was to choose a scale vector with elements of integral
powers of 10 such that the initial gradient has elements with absolute
values between 10 and 100. Apparently, this heuristic makes the
identity matrix a satisfactory approximation to the initial Hessian
for these problems. Experience with these two process problems has
shown that algorithmic performance is not very sensitive to small
changes in scaling, but large deviations from a good scale vector
(such as in run C-23 in Table 3) may lead to poor performance or
premature termination.

Choosing an appropriate perturbation factor is especially
important for Q/LAP and RFV. In both cases we use the interconnection
(or tear) equations, h(x,y) = 0, to obtain reduced gradient
information. However, we ignore the recycle convergence error during

this step. Here:

T
%Ay +?—h'Ax = h

where I hllw< 7 and 7 is the convergence tolerance. For each

perturbation of xj s We get:

dy Ay _ _[QT]'I ['gnT h ]
d A N
xj xj ay axj ij

Now if |[( 3n/ axj)Tl is not >>|n/ij| , then c:y/axJ will be in

error. Also because,
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the recycle convergence error affects all of the reduced gradients.
Noté in the above equations that the gradient error due to h becomes
smaller as ij increases. Thus, a rule of thumb is to choose the
perturbation factors for y and x so that the effect of the
perturbation is larger than the converéence tolerance. As an example,
consider the monotonic flash problem solved by Q/LAP. Here the bottoms
split has only a slight influence on the objective function. Thus its
small gradient may easily be obscured by error if the perturbation
size is too small. As seen in Figure 8, a perturbation size of 0.1
(run Q-3) approximates the true response surface well and leads to
efficient location of the optimum, even though the convergence
tolerance is only 107, with a perturbation factor of 10”2 (run 0-7),
however, the bottoms split has almost no effect on the approximated
surface and this case terminates before locating the optimum.

For the ridge problem, the objective function gradients are not
small and, as seen in Table 1, the optimum is always found as long as
the perturbation factor is larger than the convergénce tolerance.
Figure 9 illustrates pow Q/LAP successively approximates the response
surface for run Q0-10 in Table 1. Figures 10 and 11 show how the
surface approximations are altered if the perturbation factor is too
large (run Q-14) or too small (run Q-13).

For RFV, all of the unsuccessful runs in Table 2 had perturbation
factors less than or equal to the convergence tolerance. In run R-14
in Table 2, RFV terminates at the optimum with the perturbation size

-3
and convergence tolerance both set to 10 . Here, however, the
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gradient at the optinmumis so inaccurate that the algorithmfails to

recogni ze the opti mum as a Kuhn-Tucker point (K-T error = 59.1) and
concludes with a line search failure.

The perturbation factor is less difficult to choose for CFV than
for RFV, but it still must be selected with caution. Here, tear
equations are now part of the quadratic programand the values of h
are included in the QP cal cul ati on. However, convergence error is also
included in the Hessian update and in the termination criterion. Wile
CFV is not as sensitive as QLAP or RFV in dealing with convergence
error, choosing a |arger perturbation.factor does seemto help
performance. To conpare cases, consider run C6 in Table 3 and run R-9
in Table 2. Both runs have perturbation factors and convergence
tol erances of 10"3 . Here, the CFV run requires five base points but
termnates at the optimumwhile the RFV run falls short of the optinmm
because of gradient inaccuracy.

Tables 1, 2 and 3 also give the Kuhn-Tucker error at the optinum
for all of the successful runs. For the RFV and Q LAP runs the K- T
error for the nonotonic problemis obviously small because the
solution lies at a vertex. For both problens, choosing a K-T tol erance
of the sane order of magnitude as the perturbation factor worked
reasonably well. For CFV, tear equation values formpart of the
Lagrangi an and the K-T tol erance nust be chosen a little larger. In
Table 3 one sees the K-T error is about the same as the convergence
tolerance. Here, care nust be taken in choosing the K-T tol erance
because the quadratic program seeks a point where the tear equations
are exactly satisfied. Consequently if the K-T tolerance is chosen too
small, CFV will nerely spend a lot of tine trying to enforce h(x,y) =0
at the optinmm

