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ABSTRACT

The notion of a problem space is well known in the area of problem solving
research, both in cognitive psychology and artificial intelligence. The Problem Space
Hypothesis is enunciated that the scope of problem spaces is to be extended to all
symbolic cognitive activity. The paper is devoted to explaining the nature of this
hypothesis and describing some of its potential implications, with no attempt at a critical
marshalling of the evidince pro and con. Two examples are used, one a typical problem
solving activity (the Tower of Hanoi) and the other syllogistic reasoning. The latter is an
example where the search behavior typical of problem spaces is not clearly in evidence,
so it provides a useful area to explore the extension of the concept. A focal issue used in
the paper is the origin of the numerous flow diagrams that serve as theories of how
subjects behave in tasks in the psychological laboratory. On the Problem Space
Hypothesis these flow diagrams derive from the interaction of the task environment and
the problem space.
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REASONING, PROBLEM SOLVING AND DECISION PROCESSES:
THE PROBLEM SPACE AS A FUNDAMENTAL CATEGORY1

1. INTRODUCTION

I am concerned with human goal-oriented cognition: what humans do when they
bring to bear what they know to attain some end. 1 take my title from the session in
which I have been invited to give an opening presentation, because it exhibits a particular
fea ture of cognitive psychology's current state I can use as a starting point.

Substantial areas of psychological study exist in reasoning (Falmagne, 1975 , Revlin
& Mayer , 1978 , Wason & Johnson-Laird, 1972); problem solving (Greeno, 1977 , Newell &
Simon, 1972) ; and decision processes (Slovic, Fischhoff, & Lichtenstein, 1977) . Yet, in
looking at any of these fields it is hard to detect the existence of the others. These three
areas must in most ways be the same: problematic situations presented verbal ly to be
dealt wi th by cognition and decision. Indeed, we often use the same term in all three
areas. We "decide" which of two probabilistic bets to take (much studied in the area of
decision processes); "decide" what chess move to make (much studied in the area of
problem solving); and "decide" which conclusion follows from a syllogism (much studied in
the area of reasoning). Similar semantic games could be played with the other terms.
However , studies of each of these areas rarely give more than lip service to the results
and theories from the others. What should be a unified scientific endeavor seems
fragmented.

Multiple diagnoses for this fragmentation are possible. Deny the symptom. Argue,
along with Voltaire's Dr. Pangloss, that it reflects a perfectly appropriate state for a
developing science. Note that the areas have distinct intellectual roots and mutter that
history explains (and excuses) all. Grasp the nettle and assert the three psychological
domains to be genuinely distinct. However, I do not wish to argue the case in detail here .
I do wish to assume that enough others share my unease to let me use this issue of
fragmentat ion as a point of entry to what fundamental category of cognition might help
resolve it.

Consider the tasks used by psychologists to study cognition. Traveling through
them yields a distinct impression of just one damn task after another: Maier's two string
problem, Edward's book-bag and poker chip task, R. Sternberg's analogies task, Restle's
Tangled Tale sentence, Wertheimer's parallelograms, Revlin and company's classical
syllogisms, Newell & Simon's cryptarithmetic. The world of all tasks seems like a zoo
formed from a medieval bestiary — far from random, lots of odd structure, perhaps bias
(too many toy tasks?), but without essential orderliness.

Repeat that tr ip, stopping at tasks where some theorizing has occurred. For much

• *
I wish fo acknowledge Stu Card and Tom Moran who helped immensely in the development of (his theory, as we

struggled together to find a way of constructing a useful taxonomy of tasks. To Kerb Simon, as always, must go
credit for many of the underlying ideas.
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of the best, we find a flow diagram presented, such as the one in Figure 1 (Revlin &
Leirer, 1973), with control flowing between boxes that carry labels such as encode,
compare, etc. These flow diagrams constitute the framework of the theory of each task.

Figure 1 is taken from the area of reasoning. Analogous diagrams t:ould be found in
abundance in all three areas. I assume such diagrams are familiar enough not to require
further illustration. It is not uncommon to criticize flow diagrams, questioning their
usefulness as a theoretical language; I have been kr,»:wn to do so myself (Newell, 1973).
However, my question today is different. I am willing to accept that these flow diagrams
acquire additional rules and data associated with the boxes, even equations and simulation
programs. My question is: Where did those flow diagrams originally come from? They are
different for every task, though they all surely bear a family resemblance. Theorists
seem able simply to write dov/n a different theory for each task. Details get filled in
experimentally, but the frameworks, ie, the flow diagrams, are just written down.

The diversity of these flow diagrams is connected to the fragmentation of cognitive
studies. Diversity per se does not cause the trouble, for the tasks themselves are indeed
diverse and the theories must reflect that. The difficulty lies in the emergence of each of
the microtheories full blown from the theorist's pen. There is no way to relate them and
thus they help ensure the division of the study of human cognition into qualitatively
isolated areas.

The difficulties in finding communality do not rest just in giving common technical
content to the terms in the boxes, such as encode and compare% though these surely pose
problems. They emerge with each flow diagram, and equally without essential discipline.
They seem weak vessels to try to shore up, though some are trying (Sternberg, 1979).
But beyond the terms themselves the structure of the flow diagrams also embodies the
theory, and must be dealt with as well.

The diversity of these flow diagrams arises in large part because these
diagram-theories incorporate the detailed structure of each task within the very fiber of
the theory. They are a version of the magician's trick — by the time the theory emerges,
the scientific magic has already taken place. Though the theorist does not have a theory
of how the subject would do a task, he himself can do what the subject does, ie, analyze
the task; hence, he can create each theory separately out of his own subjective analysis.

1 have no quarrel with the theorist's direct analysis as a source of theoretical ideas.
The difficulty stems from the volume of separate analyses that produce a corresponding
volume of distinct flow diagrams. The prescription I take from this is the need to
understand where these flow diagrams come from — not to understand where theorists
get them, but to understand where subjects get them. Given that humans are cognitively
integrated, how does this organization occur. Can we understand how the task gives rise
to the flow diagram?

I propose a solution to this in terms of problem spaces, a concept already familiar in
the study of search in human problem solving (Erickson & Jones, 1978) and applied widely
there (Simon & Lea, 1974). It was introduced formally in Newell & Simon (1972), but
derives from extensive work in artificial intelligence, where all programs characterized as
heuristic search provide prototypic examples of problem spaces. The central proposition
of this paper is to extend the scope of this concept:



PAGE3

STACK

COUP
STACK

CONCL
STACK

(for J * I to j)

ENCODE: Premise.

CONSTRUCT: .leaning Stack

(for all stacks)

CONCATENATE: Corresponding
Levels

CONSTRUCT: Meaning Stack

(k - I)

ENCODE: Conclusionv

CONSTRUCT: Meaning Stack

PASS
POP: Meaning

Stack

f FINISH \ * .

