
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

UNIVERSAL FINITE ELEMENT MATRICES
FOR TET3AHED3A

by

Z.J. Cand^s, ?.U. MinJvis i ?.r>. i-.l/.

ORC-i-j-oJ-32

Universal Tetrahedron Matrices Page
Cendes , Minhas, S i l ves te r

UNIVERSAL FINITE ELEMENT MATRICES

FOR TETRAHEDRA

Z. J. Cend*s F. U. Minhas P. P. S i l v e s t e r
Camaegie-Mellon University Dominion Engineering E l e c t r i c a l Engng.
Electrical Engineering Dept. Company Limited McGill Univers i ty

Pittsburgh, PA 15213 Montreal, P.Q. Montreal, P.O.

ABSTRACT

Methods are described for forming element matrices for a
wide variety of operators on tetrahedral f i n i t e elements, in a
manner similar to that previously employed for l ine segments and
tr iangles . This technique models the d i f ferent ia t ion and
product-embedding operators as rectangular matrices, and produces
f i n i t e element matrices by replacing a l l required analytic
operations by their f i n i t e matrix analogues. The method is
i l lust ra ted by deriving the conventional matrix representation
for Laplace*s equation. Brief computer programs are given, which
generate universal f i n i t e element matrices for use in various
applications.

1. Introduction.

The f i n i t e element analyst has t rad i t iona l ly had two choices

for evaluating the matrix elements required for any given f i n i t e

element model. In one approach, advocated by Zienkiewicz [1] ,

Irons, and others, the matrix elements are evaluated numerically

as and when required, using quadrature formulae to compute the

UNIVERSITY LIBRARIES
S O N UNIVERSITY

2 1

Universal Tetrahedron Matrices Page i\
Cendes f Minhas, Silvester

necessary integrals. The second approach, f i rs t employed by

Silvester [2 ,3] | is to evaluate the matrix elements analytically

in terms of parametric factors for a representative element. The

precomputed matrix values are then combined in weighted sums to

form the overall f inite element matrix.

Both of the accepted procedures have advantages and

disadvantages. The numerical integration approach is simple, and

easy to implement; but it gives rise to high computing costs and

sometimes to poor accuracy. Analytic integration is much less

costly, but requires precomputing and storing many different

numeric matrices for the various differential operators and

energy functionals encountered in applications, and their

associated functionals.

In recent years a third approach, variously called an

"elementary matrix" or "universal matrix" approach, has been

developed [4-8]* In this approach, exact numeric representations

are developed for certain elementary operators, such as the

differentiation operator. Finite element matrices are then

generated in specific cases as parametrized combinations of the

universal matrices. This third approach shares the precision

advantages of the precomputed matrix technique, since a l l

necessary differentiations and integrations are performed

analytically, not numerically. Yet it shares much of the

numerical integration approach, because the elementary matrices

Universal Tetrahedron Matrices Page 5
Cendes , Minhas, Silvester

are few and are combined in simple ways. Not surprisingly, the

computing time demands of the new method l i e between those of the

two classical techniques.

In the majority of applications, it is found that at most

four elementary matrices suffice to model problems involving

arbitrary linear differential operators. For practical use, one

has the choice of either tabulating these matrices, or of giving

programs capable of generating them as needed. The usual course

in the past has been to tabulate the matrices, preferably in the

form of integer quotients; for only in that form is full

precision preserved. In the present work, the alternative

approach is taken: short computer programs are presented which

generate the elementary matrices in floating-point form. The

disadvantage of finite machine-dependent precision is avoided by

employing the same computer, or a computer of at least the same

precision, for both the elementary matrix generation and

subsequent finite element problem solving.

2. Interpolation Polynomials on Tetrahedra

Interpolation polynomials of the closed Newton-Cotes type

are commonly used on triangular and tetrahedral elements in field

analysis. To set up these polynomials in a convenient form, let

Universal Tetrahedron Matrices Page
Cendes , Minnas, Silvester

y,

i
i

denote one of the homogeneous (volume) coordinates [9] on a

tetrahedron; the remaining three are defined similarly by cyclic

interchange of subscripts. Silvester [2] has defined a family of

semi-interpolative (one-sidedly interpolative) polynomials by

= ft
*- (2)

- 1 , ~ - o
These are serai-interpolative because they possess zeros at

z s (i -D/N, for is 1, . . . , m. They are very convenient for

defining the set of Lagrangian interpolation polynomials on a

tetrahedron, with interpolation nodes of the closed Newton-Cotes

pattern. The latter are given by

subject to the requirement that i + j + k+ +1 s N9 where N is the

degree of the desired polynomial [10]. On a tetrahedron there

are M(N) = (N+1)(N+2)(N+3)/6 such nodes and corresponding

polynomials. The quadruple index ijkl identifies the polynomial

associated with each interpolation node clearly. However, in

most applications it is preferable to use single indices to

identify the polynomials, so as to avoid cluttering expressions

with long subscript strings. In principle, the quadruple indices

may be mapped onto single indices in any consistent fashion. In

Universal Tetrahedron Matrices Page 7
Cendes f Minhas, Silvester

practice, the mapping is usually accomplished by regarding each

quadruple index as a four-digit integer, and taking these in

descending order.

3. The Differentiation Operator

The directional derivative of a polynomial f inite element

approximation is best expressed in a tetrahedral element by

writing the derivative in terms of interpolation polynomials.

Consider for example a potential function u, given in a

tetrahedron as a polynomial of degree N in the space coordinates,

and suppose that its directional derivative is desired in some

direction, say s. If the* interpolation polynomials used for

approximating are of degree N, this derivative is clearly a

polynomial of degree at most N-1. Thus, one may write

4

where the chain rule of differentiation has been used to move the

operation of differentiation from the space direction s to the

tetrahedron coordinates* But since the derivative is a

polynomial of degree N-1, it may be expressed exactly in terms of

the interpolation polynomials of degree N-1:

Universal Tetrahedron Matrices Page 8
Cendes , Minnas, Silvester

1 <>

The coefficients in eqn. (6) are most easily determined by

equating right-hand sides of eqns. (5) and (6), and observing

that the summation of eqn. (6) collapses to a single term if

evaluated at an interpolation node, say node k, of the family of

interpolation polynomials of degree N-1:

Let four purely numeric matrices D * be defined by

These matrices are pure numerics, independent of the size and

shape of the tetrahedron. In terms of these matrices, eqn. (7)

may be written in the form

It should be observed that although there are in principle four

distinct coefficient matrices D, the very nature of homogeneous

coordinates dictates that they must be row and column

permutations of each other. Thus, tabulation and calculation of

only one matrix suffices*

The directional differentiation operator may be regarded as

Universal Tetrahedron Matrices Page 9
Cendes , Minhas, Silvester

a mapping between the space spanned by the interpolation

polynomials of degree Nf and the space spanned by those of degree

N-1. These spaces are of dimensionality M(N) = (N*1)(JU2)(N+3)/6

and M(N-i) = '(N)(N + 1)(N+2)/6, respectively. One possible

representation of the finite directional differentiation operator

is therefore a rectangular matrix with M(N) columns but only

M(N-1) rows. This representation is advantageous in many

applications because of its compactness, as well as because the

matrices are guaranteed to have full row rank. However, if

directional derivative values are desired, this representation

suffers from the shortcoming that the values are obtained on an

interpolation node set different from that used for the function

values. In this circumstance, it is more convenient to express

the derivatives in terms of polynomials of degree N. Thus, one

may replace eqn. (6) by

u CM)

This equation is exact, since the directional derivative is a

polynomial of degree N-1, and may therefore be expressed in terms

of the polynomials of degree N. In this case, the equation

corresponding to (9) becomes

LL (ID

where

Universal Tetrahedron Matrices Page 10
Cendes 9 Minhas, Silvester

the derivatives being evaluated at the interpolation nodes of the

set of degree N, not N-1.

