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Abstract. An expert system embodies a human expert's domain-specific knowledge and skill,

acquired and refined over years of experience. A number of problems in diagnosis and engineering

design can be solved by using current expert-system techniques. This paper enumerates the main

components of such problems and the steps that are taken in solving them. A few prototypical

artificial intelligence systems embody techniques that can be applied to engineering problems. These

are surveyed, and their relevance to components of design problems is discussed. Some expert

systems in design domains are summarized, with emphasis on aspects that can illustrate wider

applicability of the techniques. A number of avenues of further research are evident, and the area of

engineering design offers rich opportunities for advancing the state of the art in expert systems.
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1. Background on Expert Systems
The term "expert system" refers to a computer program that is largely a collection of heuristic

rules (rules of thumb) and detailed domain facts that have proven useful in solving the special

problems of some technical field. Expert systems to date are an outgrowth of artificial intelligence

(Al), a field that has for many years been devoted to the study of problem-solving using heuristics, to

the construction of symbolic representations of knowledge about the world, to the process of

communicating in natural language, and to learning from experience. Expertise is often defined to be

that body of knowledge that has grown up over many years of experience with a certain class of

problem. One of the hallmarks of an expert system is that it is constructed from the interaction of two

very different people, one a practicing expert in some technical domain and the other well-versed in

Al and, in particular, in the process of studying an expert's problem-solving processes and encoding

them in a computer system. The best human expertise is the result of years, perhaps decades, of

practical experience, and the best expert system is one that has profited from contact (via the

knowledge engineer) with a human expert.

1 .1 . Expertise: definition, advantages and costs

What are the defining characteristics of an expert system? Foremost among them is excellent

performance - accuracy, speed, and cost-effectiveness of information-gathering techniques. But

expert systems are also typified by a collection of other properties, many of which are taken for

granted in human experts:
• The ability to explain and justify answers, either on the basis of theory, or by citing

relevant heuristic rules, or by appeal to past case histories;
• The closeness of reasoning procedures to those used by human experts (the system is

not a mysterious black box using obscure mathematical formulas);
• The ability to deal with uncertain or incomplete information about the current problem

situation;
• The ability to summarize and point out features of the problem situation that were most

important in leading to an answer, related is information about which ether factors might
still have an effect if they were to become known;

• The use of verbal or symbolic encodings for knowledge, most of which is readily
communicated in natural language;

• The ability to grow gradually by adding new pieces of knowledge, usually in the context of
solving an unfamiliar problem.

These qualities make the expert system more effective as a consultant and in other expert roles, since

there is some way of backing up answers and of building confidence in the system's abilities. Also

included are the possibilities of improving the system by conversational means, and of using the

system as a tutor or trainer.

Why would someone go to the trouble to build an expert system? Inherent complexity of a



Expertise: definition, advantages and costs

problem area and scarcity of good human experts are prime motivating factors. Often building an

expert system can help to systematize a body of knowledge, so that it can be widely dispersed. Some

expert systems are applied in hazardous or uncomfortable surroundings, such as nuclear reactors.

Retirement of key personnel can spark interest in industrial settings. An expert system is often a good

means for pooling the expertise of a number of specialists, to produce a system that is more effective

than any of them working alone. Fully automated systems can often use the capabilities of an expert

system to avoid the need for human intervention in many of the routine day-to-day failures and

emergencies.

Which kinds of problems are most amenable to this type of approach? Those requiring

knowledge-intensive problem solving, i.e., where years of accumulated experience produce good

human performance. Such domains have complex fact structures, with large volumes of specific

items of information, organized in particular ways. Often there are no known algorithms for

approaching these difficulties, and the domain may be poorly formalized. Strategies for approaching

problems may be diverse and depend on particular details of a problem situation. Many aspects of

the situation need to be determined during problem solving, usually selected out of a much larger set

of possible data readings * some may be expensive to determine, so that an expert needs to weigh

carefully how serious a particular need is.

The advantages of an expert system are significant enough to justify a major effort to build

them, though. Decisions can be obtained more reliably and consistently. Explanation of the final

answers is an important side product A problem area can be standardized and formalized through

the process of building an expert system for it An expert system may be especially useful in a

consultation mode on difficult cases, where humans may overlook obscure factors. An expert system

can often serve as an example of good strategy in approaching a problem, which might be useful in

training situations. Expert systems can be more easily expandable than conventional software, so

that they can be gradually improved as their problem domain evolves. Expert systems are often

implemented in an interactive, decentralized environment, taking advantage of emerging, cost-

effective personal computing resources. Ready availability of an expert consultant program can

improve the training environment in industrial settings.

To summarize and re-emphasize a few points from above, to be considered a proper expert

system, a system must encode knowledge from a human expert. This expert knowledge is much more

than just the basic facts, but has been organized and 'compiled' through its intensive use on practical

problems over a period of many years. Often, in fact, a novice cannot follow the reasoning steps of an

expert, because the expert's process of organization and compilation has advanced very fan a
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psychological presentation of this can be found in [Anderson 83].