CIIJ

Yes

Figure 1: Typical flow diagram:

Conversion model of formal reasoning (Revlin & Leirer, 1978).



Problem Space Hypothesis: The fundamental organizational unit
of all human goal-oriented symbolic activity is the problem space.

In general terms this proposition is clear enough. There are things called problem
spaces, which humans have or develop when they engage in goal-oriented activity. To
understand such activity is to discover what problem spaces a human is using. From
these flow the descriptions and predictions of interest, especially those concerned with
how behavior is organized to accomplish tasks. The proposition is inclusive, claiming
coverage of all symbolic goal-oriented activity; but hedges on whether all cognitive
activity is symbolic. (The notion of symbolic (Newell & Simon, 1976) is ultimately central
to the hypothesis, but doesn't enter explicitly into this paper.) It is an empirical
hypothesis about the nature of human behavior. It is clearly of.more general import than
just where flow diagrams come from; that issue is just an entry point. In the words of
the title, the hypothesis claims the problem space to be a fundamental category of
cognition.

This paper attempts to make this proposition intelligible. It does not present the
case for it critically. There is no space for that. We will avoid formalism as much as
possible to concentrate on the central notions. We lay out quickly and over-simply the
notion of a problem space, using the Tower of Hanoi task as an example, where the notion
has already been applied. Then we pick another example, syllogistic reasoning, to
develop what the hypothesis means in areas other than problem solving. Again, space
permits only one such example, though the hypothesis is intended much more broadly.
However, this will provide enough of an illustration to discuss some general issues.
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2. PROBLEM SPACES AND PROBLEMS

The Tov/er of Hanoi puzzle provides a convenient initial example to make the notion
of a problem space concrete. It is normally considered to be a problem solving task
(Nilsson, 1971, Simon, 1975) and has been analyzed in essentially problem space terms.

We start with informal definitions:

Problem Space: A problem space consists of a set of symbolic
structures (the states of the space) and a set of operators over
the space. Each operator takes a state as input and produces a
state as output, although there may be other inputs and outputs
as well. The operators may be partial, ie, not defined for alt
states. Sequences of operators define paths that thread thetr
way through sequences of states.

Problem: A problem in a problem space consists of a set of
Initial states, a set of goal states, and a set of path constraints.
The problem is to find a path through the space that starts at
any initial stale, passes only along paths that satisfy the path
constraints, and ends at any goal state.

A problem space is a set of symbolic structures within which to move around, an
arena wherein many specific problems can be posed and attempted. A problem space and
problem are mental constructs, ie, mental operators and states, though they, may lead to
external actions. A subject has a problem space if he can mentally represent the states
of the space and carry out the operations. He has a problem in a problem space if: (1)
he has the space; (2) he can obtain representations of the initial states, recognize paths
that satisfy the path constraints, and recognize the goal states; and (3) his behavior is
controlled so as to attempt the problem in the space.

The task and one possible problem space for the Tower of Hanoi are given in
Figure 2. The states are all the configurations of a fixed set of disks on three pegs.
There are two operators. One takes an arbitrary disk and peg as input and moves the
disk to the peg (a new state). The other produces a symbolic expression asserting that a
given configuration fits a given pattern. Possible patterns include concrete configurations,
such as the tv/o in the figure, and also patterns such as "peg P is empty" and "the disks
are not in order on peg PH. The problem statement specifically asserts this space to be
the arena in which action takes place. It gives both initial and goal states explicitly. It
imposes a path constraint; this is necessary because the space itself consists of all
configurations of disks. It is not difficult to see that the Tower of Hanoi puzzle can be
expressed in problem space form. Normal adults have the ability to create the space of
configurations of Figure 2 and perform the moves and recognitions. Thus, they can have
the space of Figure 2 in the manner called for — to be able to select and apply
operators, test for results, etc.

Other problem spaces are possible for the Tower of Hanoi problem. Indeed, any
problem space that contains this one works fine. For instance, the basic operators might
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A
Task and Problem Statement

A board has three pegs, A, 8 and C (as shown at left). On Peg A
are N disks of different sizes (3 in the diagram), in order with
the largest at the bottom. The task is to get all the disks on Peg
C in the same order (as shown at right). A disk may be moved
from any peg to another, providing (1) that it is the top disk on
its peg and (2) that it cannot be put on top of a disk smaller
than itself.

Problem Space

States: Arbitrary configurations of the N disks on the three pegs.

Operators:

Move a disk by removing it from a peg and putting it on another peg.

Recognize a configuration as an instance of a pattern.

Problem

Initial state: The configuration shown in the diagram at left.

Coal state: The configuration shown in the diagram at right.*

Path constraint: No disk may be placed on a smaller disk

Figure 2: Tower of Hanoi: Problem Space
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be pick-up a disk, move the hand, and deposit the disk. Then the move operator
described as unitary in Figure 2 becomes composite. Additional path constraints become
necessary: a disk can be set down only on a peg; and only one disk can be moved at a
time. Without these, one hand could hold a disk in mid-flight while another is moved.

Smaller spaces may also be possible. The states could be limited to ordered stacks
of blocks and the move operator could apply only where the disk on the receiving peg
was larger than the disk being moved. This space incorporates the path constraint as
part of the operator. Whether this problem space is possible for a given subject depends
on whether the subject's behavior can become organized so that the test for legality of a
move is reliably incorporated within the move itself. If a move must actually be
considered and the result viewed to see if it is legal, then the subject can have the space
of Figure 2 but cannot have this smaller space.

Each problem space provides a possible way to represent a task so as possibly to
obtain a solution. It describes an ability of the subject to confine behavior to the
problem space. It describes the units of behavior (ie, the operators) the subject v/ill use
in working on a task.

Resource and capacity limits exist on processing. In problem spaces these take the
form of two principles.

Serial Action: At most one problem space operator can be
performed at a time.

Thus, at any point in time the subject is located at a single current state to which a
current operator is being applied to yield a current result, ie, a new state. Seriality
specifically refers to this action. More than one problem or problem space may be active.
Eg, to apply an operalor in one problem space may require passing into another problem
space (concerned with the mechanics of the operator), thus working-in two problem
spaces at once, though of course doing only one operator.

Finite Stock: The subject has a limited set of states (the stock)
available to become the current state.

This is a memory and access limitation. However, the stock is not identical with short
term memory; some states may exist in long term memory or be available perceptually as
external memory. The actual size of the stack is variable in the same way as the size of
human short memory, depending on the complexity of the state, the external memories
used, etc.

In the Tower of Hanoi problem these two principles mean that a subject can
consider only one move at a time (in thought, not just in the external world) and, after
having considered a move, there will be only a few new states possible: the new state
resulting from the move; the state from which the move was just considered; the state
that is set up in the external world (if that is different); the original initial state; possibly
another remembered one.