In summary, the followi ng heuristics are proposed for adjusting

the paraneters of the three al gorithns:
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1) Scale the variables so that the elements of the initial gradient
vector have absol ute values between 10 and 100.
2) Choose a perturbation factor such that its response is |arger
than the recycle convergence error.
3) Choose a K-T tolerance that is about the sanme as the objective
function response to the perturbation factor. For CFV, this
tol erance nmust be large enough to include the recycle error at
the optimum
On the above test problens the RFV algorithmis superior to CFV.
The reasons for this are: |
1) The inclusion of tear variables in the quadratic programleads to
| onger CPU times for the quadratic progranmng step in CFV.
2) Restricted search directions are calculated for CFV because
bounds are inposed on the tear variables.
Several inprovenents suggest thenselves fromthe analysis in this
section. For CFV, an obvious inprovenent would be renmoval of the tear
equations fromthe Lagrangian terms, the termnation criterion and the
updating equations. RFV and Q LAP could be inproved by including the
convergence error in the calculation of the reduced gradients. Both
i mprovenments require additional inplementation and should probably be
made after further testing establishes the effectiveness of these

al gorithms.




VI .

-24-

Conparison of _Flash Problem Results

Table 4 presents a summary of flash problem resul tls for five
algorithns. In addition to the best runs of QLAP, RFV and CFV, we
include results for IPOSEQ [10] fromtwo starting points. W also
present four optimzation runs solved by CPX, a nodified Conplex [14]
method that treats the simulation as a black box. Al though CPX is much
sl ower than any of the other algorithms, it is included because simlar
strategies are nost often chosen for optimzation of industrial problens
[15]. Cearly, use of any of the otherl four algorithns results in
significant savings in conputational effort.

The RFV algorithmwas generally the fastest on these sinple
problens. CFV tended to be slower because the additional bounds on
tear variables led to snaller search directions. Q LAP perforned
reasonably well in all four cases. Its main di sadvantage, however, is
the requirenent of a nore conplicated gradient calculation strategy
and interface to the simulator. Finally, in three of the four
conparisons RFV was significantly faster than | POSEQ This suggests
that feasible path algorithms should be considered if gradients are
eval uated by extensive nunerical perturbation.

In considering these feasible path nethods over IPOSEQ it is
apparent that there could be trade-offs in performance. Both
approaches require rqughly the sanme effort fromthe sinulator to set
up the quadratic program |POSEQ does this at every iteration while
the feasible path algorithns set up the Q° at converged base points.
Since | POSEQ generally (but not always) requires nmore iterations, we
find ourselves trading the effort required to converge the fl owsheet
(with feasible path) for the effort of evaluating the gradients and
solving the QP (with | POSEQ) .

Finally, it should be noted that feasible path algorithns, unlike
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IPO=Q, offer the advantage of providing usable and improved solutions,

even if the algorithm fails to converge. This feature and the
performance characteristics observed above illustrate the potential

attractiveness of these algorithms for process flowsheet optimization.
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Table 1: Flash Problem Optimization With Q/LAP

Run No. SELEI i ££t1°. 111 : S5£xHI | £ -
Scal e Conv. . Perbunb. K-& Bes PU* 7 se I
Starttl o 10012 alionl tog oo  Errer) obi] Var. Secs. BESS dRE%M)
Mopat.oaic.Chj ective
Successful _runs
o1 A 031* 10-* | o! <io"’ 7.233" 7.090 2 2. 77
Q2 A n 10-3 10-2 <io"’ " 6.104 2 3.88
Q3 A ~ 10-* <io"’ ! 5.981 2 3.80
Q4 A 000 10-* " T U <io-10 ! 20. 144 9 7.86
Q5 - A 030 » " <10'’ ! 10.624 4 4.15
L 3
Q6 B 031 " " <jo"A ! 6.426 2 2. 51
Unsuccessful _runs -
Q7 A . 031* 10"* 10-? 0.13 7.130 13.594 3 5.30
Q8 A 032 - ! 0.090  7.130 14. 446 3 5. 64
Q9 A 020 - ! 0.094  7.124 14. 205 3 5.54
R dge Obj ective
Successful _runs
Q10 A 021* 10-* | 0?2 <10'3 6.935 28.981 10 42.9
Q- U B “ " . <jo"* 6.937(> 14. 860 7 22.0
Q12 B “ " 10-3 <10"* M 12.811 6 19.0
Unsuccessful runs
Q13 B u 10-* io-* <io-3 6.013 25. 687 6 38.0
Q14 B H . 10"? 3.71 5. 840 27. 149 4 40.2
Table 1 _
Not es
a) Two staring points were used:
A - x - {0.5,40,0.5}
B - x - {0.4,30,0.6}

b) Scal e index: each digit (numbered from the left) is the logarithm of the scale factor
(i.e. the power of 10) applied to the corresponding variable as a divisor, and thus to
the funtion gradient element as a nmultiplier.