1.2. The components of expert systems

The key aspects that distinguish expert systems can be summarized by looking at the key

components in the accompanying block diagram.

USER

Knowledge Base

Strategies
t t

Models
t t

Rules
t t

Concepts

On the left side of the figure, six components are shown, reflecting the capabilities for

knowledge acquisition, debugging and experimenting with the knowledge base, running test cases

(perhaps systematically, from a library), generating summaries of conclusions, explaining the

reasoning that led to a conclusion (or to a question by the system), ami evaluating system

performance (including sensitivity of an answer to particular data items, present or absent). The main

computation engine is in the center of the diagram, the searching and inferring component It

searches the knowledge base for applicable knowledge, and makes inferences on the basis of current

problem data. The Working Memory is a store of the current problem data, e.g., answers to questions

about the problem and results of diagnostic tests.

The knowledge base is the main repository for domain-specific heuristics. It is considered to be

in four levels, each one built out of elements of the next lower level:*
• Concepts - declarative representation of domain objects, with both abstract classes and

concrete instances; complex interrelationships can usually be represented and used in
making inferences and in constructing similarities. Usually this knowledge can be
obtained from textbooks, and includes the basic terms of the problem domain.

• Rules - empirical associations linking: causes and effects; evidence and likely hypotheses
to be concluded; situations and desirable actions to perform; etc. This level of knowledge
is the main form that is obtained from an expert, and is based on experience. The

*Some of this terminology follows Reboti's [Reboh 81].
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knowledge is empirical (difficult to obtain from textbooks), and may have associated with
it "certainty factors'9 indicating degrees of belief in its applicability. Experts may not
agree on knowledge at this level.

• Models - collections of interrelated rules, usually associated with a particular problem
hypothesis or overall diagnostic conclusion. Sometimes this represents a subsystem
within a complex mechanical or natural structure. Rules within models interact much
more strongly with each other than with rules in other models, in a way similar to Simon's
weakly decomposable systems [Simon 69].

• Strategies • rules and procedures to aid in the use of the rest of the knowledge base, e.g.
guiding search and resolving conflicts when several equally plausible rules apply to a
given situation.

These can be illustrated with an example from the domain of automobile trouble-shooting/

Concepts include such things as brakes (which can be subdivided into disc and drum types), master

cylinder, and brake lines. The concepts might include classification information (as in the case of

brake types) and also basic knowledge about how the parts interrelate and interconnect, both in

terms of physical structure (the brake line is connected to the master cylinder, etc.) and in functional

terms (the master cylinder controls the pressure in the lines).

Heuristic rules are diagnostic connections between observed symptoms and probable

causes, as in the following:
«

IF there 1s excessive play 1n pedal ,
THEN ( c e r t a i n t y 0 .2 ) a probable causa 1s low f l u i d l e v e l .

Models in this domain are subsystems of automobiles, namely things like: engine, fuel system,

cooling system, brakes, transmission, and electrical system. Strategies include meta-rules such as:
IF car performs poor ly ,
THEN check f u e l and e l e c t r i c a l systems f i r s t .

A couple of mini-models in this domain are the following:

The author is not an expert in this domain, nor has he consulted one in connection with these examples, but the domain
was chosen for its likely familiarity to many readers. The details are meant only to be illustrative, not correct as a real-world
system.
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Mini-Fuel

lurned 01
worn

/alves

engine
lacks
power

worn
valve
guides

faulty
autom.
choke

faulty
carb.
adjust

clogged
air

filter

excessive
motor oil

use

poor
gas
mileage

difficult
starting
cold eng.

These two models are arranged with observable symptoms at the bottom, probable causes in

the middle, and subsystem names at the top. Each box in the diagram is a node in the network, and

the arrows between the boxes represent rule connections, with associated numbers being estimates

of the strength of the rule connections in both directions: one represents the likelihood of the upper

box given the lower one, the other represents the likelihood of the lower box given the upper one, or

alternatively the likelihood that the absence of the condition in the lower box would refute the

hypothesis in the upper one. The observable symptoms in this case are shared between the two

models. Usually in cases like this, varying strengths of the rule connections would help to

discriminate between the two models when overlapping evidence is present but this example has

been simplified for purposes of illustration.

An example of this mini-system running, within the PROSPECTOR / KAS system from

SRI [Reboh 81], is the following:

• • run

This version contains the following models:

1 mini-fuel system

2 mini-engine system

Different symptoms are associated with trouble in different
models. To help in selecting a model to pursue, it would
be useful for me to know the types of symptoms that might
be present. Do you want to volunteer any symptoms? n

1 — To what degree do you believe that the engine lacks
power ? 2

2 — To what degree do you believe that there is poor gas

6
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mileage ? 3

3 — To what degree do you believe that there is excessive
motor oil use ? 5

I have nothing more to ask about this hypothesis.
Conclusion: my certainty in mini-engine system is now
4.73338

Presently, there is only the following model:

mini-fuel system (certainty 3.053928)

Do you want to pursue this hypothesis? y
OK. (Use STAY or SWITCH commands to intervene.)