Given a problem in a problem space, the only way a subject can solve the problem
is by searching in the space: working out from the current state by applying operators,
adding new states to the stock to be used at new points of search, evaluating whether
the results help, etc. To accomplish this search requires performing repeatedly a fixed
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set of functions:

Search Control: The following functions determine the behavior
in a problem space while working on a given problem.

Decide to quit the problem.

Decide if a goal state has been produced.

Select a state from the stock to be the current state.

Select an operator to be the current operator.

Decide to save the new state just produced by an operator.

These functions operate within a cycle consisting of repeating the following three
steps:

1. Select a state; Select an operator.

2. Apply operator to state, producing new state.

3. Decide if a goal state; Decide to quit; Decide to save the new state.

The subject has a mechanism (the architecture) for carrying out this control cycle.
It is a fixed mechanism that works for all problem spaces: bringing the selected operator
and state in contact, so the new state can be produced; bringing the decision processes in
contact with this new state, so goal attainment can be determined; and so on. Its exact
properties are important, including memory management for the limited stock and basic
error detection, but we will not discuss the architecture further.'

More than one function can be performed at some steps: the two selections in step
1; and the three decisions in step 3. Within a step no process takes priority over any
other. In what order the selection of an operator and of a state takes place depends on
the content of the selection processes. Likewise, depending on the particular situation,
the decisions could be made in any order.

Control over the search depends on the knowledge of these functions that the
subject has immediately available. This restriction to immediate availability arises as
follows. All knowledge about a task is obtained by taking steps in a problem space; that
is what it means to be working in a problem space. Hence, choosing what step to take
cannot itself be an extended deliberation that considers and reasons about the problem —
that would involve taking steps in the problem space, contra assumption. What the
control processes of selection and decision can involve is applying stored knowledge
available in the subject's long term memory. But there is a limit to how much can be done
without thinking a new thought about the task its^f, ie, without moving in the problem
space.

The restriction implies that subjects cannot normally take too long to make a step,
though no strict temporal limit exists. Subjects take steps in a problem space every few
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seconds (Nev/ell Si Simon, 1972). Where the time per state is fairly long (10 - 15 sees.),
cither the date is relatively complex, taking time to assimilate, or the operators take time
to apply. Unlike the search control, the application of an operator need not be immediate,
but can involve going into a different problem space. A typical example is applying an
unfamiliar complex formal rule, as in algebra.

The restriction that search control involves only bringing to bear immediately
available knowledge is important, since it limits the complexity of the search control
process. It lets us think of the search control primarily in terms of the knowledge it
embodies, rather Ihan the processes for making that knowledge effective.

A subject can attempt to solve a problem in a problem space with any body of
search control knowledge: from none at all, yielding undirected search; to knov/ledge that
completely specifies all choices correctly, yielding the solution directly. Thus, to have a
problem space is already to have relevant v/ays of behaving in a task situation, though
the larger the space and the less effective the control knowledge, the smaller the chance
of success. For instance, if a subject has only the knowledge represented in Figure 2, ie,
no special search control knowledge at all, the problem can still be attempted. A
combinatorial search problem then occurs, which can be analyzed in terms of the
branching factor of the search (three) and the depth to solution (2™~* for N disks)
(Nilsson, 1971).

Subjects of course are never this ignorant; they have some effective knowledge for
controlling the search. Figure 3 gives some examples. In accordance with the remarks
above, it is sufficient to express the search control just by the knowledge involved,
without explicit characterization of the processing. K.I to K3 simply provide minimal
knowledge for their respective control functions. K4 says to move forward with each
step, it induces a depth-first strategy. K5 is the most obvious means-ends principle. The
Tower of Hanoi is problematic just because K5 does not suffice, ie, disks cannot simply be
moved to the desired peg. It is a puzzle just because K6, the obvious means-ends
knowledge to avoid difficulties, is ineffective with more than two disks.

K7 - K9 reflect a general avoidance of duplicate and redundant activity. K7 cuts
down the branching factor from three to two. K8 cuts it to one on every other move,
giving an effective branching factor of 1A Finally, K9 is a slightly more penetrating
formulation to avoid looping, reducing the branching to 1 (except at {he initial position).
However, if K9 is to be implemented, the subject must remember the peg from which the
smallest disk came, which is a minor augmentation of the problem space state. Thus,
adding K7 - K9 completely determines the course of problem solving. It leaves open only
the (fateful) choice on the very first move. Subjects do exist who proceed in exactly this
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Decide to quit the problem

Kl . Quit if succeed.

K2. Quit when told by experimenter.

Decide if %oal state has been produced

K3. A state is a goal state if it is the exact pattern desired.

Select a state from the stock to be the current state

K4. Make new state the current state.

Select an operator to be the current operator

K5. Move a disk to the peg specified by a goal state.

K6. Move an obstructing disk to another peg.

K7. Do not move back to just prior position.

K8. Do not move a disk twice in a row.

K9. Do not move smallest disk back to its just prior peg.

Decide to save a new state just produced by an operator

K10. Add newly produced state to the stock.

Figure 3: Tower of Hanoi: Search Control Knowledge
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Various, means exist for organizing search control knowledge. One is to create new
problems (ie, cubgoals), attempt them, and incorporate the results in the further search.
For oimplicity we cac>t the basic functions of search control to be those required, taking
the problem to be fixed. But the subject also selects problems and problem spaces.
Though not requiring additional capabilities, except for memory managment, much
additional power and complexity accrues thereby, namely, the goal hierarchy. For
instance, organizations of subgoals and search control knowledge can be fashioned into
methods, which coordinate the selection and actions in various useful ways. A number of
these methods, which have shown up repeatedly in Artificial Intelligence investigations of
problem solving and elsewhere, have acquired familiar names:

Generate and Test: Generate in any way possible (eg,
systematically or haphazardly) a sequence of candidate states,
testing each for whether it is the desired state.

Heuristic Search: Apply heuristics to reject possible operators
from the current state and to reject newly produced states;
remember the states with untried operators in some systematic
way (different schemes yield search strategies, such as depth
first, breadth first, progressive deepening; and best first).

Hill Climbing: Generate and apply operators from the current
state; select one that produces a state with an improved
evaluation and move to it.

Means-ends Analysis: Compare the current state with the desired
state to detect any difference; use that difference to select an
operator that reduces or eliminates it; otherwise proceed as in
heuristic search.

Operator Subgoaling: If an operator cannot be applied to a
current state, set up a subgoal to find a state in which the
operator can be applied; otherwise proceed as in heuristic
search or means-ends analysis.

Flanning: Abstract from the present state (by processing only
selected information throughout) and proceed to solve the
simplified problem; use what is remembered of the path as a
guide to solving the unabstracted problem.