Again, the four numeric matrices D are row and column

permutations of each other, so that only one needs to be

calculated and stored. However, this matrix is square, having

M(N) rows and columns. Of course, it has a row nullspace of

dimensionality M(N) - M(N-1), and rank M(N-1).

3. The Metric Matrices

A matrix frequently required in finite element analysis is

the metric of the interpolation polynomials in each element.

This matrix is occasionally also termed the "mass matrix11 by

analysts whose background is rooted in elasticity theory or

structural analysis. Given the set of interpolation polynomials

of degree N, the metric T is defined as the matrix whose elements

are given by

^f*A V CM) L*A
(13)TV = \ *i «i

Here and in the following, it is assumed that the tetrahedral

element has unit volume; for any other element, T must be

multiplied by the element volume. There will of course be a

Universal Tetrahedron Matrices Page 11
Cendes , Minhas, Silvester

distinct metric, of order M(N), for each order of tetrahedral

element; orders will be distinguished by superscripts

parentheses, as above. Metrics for the first few orders of

tetrahedra have been published [3] in the form of integer

quotients, so that the first few are known exactly.

An interesting point to observe is that the sequence of

metrics T for the various orders of tetrahedron is not

independent. Since the interpolation polynomials (3) of the

various orders are all complete in the sense of Dunne [11], the

family of polynomials of any given order must embed all

polynomial families of all lower orders. Consequently, the

metric of any given order must also embed, in some sense, the

metrics of all lower orders. Just exactly how, will become

evident on brief examination of the manner in which the

embeddings of the polynomials themselves can be represented.

4. Embedding Operators

Suppose that a certain polynomial p has an exact

representation in terms of the interpolation polynomials of

degree N, say

Universal Tetrahedron Matrices Page 12
Cendes f Minhas, Silvester

Then it must also have an exact representation in terms of the

interpolation polynomials of degree N+1,

and it is interesting to enquire how the coefficients in eqn.

(15) can be derived from those in eqn. (1U). To determine the

necessary mapping, it suffices to equate the right sides of these

two equations,

0^ —^ i i-i /^/ (16)

and evaluate both sides at interpolation node k of order N+1.

Since the polynomials are interpolative, the left-hand summation

collapses, leaving only a single surviving term:

v \p
Let a rectangular matrix, with M(N+1) rows and M(N) columns, be

defined by

The mapping cf coefficient vectors between eqns. (1M) and (15)

is then clearly given, in matrix form, by.

Universal Tetrahedron Matrices Page 13
Cendes • Minhas, Silvester

The matrix B may be termed a finite embedding operator, or an

embedding matrix, for it embeds the coefficients related to

degree N in the next higher-order set.

While the matrix B could easily be computed and tabulated

for various orders, it may be useful to consider another matrix,

which is more general than B, but allows B to be derived easily.

Consider again the polynomial of eqn. (14); but this time let it

be multiplied by some quantity which varies linearly with one of

the tetrahedron coordinates. This time,

)
(20)

is of interest, instead of eqn. (14). Equating and evaluating

it at node k of the next higher order node set, as above, one is

quickly led to define a matrix C by

(21)

Once again there exist four matrices C, one corresponding to

weighting p with respect to each tetrahedron coordinate; the

appropriate coordinate is identified by the bracketed subscript.

The four matrices C are again row and column permutations of each

other, so that there is no need to compute mere than one of them.

Since the tetrahedron coordinates must add to exactly unity

in any tetrahedron, the matrix B must be given by the sum of the

Universal Tetrahedron Matrices Page
Cendes , Minhas, Silvester

matrices C:

E Ck: = E
The matrices C provide a more general product embedding operation

than does the matrix B. Yet the cost of computing them is

v ir tual ly the same. Hence the computer programs given in the

Appendix calculate and tabulate the matrices Cf rather than B.

5. Metrics and Projectors

An interest ing special case of embeddings ar ises when the

polynomial p of eqn. (14) is in fact one cf the interpolation

polynomials of degree N. In th i s case the right-hand coef f i c ient

vector in eqn. (19) becomes one column of the unit matrix, and

^W - Z_, u

This property is very useful in evaluating projection matrices.

Csendes [1] shows that the best approximation to a polynomial of

degree N in a subspace spanned by polynomials of degree N-1 is

obtained by application of the projector

p v - ' _)_TV] A ' can)

where

Universal Tetrahedron Matrices
Cendes , Minnas, Silvester

Pase 15

These matrices are easily evaluated

into (25), there immediately results

aa

Substituting eqn

(2 5)

(19)

(26)

where the prime denotes transposition. A separate evaluation of

eqn. (25) from first principles, by actual integration, is never

required. In a comparable fashion, one easily derives

(27)

This equation indicates that, at least in principle, there is no

need for programs to calculate metrics of all orders. If the

metric of the highest order element to be employed is known, then

the metrics of all lower orders can be derivable by successive

applications of the embedding operator. The projector of eqn.

(2M) may thus be written in the alternative form

It might be observed in passing that the two forms of

differentiation operators, rectangular and square, are also

related to each other by an embedding operation:

(29)

Thus there is no fundamental need to possess both types of

differentiation matrices, although it may at times be convenient

Universal Tetrahedron Matrices Page 16
Cendes f Minhas, Silvester

to do so.

6. The Dirichlet Matrix

The Dirichlet matrix is very commonly encountered in finite

element analysis of potential field problems, and will be

employed to illustrate the use of the universal matrices

described here* On a tetrahedral element of unit volume, the

Dirichlet matrix is given by

J)
(30)

Written out in detail, this equation reads

The crucial quantity is obviously the integrand on the right-hand

side; the term in parentheses is simply a geometric constant that

expresses the relationship of the four homogeneous coordinate

directions to the three Cartesian axes. Using the relationships

above, however, this integrand is readily written as

> (32)

in terms of the rectangular differentiation matrices; or as an

analogous expression in terms of the square differentiation

Universal Tetrahedron Matrices Page 17
Cendes *, Minhas, Silvester

matrices.

7. Conclusions

To derive finite element matrices for tetrahedral elements,

using the conventional tetrahedron interpolation polynomials, it

suffices to possess the following primitive matrices: (1) a

finite differentiation operator, (2) the metric of the

interpolation polynomial basis, (3) an embedding operator that

maps low-crder polynomials to a representation one order higher,

(4) a projection operator that projects polynomials onto a space

one order lower. The differentiation operator may be expressed

in two different ways, each of which has advantages in certain

applications.

The projection operators, and the two forms of the

differentiation operator, may be derived easily from the first

three primitive matrices above by simple matrix manipulations.

Further, and mere importantly, finite element matrix

representations of many linear operators may be constructed from

three primitives: (1) the rectangular differentiation matrix of

order N, (2) the metric of order N, and (3) the embedding between

orders N-1 and N. Computation of these matrices is relatively

straightforward, and programs for doing so are given in the

Appendix.

Universal Tetrahedron Matrices Page 18
Cendes f Minhas, Si lvester

8. References

[I] Zienkiewicz, 0. C. , The Finite Element Method in
Engineering Science. New York: McGraw-Hill, 1971.

[2] S i l v e s t e r , P., High-order polynomial triangular f in i t e
elements for potential problems. Int. Jour. Engrng.
Science, vo l . 7, 1969, pp. 8*19 - 861.

[33 S i l v e s t e r , P., Tetrahedral polynomial f in i t e elements for
the Helmholtz equation. Internat. Jour. Numer. Meth.
Engrg., vo l . M, 1972, pp. 405 - 413.

[H] Cendes, z . J. , A f i n i t e element method for the general
solution of ordinary d i f ferent ia l equations. Internat.
Jour. Numer. Meth. Engrg., vo l . 9, 1975, pp. 551 - 561.

[53 S i l v e s t e r , P., and Haslam, C. R. S. , Magnetotelluric
modelling by the f in i t e element method. Geophys. Prospect.,
vo l . 20, 1972, pp. 872 - 891.