To what degree do you believe that there is difficulty
starting when engine is cold ? -3

I have nothing more to ask about this hypothesis.
Conclusion: my certainty in mini-fuel system is now
2.36648

The following models have been considered:
1) mini-engine system (certainty 4.733384)
2) mini-fuel system (certainty 2.366484) •• Current •*

For which of the above do you wish to see additional
information? 1

I suspect that
1) mini-engine system (certainty 4.733384)

There are several factors, in order of importance:
1) there are worn piston rings (certainty 4.714125)
2) there are burned or worn valves (certainty 3.046123)
3) there are worn valve guides (certainty 2.368421)

For which of the above do you wish to see additional
information? . . .

The user expresses degrees of belief in answers with numbers ranging between -5 (negative

answer, strong certainty) and 5 (positive answer, strong certainty). The ordering of questions by the

system is determined by a priori probabilities associated with the nodes, and by answers to previous

questions, according to a heuristic weighting formula. Answers are combined using Bayesian

methods, and values are automatically propagated among connected nodes whenever new

information is obtained, so that at each step the top-level nodes are being updated according to the

current information. The outcome of a session is a rating for which system is most likely to contain a
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fault. The user then asks for additional information and obtains ratings on which system component

seems to be causing the problem.

1.3. Building an expert system

The steps to be taken to build an expert system involve building up the knowledge base from

the simplest elements to the most complex, i.e., building up the concepts first, then rules, then models

and strategies [Reboh 81]. During the beginning phase, a small number of test cases are used, to

establish the desired system behavior on a range of typical problems. The knowledge engineer can

use the test cases to build up an initial (very incomplete) set of rules and to establish the overall model

organization. When these preliminary items are implemented, and the domain expert has approved,

the work of filling in more and more details can begin, primarily with the acquisition of rules.

Continuing progress in this second phase results in better system coverage of problems in the

domain, and also can involve filling in other aspects of the knowledge base that are necessary for

advanced kinds of user interaction with the system.

After the rule building phase is fairly complete, field evaluations can be carried out, and the task

of the knowledge engineer shifts to adding sources of knowledge in addition to the empirical rules.

For instance, in some domains it is useful to have a historical database, to help distinguish among

various possible occurrences that are similar when only present diagnostic tests are used. Another

source of knowledge that may be needed in some domains is background theory, a 'deeper1 kind of

knowledge of the domain. These and other sources of knowledge are not always required, and it is

usually best to build up a good knowledge base of empirical rules before deciding to embark on other

aspects of expertise, given that the rules are often easiest to elicit from a human expert and

implement Many domains have been found to be adequately modelled by a purely empirical rule

Experience in building expert systems so far indicates that the first phase of the activity takes

on the order of six staff-months to one staff-year. Usually a limited working prototype can be

constructed and demonstrated within a few months of the start of a project, allowing managers or

research sponsors to get an early idea of how the system might look when completed. The next

phase can take from two to five staff-years, as the system is gradually expanded and refined to handle

more and more domain problems. If further deepening phases are needed, building the additional

sources of knowledge can take a similar amount of effort

8
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2. The Components of Engineering Design
It is fruitful to examine the subproblems involved in engineering design, in order to isolate areas

where expert system techniques are applicable. The main approach here is to look first at specialized

areas within design disciplines, in order to apply current expert system technology. When a number

of areas within a discipline have been explored in this way, we will be in a better position to integrate

the results into a more comprehensive, "automated" design system. We expect the integration to

pose significant challenges in the area of tool-building, and thus there is good reason to want to look

at the entire problem, but it is necessary first to work on the pieces to be integrated.

Engineering design is, for the scope of this paper, restricted to problems in Chemical

Engineering and Civil Engineering. In Chemical Engineering [Westerberg 82], the designed object is

a chemical processing plant, and the process of design involves complex predictions and evaluations,

in addition to planning and layout (flowsheeting) of a proposed process. Civil Engineering [Fenves

81,Sriram et al 82] involves a wide variety of systems and structures, including transportation

systems, buildings, bridges, and dams. Civil engineers are concerned not only with design of new

structures, but with their context (soil, earthquakes, environment) and with their operation and

maintenance.

In order to elucidate the subproblems within design that might be amenable to expert systems,

we can utilize the knowledge that the field of Al research has gained about broad types of problems

that exist in real-world domains. The approach here is to enumerate and compare the components of

various types of problems, when they are viewed as taking place in a problem space [Newell

80, Newell 82], i.e., when they are formulated in the way developed in heuristic-search problem

solving systems. These components give rise to a classification scheme, of which three types of

problems are considered in this section. A similar analysis, with more examples of types of problems,

appears in [Stefik et al 82]. The section after this will use the components developed here to point out

a variety of Al systems that might be applied to design problem components.

2 . 1 . Diagnosis

The dominant paradigm of expert systems has been a diagnostic one: weighing and classifying

complex patterns of evidence, to evaluate a situation that is either abnormal (as in diseases or faults)

or developable in new ways (as in mineral prospecting). Diagnosis involves applying a standard set of

tests, whose extensiveness or cost usually allows only a small portion of them to be performed. Thus

selectivity an important aspect of a diagnostic program. Another constraint is that results may be

unreliable or approximate. Expert systems have demonstrated the ability to infer possible causes of

9
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symptoms (evidence), to gather data efficiently, and to discriminate competing hypotheses.