These are often called the weak methods, because they can be relevant when little
is known about the task, though, when so evoked, they are not very powerful. However,
they often suffice to solve a problem, if the space is not large or if extensive search is
undertaken. These methods are simply organizations of search control knowledge, though
it is beyond the scope of this paper to lay this out. Functions, such as evaluate (hill
climbing) and detect differences (means-ends analysis) can be performed within search
control if sufficiently simple, ie, sufficiently like a recognition. Complex versions would
require search control to evoke subgoals to accomplish them in some problem space. The
methods also are open, in that they do not specify completely all the functions and hence
admit the addition of more search control knowledge, eg, about differences in means-ends
analysis.



The first two methods, generate-and-test and heuristic search, occur automatically
in n problem space (indeed, heuristic search gave rise to the notion of the problem
sp^ce). They MC identified as distinct methods, because they are normally realized within
control structures (standard programming languages) v/here they must be constructed and
deliberately evoked, just like any other method. The other methods all require the task to
have some additional characteristics (the weak conditions) which are known to the
subject: hill climbing requires evaluation of states; mean-ends analysis requires
differences; operator subgoaling requires the conditions of operator applicability to be
symbolizable; etc.

Let us add a single item of control knowledge for the Tower of Hanoi:

K l l . Get an obstructing disk on the other-peg.

K l l expresses operator subgoaling, since the construct of obstruction derives from
inapplicable operators. This differs from K6 only in setting a subgoal (get) rather than
selecting an actual operator (move). With K l l some problems can be solved without
stringent knowledge about avoiding duplicate paths (K8 or K9). The architecture is
assumed to manage the resulting stack of subgoals that builds up as the knowledge is
used repeatedly and rescursively. The limits to subgoal management set limits to the
effectiveness of solving Tower of Hanoi problems with just K l l .

Subjects not only show problem solving behavior in the Tower of Hanoi, they
ultimately show skilled behavior, proceeding to solve each puzzle in a direct way that
takes time but does not exhibit search. Simon (1975) has provided an analysis of four
distinct, complete strategies for skilled behavior in the Tower of Hanoi. Three of the
strategies arise by adding more search control knowledge to what we have assembled so
far. The Goo I-recursion strategy simply expands K l l to apply to pyramids of disks, rather
than just disks; its key notion being the invention of the concept of pyramid by the
subject. The Simple perceptual strategy expands K l l , not by the pyramid, but by the
less powerful notion of the largest obstructing disk (on the source-peg). The
Sophisticated perceptual strategy adds to this latter an item that extends the notion of
obstructions to the target-peg as well as the source-peg. (The fourth strategy,
move-pattern, raises issues about mimicking external behavior sequences that lie outside
our illustration.)

The problem space hypothesis asserts that skilled, routine behavior is organized
within the problem space by the accumulation of search control knowledge. This is just
what we see in these three statcgies. Though how the accumulation occurs is not given,
the final result consists simply of the addition of search control knowledge. There is no
fundamental difference between problem solving and routine behavior in control
organization, except in completeness and adequacy of search corttrol knowledge.

Simon (1975) embodies the various strategies in a production system^ a species of
pattern-directed rule-oriented programming system (Newell & Simon, 1972). This can be
seen as an operational realization of the search control knowledge, and in fact such
systems are active candidates for the underlying architecture of human cognition (Newell,
1973; in press).
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3. THE CATEGORICAL SYLLOGISM: A REASONING TASK

There is a long history of research into human performance on classical Aristotelian
syllogisms. Its fascination arises from the basic clash in our civilization between
rationality «wd irrationality, and its projection to the clash between logic and psychology.
Should humans behave according to the dictates of formal logic? Do they have their own
"psychologic"? Are they simply "irrational"? Formal syllogisms provide ample evidence
that people in fact cannot reason very well. They make lots of mistakes in answering
(say) "All A are B; some C are not B; are some A not C necessarily?" The tone for
research was set many years ago by Woodworth & Sells (1935), whose hypothesis of an
atmosphere effect describes one form of illogic (or at least superficiality) whereby
subjects respond according to the affirmative or negative tenor of .the syllogism.

Current research is constructing information processing theories of how people
perform syllogisms, decomposing the task into various stages (eg, encoding, comparing,
responding) and finding experimental demonstrations of which stages seem responsible
for various aspects of performance (Revlin &• Mayer, 1978, Falmagne, 1975). It forms a
useful example for us, because, though research is active and current, there is little
contact between its processing models and those in problem solving and decision making,
as a glance at the two recent books just cited will show. Thus, we can see what analysis
in terms of problem spaces might add.

Standard syllogistic reasoning tasks are formed from three terms (eg, A, B, C),
combined into two assertions (the major and minor premise) involving pairs of terms (A
and £3; B and C), from which some assertions (the conclusion) about the third pair (A and
C) may or may not follow. Four logical assertions are possible from the two quantifiers
(a//, some), negation (no/not) and the copula of implication (arc):

Major Premise: All A are B
Minor Premise: Some B are C

Conclusion: All A are C Which of the list follow?
No A are C
Some A are C
Some A are not C
Nothing follows

Both abstract syllogisms (above) and concrete ones (No Senators belong to the Harem
Club; some sheiks belong to the Harem Club; therefore no sheiks are Senators) are used.

Current theory can be typified by the flow diagram shown earlier (Figure 1) from
Revlin & Leircr (1978). Its stages permit focussing on whether the difficulty lies in
encoding (how sentences are interpreted) or in inferencing; or whether the difficulty lies
with the givens or the conclusion. Typical of recent work is the hypothesis (Revlin's
conversion model) that subjects apply conversion operations that take "All A are B" into
"All B are A", thus producing errors in the encoding stage; and the hypothesis (Erickson,
1978) that subjects solve the problem by constructing internal Venn diagrams, but fail to
construct all possibilities.



The problem space hypothesis implies that subjects solve syllogistic reasoning
trr.ko by working in a problem space. They have a representation for {he possible states
of knowledge about the syllogism plus operators for generating and manipulating that
knowledge. If their search control knowledge is sufficient they will go directly to an
answer; when faced with difficulties, they will search in this space, ie, try different
manipulations in attempting to solve the problem. They do not have simply an algorithm
or method, as in Figure 1. If such a flow diagram describes their behavior, then it is the
resultant of the problem space and the task environment.

Let's look at one possible problem space for syllogistic reasoning.

Abstract Object Problem Space

Figure 4 shows a problem space based on positing objects that have the attributes,
A, B, C mentioned in a syllogism. These objects are abstract: they can be either necessary
or only possible; and they can have only some of the attributes mentioned in the
syllogism. Thus, they represent various situations of partial knowledge, which the subject
is to flesh out by moving in the space.

This space is a natural one. It corresponds to attempting to imagine the things that
are being talked about in the syllogism, as in the following monologue about the syllogism:
all A are B; no C are B; therefore necessarily some A are not C.

"Ok, there are some things that have A and also have B.
Though some things that don't have A could also exist, and they
could have B or not.

But things that, have C cannot also have B.
Though things that don't have C could have B or not.