[6] Ceades, z . J. , A Fortran program to generate f in i t e
difference formulas. Int . Jour. Numer. Methods Eng., vo l .
9, 1975, pp. 579 - 597.

[7] Kisak, E., S i lves ter , P., Telford, W. M., A recursive
method in the E-polarization of magnetotelluric modelling by
high-order f i n i t e elements. Acta Geodaet., Geophys., e t
Montanist. Acad. Sc i . Hung., tomus 12, 1977, pp. 255 -
266.

[8] S i l ve s t er , P., Construction of triangular f in i t e element
universal matrices. Internat. Jour. Numer. Meth. Engrg.,
vo l . 12, 1978, pp. 237 - 244.

[9] Maxwell, E. A., General homogeneous coordinates.
Cambridge: University Press, 1960.

[10] S i l v e s t e r , P., Symmetric quadrature formulae for
simplexes. Maths. Comp., vo l . 24, 1970, pp. 95 - 100.

[I I] Dunne, P. C. , Complete polynomial displacement f i e lds for
f in i t e element method. Jour. Roy. Aeronaut. S o c , vo l .
72, 1968, pp. 245 - -246.

Universal Tetrahedron Matrices Page 19
Cendes f Minhas, Silvester

9• Appendix

The three elementary matrices described above are readily

generated using the computer programs of this Appendix. The

programs are written in near-standard Fortran, and are configured

as input-output free subroutines. No f i l e handling and no

character handling is involved, so that there should be l i t t l e

trouble in compiling and running the programs at any computer

instal lat ion.

There are three subroutines to generate the three matrices:

DIFMTX, EMBMTX, and METRIC. These in turn call other routines.

The second-level routines are:

ADERV1 returns the value of the directional derivative (in the

direction toward vertex no. 1) for a specified

interpolation function at a specified point in a

tetrahedron;

AFUNCT computes the functional value of a specified tetrahedron

interpolation function at a specified place in the

tetrahedron, see eqn. (3) above;

FACTOR is the factorial function, in double precision, for

integer arguments not exceeding 30.

PDERIV returns the f irst derivative of any one of the

semi-interpolative polynomials of eqn. (2) above;

Universal Tetrahedron Matrices . Page 20
Cendes f Minhas, Silvester

PFUNCT returns values of the semi-interpolative polynomials of

eqn. (2);

PRECIS finds the machine precision, i . e . the smallest number s

such that (1 + s) is distinguishable from 1.

PSYMBL creates an array of coefficients of the various powers of

the argument, thus giving an analytic representation of the

semi-interpolative polynomials of eqn. (2);

QUADRA generates the set of closed Newton-Cotes quadrature

weight? for a tetrahedron, of degree 2Nf by calling WEIGHT;

WEIGHT computes the quadrature weight at a specified quadrature

node.

The various routines are designed to be reasonably

self-supporting, in the sense that they include a broad variety

of error and consistency checks. All floating-point work is done

in double precision — which of course will vary considerably

from machine to machine and installation to installation. One

measure of the precision achievable is the so-called "machine

epsilon", the smallest number s such that (1 • s) is

distinguishable from unity within the actual operating precision

of the machine. This number is fixed for any given installation

by the hardware and system software. However, users do not often

know the value of this number; the present program suite

therefore computes an approximation to it by a sequence of binary

Universal Tetrahedron Matrices Page 21
Cendes_ t Minhas, Silvester

chops. The accuracy obtained is ful ly sufficient for present

purposes. A need to know this number arises In several

subroutines, where floating-point equality comparisons must be

made.

The methods employed for finding the matrices D and C, which

do not involve volume integration, are straightforward; the

programs amount in essence to no more than computer

implementations of eqns. (8) and (21) . The method U3ed for the

metric differs slightly from those described in earlier

l i te ra ture . Since the integrand in eqn. (13) is exactly

polynomial, of degree not higher than 2N, it is known that it can

be integrated exactly by a Newton-Cotes quadrature formula of

order 2N [10] . Computation of T therefore proceeds in two

stages. F i rs t , the quadrature weights for a closed Newton-Cotes

formula of order 2N are calculated. Secondly, T is computed

exactly as it is defined in eqn. (13) , save of course that the

integration is replaced by a numerical quadrature. It must be

emphasized that no numerical approximation is involved here; the

quadrature formula is specifically generated of high enough order

to render it exact, except for roundoff error. The quadrature

formula generating programs are designed to be essentially

independent, so that users wishing to make use of these

quadrature weights elsewhere may find it convenient to do so.

Program robustness and precision have been considered

paramount in the design of the attached subroutines. However,

Universal Tetrahedron Matrices .Page 22
Cendes f Minhas, Silvester

little attention has been paid to memory requirements and to

computing time, on the supposition that the elementary matrices

will be generated ab initio only very occasionally.

Of the three matrices, T is the most sensitive to numeric

stability. Using a 32-bit machine (64 bits in double precision),

with a machine epsilon of 1.ME-17, it has been estimated that

loss of precision in computation will not exceed 3 decimal

figures for sixth-order tetrahedra, i.e, that the results should

contain mantissas good to at least 13 - 14 decimal figures.

Accuracy deteriorates for higher element orders. But it is

rather doubtful that seventh or higher order tetrahedra will find

extensive application, since elements with 120 or more nodes are

computationally unwieldy!

Computing times rise very rapidly with element order,

particularly since the programs do not very seriously attempt to

take advantage of subscript symmetries or other possible

economies. Should computing times be a factor of importance, the

running times of the T matrix routines in particular can probably

be reduced by a factor of ten, or more, by clever exploitation of

the many symmetries possessed by this matrix. Time requirements

were not considered a major issue in program design, because it

is likely that the matrix generation programs will be used only a

very few times at any one computer installation. The programs as

given here were developed and verified on a PDP-11/03 computer

with the RT-11 operating system. On this small machine,

Universal Tetrahedron Matrices Page 2?
Cendes , Minhas, Silvester

computation of the matrices for first through fourth orders takes

about two hours; of course, only a few minutes are required on a

large main-frame machine.

To illustrate the use of this subroutine package, three

small driver programs are appended to the subroutines. These

read the desired value N of matrix order, call the relevant

subroutines, and write out the resulting matrices to the user

terminal. While the subroutine package is written to be

machine-independent, the driver programs will need modification

at every installation, because input-output arrangements

invariably differ. However, since these programs only contain

about a dozen active Fortran lines each, users should experience

no difficulty in adapting them, or providing locally acceptable

equivalents.

; I

MATRIX CENERATOR SUBROUTINES

Fortran Listings

Z. J. Csendes, F. U. Minnas, P. P. Silvester

July 1980

Matrix Generator Subroutines
Cendes . f Minnas, Silvester

Page

C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C

C
C

C
C

C
C

C
C

10

20

«ftftftft«ftft»ftXtt«»»ft*»ftftft»«ftft»*ft««»»ftft««*««ft»»ft*««*«*»»»»««»

DOUBLE PRECISION FUNCTION ADERVKUKL, ZETA, IERR)

«ft««»ftft»ft*ft»»«»»«ft««»ft»ftft«tt««»««»ft««ft»«ft«ftftftft»»ftft»«ft»»ft»

RETURNS DERIVATIVE OF THE INTERPOLATION FUNCTION OF
ORDER N, ALPHA(I,J,K,L), AT THE INTERIOR POINT IN A
A TETRAHEDRON GIVEN BY THE ARRAY ZETA. IERR IS AN
ERROR INDICATOR WHICH CARRIES THROUGH THE VALUE OF
IERR AS SET BY 'PFUNCT' OR fPDERIV. IF ANY ONE OF
THE INTEGERS IN IJKL IS NEGATIVE AN ERROR EXIT WITH
ARGUMENT IERR SET TO 31, 32, 33, 3*», RESPECTIVELY,
IS EFFECTED. IERR = 35 SIGNIFIES THAT THE FOUR CO-
ORDINATES ZETA DID NOT ADD UP TO UNITY.