(* indicates scale factors have been chosen to make the absolute value of the Initial
scal ed objective function elements, |(y?) J* fall between 10 and 100).

c) Tol erance fraction for iterative closure (gfl tear variables at each base point calculation.

d) Perturbation fraction,£ , In equation (12)

e) The value of the left-hand-side of equation (10) or (11) when the calculation term nates.
In these calculations, the test value, e, was set at zero, the calculation runs term nated
with either line search or quadratic programmng failure.

f) Maxi mum_or optimum value closely approxi mated

g) On UV- Madi son Univac 1100/ 82.

h) STE = CPU tinme/t , where t - CPU time for simulation at the optimm Value of t wused

depends on problem and Convergence tolerance fraction, as follows
i , 2Z1t_|EE iEE-EIRIELIEE-+—FLEIIMH
Convirt2ol fjrac. HERENIE HEALELTYE  Ridge_objective

10"3 1.575 . 0.513
10" 4 2.563 0.675




Table 2: Flash Problem Optimization With RFV

Run No. SELEIJ[I£EE.I211E Results.
a) Scalep) Conv. ) Perturp, “~Ts} Pest cPu?  Base Total ,,
Stayt = Index 12130 _11J.__ IEEL__ Ll _ 2710 ¥iLi_Sees. _Pts._ STE's
Monotonic Chhective
Successful _runs .
R A 031 1074 1073 <1077 7.2330 5.059 2 1. 97
R2 A . " 10-° <08 . 6.814 3 2.66
R3 A 032 10" 3 <1o'~77 7. 232 4. 256 2 2.70
R4 A 031* 10" * 101 <10~ 7.233 4.613 2 1.80
R5 B ! 10"3 10" 2 <10 -7 o 8.237 i '% 5.23
R6 B 032 - ~ivu . 7.893 5 vava
R 7 B 031 1074 " <10-6 " 4.978 1.94
R8 B g " 10" 1 <1077 g 6. 232 2.43
Unsuccessful run
R9 B 031 io"3: io"? <io"® 7.039 3.075 2 1.95
Ri dge Objective

Successful _runs .
R-10 A 021 10"4 10~ <10-~3 6.938") 28.491 11 42.2
R-11 A " " 10" 2 <10"?2 6.929 26. 895 9 39.8
R-12 B ! " 10-~3 <10-~* 6.937")  13.200 7 19. 6
R-13 B " 10~3 10" 2 <10-~° 6. 935 11. 211 6 21.9
R- 14 B " 10-~3 59. 1 6. 935 20. 155 9 39.3
R- 15 B 022 1074 " <10"3 6.937") 15.550 10 23.0
Unsuccessful__runs
R- 16 A 021" 10'3. 10-~3 <10"8 5.924 26.292 10 51.3
R 17 A " 10~2 <10"3 6.392 14.001 9 32.4
Foot not es see Table 1



. . + Table 3: Flash Problem Optimization With CFV .

Run No. - Snec;,&j}_ggtions ___Results _— ——_——
a) Scale Index Conv. c) Perturb. K-T Best cPuB” Base Tot al h
Start X Y Tol . Fr. Frac. Error®) Obj. val. Secs. Pts. STE's l
Monotonic Objective
Successful _runs )
C A 222 2433334 103 1073 0. 40 7.233") 15811 3 10.04
C2 A " " ] 1072 <10°3 " 5. 660 2 3.59
C3 A " n 1074 <10”? " 5.812 2 2 .27
C-4 A " 2 ‘ 1073 ao 4 " 6.202 2 2 .42
C5 B " " ! n <104 " 7.734 3 3.02
C6 B " " 10'3 <103 “ 12.080 5 7.67
C7 B " 1311113 10 % . " <10 > " 12.035 5 4.70
C-8 B 323 " o ? . " 11.720 5 4.57
C9 B 013 2224334 " o™? " 13.748 6 5.36
Unsuf£EESEEU|L_run j 5 3 ' .
¢10 A 222 2433334 10° 10° 5. 85 7183 11.534 3 11.92

