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ABSTRACT

Methods are described for forming element matrices for a
wide variety of operators on tetrahedral finite elements, in a
manner similar to that previously employed for line segments and
triangles. This technique models the differentiation and
product-embedding operators as rectangular matrices, and produces
finite element matrices by replacing all required analytic
operations by their finite matrix analogues. The method s
ilfflustrated by deriving the conventional matrix representation
for Laplace*s equation. Brief computer programs are given, which
generate universal finite element matrices for use in various
applications.

1. Introduction.

The finite element analyst has traditionally had two choices
for evaluating the matrix elements required for any given finite
element model. In one abproach, advocated by Zienkiewicz [1],
Irons, and others, the matrix elements are evaluated numerically

as and when required, using quadrature formulae to compute the
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necessary integrals. The second approach, first employed by
Silvester [2,3]] is to evaluate the matrix elements analytically
in terms of parametric factors for a representative element. The
precomputed matrix values are then combined in weighted sums to

form the overall finite element matrix.

Both of the accepted procedures have advantages and
disadvantages. The numerical integration apbroach is simple, and
easy to implement; but it gives rise to high computing costs and
sometimes to poor accuracy. Analytic integration is much.lless
costly, but requires precomputing and storing many different
numeric matrices for the various differential operators and
energy functionals encountered in applications, and their

associated functionals.

In recent years a third approach, variously c‘alled an
"elementary matrix” or "universal matrix" approach, has been
developed [4-8]* In this approach, exact numeric representations
are developed for certain .elementary operators, such as the
differentiation operator. Finite element matrices are then
generated in specific cases as parametrized combinations of the
universal matrices. This third approach shares the precision
advantages of the precomputed 'matrix technique, since all
necessary differentiatio.ns and ' integrations are performed

analytically, not numerically. Yet it. shares much of the

numerical integration approach, because the elementary matrices
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are few and are combined in smple ways. Na surprisingly, the
computing time demands of the new method lie between those of the

two classical techniques.

In the majority of applications, it is l;ound that at most
four eementary matrices suffice to modd problems involving
arbitrary linear differential operators. For practical use, one
has the choice of either tabulating these matrices, or of giving
programs capable of generating than as needed. The usual course
in the past has been to tabulate the matrices, preferably in the
fom of integer quotients; for only in that fom is full
precision preserved. In the present work, the alternative
approach is taken: short computer progréms are presented which
generate the eementary matrices in floating-point form. The
disadvantage of finite machine-dependent precision is avoided by
employing the same computer, or a computer of at least the same
precision, for both the e€eementary matrix generation ad

subsequent finite eement problem solving.

2. Interpolation Polynomials on Tetrahedra

Inter polation polynomials of the closed -Newton-Cotes type
~are commonly used on triangular and tetrahedral elements in field

analysis. To set up these polynomials in a convenient form, let
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denote one of the homoganeous (volume) coordinates [9] on a
tetrahedron; the remaining three are defined similarly by cyclic
interchange of subscripts. Silvester [2] has defined a family of
semi-inter polative (one-sidedly interpolative) polynomials by
meZ):ft Nz-i+1 >y
=1 *- (2)
-1 , —-o0

These are serai-interpolative "because they possess =zeros at

zs (i-D/N, for is 1, ..., m. They are very convenient for
defining the set of Lagrangian interpolation polynomials on a
tetrahedron, with interpolation nodes of the closed Newton-Cotes
pattern. The latter are given by

qijkl = R(E) Pj(g,_) pk(§3) P._(§4.) (33
subject to the requirerrent' that i + ) + kt+ +1 s Ny where N is the
degree of the desired polynomal [10]. On a tetrahedron there

are MN = (N+1)(-N+2)(N+3)/6* such nodes and corfespondi ng
pol ynom al s. The quadruple index ijkl identifies the polynom al
associated with each int efpol ation node clearly. However, in
most applications it is preferable to wuse single indices to
identify the polynom al s, so as to avoid clutteri ng expressions
with long subscript strings. In principle, the quadruple indices

may be mapped onto single indices in.any consistent fashion. In
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practice, the mapping is usually accomplished by regarding each
quadruple index as a four-digit integer, and taking . these in

descendir;g order.