Now, does that force some things that have A to not have C?

Well, those things that have A, have B ~
and having B they can't have C.

And, ok, there isn't any thing that has B that has C.

So there are some things that surely have A and haven't C."

An example of an object in a state is [Possible A+ C-], which has attribute A, does
not have attribute C, and is only known to possibly exist. That the attribute B does not
occur means that no knowledge is yet available on it. Relevant partial knowledge may be
acquired about whether a possible object is in fact necessary, namely, that an object with
some of its attributes is already necessary. Those attributes for which it is still unknown
are called open.

Consider the encoding operator El, which produces a new state in the space by
taking as input (along with the state) an externally given assertion and adding the
indicated objects. From "All X are Yw is known: (1) some objects with attribute X
necessarily exist and they also have Y (hence [Necessary X+ Y+]); (2) some objects
possibly exist without attribute X and either with or without attribute Y (hence [Possible
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States: Sot of abstract objects with various properties

[Possible A+ E3-] = Possible object with attribute A and without B
Non-occurring attributes are not yet examined

[Necessary C-] = Object without attribute C necessarily exists
[Possible A+ opcn-B-] = B- is an open attribute for the object
All possible objects are instances of objects already in the state

Encoding Operators

El . All X are Y => [Necessary X+ Y+], [Possible X- Y+], [Possible X- Y-]

E2. No X are Y => [Necessary X+ Y-], [Possible X- Y+], [Possible X- Y-]

E3. Some X are Y => [Necessary X+ Y+], [Possible X+Y-] ,
[Possible X- Y+], [Possible X- Y-]

E4. Some X are not Y => [Necessary X+ Y-], [Possible X+ Y+],

[Possible X- Y+], [Possible X- Y-]

Production Operators

Ql . [Any X Y], [<\ny X Z] => [Possible X Y Z] if attributes agree, else nothing

02. [Necessary X Y], [Possible X Y Z] => [Possible X Y open-Z]

Q3. [Possible X Y open-Z], no [Any ok-X ok-Y op-Z] *> [Necessary X Y Z]
[Possible X Y Z] if find

Recognition Operators

FU. [Any X Y ...] is an instance of [Any X Y] if occurring attributes agree

Figure 4: Abstract Object Problem Space for Syllogisms
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X- V + ] and [Possible X- Y-]). El adds all three of these objects to produce the new state.
The objrets in a r,\rtc represent nil the objects than can exist; hence, El expresses that
[X+ Y-] is not possible simply by not adding it to the state. The encoding operators
embody assumptions about language. For instance, subjects see [X+ Y+] as necessary,
rather than just possible, because they do not make the logician's interpretation of
quantification, which admits vacuous cases.

Operator Ql produces abstract objects with the combined attributes of two other
objects (which are therefore instances of the input objects). Suppose one was [Any X +
Y + ] and the other was [Any X+ Z-] (where any means either necessary or possible); Ql
produces [Possible X+ Y+ Z-J. In words: If some things that have X have Y, and some
things that have X don't have Z, then it's possible that some things that have X both have
Y and don't have Z. Ql can be applied only if all the common attributes agree in sign. Eg,
[X+ Z*-] and [X- W+] can't possibly refer to the same object, since it couldn't both have X
and not have X. The result of Ql can never be known for sure to exist, so it is always
only possible: Eg, in the above example with [X+ Y+ Z-], all the [X+ Y+]s might actually be
[X+ Y+ Z+] and the [X+ Z+]s might be [X+ Z+ Y-], so no common object would in fact exist.
The role of Ql is to generate candidate inferences.

Q2 is part of showing that a possible object is necessary. The grounds for such an
inference comes from: If [X+ Y+] is necessary then for any additional attribute, Z, either
[X+ Y+ Z+], [X+ Y+ Z-] or both must exist. Hence, if [X+ Y+ Z-] is not possible, then [X+
Y+ Z+] must be necessary. Q2 records the existence of a necessary object and identifies
the attribute lo be used to make the inference. This is the open attribute — where it is
not known whether objects with the complementary sense of the attribute can exist.
There may be more than one way to identify an open attribute in a possible object, hence
more than one way to infer that it is actually necessary.

Q3 finishes the job of inferring that a possible object is necessary. It searches the
state for the complementary object, ie the one with the opposite sense of the
open-attribute. This object must also be compatible with the other attributes of the
object. In the figure we express this as ok-X: either the attribute agrees in sense with
the one in the input object, or it is missing entirely (in which case it could be either
sense). If such an object cannot be found, then the inference to necessity can be made; if
the object can be found, then the the object remains only possible. For example, suppose
Q2 had produced [Possible X+ Y- open-Z+], because [Necessary X+ Y-] was in the state.
If an object such as [Possible X+ Y- Z-] occurred, no inference could be made that
[Por>f>ible X+ Y- open-Z+] was necessary; if no such object was around, then Q3 could
produce [Necessary X+ Y- Z+]. [Possible Y- Z-] would also be sufficient to deny the
inference, so there need not be an identity match. Note that Q3 depends on an object not
existing in the state. By representing non-possibility by absence, this particular problem
space is vulnerable to errors of omission.

Finally, besides operators that produce new objects, there must also be a
recognition operator, Rl , that sees that one object is an instance of another, eg, that
[Possible X+ Y+] is an instance of [Possible X+].

Figure 5 shows how reasoning would go in this space. Starting with a state with no
objects, the first three steps translate the problem into an internal state. Step 4 applies
Ql to [Necessary A+ B+] and [Necessary B+ C-] to produce a possible inference, [Possible
A+ B+ C-J. In step 5, Q2 uses [Necessary A+ 8+] to identify C- as open. This permits Q3
to make the inference to [Necessary A+ B+ C-], since nothing of the form [Necessary
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ok A^ ok-B* C*] exists. All the objects with C+ have B-, so don't apply to an object with
B-K The final step is by Rl , which detects that [Necessary A* B+ C-] is an instance of
[Necessary A+ C-] in Ihe goal state.

Figure 5 gives a direct route to the solution. How could it be found? Though by no
menus I,HPO, the space itself contains a number of paths, eg, Ql can be applied to any
pair of the objects (nine cases) and will be successful in four cases, each of which can be
the target for upgrading to necessary. Elementary search control is in fact sufficient.
Means-ends analysis cayo to apply operators that produce necessary objects with A+ and
C-. Thus Ql ir» selected with [Necessary A+ B+] or [Necessary O B-] for one of the
inputs, say [Necessary A+ B+] to be concrete. Operator subgoaling obtains the other
input, via B+, getting [Necessary C- B*]. (That is, the lack of an input is a failure of the
operator to apply, which leads to a subgoal of getting the input.) Once [Possible A+ B+
C-] is in hand, moans-ends analysis selects Q2 to make it necessary. There is again a
need for a second input, and operator subgoaling selects [Necessary A+ B+J. Q3 follows
directly by the attempt to make the output necessary.