DOUBLE PRECISION ADERV1, PFUNCT, PDERIV
DOUBLE PRECISION ZETA, EPSLON, Z
DIMENSION ZETAU), IJKL(U)

EPSLON IS A MACHINE-DEPENDENT PRECISION INDICATOR -
COMMON /PRECSN/ EPSLON

IS THE ARGUMENT SET ACCEPTABLE? EXIT IF NOT.
IERR = 0
IF (IJKL(D.LT.O) IERR = 31
IF (IJKL(2).LT.O) IERR = 32
IF (IJKL(3).LT.O) IERR = 33
IF (IJKL(U).LT.O) IERR = 3*»
ADERV1 = -1.0D0
DO 10 11=1,U

ADERV1 = ADERV1 • ZETA(II)
CONTINUE
IF (ADERV1.GT.EPSLON .OR.
IF (IERR.NE.O) GO TO MO

ADERV1.LT.-EPSLON) IERR = 35

GET STARTED. SET ORDER N.
N = 0
DO 20 11=1,4

N = N + IJKL(II)
CONTINUE

COMPUTE ALPHA DERIVATIVE IN 1 - DIRECTION.
ADERV1 = PDERIV(ZETA(1),IJKL(1),N,IERR)
IF (IERR.NE.O) GO TO 10

Matrix Generator Subroutines Page
Cendes , Minnas, Silvester

DO 30 11=2,4
IDX = IJKL(II)
Z = ZETA(II)
ADERV1 = ADERV1*PFUNCT(Z,IDX,N,IERR)
IF (IERR.NE.O) GO TO 40

30 CONTINUE
C

40 RETURN
END

C «»ftttft*ft«*ft»»ftft»ttft»ftftft»»»»ft»»»»»*«**»«»»ftft*»»»«»»ftft*»»ft*ft

c
DOUBLE PRECISION FUNCTION AFUNCTUJKL, ZETA, IERR)

C
Q «*«ft»»ft»ft»«»»ftft»ft»*ft»«ftft*«««tt»ft»»ftttft«*»**»ftft»Sft«ft»ft»»»*»

C
C RETURNS THE VALUE OF THE INTERPOLATION FUNCTION OF
C ORDER N, ALPHA(I,J,K,L), AT THE INTERIOR POINT IN A
C A TETRAHEDRON GIVEN BY THE ARRAY ZETA. IERR IS AN
C ERROR INDICATOR WHICH CARRIES THROUGH THE VALUE OF
C IERR AS SET BY •PFUNCT' OR •PDERIV. IF ANY ONE OF
C THE INTEGERS IN IJKL IS NEGATIVE AN ERROR EXIT WITH
C ARGUMENT IERR SET TO 21, 22, 23, 24, RESPECTIVELY,
C IS EFFECTED. IERR = 25 SIGNIFIES THAT THE FOUR CO-
C ORDINATES ZETA DID NOT ADD UP TO UNITY.
C

'DOUBLE PRECISION AFUNCT, PFUNCT
DOUBLE PRECISION ZETA, EPSLON, Z
DIMENSION ZETAC4), IJKL(4)

C
C EPSLON IS A MACHINE-DEPENDENT PRECISION INDICATOR -

COMMON /PRECSN/ EPSLON
C
C IS THE ARGUMENT SET ACCEPTABLE? EXIT IF NOT.

IERR = 0
IF (IJKLO).LT.O) IERR = 21
IF (IJKL(2).LT.O) IERR = 22
IF (IJKL(3).LT.O) IERR = 23
IF (IJKL(4).LT.O) IERR s 24
AFUNCT s -1.ODO
DO 10 IIs1,4
AFUNCT - AFUNCT + ZETA(II)

10 CONTINUE
IF (AFUNCT.GT.EPSLON .OR. AFUNCT.LT.-EPSLON) IERR = 25
IF (IERR.NE.O) GO TO 40

C
C GET STARTED. SET ORDER N.

Matrix Generator Subroutines Page
Cendes , Minhas, Silvester

N = 0 • •
DO 20 I I s 1 , 1

N s N + IJKL(II)
20 CONTINUE

C
C COMPUTE ALPHA-FUNCTION

AFUNCT s 1.0D+0
DO 30 1 1 = 1 , 4

IDX = I J K L (I I)
Z = ZETA(II)
AFUNCT = AFUNCT»PFUNCT(Z,IDX,N,IERR)
IF (IERR.NE.O) GO TO 10

30 CONTINUE
C

40 RETURN
END

C *«««»«ftftft»»*»ft»»ft«»»ftft»»ft»»ttft»»ft*»»ftft»»ft*»«ft»»ttft*«»ft»

c
SUBROUTINE DIFMTX(N, D1, NI, NJ, IERR)

C

c
C RETURNS THE DIFFERENTIATION MATRIX D1 OF ORDER N
C COMPUTED IN DOUBLE PRECISION.
C
C THE ARGUMENTS HI, NJ ARE MATRIX DIMENSIONS. THEY
C MUST BE AT LEAST NI = (N)(N+1)(N+2)/6 AND
C NJ = (N+1)(N+2)(N+3)/6
C OTHERWISE IERR s 51 IS RETURNED, AND NO OTHER AC-
C TION IS TAKEN. OTHER ERROR RETURNS TRACE WHERE
C THE ERROR OCCURRED, BY SIMPLY PASSING THROUGH THE
C ERROR-INDICATOR VALUES FROM OTHER ROUTINES.
C
C SUBROUTINE CALLING STRUCTURE:
C
C DIFMTX CALLS PRECIS
C CALLS ADERV1 CALLS PDERIV
C CALLS PFUNCT
C

DOUBLE PRECISION D1(NI,NJ), ZETA(4), ADERV1
DIMENSION JARR(4), IARR(4)

C
C EPSLON IS A MACHINE PRECISION INDICATOR, FOR SET-
C TING TOLERANCES. IT IS TAKEN AS FOUR TIMES THE
C LEAST DEVIATION DISTINGUISHABLE FROM UNITY.
C

Matrix Generator Subroutines Page
Cendes , Minnas, Silvester

DOUBLE PRECISION EPSLON
COMMON /PRECSN/ EPSLON * •

C
C START BY SETTING EPSLON

CALL PRECIS
EPSLON = 4.D+0«EPSL0N

C
C CHECK DIMENSIONS IN CASE OF ERROR.

IF (NI.GE.N*(N+1)«(N+2)/6 .AND. NJ.GE.(N+1)«(N+2)*(N+3)/6) GO TO
* 10
IERR = 51
GO TO 140

10 CONTINUE
C
C OUTER LOOP: GENERATE THE INDEX STRING IARR FOR
C QUADRUPLE INDICES OF ORDER N-1. IC IS THE COR-
C RESPONDING SINGLE INDEX.
C

IC = 0
DO 130 J1=1,N

IARR(1) = N - J1
M2 = N - IARR(I)
DO 120 J2=1,M2
IARRC2) = M2 - J2
M3 = M2 - IARRC2)
DO 110 J3=1,M3

IARR(3) = M3 - J3
IARR(U) = N - 1
DO 20 J = 1,3

IARR(4) = IARR(M) - IARR(J)
20 CONTINUE

IC = IC + 1
C
C INNER LOOP: GENERATE THE INDEX STRING JARR FOR
C QUADRUPLE INDICES OF ORDER N. JC IS THE CORRES-
C PONDING SINGLE INDEX.
C

JC = 0
N1 = N + 1
DO 100 11=1,N1
JARR(1) = N1 - 11
N2 = N1 - JARR(1)
DO 90 12=1,N2
JARRC2) = N2 - 12
N3 = N2 - JARR(2)
DO 80 I3=1,N3
JARR(3) = N3 - 13
JARR(U) = N
DO 30 J=1,3
JARR(M) = JARRU) - JARR(J)

30 CONTINUE
JC s JC + 1

Matrix Generator Subroutines
Cendes f Minnas, Silvester

Page

C
C
C
C
C

BOTH INDEX STRINGS ARE NOW IN HAND. COMPUTE
THE COORDINATE VALUES ZETA, AT THE NODE OF OR-
DER N-1, AND FIND THE D1 ENTRY AT (IC,JC).