The major components of diagnosis can be summarized as follows:
• Givens:

o a case of malfunctioning, unusual "symptoms";
o a standard set of diagnostic tests.

• Goals:
o to fit case into known "disease99 categories;
o to find probable causes of symptoms;
o to recommend treatment methods,

• Constraints:
o the set of tests are large: selectivity is important;
o the tests may be very expensive (time or money);
o the tests may not be reliable or precise.

• Operations:
o infer possible causes of symptoms;
o gather data about symptoms and about the characteristics of the case, i.e., ask

questions and do tests;
o classify (group) possible causes into disease (fault) hypotheses;
o discriminate competing hypotheses;
o take account of the interactions of several causes;
o take account of the history of the system;
o reason on the basis of general causal knowledge of the system, or on the basis of

theory.

2.2. Design

The process of design involves some of the same constraints as diagnostic processes, in that

tests may be costly, imprecise, and difficult to select But a design problem involves a different

objective: to construct a system or object satisfying a given specification. Design can be broken

down into several phases (see, e.g., [Fenves 81 ]):
1. Preliminary design, involving selection of overall forms, environment, and functional

requirements (this and the next step are sometimes described as the synthesis phase);
2. Preliminary component design, where components are selected and elaborated;
3. Detailed design, in which further refinement takes place;
4. Analysis, evaluation, and optimization, to verify the various aspects of the design;
5. Documentation and detailed project planning.

Usually there are analytic tests or simulations that can be performed on a proposed design, and

the components from which the construction is to be done are known and have known properties and

interrelationships. Selection and connection of components are important operations in designing,

as are deducing and testing properties of subsystems of the proposed result. As proposals are

generated, they must be checked for consistency with the specifications. Designs undergo evolution

10
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and updating operations after being formed, and a system to aid in design must be able to track such

changes and check that new variations are correctly designed and updated. New components are

sometimes created, along with constraints that apply to them. A variety of guidelines and

environmental regulations have to be followed. A number of these facets of design can be seen to be

appropriate for the application of expert system techniques.

The main components of design can be summarized as follows:
• Givens:

o the specification of the desired object or system, giving its features, functions,
constraints, budget, etc.;

o standard analytic tests on systems and components that are proposed or designed;
o possible components, their properties, their interrelations.

• Goal: to produce an object or system that meets the specifications.
• Constraints: (the same ones as for diagnosis)

o the set of tests is large: selectivity is important;
o the tests may be very expensive (in time or money);
o the tests may not be reliable or precise.

• Operations:
o select overall forms;
o select, and specify details of, components;
o infer properties of the desired system from the givens (to aid selection and

construction);
oput components together into (sub)systems (this may involve planning, or

searching thru alternative constructions, to meet functional specifications);
o check specifications (features, constraints, costs);
o perform analytic tests (e.g., predict behavior);
o evolve and update the designed system, using feedback from tests, recording

reasons for decisions and inter-dependencies of details, and maintaining constraint
satisfaction;

o create, represent and utilize new components and new constraints;
o observe design guidelines for efficient procedure;
o apply optimization procedures;
o consider non-economic criteria (safety, environmental protection, esthetics).

2.3. Planning

The operation of planning a sequence of actions can be viewed as a design process, in which

the result has more dynamic variation than is ordinarily considered in design (Stefik, et al., have

expressed similar views [Stefik 81, Stefik et al 82]). That is, planning involves the design of a structure

within which complex series of actions are to take place. It must include contingencies accounting

for various results of actions, and for contingencies in the environment. Restrictions may be placed

on certain sequences of actions. But for the most part, planning can benefit in the same ways that

design can, with respect to expert systems.

11
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Planning can be summarized as follows:
• Givens:

o specifications of the results of executing a procedure (cf. designing a procedure);
o individual actions (corresponding to physical components).

• Goals: similar to those for design.
• Constraints:

o contingencies in actual procedure operation;
o restrictions on how procedural steps interact (e.g., inputs and outputs must match,

orderings may be critical).

• Operations: similar to those for design.

3. Prototypical Artificial Intelligence Systems
This section sketches a number of existing Al systems that have some relevance to engineering

design domains. In most cases, the system is not directly useable as a design tool, but it contains

important ideas that could be adapted to the design domain. The ideas in these systems can be

expected to be incorporated into future expert system tools. For each system, there is a list of the

design problem components that it is conceptually appropriate to deal with.

3 . 1 . The SRI Prospector / KAS system

The Prospector system [Duda&Gaschnig&Hart 79] is essentially a diagnostic system, piecing

together evidence to make a conclusion about the presence or absence of one of a number of

minerals. It asks the user questions that can be answered from field evidence and geological data,

such as types of rocks and dgree of erosion. The evidence is processed with respect to about a

dozen different models, each one organizing empirical knowledge about particular desirable

deposits, e.g. copper and molybdenum. Uncertainties in information and rules are treated with a

Bayesian probabilistic approach. The system can make inferences on the basis of semantic

knowledge about rock types, geological forms, and other domain concepts.