'Eigge Objective
Successful. _runs

CGIT A 013 1113223 10" 4 10-3 <o 3 6.937" 48. 227 24 71. 4
G 12 A 023 1224324 " <03 “ 39. 442 17 58. 4
G 13 B 013 1113223 " t ‘«ap -3 u 26. 046 13 38.6
C 14 B " « " 1072 a0 6. 936 22. 240 11 33.0
G 15 B 212 u " 10-3 <K 6.937")  43. 886 22  $5.0
C 16 B 013 2224334 v <io"? 6. 935 33. 833 14 50. 1
Unsuccessful runs : )

C 17 B 013 1113223 1072 102 22.2 6. 057 23. 598 9  60.5
c 18 B u L . 1073 10-4 100. 5.991 22. 823 6  44.5
C 19 B al " 1074 10°3 <jo"® 6. 103 19. 662 10 29.1
C 20 B 014 L " <o-% 6. 040 27. 363 15 40.5
c 21 B 013 0002112 " <io-3 5. 957 10. 409 6 15. 4
C 22 B 224 " <102 6.047 58. 433 21 57. 0
c 23 B 031 0000002 " <1073 5. 961 10. 400 6 15 . 4



Flash Problem Optimization;

Table 4

Summary

(Lowest No.

Monotonic Objective

cpy 8

of Best Results

of STE's for Successful Runs)

Startin No. base points
Point 2 Algorithm secs. or iterations Total STE's Ez
A RFV "4.613 2 1.80
CFV 5.812 2 2.27
IPOSEQ 6.620 5 2.58
Q/LAP 7.090 ' 2 2.77
CPX 82.129 273 52.1
B RFV 4.978 2 1.94
CFV 7.734 3 3.02
IPOSEQ 6.660 5 2.60
Q/LAP 6.426 2 2.51
CPX 49.279 70 19.2
Ridge
Objective
A RFV 26.895 9 39.8
CFV 39.442 17 58.4
IPOSEQ 12.856 10 19.0
Q/LAP 28.981 - ... 10 42.9
CPX 119.873 393 177.6
B RFV 13.200 7 19.6
CFV 22.240 11 33.0
IPOSEQ 17.366 14 25.7
Q/LAP 12.811 6 19.0
CPX 136.468 463 202.2

Footnotes - see Table 1




Fig. 1 Flowsheet Module and Variables for Q/LAP

Fig. 2 Calculation Sequence and Variables for Feasible
Variant Algorithms

Fig. 3 Flowsheet of Simple Flash Process
Fig. 4 Problem Data and Block Diagram
Fig. 5 1Incidence Matrix for Q/LAP Solution of Flash Process
Fig. 6 Paths for Monotonic Flash Process
RFV

CFV
Q/LAP

Fig. 7 Paths for Ridge Flash Process
RFV

Fig. 8 Monotonic Problem - Effect of Perturbation Factor
for Q/LAP

Actual Surface
——————— Q/LAP Approx. w/pert.=0.1
———— = —Q/LAP Approx. w/pert.=0.01

Fig. 9 Ridge Problem - Q/LAP Approximated Surface w/perturbation of 0.0l
== — — ———Jteration 1
——— ——-Iteration 2
Iteration 4

Fig.10 Ridge Problem - Q/LAP Approximated Surface w/perturbation of 0.1
————— Iteration 1
-—— ——IIteration 2
Iteration 4

Fig.11l Ridge Problem - Q/LAP Approximated Surface w/perturbation of 10
——~—~Iteration 1
—— ——Iteration 2
Iteration 3
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1 - BUTENE 15
N - BUTANE 20
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¥ - Input steam vector
x* - Design variable vector
P“ - Fixed equipment parameters

Dependent (retention) variable vector
Output steam vector




y | | wix,y)
1 |

le—s le—2- N-1
.....] N-3 || N2 || N-
N-3 .NL ,NL

X - Design variables for kth module

r* - Retention (dependent) variables for kth module
y - Tear variable vector (guessed)

w(x,y) - Calculated tear stream vector

h(x,y)z y-w(x,y)=0, tear equations




Feed (Ib-moles)

Propane 10
1 - Butene 15
N - Butane 20
Trans - 2 - Butene 20
Cis - 2 - Butene 20 ———-Overhead
Pentane 10
il B
P ]
Feed Adiabatic flash
T 10F drum
P 150 psia [Recycle
™ Bottoms

Pump
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3
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) ®

Flash ® Split

Monotonic Objective:
Max (&)

Nonlinear Objective:
Max (e fes e te + e -5 )
s. t. 0.2<X1<0.8

10.sx,<50.
X,+ X3= 10

%or Q/LAP - Recycle convergence algorithm
for RFV - Optimization algorithm
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