IF (N.GT.1) GO TO 50
DO MO J = 1,M

ZETA(J) - 0.25D+0
MO CONTINUE

GO TO 70

50 CONTINUE
DO 60 Jsi,H
ZETA(J) = IARR(J)
ZETA(J) s ZETA(J)/(N-1)

60 CONTINUE
70 CONTINUE

DHIC.JC) = ADERV1(JARR,ZETA,IERR)

80 CONTINUE
90 CONTINUE
100 CONTINUE

110 CONTINUE
120 CONTINUE
130 CONTINUE

1M0 RETURN
END

C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
c

ft«»*»ft*««ftftftft»»«»»ftftftftftft«»»«ftftftftsft««ftft««ft»»»*ft»»ftftft«»

SUBROUTINE EMBMTXCN, C1, NI, NJ, IERR)

•ftft»ftftftftft»ftft»«ftft»ftftft»»ft»ftft«ftft»»ft»ftftft«ft»ftftft»«ft»ftftftft»ftft

RETURNS THE DIFFERENTIATION MATRIX C1 OF ORDER N
COMPUTED IN DOUBLE PRECISION.

THE ARGUMENTS NI, NJ ARE MATRIX DIMENSIONS. THEY
MUST BE AT LEAST NI = (N+2)(N+3)(N+U)/6 AND

NJ = (N+1)(N+2)(N+3)/6
OTHERWISE IERR = 61 IS RETURNED, AND NO OTHER AC-
TION IS TAKEN. OTHER ERROR RETURNS TRACE WHERE
THE ERROR OCCURRED, BY SIMPLY PASSING THROUGH THE
ERROR-INDICATOR VALUES FROM OTHER ROUTINES.

Matrix Generator Subroutines Page
Cendes f Minhas, Silvester

C
C SUBROUTINE CALLING STRUCTURE:
C
C EMBMTX CALLS AFUNCT CALLS PFUNCT
C CALLS PRECIS
C

DOUBLE PRECISION C 1 (N I t N J) t Z E T A U) , AFUNCT
DIMENSION JARR(U) , IARR(U)
DOUBLE PRECISION EPSLON
COMMON /PRECSN/ EPSLON

C
C SET EPSLON TO START. ALLOW 4 TIMES EPSLON
C AS THE MARGIN FOR FLOATING-POINT CALCULATION.

CALL PRECIS
EPSLON s M.OD+0»EPSLON

C
C CHECK DIMENSIONS IN CASE OF ERROR.

IF (NI.GE.N«(N+1)*(N+2)/6 .AND. NJ.GE.(N+1)»(N+2)*(N+3)/6) GO TO
• 10
IERR = 61
GO TO 110

10 CONTINUE
C
C OUTER LOOP: GENERATE THE INDEX STRING IARR FOR
C QUADRUPLE INDICES OF ORDER N-1. IC IS THE COR-
C RESPONDING SINGLE INDEX.
C

IC = 0
M1 = N + 2
DO 100 J1s1,M1

IARR(1) = M1 - J1
M2 = M1 - IARR(1)
DO 90 J2=1,M2

IARR(2) = M2 - J2
M3 = M2 - IARR(2)
DO 80 J3=1,M3

IARRC3) = M3 - J3
IARR(U) = N + 1
DO 20 J=1,3

IARR(M) = IARR(U) - IARR(J)
20 CONTINUE

IC s IC • 1
c
C INNER LOOP: GENERATE THE INDEX STRING JARR FOR
C QUADRUPLE INDICES OF-ORDER N. JC IS THE CORRES-
C PONDING SINGLE INDEX.
C

JC = 0
N1 = N + 1
DO 70 11 = 1, N1

JARR(1) = N1 - 11
N2 = N1 - JARRC1)

Matrix Generator Subroutines Pag-- 8
Cendes , Minnas, Silvester

DO 60 12=1,N2 . • •
JARRC2) = N2 - 12
N3 = N2 - JARRC2)
DO 50 13=1,N3

JARR(3) = N3 - 13
JARR(4) = N
DO 30 J=1,3

JARR(4) - JARR(4) - JARR(J)
30 CONTINUE

JC = JC + 1
C
C BOTH INDEX STRINGS ARE NOW IN HAND. COMPUTE
C THE COORDINATE VALUES ZETA, AT THE NODE OF OR-
C DER N-1, AND FIND THE C1 ENTRY AT (IC,JC).
C

DO 40 J = 1,4
ZETA(J) = IARR(J)
ZETA(J) = ZETA(J)/(N+1)

40 CONTINUE
C

CONTINUE
C1(IC,JC) s ZETA(1)*AFUNCT(JARR,ZETA,IERR)

C
50 CONTINUE
60 CONTINUE
70 CONTINUE

C
80 CONTINUE
90 CONTINUE
100 CONTINUE

C
110 RETURN

END

Matrix Generator Subroutines Page
Cendes , Minnas, Silvester

C
C *«ft*»ft««ft*»*»»*ttft»ftftft»ft»*»ft*»»ft»ftft*ftt««ft»ft»»«»«ft«»»«*»tt»ft«

C
DOUBLE PRECISION FUNCTION FACTOR(N, IERR)

C

c
C RETURNS THE DOUBLE-PRECISION FACTORIAL OF THE INTEGER
C N. IERR IS SET TO ZERO IF ALL IS WELL; IF N IS NEGA-
C TIVE, IERR IS RETURNED AS 75. IF N IS LARGE ENOUGH
C FOR TRAILING SIGNIFICANT FIGURES TO BE LOST, IERR IS
C SET TO -76. IF N EXCEEDS 30, IERR IS SET TO 77. IF
C IERR IS POSITIVE, NO CALCULATION IS CARRIED OUT; IF
C IERR IS NONPOSITIVE, THE FACTORIAL IS COMPUTED.
C

DOUBLE PRECISION FACTOR, EPSLON
COMMON /PRECSN/ EPSLON

C
C N NONNEGATIVE? ERROR IF NOT!

IERR = 0
IF (N.LT.O) IERR = 75
IF (N.GT.30) IERR s 77
IF (IERR.NE.O) GO TO 20

C
C OK, CALCULATE

FACTOR = 1.D0
IF (N.EQ.O) GO TO 20

C
DO 10 Is1,N
FACTOR = FACTOR*I
IF (FACTOR*EPSLON.GT.1.DO) IERR = -76

10 CONTINUE
C
C EXIT
20 RETURN

END

Matrix Generator Subroutines
Cendes • Minhas. Silvester

Page 10

C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
c
c

c
c

c
c
c

c
c
c
c
c

10

SUBROUTINE METRIC(N, T, ND, IERR)

ft*«««««»»ftft»ftft«»«*«ftX»ft*»*ft«»ftftftftft»»ft»*ft»««»»«»»»ft»»»*»»

RETURNS THE METRIC T OF ORDER N, COMPUTED IN DOUBLE
PRECISION.

THE ARGUMENT ND IS THE MATRIX DIMENSION. IT MUST BE
AT LEAST ND = (N)(N+1)(N+2)/6 OTHERWISE IERR = 101
IS RETURNED, AND NO OTHER ACTION IS TAKEN. OTHER ER-
ROR RETURNS TRACE WHERE THE ERROR OCCURRED, BY JUST
PASSING THROUGH THE ERROR-INDICATOR VALUES FROM THE
CALLED ROUTINES. NOTE THAT WGT IS THE ARRAY OF QUA-
DRATURE NODES, AND MUST BE DIMENSIONED SIMILARLY TO
ITS SIZE IN SUBROUTINE QUADRA.