The main computational and representational tools within Prospector have been separated into

a separate system called KAS [Reboh 81]. It has in addition a number of facilities for entering new

models, for checking their completeness, for editing existing models and for experimenting and

debugging a knowledge base. The KAS system offers a very powerful environment for rapid

development of applications, but the type of application suitable for it is rather narrow.

The components of diagnostic problems that KAS addresses: all except history and causality.

Diagnostic abilities are important in the following design problem components:
• Component selection and specification;
• Selection of overall system design approach;

12
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• Selection of analytic tests.

3.2. The R1 expert configurer

The R1 system [McDermott 80] does the configuration of VAX computer systems, and is

currently used in production mode at Digital Equipment Corp. factories. It is used to ensure that all

the required parts have been included in orders, and that when assembled they will work together as

expected. The expertise consists of thousands of special-case details of the individual parts and how

they interact with each other in systems. The overall configuration follows a prespecifled plan, with

R1 executing the plan and filling in all the details. R1 is written in a standard production-rule system

language, a dialect of the OPS language [Forgy&McDermott 77]. Since it is a programming language,

it is suitable for a wide range of applications, but more effort is required than is the case for a

specialized system such as KAS.

The components of design problems that an R1 -like approach might address:
• Put components together;
• Compare system to specifications;
• Follow specific strategic guidelines.

3.3. Sussman and Steele, Constraints

In the domain of electrical circuit design, a formulation of basic knowledge in the form of

constraints has proven successful [Sussman&Steete 80]. Constraints on elements in the design are

expressed symbolically and check for validity throughout the design by a method known as constraint

propagation. Each circuit element is represented in a flexible way such that constraints can

propagate through the element in a variety of directions. The overall result is that a model of causality

within a circuit is built up by interconnecting models of the elements, in such a way that properties of

the entire assembly can be predicted and manipulated by the designer. Rieger and his colleagues

have developed similar approaches for other physical systems [Rieger&Grinberg 77].

The components of design problems that a symbolic constraints approach might address:
• Compare system to specifications;
• Analytic tests and predictions;
• Evolve and update proposed system.

3.4. The HEARSAY-II speech understanding system

The Blackboard model of problem solving has been developed and applied to the difficult

problem of speech, in [Lesser&Erman 77]. In this model, a group of expert modules, or knowledge

sources, is coordinated by way of a centralized data base of current hypotheses and other

13
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information, called the blackboard. Strategies about how the knowledge sources might best interact

to produce a good hypothesis are encoded in another knowledge source, the focus of attention

module. The AGE system [Nii&Aiello 79] is an example of an expert system tool that attempts to

incorporate the blackboard idea, to allow several expert systems to work together on a complex

problem.

The components of diagnosis problems that a blackboard approach might address:
• Infer chains of causes;
• Classify and discriminate hypotheses;
• Handle interactions.

The components of design problems that a blackboard approach might address:
• Infer properties;
• Construct systems;
• Compare and maintain constraints;
• Observe procedural guidelines;
• Maintain non-economic criteria.

3.5. Designing molecular genetics experiments

The MOLGEN system [Stefik 81] is a prototype expert system illustrating the power of a multi-

level planning approach. Expertise at various degrees of abstraction is embedded into the system at

different program levels. Communication between levels is done with carefully designed classes of

messages, so that different levels cannot assume how things are being done in another level, but only

what is being done there. This forces a very effective form of modular organization on the program.

The most abstract program level is the strategy level, which knows how to manipulate tasks of various

sorts; the design level knows about steps such as refinement of design operators and proposing new

goals; the most detailed knowledge is at the laboratory level, where particular molecular genetics

operations are encoded. The layered planning approach is combined with operations on symbolic

constraints, as discussed above.

Stefik's approach has possible application to these design problem components:
• Construction;
• Evolve and update;
• Create and represent new constraints.

The conclusion section below will summarize the overall impact that the above Al systems

might have on engineering design.

14
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4. Some Expert System Experiments
Expert systems have been developed that illustrate the application of expert systems

techniques to some of the main operations in the design process. These examples span a variety of

domains.

Most of the systems described here make use of the KAS system, a domain-independent,

knowledge-base editor for the SRI PROSPECTOR system [Reboh 81]. It was important for us and for

the experts involved to be able to build up very rapidly initial prototype systems with interesting

behavior. The KAS system was ideal for this task, since it requires little more than a graph-structured

model of interrelated rules and logical definitions. (This contrasts with some other systems which

require detailed semantic definitions of the concepts involved before proceeding with rules.) The

KAS approach involves the expert in the process very soon after beginning, and showing an expert an

initial demonstration is a very effective way of eliciting more details of the expertise (if in fact the

system is in the right ballpark at all). The rule-based nature of the knowledge is well-known to be an

advantage, and KAS extends this by having the rules structured into larger wholes called models.