The point is not that this is terribly difficult problem solving — precisely the
opposite. Whereas completely random behavior is not satisfactory (one can rattle around
even in a space of less than ten elements), just a little elementary search control is
enough to dictate reasonably focusscd behavior. No extra apparatus is required to create
appropriate taok-dircctcd behavior. The elementary search control does not always
completely dictate the path. In the present case, the initial path could have followed Ql
to [Necessary B+ C-] instead of [Necessary A+ B+]; it would have generated the
alternative legitimate inference of no C are A, but would have lead to backtracking to
make contact with some A sro not C.

What Problem Spaces say about Syllogistic Reasoning

We now can see what problem spaces suggest about the nature of syllogistic
reasoning and how it should be studied.

Where do flow diagrams come from? Flow diagrams are essentially the trace of the
operators under search control regimes. The path of Figure 5 is cncodet then compare (it
lacks a respond, because we didn't bother to define a task output). Such a path, of
course, is only a single path through the flow diagram. However, if we merge several
such paths over a set of tasks, we will get the full blown flow diagram. The decision
boxes represent the places where operator or state selection goes one way or another,
for different tasks. Whether decision boxes and separate paths exist in the flow diagram
depends on how much is aggregated under the terms encode^ compare^ etc. In our
example, compare comprises Ql, Q2 and Q3.

Obvious flow diagrams (ie, obvious to us in their logic) are ones where, given the
problem space, it requires only obvious control (eg, means-ends analysis) to determine the
sequence of operators to solve the problem.

As the subject acquires skill in this task, there will occur both development of the
problem space itself and growth of search control knowledge. Special features of the
task will be recognized and incorporated, well beyond the elementary organizational
schemes we have focused on here. They will have the character of unique
domain-dependent knowledge, not general methods. What the hypothesis then prescribes
is the general form that the theory will take, ie, an accumulation of search control
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P I . All A arc B
P2. No C are B

C l . Some A are not C

1. EKP1)

2. E2(P2)

3.

4.

5.

6.

7.

QKI2)

Q2(I3)

Q3(I4)

R1(I4,G)

=> II: [Necessary A+ B+], [Possible A- B+]f [Possible A- B-]

=> 12: [Necessary O B-], [Possible C- B+], [Possible C- B-],
[Necessary A+ B+], [Necessary A- B+], [Possible A- B-]

=> G: [Necessary A+ C-]

=> 13: [Possible A-̂  B+ C-], [Necessary C+ B-], _

=> 14: [Possible A+ B+ open-C-1 [Necessary C+ B-], _

=> 15: [Necessary A+ B+ C-], [Necessary C+ B-], .^

=> 16: (This state is an instance of G), [Necessary A+ B+ C-]f _

Figure 5: Example of Solving in Abstract Object Space
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knc vlrrlgc nivl predominantly a further specification of the more general methods.

Avoidance of the fixed-met hod fallacy. Much current work in syllogistic reasoning
proceeds by positing a particular representation and/or method, the flow diagram of
Revlin and Lcircr again being a good example, but not the only one. Erickson (1973)
posits that all subjects encode into (multiple) Venn diagrams. These studies commit the
fired method fallacy, which attributes to all subjects (on all occasions) the same method
without any attempt to ascertain either that all subjects indeed follow the specified
method or that the consequences derived are invariant over different possible methods.
They take as indicative of the model's success that it generates results in reasonable
agreement with &roup data on percent correct.

Many of these results, however, are not unique to the method, but flow from
disparate methods defined for different problem spaces. To pick a central issue, whether
errors occur during encoding or inference, the conversion hypothesis posits an encoding
error that transforms "All A is B" to an internal code for "All B is A", proceeding
afterwards with flawless logic. The model of Revlin and Leirer embodies this hypothesis
and from its success these authors conclude for the "human's are logical" position. But in
other problem spaces what is encoding conversion in the Revlin and Leirer model is either
short term memory error and/or inference error. For instance, consider conversion in the
Abstract Object problem space:

"All A are B" - [Necessary A+ B+], [Possible A- B-], [Possible A- B+]

"All B are AH = [Necessary B+ A+], [Possible B- A-], [Possible B- A+]

The difference lies not in the focal object (where the knowledge is strongest) but in
a secondary object. This latter could certainly be misconstructed by the encoding
operator. However, it could also be transformed by short term memory errors during
reasoning. Further, the role of these objects in reasoning is either to inhibit Q3 from
concluding necessity, by being the complementary expression; or to be the input to Ql in
producing an alternative that reduces an "all" inference to a "some" inference. In both,
retrieval failure masquerades for encoding failure, since the result is that Ql or Q3
respectively doesn't obtain an input that does the job.

The point is not that the example problem space is right and Revlin & Letrer wrong.
The point is that problem spaces imply that ranges of possible behaviors are there to be
exploreci. They make clear that the same subject on repeated occasions will exhibit a
range of behavior, even though working in the same space. They offer suggestions
(which have not been exploited yet) of how to characterize ranges of variability by
variation in search control knowledge. Positing a. single method or flow diagram provides
a much more constrained basis to consider individual variations, and continually seduces
into the fixed-method fallacy.

Extension and task variation. A problem space provides an arena for a class of
problems (one of its essential notions). Whether the problem is one of making an
inference, validating an inference, or choosing inferences by multiple choice, the tasks all
occur in the same problem space by a change in goals, though they may evoke different
search control knowledge. Extending the task, while keeping within the problem space,
should still elicit appropriate behavior, with much of the original search control knowledge
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still . pplicable (though perhaps less effective). Eg, more entities can occur: "All A are B;
No A are C; Some B arc D; All C are D; is it true necessarily that some A are not D?" Flow
diagrams, by being an amalgam of task and control, have difficulty dealing with families of
related lar.ks. Information processing models built to handle just the classical
two-prcmisc syllogism require serious augmentation and modification for such extensions.

Multiple problem spaces. Several qualitatively distinct problem spaces are possible
for reasoning about categorical syllogisms. We can get spaces corresponding to the first
order predicate calculus, various concrete models of the syllogisms-(eg, Venn diagrams),
relations between terms, and even natural language — all in addition to the abstract or
prototypic object space used here for illustration. There are variations within a given
type of space. For instance, a variant of the Abstract Object space is to admit explicit
objects that are not-possible, rather than relying on the absence of objects in the state.

The general grounds of these different spaces are not necessarily foreign to
existing work. Venn diagrams are used as the explicit basis for some models (Erickson,
1973). Johnson-Laird (1975, Johnson-Laird & Steedman, 1978) has developed a model
based on a representation with similarities to the abstract objects; he creates multiple
individuals corresponding to each abstract object. However, the point here is not that
one problem space is right. Humans can reason about syllogisms in many different ways;
and the same individual can use different problem spaces on different occasions, possibly
even within the same experiment. The point is that reasoning is the (more or less)
knowledgeable exploration of an area, not just the following of a given procedure.
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4. DISCUSSION

We have used a single task domain to illustrate and make concrete v/hat the
problem <:.pace hypothesis moons outside its original area of problem solving search. Lot
us now state more generally some consequences that flow from the hypothesis.