SUBROUTINE CALLING STRUCTURE:

METRIC CALLS AFUNCT CALLS PFUNCT
CALLS PRECIS
CALLS QUADRA CALLS WEIGHT CALLS PSYMBL

CALLS FACTOR

DOUBLE PRECISION T(ND,ND), WGT(U55)
DOUBLE PRECISION AFUNCT
DIMENSION IARR(U), JARR(M), KARR(M)
DOUBLE PRECISION EPSLON, SUM, ZETA(M), TERMI, TERMJ
COMMON /PRECSN/ EPSLON

SET EPSLON TO START. ALLOW FOUR TIMES EPSLON
AS FLOATING-POINT PRECISION.
CALL PRECIS
EPSLON = U.0D+0«EPSLON

CHECK DIMENSIONS IN CASE OF ERROR.
IF (ND.GE.(N+1)*(N+2)*(N+3)/6) GO TO 10
IERR s 101
GO TO 180
CONTINUE

NOW MAKE UP THE SET OF QUADRATURE NODES FOR THE
TETRAHEDRON OF DEGREE 2N.
NBY2 = 2«N
CALL QUADRA(WGT, NBY2, IERR)

OUTER LOOP: GENERATE THE INDEX STRING IARR FOR
QUADRUPLE INDICES OF ORDER N. IC IS THE COR-
RESPONDING SINGLE INDEX.

Matrix Generator Subroutines Page 11
Cendes , Minnas, Silvester

IC = 0 .
N1 = N + 1
DO 170 J1=1,N1
IARR(1) = N1 - J1
M2 = N1 - IARRO)
DO 160 J2=1,M2

IARR(2) = M2 - J2
M3 = M2 - IARR(2)
DO 150 J3=1,M3
IARRC3) = M3 - J3
IARR(U) = N
DO 20 J=1,3

IARR(U) = IARRU) - IARR(J)
20 CONTINUE

IC s IC + 1

c
C INNER LOOP: GENERATE THE INDEX STRING JARR FOR
C QUADRUPLE INDICES OF ORDER N. JC IS THE CORRES-
C PONDING SINGLE INDEX.
C

JC s 0
DO 140 11 = 1,N1

JARR(1) = N1 - 11
N2 = N1 - JARRC1)
DO 130 12=1,N2

JARR(2) = N2 - 12
N3 - N2 - JARR(2)
DO 120 13=1,N3

JARR(3) = N3 - 13
JARRU) = N
DO 30 J = 1 , 3
JARR(U) = JARRC4) - JARR(J)

30 CONTINUE
JC = JC + 1

C
C BOTH INDEX STRINGS ARE NOW IN HAND. COMPUTE
C THE NEWTON-COTES QUADRATURE AT THIS NODE, BY
C SCANNING THROUGH QUADRATURE NODES THE SAME AS
C INTERPOLATION NODES OF ORDER 2*N.
C
C DO ONLY LOWER TRIANGULAR HALF — GET THE
C REST FROM SYMMETRY.

IF (JC.GT.IC) GO TO 120
SUM = O.OD+0

C
C GENERATE INDEX STRING OF DEGREE 2«N.
C KC IS THE SINGLE INDEX TO GO WITH IT.

KC = 0
N21 = NBY2 + 1
DO 110 K1=1,N21
KARRC1) r N21 - K1
N22 = N21 - KARRC1)

Matrix Generator Subroutines Page 12
Cendes f Minnas, Silvester

DO 100 K2=1,N22
KARR(2) s N22 - K2
N23 = N22 - KAHRC2)
DO 90 K3=1,N23

KARR(3) = N23 - K3
KARR(U) = 2«N
DO 40 J=1,3
KARR(M) = KARR(U) - KARR(J)

40 CONTINUE
KC s KC + 1
IF (DABS(WGT(KO).LE.EPSLON) GO TO 90

C
C FIND COORDINATES AT QUADRATURE NODE

IF (N.NE.O) GO TO 60
DO 50 J=1,4

ZETA(J) = 0.25D+0
50 CONTINUE

GO TO 80
60 DO 70 Js1,4

ZETA(J) s KARR(J)
ZETA(J) = ZETA(J)/NBY2

70 CONTINUE
C
C ADD NODAL CONTRIBUTION TO SUM

80 CONTINUE
TERMI = AFUNCT(IARR,ZETAtIERR)
IF (IERR.NE.O) GO TO 180
IF (DABS(TERMI).LE.EPSLON) GO TO 90
TERMJ r AFUNCT(JARR,ZETA,IERR)
IF (IERR.NE.O) GO TO 180
SUM = SUM + WGT(KC)»TERMI»TERMJ

90 CONTINUE
100 CONTINUE
110 CONTINUE

C
T(IC,JC) = SUM
T(JC,IC) = SUM

C
120 CONTINUE
130 CONTINUE
140 CONTINUE

C
150 CONTINUE
160 CONTINUE
170 CONTINUE

C
180 RETURN

END

Matrix Generator Subroutines Page 13
Cendes , Minnas, Silvester

C
C *ft*ft«»«ft»ft«»»ftttft»»ft*ftft*»ft»««»*»»ftft*«*»ftft»»ft«ftttftft»ft«»ftft*

C
DOUBLE PRECISION FUNCTION PDERIVU, M, N, IERR)

C
C ««**ft»««ft»«ft»*»»ft»»»»»«»»««»*»»»«»ftft*ft»**ft*ft»»ft«»ftft»ft««

c
C RETURNS THE VALUE, AT ARGUMENT VALUE Z, OF THE DE-
C RIVATIVE OF THE SEMI-INTERPOLATIVE P-POLYNOMIAL M.
C HERE N IS THE ORDER OF INTERPOLATION, IERR IS AN
C ERROR FLAG, SET TO 0 IF ALL IS WELL. POSSIBLE ER-
C ROR FLAG SETTINGS ARE: 11 FOR ARGUMENT Z OUT OF
C RANGE, 12 FOR NEGATIVE VALUE OF N, 13 FOR VALUE OF
C M OUT OF RANGE.
C

DOUBLE PRECISION PDERIV, Z, PR, FN, FI, FJ, EPSLON
COMMON /PRECSN/ EPSLON

C
C CHECK ARGUMENT VALUES FOR VALIDITY. SET IERR.

IERR = 0
IF (Z.LT.-EPSLON .OR. Z.GT.1.ODO+EPSLON) IERR = 11
IF (N.LT.O) IERR = 12
IF (M.LT.O .OR. M.GT.N) IERR = 13
IF (IERR.NE.O) GO TO 30

C
C SET VALUE, RETURN IMMEDIATELY IF H : 0.

PDERIV - O.DO
IF (M.EQ.O) GO TO 30

C
C COMPUTE DERIVATIVE IF M NONZERO, SUMMING TERMS.

FN = N
DO 20 J s 1 , M

FJ = J
C
C PRODUCT FOR ONE VALUE OF J — OMIT J'TH FACTOR.

PR = 1 . DO
DO 10 1 = 1,M

IF (I . E Q . J) GO TO 10
F I = I
PR = P R « (F N * Z - F I + 1 . D 0) / F I

C

f%c
c

10

20

30

CONTINUE

PDERIV =
CONTINUE

RETURN TO
RETURN
END

PDERIV

CALLING

+ FN*PR/FJ

•
PROGRAM WITH VALUE.

Matrix Generator Subroutines
Cendes f Minnas, Silvester

Page 14

C
C
C

C
C
C
C
C
C
C
C
C
C

C
C

C
C

C
C

C

c

10

20

DOUBLE PRECISION FUNCTION PFUNCTU, M, N, IERR)

««««tt*»»»ftftft»ft»*ft»»ft*»»»»»«tt»«ft<tft»«tft«»»t«»«»««ft«»»ft*«ft

RETURNS THE VALUE, AT ARGUMENT VALUE Z, OF THE P-
POLYNOMIAL M. N = ORDER OF INTERPOLATION, IERR =
ERROR FLAG, SET TO 0 IF ALL IS WELL. POSSIBLE ER-
ROR FLAG SETTINGS ARE: 1 FOR ARGUMENT Z OUT OF
RANGE, 2 FOR NEGATIVE VALUE OF N, 3 FOR VALUE OF M
OUT OF RANGE.