KAS includes a rudimentary knowledge-base editor and some debugging commands that allow on-

line experimentation and revision.

Engineering design as a domain has brought out some limitations, though, which are discussed

later. One class of limitation has to do with minor computational variations that can be made to fit into

the existing expert-system framework. It is also apparent that Al techniques alone are not appropriate

for all of the problems within this domain, and that connection must be provided to allow access to

existing analytical tools of the various engineering disciplines.

The KAS system has very satisfactory knowledge base structure, inference mechanism,

explanation facility and search strategy. Its knowledge base is somewhat weak in the metarule area,

judging from some difficulties in controlling the flow of questioning (its "context" mechanism is not

always effective, possibly due to bugs in our particular implementation version). The knowledge

acquisition and experimentation facilities are adequate though they need improvement since they

seem to be involved with the biggest bottleneck in the process, namely with acquiring knowledge

from the experts.

The need for greater generality has led us to use an OPS-based approach [Forgy&McOermott

77, McDermott 80, McDermott 82] in two of the systems discussed below. This will be touched on

further in the concluding section, where we suggest that OPS should be utilized more widely as an

implementation tool.
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4 . 1 . Heat exchanger networks

The first example of an expert system in engineering design is a Chemical Engineering system,

HEATEX, for aiding in the construction of networks that minimize energy requirements by allowing the

exchange of heat among various process streams [Grimes&Rychener&Westerberg 82]. An expert

has rules of thumb for arranging the network and the heat exchangers, and the program embodies

some of this expertise. This sort of analysis comes into play after the overall process has been

detailed, as one of a number of evaluative criteria for estimating operating and capital costs. OPS* is

used in this case, for Hs general-purpose programmability. The mode is mixed: in an initial phase of

execution, the program alone produces an initial feasible configuration and evaluation of a given

network. Then there is an interactive phase, where the human user can suggest evolutionary

changes that might improve the overall objective of minimum energy use. HEATEX updates the

network according to the user's suggestions, but it has no rules for choosing to make such evolutions

itself. The resulting ensemble performs a hill-climbing search, where enthalpy constraints are used to

restrict the operations. The following paraphrases a rule from the first, constructive phase of

HEATEX:

P88: IF the goal is to do step 0 in creat ing a
network,

AND there are two streams of opposite
types, with compatible heatioads,

THEN create a possible match between the two
streams, computing the mean, the
coefficient of the match, and the delta-
min value of the match.

HEATEX turned out to be a useful tool for developing the theory and methods for problems of

its type, resulting in the formulation of a better algorithm and especially of evolutionary rules for

improvement of networks. It grew to a system of 115 production rules. The system did not, however,

execute rapidly enough to be practical for further work on the problem (much faster OPS dialects

have come along in the meantime). One obvious continuation would incorporate more rules into the

program to suggest where the existing evolutionary rules might be applicable, further automating the

improvement of networks, but there is currently no plan to carry this out

Actually, an experimental, extinct dialect called OPS3RX.
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4.2. Banares' CONPHYDE

A second Chemical Engineering system is one for selecting the appropriate analytic program to

use to evaluate a design, with respect to its physical properties, by R. Banares [Banares 82]. There

are apparently only a handful of experts in the world with a significant degree of expertise in this

domain, an important motivation for the research. This kind of problem arises in preliminary stages of

design, where the engineer is beginning to sketch a flowsheet and wants to check feasibility by

looking at physical properties (eg, temperature, pressure and phase) of substances that might be

involved. The expertise was first expressed in terms of informal rules such as,

(25) IF operating conditions are near the
critical region,

THEN Peng-Robinson equation of state is
advised, for easier convergence
(computational reason).

The CONPHYDE system is composed of 5 KAS models, with a total of about 70 spaces (nodes in KAS

inference graphs). Some difficulty was experienced at first in trying to organize the expertise to fit

into the KAS framework, since the rules were highly overlapping and interconnected. Finally an

overall structure was arrived at, as sketched in the following:

I Set of Thermodynamical Modelsj

fcule I Rule A^r

Maini n approach! — > Supporting
evidence

/T

OR-node

/ I \
Evidence f * • / V Method-1 . . -n

Here, the terminal nodes in the tree are actually subtrees consisting of questions for the user to

answer. The overall inference direction is from left to right, and from bottom to top: from evidence to

support a set of models (i.e., that determines the overall approach to be taken), to supporting

evidence for that set, to questions that allow the selection of the right member of the set. Since the

PROSPECTOR control structure is such that a choice is being made among models (whose top nodes

are sets of possibilities), the user sees the system switching among those models rather than among

particular methods. The PROSPECTOR explanation mechanism is used, after a run, to explore

details of the best-rated set of models, including the method chosen and the reasons for choosing it

CONPHYDE has been successful in its domain, with respect to proving that expert system

techniques are applicable in the chosen setting. Extending it will require using more advanced

features of KAS, namely, accessing taxonomies of concepts, storing numerical parameters in the

taxonomy, and computing values alongside the inferences (based in part on values stored in the

17



Banares' CONPHYDE

taxonomy). We are currently deciding on whether to expand CONPHYDE itself or to switch to a new

domain in which industrial support is available.