Predicting the control structure for a task. The hypothesis implies that the problem
space structure is common ground for all symbolic cognition. Analysis of a cognitive task
involves first specifying the problem space and then specifying the search control
knowledge used within that problem space. Elementary search control knowledge is also
common, namely, subgoals, weak methods, obvious loop avoidance, obvious waste motion
avoidance, etc. Thus the problem space, with its standard complement of control
knowledge, provides the starting point in looking for specific theories for a task.

Under some conditions the problem space and elementary search control knowledge
can be sufficient to obtain a basic theory of the subject's behavior in the task, ie, the
structure corresponding to the flow diagrams. We saw this in the syllogistic reasoning
task. This is what satisfies the initial goal of this paper to explain where the
idiosyncratic, yet obvious, flow diagrams come from that grace so much of our current
cognitive theorizing. They come from the problem space. They are obvious because the
only knowledge used is elementary search control knowledge, which is "obvious" to all of
us, as participating human beings. They are idiosyncratic to each task, because the
structure of the tasks is idiosyncratic — a reflection of the oft-quoted parable of the ant
whose complex path results from the contours of the sand grains, not from complex
internal mechanisms (Simon, 1969).

Tv/o conditions at least permit the structure of behavior for a task to be obtained
from just the general problem space structure. In one, the task is simple and transparent,
relative to the cognitive ability of the subject. Then elementary search control knowledge
suffices. This is the situation in the syllogistic reasoning tasks. In the other, the situation
is novel, so that the subject does not have much prior knowledge and does not have time
to extract much new specific knowledge. Then the subject must rely on elementary
knowledge. This condition produces novice problem solving behavior.

Experience with a task leads to the growth of search control knowledge. Behavior
increasingly reflects this knowledge, so that the mechanisms implied by the elementary
search control knowledge no longer suffice for determining behavior. However, this
additional knowledge slill serves the basic functions of control and the problem space
remains the control framework within which behavior is generated. Furthermore, if the
situation shifts outside the reach of the subject's specific knowledge, then again behavior
is generated by more elementary search control knowledge — which is all the subject
knows that is relevant.

Experience leads to the growth of new problem spaces, and not just to the growth
of search control knowledge within a problem space. Dramatic change of space occurs, as
in seeing that a verbal problem can be reformulated as an algebraic equation. But
evolution of the space also occurs, with new data structures being added to the state and
new operators to the repertoire. Such changes can occur concurrently with changes in
search control, since they are not necessarily incompatible.



PAI n

Is the hypothesis disprovablc? The hypothesis as stated is empirical, asserting how
hur-ans process information and behave thereby. However, the flexibility of the concept
(pick any states, any operators, any search control knowledge) suggests that for any
behavior there might be some problem space (or several) that yield it. If so, the usual
uncomfortablcncss at having gotten a tautology in tow might follow. There is a genuine
issue here, though not one that is insurmountable.

The set of problem spaces is universal relative to its architecture. That is, there
exists a problem space that produces any behavior stream compatible with the
architecture. It is important that this be so, to meet the human's need to shape behavior
in whatever way is necessary to meet the demands of an unpredictable environment.
Moreover, I his is important for whatever control structure might exist to guide human
behavior, whether a problem space or some other kind. Conceivably, no universal control
might be possible — any control scheme yyould have some deficiency (ie, some way in
which it restricts the possible behaviors of the subject), with different schemes having
characteristic deficiencies. Then it would be possible, in principle, to determine subject's
control schemes by observing these deficiencies. In fact, we know that universal
computational schemes are possible — that is what the theory of universal Turing
machines is all about. Whatever one universal control scheme can do, another can imitate.
Thus, if the question is posed right, in a technical sense one can never disprove the basic
problem space hypothesis from performance (Anderson, 1976) — nor disprove its
competitors.

The issue is not insurmountable, because tests of control structure are not forced
to consider only the qualitative (in the sense of time-independent) aspects of the
behavior stream, which is where the universality is guaranteed. Even putting to one side
physiological and evolutionary data as too remote, there is the timing of behavior, the
acquisition and modification of the control structure, and errors — to name just the more
obvious sources of data that can penetrate the masquerade of one universal control
system by another. However, the ability for all control schemes to produce flexible
behavior to the point of mutual imitation still makes the issues of testing indirect, complex
and difficult, to say the least.

Let us note briefly some consequences of the problem space hypothesis that make
it potentially vulnerable to disproof.

1. In novel situations problem spaces must be created by the
subject. Since the subject has no special knowledge, the space
must be constructed in terms of the surface features of the
external environment. Thus, there are places where it is
possible to predict what the problem space will be. Work on
novel tasks (with underlying structure isomorphic to the Tower
of Hanoi) gives some evidence for this already (Hayes & Simon,
1976).

2. Many events can throw the subject off a straight-and-narrow
path, wherein the search control knowledge was adequate, eg,
external interruptions, memory errors, etc. Such events leave
the subject engaged in a wider search in the problem space,
using more elementary search control knowledge. These error
and recovery behaviors should be systematic, in reflecting the
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same space. That is, the subject's behavior when errors occur
r.hould appear rule governed in ways appropriate to being in a
particular problem space.

3. The subject's movement toward skilled behavior should be
continuous, in that change occurs by accretion of search control
Knowledge within a fixed space. Unfortunately, other forms of
procedural learning may be sufficiently hard to distinguish so
that testing the hypothesis in this fashion is especially difficult,
eg, learning by successive invention of new methods (which
surely occurs) and learning by compiling the experience obtained
in the problem space into some other procedural language.

4. The problem space has strong implications for the transfer of
skill. Indeed, the assertion about the universal availability of the
elementary search control, eg, the weak methods, is an assertion
about transfer. If a subject maps a task into an existing problem
space, then the transfer of this knowledge to the new task is
implied (as transformed by the encoding of the task, of course).

5. Last, but not least for this paper, is the use of the problem
space hypothesis to predict flow diagrams. Failure to predict
the actual control organizations, as derived in the usual way by
informal analysis, would count against the hypothesis.

Banishment of (half) the homuncuLis. A major item on the agenda of cognitive
psychology is to banish the homunculus, ie, the assumption of an intelligent agent (little
man) residing cloewhere in the system, usually off stage, who does all the marvelous
things that need to be done to actually generate the total behavior of the subject. It is
the homunculus that actually performs the control processes in Atkinson & Shiffrin's
(1963) famous memory model; who still does all the controlled processing, including
determining the strategies, in the more recent proposal of Shiffrin & Schneider (1977);
who makes all the confidence judgments; who analyzes all the payoff matrices and adjusts
the behavior appropriately; who is renamed the "executive" in many models (clearly a
promotion); who decides on and builds all those flow diagrams.