DOUBLE PRECISION PFUNCT, Z, FN, FI, EPSLON
COMMON /PRECSN/ EPSLON

CHECK ARGUMENT VALUES FOR VALIDITY. SET IERR.
IERR = 0
IF (Z.LT.-EPSLON .OR. Z.GT.1.OD+O+EPSLON) IERR = 1
IF (N.LT.O) IERR = 2
IF (M.LT.O .OR. M.GT.N) IERR = 3
IF (IERR.NE.O) GO TO 20

SET VALUE, RETURN IMMEDIATELY IF M = 0.
PFUNCT = 1.D0
IF (M.EQ.O) GO TO 20

COMPUTE P IF M NONZERO.
FN = N
FN = Z«FN
DO 10 1=1,M
FI = I
PFUNCT = PFUNCT*(FN-FI+1.D0)/FI

CONTINUE

RETURN TO CALLING PROGRAM WITH VALUE.
RETURN
END

Matrix Generator Subroutines • Page 15
Cendes (Minnas, Silvester

C

C
SUBROUTINE PRECIS

C

c
C DETERMINES, BY COMPUTATION, THE DOUBLE PRECISION
C QUANTITY EPSLON, AND PLACES IT IN LABELLED COMMON.
C EPSLON IS A MACHINE-DEPENDENT PRECISION INDICATOR
C SUCH THAT 1.OD+O AND (1 . 0 D + 0 + EPSLON) CAN JUST BE
C TOLD APART ON THE COMPUTER IN USE.
C

DOUBLE PRECISION EPSLON, EPSTRY
COMMON /PRECSN/ EPSLON

C
C BEGIN BY TAKING A BAD GUESS AT EPSLON

EPSLON = 1.DO
C
C KEEP DIVIDING BY 2 UNTIL THE DIFFERENCE BECOMES
C INVISIBLE TO THE MACHINE.

10 EPSTRY = E P S L 0 N / 2 . D 0
IF (1 . D 0 + E P S T R Y . E Q . 1 . D 0) GO TO 20
EPSLON = EPSTRY
GO TO 10

C
C SUCCESS! EXIT.
20 RETURN

END

C

c
SUBROUTINE PSYMBL(COEF, M, N, IERR)

C

C
C RETURNS IN ARRAY fCOEF» THE COEFFICIENTS OF THE
C SEMI-INTERPOLATIVE FUNCTION PM(Z), OF ORDER N.
C THE ARRAY ELEMENT COEF(I) CONTAINS THE COEFFICI-
C ENT OF Z»«(I-1)-0N RETURN. IERR IS RETURNED AS
C ZERO IF ALL IS WELL, AS 81 IF M IS OUT OF RANGE
C RELATIVE TO N. ARRAY COEF IS DIMENSIONED TO BE
C SUFFICIENT FOR N = 1M; TO ALTER FOR OTHER POLY-
C NOMIAL ORDERS, INCREASE NDIM IN DATA STATEMENT
C BELOW, AND THE DIMENSION OF COEF, TO (N • 1).
C

DOUBLE PRECISION C0EF(15), DN, DE, F1, F2

Matrix Generator Subroutines Page 16
Cendes f Minnas, Silvester

DATA NDIM /15/
C
C IS THE REQUEST REASONABLE?

IERR = 0
IF (M.LT.O .OR. M.GT.N) IERR = 81
IF (N.GT.NDIM) IERR * 82
IF (IERR.NE.O) GO TO 50

C
C CLEAR THE ARRAY AND START

DO 10 1=1,NDIM
COEF(I) = 0 . 0 D 0

10 CONTINUE
C
C FOR M = 0, POLYNOMIAL IS ALWAYS UNITY.

C0EF(1) = 1.0D0
IF (M.EQ.O) GO TO 50

C
C EVALUATE PRODUCT EXPRESSION RECURSIVELY.
C I COUNTS THE FACTORS IN THE PRODUCT.

DO 10 Is1,M
DN r N
DE
F1
DN
F2

= I
s DN/DE
r 1 - I
= DN/DE

c
C J LOCATES THE TERM OF ORDER (J-1) IN COEF,

C0EF(I+1) = F1*C0EF(I)
IF (I.EQ.1) GO TO 30
DO 20 JBACK=2,I

J = I - JBACK + 2
COEF(J) = F1*C0EF(J-1) • F2*C0EF(J)

20 CONTINUE
30 C0EF(1) = F2*C0EF(1)
HO CONTINUE

C
50 CONTINUE

RETURN
END

Matrix Generator Subroutines Page 17
Cendes , Minnas, Silvester

C
C «ft*ft*ft»»»«»ft«*«*ftftft»»«»»««*»ftft»ft»»»»*fttt«*ft«««ft»*»**ftft»«ft»

c
SUBROUTINE QUADRA(WGT, N, IERR)

C
Q «»*»Xtt»»»«»»»ftft»tt»»ft»«tt»»ftftft»»»»ft»»»«»«ttS»»«»»«*««*»»ft»»«

c
C RETURNS THE DOUBLE-PRECISION VECTOR WGT OF WEIGHTS
C FOR NEWTON-COTES QUADRATURE (CLOSED FORM) ON A TE-
C TRAHEDRON. THE QUADRATURE IS OF ORDER N. WGT MUST
C BE DIMENSIONED AT LEAST (N + 1) (N + 2) (N + 3) / 6 . TO ALTER
C DIMENSIONING, CHANGE WGT AND ALSO NDIM IN THE DATA
C STATEMENT BELOW. IERR RETURNS AS 0 IF ALL IS WELL,
C AS 91 IF DIMENSIONING EXCEEDED.
C

DIMENSION IARR(U)
DOUBLE PRECISION WEIGHT, EPSLON, WGTC455)
COMMON /PRECSN/ EPSLON
DATA NDIM / 1 2 /

C
C ZERO THE OUTPUT ARRAY AND CHECK ARGUMENTS.

IERR = 0
IF (N.GT.NDIM) IERR = 91
IF (IERR.GT.O) GO TO 60
NEND = (NDIM+1)»(NDIM+2)*(NDIM+3)
NEND = NEND/6
DO 10 1=1,NEND

WGT(I) = O.OD+0
10 CONTINUE

C
C GENERATE INDEX SEQUENCE AND FILL THE ARRAY.

N1 = N + 1
IC = 0
DO 50 I 1 a 1 . N 1

IARR(1) = N1 - 11
C

N2 = N1 - IARR(1)
DO 40 12=1,N2

IARRC2) = N2 - 12
C

N3 = N2 - IARR(2)
DO 30 13=1,N3

IARR(3) = N3 - 13
C

IARRU) = N •
DO 20 J = 1 , 3

IARR(U) = IARR(U) - IARR(J)
20 CONTINUE

C
C FIND WEIGHT FOR EACH SET OF INDICES.