4.3. Fenves, et al, MOVER

A third expert system, involving Civil Engineering, diagnoses faults and recommends repairs in

an airport transportation system [Fenves&Bielak&Rehak&Rychener&Sriram&Maher 83]. Though it is

a diagnostic system, two facts suggest that some results will carry over to design domains: design

itself includes some trouble-shooting, namely trouble-shooting of proposed designs (this is in the

checking and analysis operations); and the issues raised in building this expert system, and any

solutions proposed, are vitally relevant to design systems. These issues are discussed below. In

addition, from the general analysis above of diagnosis and design, diagnostic abilities are very similar

to those used in selecting an overall design approach, in selecting and specifying components, and in

selecting analytic tests.

The transportation system to be diagnosed contains a number of interacting subsystems, both

electronic and mechanical. The MOVER system has models for a number of those subsystems,

specifically 19 models with over 400 inference nodes. The design of each subsystem network is

shown in the accompanying sketch.

Subsysten1

I Diagnosis, p— —. —- Act ion 1

Al -> A2 . . . AnSymptom . /T

Each subsystem model contains a diagnostic part, including external data and confirming

evidence, linked by a context link to an action portion, where conditional sequences of

recommendations are represented in a network of logical interconnections. Some of the MOVER

diagnostic models use probabilistic rules (with uncertainties indicating such things as frequency of

failure) while others are purely logical. This system was designed and implemented over a span of

about five months, with a group of six knowledge engineers (some novices).

The system as developed so far is still a prototype, as far as the real application is concerned.
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Two subsystems were developed to considerable depth, to demonstrate concept validity. The KAS

approach was found to be lacking in some mechanisms that would aid the system in understanding

rarer and more intricate problems. In particular, database techniques are needed to handle

knowledge of the history of the system, and of its intended behavior as specified by its blueprints (as

opposed to empirical knowledge about how it has performed and failed). Efficiency of operation

would be enhanced by giving direct access to some of the electronic components (e.g., diagnostic

memories) of systems that are being diagnosed. We are exploring these issues in detail for the next

phase of the project

4.4. Other experiments at CMU

Expert systems have been constructed or initiated in several other interesting areas, using

techniques similar to those in the preceding subsections. These all support the usefulness of the

existing techniques for building an initial approximation very rapidly, from which basis deeper

explorations and interactions can occur. A small diagnostic system for trouble-shooting automobiles

was built as a vehicle for comparing various expert system techniques (E. Szewczak, U. of Pittsburgh,

unpublished term paper). In the public affairs area, a system of several models and over a hundred

spaces has been built to perform welfare eligibility screening (E. Subrahmanian, CMU School of

Urban and Public Affairs, unpublished working paper). Another Civil Engineering project involves

building an expert system to aid in the preliminary structural design of buildings (Maher, M. L., CMU

Civil Engineering Dept, unpublished thesis proposal). Systems in medical domains (in collaboration

with 0. Servan-Schreiber, A. Rappaport, B. Mulsant, R. Nahmias and J. Chauvet) have been explored.

Finally, the availability of powerful personal computers can be exploited to build an intelligent user

interface to a complex design tool (A. Westerberg and M. Rychener, research proposal). The

expertise in this case is both in designing chemical processes and in using effectively the design tool

(which is a collection of Fortran programs).

Some other closely-related work is being carried out in electrical engineering and in decision

support for industrial management A system for synthesis of digital VLSI

circuits [Director&Parker&Siewiorek&Thomas 81] combines a variety of tools within a hierarchical

design methodology. Its approaches to managing the databases involved and to managing the

complexity of the design process, with a number of loosely interconnected modules, provide lessons

for expert design systems. The set of programs described by McDermott [McDermott 82] include

expert system approaches to component selection and to configuration of components into working

systems, in the domain of computer hardware systems at the macroscopic level. Fox's work [Fox 81]

in building tools for scheduling, process diagnosis, and other industrial management tasks provides a
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demonstration of approaches to a variety of design operations, including optimization, construction

(planning), and evolution and updating of designs.

5. Conclusions
Expert systems to aid in engineering design have up to now illustrated approaches to the

following subareas of the design process:
• selection of components;
• selection of analytic programs;
• selection of parameters for preceding;
• trouble-shooting and diagnosis of systems (and thus, presumably, of designs);
• intelligent interfaces to complex tods;
• overall strategic guidance;
• and fulfilling the functions of various levels within multi-level systems.

One general conclusion is that current expert system techniques are effective in starting to

attack a wide variety of domains where expertise is known to exist and to be in demand. They are

effective in providing a starting basts for ongoing projects that can make significant impacts in

industrial and commercial settings. In many cases they can be completely sufficient to the task at

hand, while in others, they lead to challenging research problems. Some expert system tools, e.g.

KAS, are very suitable for narrow domains with diagnostic flavor, of which some components of

design problems are examples. Other tools, e.g. OPS, are effective programming languages that

incorporate the features of specialized expert system tools, and are suitable for a wider range of

problems.