The universal organization in terms of problem spp.ces solves naif of the problem of
the homunculus. It provides the top level executive organization that is used for all
cognitive behrvior. At the top, it claims, is a search effort in terms of the operators of
the current space. No intelligent agent is required to run this search, since it runs in any
event, even v'ith no search control knowledge, and it runs automatically with whatever
search control knowledge it happens to have.

The claim on the simplicity of the top-level executive is double barreled. For it will
not do to tanish the homunculus from performance, only to have him show up arranging
for the intelligent creation of problem spaces. But much of problem space creation is a
symbolic cognitive tack, hence must be performed by the subject by means of a problem
space (or so the hypothesis claims). But then the elementary character of the highest
level space applies to this aspect of behavior as well.

In any event, the problem space only solves half the problem. The other half of
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banishing Ihc homunculus resides with the architecture, which closes the gap betv/een the
problem space and complete mechanism. The claim that the architecture is also
nonintclligcnt, ie, not a homunculus, is also plausible, given that the architecture primarily
carries out housekeeping functions; but discussion is outside the bounds of this paper.
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5. CONCLUSION

We have laid out in this paper a proposal for a fundamental category of all symbolic
cognitive activity — the problem space, wherein the human always is embedded in an
ensemble of possible behaviors, to be realized by selective search. We have claimed that
it provides grounds for understanding where all the diverse flow diagrams come from.
Further, that it has the potential for helping to make cognition whole again. But, though
important, these two claims simply provided an orientation for the presentation. The
basic point is the hypothesis that this is the way human cognition is.

This paper has lived within many constraints. It has been limited to an exposition
of the hypothesis, neither assembling the evidence pro and con, nor contrasting it with
alternative control structures. It has been limited to exploring a single example that
bears on extending the problem space from the domain of its initial formulation (problem
solving) to other areas of cognition. The title contains both the terms reasoning and
decision processes. Though taken from the session title, they are intended to indicate the
breadth of the hypothesis, namely to all of cognition. There is indeed nothing special
about the area of reasoning, nor about the categorical syllogism. Thus, it seems important
to leave decision processes in the title, though it remains purely a promissory note.

Finally, the pnper has been limited to the central issue of performance in a problem
space, and has not dealt with the acquisition of problem spaces or their dynamic
modification. This perhaps laid too much stress on the role played by the search control
knowledge, in contradistinction to the operators or the representational structure of the
states. This seems justified because "of the unfamiliarity. of the control structure and the
need to exhibit how it welds the problem space into a functioning unit. But the tilt should
be made explicit.

Still, with all the limitations stated, enough has been said, I hope, to convey the
potential of the hypothesis and to recommend it for your consideration. The presentation
obviously forms an implicit argument for the hypothesis. But there should be little
difficulty separating the general and illustrative sorts of evidence presented here from
the detailed demonstrations that are still necessary.



IWGETG

6. REFERENCES

Anderson, J. R. Language, Memory, and Thought. Hillsdale, N.J.: Erlbaum 1976.

Anzai, Y. and Simon, K A. The theory of learning by doing. Psychological Review, 1979, 86,
124-140.

Atkinson, R. C. and Shiffrin, R. M. Human memory: A proposed system and its control
processes. In The Psychology of Learning and Motivation, New York: Academic
Press, 1968.

Erickson, J. R. and Jones, M. R. Thinking. Annual Review of Psychology•, 1973, 29, 61-90.

Erickson, J. R. Models of formal reasoning. In Human Reasoning, Washington, D.C.:
Winston, 1978.

Falmagne, R. J. (Ed.). Reasoning: Representation and Process. Hillsdale, New Jersey:
Erlbaum 1975.

Greeno, J. Nature of problem solving abilities. In Estes, W. K. (Ed.), Handbook of Learning
and Cognition, New York: Wiley, 1977.

Hayes, J. R. and Simon, H.A. Understanding complex task instruction. In Klahr, D. (Ed.),
Cognition and Instruction, Hillsdale, New Jersey: Erlbaum, 1976.

Johnson-Laird, P. N. & Steedman, M. The psychology of syllogisms. Cognitive Psychology^
1978, 10, 64-99.

Johnson-Laird, P. N. Models of deduction. In Falmagne, R. J. (Ed.), Reasoning:
Representation and Process, Hillsdale, New Jersey: Erlbaum, 1975.

Newell, A. and Simon, H. A. Human Problem Solving. Englewood Cliffs: Prentice-Hall 1972.

Newell, A. and Simon, K A. Computer science as empirical inquiry: Symbols and search.
Communications of the ACM, 1976, 19, 113-126.

Newell, A. Production systems: Models of control structures. In Chase, W. (Ed.), Visual
Information Processing, New York: Academic, 1973.

Newell, A. Harpy, production systems and human cognition. In Cole, R. (Ed.), Perception and
Production of Fluent Speech, Hillsdale, New Jersey: Erlbaum, 1979. (in press).

Nilsson, N. Prv'olem-Solving Methods in Artificial Intelligence. New York: McGraw-Hill
1971.

Revlin, R. and Leirer, V. 0. The effect of personal biases on syllogistic reasoning: Rational
decisions from personalized representations. In Human Reasoning, Washington, D.C.:
Winston, 1978.

Revlin, R. and Mayer, R. E. (Eds.). Human Reasoning. Washington, D.C.: Winston 1978.



PAGE27

Revlir., R. Two models of syllogistic reasoning: Feature selection and conversion. Journal
of Verbal Learning and Verbal Behavior, 1975, 14, 130-195.

Shiffrin, R. M. and Schneider, W. Controlled and automatic human information processing:
II. Perceptual learning, automatic attending and a general theory. Psychological
Review, 1977,34, 127-190.

Simon, H. A. and Lea, G. Problem solving and rule induction: A unified view. In Gregg,
L (Ed.), Knovy ledge and Cognition, Hillsdale, New Jersey: Erlbaum, 1974.

Simon, H. A. The Artificial Sciences. Cambridge: MIT Press 1969.

Simon, H. A. The functional equivalence of problem solving skills. Cognitive Psychology^
1975,7 ,253-288.

Slovic, P., Fischhoff, B. and Uchtenstein, S. Behavioral decision theory, /lamia/ Review of
Psychology, 1977, 28, 1-39.

Sternberg, R. The nature of mental abilities. American Psychologist, 1979, 34, 214-230.

VVason, P. C. and Johnson-Laird, P. N. Psychology of Reasoning: Structure and Content.
Cambridge: Harvard University Press 1972.

Woodworth, R. S. and Sells, S. B. An atornsphere effect in formal syllogistic reasoning. J.
Experimental Psychology, 1935, 18, 451-460.