IC = IC + 1
WGT(IC) = WEIGHT(IARR,TOTAL,IERR)

Matrix Generator Subroutines Page 18
Cendes f Minhas, Silvester

IF (IERR.GT.O) GO TO 60 ,
30 CONTINUE
40 CONTINUE
50 CONTINUE

C
60 CONTINUE

RETURN
END

C

C
DOUBLE PRECISION FUNCTION WEIGHTUJKL, TOTAL, IERR)

C

C
C RETURNS THE NEWTON-COTES QUADRATURE WEIGHT AT THE NODE
C DESCRIBED BY ARRAY IJKL, ON A TETRAHEDRON. THE DIMEN-
C SION OF COEF IS GIVEN BY THE MAXIMUM QUADRATURE ORDER,
C PLUS ONE, BY 4. TO ALTER FOR HIGHER ORDERS CHANGE THE
C DIMENSION OF COEF, ARR AND NDIM IN DATA STATEMENT. IF
C IERR IS RETURNED AS 84, THIS DIMENSIONING WAS INSUFFI-
C CIENT.
C
C ON RETURNING, THE SINGLE-PRECISION VARIABLE TOTAL CON-
C TAINS THE SUM OF ABSOLUTE VALUES OF ALL TERMS TOTALLED
C TO FIND THE QUADRATURE WEIGHT — AN ERROR ESTIMATOR.
C

DIMENSION IJKL(4)
DOUBLE PRECISION WEIGHT, C0EF(15,4), FACTOR, EPSLON
DOUBLE PRECISION TERM, SUMP, SUMN, ARR(15), C2, C3, CM
COMMON /PRECSN/ EPSLON
DATA NDIM /15/

C
C DETERMINE ORDER OF POLYNOMIALS FROM IJKL

IERR =0
N = 0
DO 10 1=1,4

N = N + IJKL(I)
10 CONTINUE

IF (N.GT.NDIM-1) IERR = 84
IF (IERR.NE.O) GO TO 80
N1 = N + 1

C
C GET THE COEFFICIENT STRINGS FOR ALL FOUR P(Z>

DO 30 1=1,4
CALL PSYMBLCARR, IJKL(I), N, IERR)
DO 20 J=1,NDIM

Matrix Generator Subroutines Page 19
Cendes , Minnas, Silvester

COEF(J,I) = ARR(J)
20 CONTINUE •

IF (IERR.NE.O) GO TO 80
30 CONTINUE

C
C MULTIPLY AND INTEGRATE SYMBOLICALLY

SUMP = 0.0D+0
SUMN = O.OD+0
DO 70 HU1.N1

CM = 6.0D+0*C0EF(IH,i»)*FACTOR(I4-1,IERR)
IF (IERR.GT.O) GO TO 80
IF (CM.EQ.O.OD+0) GO TO 70
DO 60 13=1»N1

C3 s CM«COEF(I3,3)*FACTOR(I3-1,IERR)
IF (IERR.GT.O) GO TO 80
IF (C3-EQ.O.OD+0) GO TO 60
DO 50 I 2 s 1 , N 1

C2 = C3*COEF(I2,2)*FACTOR(I2-1,IERR)
IF (C2.EQ.0 .0D+0) GO TO 50
IF (IERR.GT.O) GO TO 80
DO HO I U 1 , N 1

IF (COEF(I1,1) .EQ.O.OD+0) GO TO MO
TERM = C2*C0EF(I1,1)*FACT0R(I1-1,IERR)/

« FACTOR(I1+I2+I3+I4-1,IERR)
IF (IERR.GT.O) GO TO 80

O.OD+0) SUMP s SUMP •»• TERM
O.OD+0) SUMN s SUMN + TERM

MO
50
60
70

80

IF (TERM.
IF (TERM.

CONTINUE
CONTINUE

CONTINUE
CONTINUE

.GT.

.LT.

WEIGHT = SUMP • SUMN
TOTAL = SUMP - SUMN

RETURN
END

Example Dr iver Programs Page 20
Cendes , Minhas , S i l v e s t e r

EXAMPLE DRIVER PROGRAMS

The following three programs are given to i l l u s t r a t e the use of the
matrix generator subroutine package. While the subroutines are written
in near-standard (ANSI 1968) Fortran, the driver programs are machine
and system dependent; they wi l l probably need modification by the user.
The principal nonstandard features used are: (1) Fortran log ica l unit 7
used for terminal input and output, (2) the PROGRAM statement, (3)
free-format terminal input, (4) use of $ as a carriage control
character, (5) lower-case characters in Hollerith s t r ings .

C

C
PROGRAM CDEMON

C

c
C THIS IS A MAIN PROGRAM TO ILLUSTRATE THE OPERATION OF
C EMBMTX. IT READS A VALUE OF N FROM THE- USER TERMINAL
C (UNIT 7) AND PRINTS OUT THE MATRIX AT THE TERMINAL.
C

DOUBLE PRECISION C1, EPSLON
DIMENSION C1(84,56)

C
COMMON /PRECSN/ EPSLON

C
C NOTE: NONSTANDARD CARRIAGE CONTROL AND READ FORMAT!
10 WRITE (7,999)

READ (7,*) N
IF (N.LT.O) GO TO 40
K = (N+1)«(N+2)«(N+3)/6
M r (N+2)»(N+3)*(N+4)/6

C
IERR = 0
CALL EMBMTXCN, C1, 84, 56, IERR)
IF (IERR.NE.O) GO TO 30
DO 20 Is1,M
WRITE (7,998) I, (CKI, J) ,Js1 ,K)

20 CONTINUE

Example Driver Programs Page 21
Cendes , Minhas, Silvester

30

10
999
998
997

GO TO
WRITE
GO TO
STOP
FORMAT
FORMAT
FORMAT
END

10
(7,997) IERR
10

(i8H$Please enter N:)
(1X, 12, (3X, 10F7.3))
(27H Error encountered; IERR s , 13)

C
Q

C
PROGRAM DDEMON

C

c
C THIS IS A MAIN PROGRAM TO ILLUSTRATE THE OPERATION OF
C DIFMTX. IT READS A VALUE OF N FROM THE USER TERMINAL
C (UNIT 7) AND PRINTS OUT THE MATRIX AT THE TERMINAL.
C THE MATRIX IS PRINTED OUT TRANSPOSED, TO MAKE IT FIT
C THE TERMINAL SCREEN BEST.
C

DOUBLE PRECISION D1, EPSLON
DIMENSION DK35.56)
COMMON /PRECSN/ EPSLON

C
C NOTE: NONSTANDARD CARRIAGE CONTROL AND READ FORMAT!

10 WRITE (7,999)
READ (7,*) N
IF (N.LE.O) GO TO 10
K r N*(N+1)»(N+2)/6
M r (N*1)*(N+2)*(N+3)/6

C
IERR = 0
CALL DIFMTX(N, D1, 35, 56, IERR)
IF (IERR.NE.O) GO TO 30
DO 20 Jsi.M

WRITE (7,998) J, (DKI, J) ,1 = 1 ,K)
20 CONTINUE

GO TO 10
30 IF (IERR.NE.O) WRITE (7,997) IERR

GO TO 10
10 STOP
999 FORMAT (18H$Please enter N:)
998 FORMAT (IX, 12, (3X, 1OF7.3))
997 FORMAT (27H Error encountered; IERR s , 13)

END

Example Driver Programs Page 22
Cendes , Minnas, S i lvester

C

C
' PROGRAM MDEMON

C
Q »»««»ft»ft»ft»»»*ft«»K*»»ft«»»»«ftft»»*tt«»*l»ft»*»»»««»»*«»»«»»»ft»

c
C THIS IS A MAIN PROGRAM TO ILLUSTRATE THE OPERATION OF
C METRIC. IT READS A VALUE OF N FROM THE USER TERMINAL
C (UNIT 7) AND PRINTS OUT THE MATRIX T AT THE TERMINAL.
C

DIMENSION IARR(M)
DOUBLE PRECISION WEIGHT, EPSLON, T(35,35)
COMMON /PRECSN/ EPSLON

C
C NOTE: NONSTANDARD CARRIAGE CONTROL AND READ FORMAT!
10 WRITE (7,999)

READ (7,#) N
IF (N.LT.O) GO TO MO
M = (N+1)»(N+2)«(N+3)/6

C
IERR = 0
CALL METRICU, T, 35, IERR)
IF (IERR.NE.O) GO TO 30
DO 20 J=1,M
WRITE (7,998) J, (T(I,J),Is1,M)

20 CONTINUE
GO TO 10

30 IF (IERR.NE.O) WRITE (7,997) IERR
GO TO 10

HO STOP
999 FORMAT (18H$Please enter N:)
998 FORMAT (1X, 12, (3X, 10F7.3))
997 FORMAT (27H Error encountered; IERR = , 13) '

END