A number of limitations of current approaches have been discovered in the course of the above

experiments. They can be grouped as follows:
• Limitations of overall approach, which might be alleviated by adding new modules to

existing systems, and by organizing the module structure differently. Examples include:
oThe acquisition and evolution of models, a major bottleneck in the process of

building an expert system. New approaches include domain-specific aids and
learning (evolution) by example;

oHeip in utilizing and coordinating fuzzy interconnections and inferences
(especially, maintaining consistency);

o Use of causal and historical databases;
o Use of sensor data directly;
o More complete explanatory, analogical, case-history and theoretical background

knowledge;
o Adaptability to a variety of modes of operation, e.g., full automation, consultant,

supervisor, assistant, and trainer,
o Moving towards multi-level systems, involving coordination among various levels of

expertise.

• Limitations in current software at behavioral level, which can be alleviated by incremental

20



Conclusions

fixes within the current framework: computing side values along with uncertainty ratings,
accessing (external) databases, and interfacing with analytical programs in alien
languages.

• Limitations of underlying implementation, including its extensibility, adaptability to new
computational demands, internal documentation and self-description, and data
structures at a useful level of abstraction; our current thinking leads us to believe that
LISP is inappropriate, while a rule-based and knowledge-representation-language-based
system is feasible and desirable.

• Limitations of existing architectures for flexible organization.
• Limitations of knowledge of how to incorporate background theory of the domain.

We are currently examining the possibility of developing a variety of rule-based expert system

tools, to help remedy a number of these limitations. Making them rule-based will improve their

adaptability, their conciseness, their understandabHity, and their portability. We hope that these tools

will have some of the positive attributes of expert systems, namely the ability to explain their own

reasoning and to assist in their own improvement by having an understanding of their own knowledge

structure. We are also encouraged by developments in the computer hardware area. The emergence

of powerful personal computer workstations will make it possible to have an expert system in a

peronal computer, enabling expert systems on other computers, linked together in a local network, to

cooperate on solving large design problems, using the blackboard model described above.
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6. A Selective Bibliography
In the interest of acquainting a wider audience with a representative sampling of expert

systems, and especially with the approaches they embody, the following selective reading list is

proposed. These readings are not overly technical, and usually make their main points by way of

examples of natural language dialog between a user and the expert Al system. Papers usually

contain further references to related work and background material. The intended audience includes

engineers (especially designers), social scientists, computer specialists without Al background, and

other professionals.

The first version of this bibliography was published in June, 1981, and since that time a number

of excellent expert system papers have appeared, mainly in national and international conferences on

Al and in the Artificial Intelligence Magazine [IJCAI81, AAAI82, UCAI 83, AAAI83]. The classics still

stand out, and I haven't recommended the newer papers for novices or outside reviewers of the field,

though some are of high quality. For the most part, the conference papers discuss specific

applications and do not discuss substantially new issues or techniques.

In the following, I have grouped papers roughly into categories, some of which contain specific

systems white others are broader overviews or even general introductions to the wider field of Al. In

the interest of being representative, a number of systems of approximately equal significance to those

given here have been omitted. The papers here do in fact refer to these others.

6 . 1 . Expert systems in general and overviews of Al

[Feigenbaum 77]*
[Waterman&Hayes-Roth 78]
[Erman&Lesser 78]
[Michie79]
[Nii 80]
[Newell 81]
[Barr&Feigenbaum 82]*
[Newell 82]*
[Stefiketal82]*
[Hayes-Roth&Waterman&Lenat 83]*
[Simon 69]*
[Boden77]
[Winston 77]
[McCorduck79]
[Nilsson80]

'Highly Recommended.
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6.2. Electronics and computers

[Brown&Burton 75]
[Sussman 77]
[deKleer79]
[Borning 79]
[Sussman&Steete 80]
[McDermott80]
[Grinberg 80]
[Director&Parker&Siewiorek&Thomas 81]
[Davis 82]*
[McDermott82]

6.3. Engineering design in general

[Freeman & Newell 71]
[Powers 72]
[Rieger&Grinberg 77] *
[Bennett&Engelmore 79]
[Fenves&Norabhoompipat 78]
[Eastman 81]
[Fenves81]*
[Stefik81]*

6.4. Other expert systems

[Davis&Buchanan&ShortKffe 77]*
[Buchanan&Feigenbaum 78]
[Weiss&Kulikowski&Amarej&Safir 78]
[Duda&Gaschnig&Hart 79]*
[Genesereth 79]
[Nii&AieHo 79]
[Waterman&Peterson 80]
[Lindsay&Buchanan&Feigenbaum&Lederberg 80]
[Pople81]*
[Reboh81]*

rfcconviiisnGBii*
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6.5. Other specific Al techniques of interest

[Lenat75]*
[Sacerdoti 75]
[Lesser&Erman 77]
[Clancey 79]
[Davis 80]
[Hayes& Ball &R eddy 81]
[Sacerdoti 81]
[Stefik81]
[Teitelman&Masinter 81 ]
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