3. The Differentiation Operator

The directional derivative of a polynomial finite element
approximation is best expressed in a tetrahedral element by
writing the derivative in terms of interpolation polynomials.
Consider for example'a potential function wu, given Iin a

tetrahedron as a polynomial of degree N in the space coordinates,

M(N) o)
u = E W & (O,y,2) (4
=31

and suppose that its directional .derivative is desired in some
direction, say s. If the* interpolation polynomials used for
approximating are of degree N, this derivative is clearly a

polynomial of degree at most N-1. Thus, one may write

M(N) 4 )
DU _ , E : X '~ OF;
55 >, W 3%, a5 )

where the chain rule of differentiation has been used to move the
operation of differentiation from the space direction s to the
tetrahedron coordinates* But since the derivative is a
polynomial of degree N-1, it may be expressed exactly in terms of

the interpolation polynomials of degree N-1:
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M(N-4)
bl.A. — N, 1‘ <
>s d, %, °
S w=4
The coefficients in eqn. (6) are nost easily determned by

equating right-hand sides of eqns. (5) and (6), and observing
that the summation of eqn. (6) collapses to a single term if
evaluated at an interpblationvnode, say node k, of the famly of
i nterpol ation poLynoniaIs of degree N-1:
MmN
d, = i u, i o3; E%&*-(m] | (1)
3 . os S S

iz} 321 3 F:

Let four purely nuneric matrices [)g) be defined by

+) )
D(-’ = X (8)
ki % N
3 &
These matrices are pure nunerics, independent of the size and
shape of the tetrahedron. In terns of these matrices, eqn. (7)
may be witten in the form
2‘ d
_ ds .
3*1
It should be observed that although there are in principle four
~distinct coefficient matrices D, the very nature of honpgeneous
coordinates dictates that they nust be row and col um

pernut ati ons of each other. Thus, tabulation and cal cul ati on of

only one matrix suffices*

The directional differentiation operator may be regarded as
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a mapping between the space spanned by the interpolation
polynomials of degree N, and the space spanned by those of degree
N-1. These spaces are of dimensionality M(N) = (N+1)(N+2)(N+3)/6
and  M(N=-1) = (N)(N+1)(N+2)/6, respectively. One possible
fepresentation of the finite directional differentiation operator
is therefore a rectangular matrix with M(N) columns but only
M(N=1) rows. This represehtation is advantageous in many
applications because of its compactness, as well as because the
matrices are guaranteed to have full row rank. However, if
directional derivative values are desired, this representation
suffers from the shortcoming that the values are obtained on an
interpolation node set different from that used for the function
values. In this circumstance, it is more convenient to express
the derivatives in terms of polynomials of degree N. Thus, one

may replace eqn. (6) by
M(v)

DU 3 oV
o\t _ Z d,_x (10)

This equation is exact, since the directional derivative 1is a
polynomial of degree N-1, and may therefore be expressed in terms

of the polynomials of degree N. In this case, the equation

corresponding to (9) becomes
- =225 | (11)
d = Z; .S 5 «
l’

where
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R o™ -
D = == (=) (12)
ki 2)‘5_5 R

the derivatives being evaluated at the interpolation nodes of the

set of degree N, not N 1.

Again, the four nuneric matrices D are row and colum
pernmutations of each other, so that only one needs to be
calculated and stored. However, this natrix Is .square, having
MN rows and colums. G course, it has a row nullspace of

dimensionality MN) - MN-1), and rank M N-1).

3. The Metric Mtrices

A nmatrix frequently required in finite elenent analysis is .
the netric of the interpolation polynomals in ea(':h el ement .
This matrix is occasionally also termed the "mass matrix* by
anal ysts whose background 1is rooted in eI_a‘st’icity t heory or
structural analysis. Qdven the set of interpolation polynomals
of degree N the metric T is defined .as the matri x whose el enents
are gi ven by

AxA M L*A

WY, .w
TV =\ *i « 4% (13
Here and in the follow n:q, it 1s assuned that the tetrahedral

element has unit vol ume; for any other elenment, T nust be

multiplied by the el ement volume. There wll of course be a

Tt e memam g Grpege DR e ks SpR mm e i s = d oo
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distinct nmetric, of order MN), for each order of tetrahedra

el ement ; orders wi || be di sti ngui shed by superscripts
parentheses,. as above. Metrics for the first few orders of
tetrahedra have been published [3] in the form of integer

quotients, so that the first few are known exactly.

An interesting point to observe is that the sequence of
metrics T for the wvarious orders of tetrahedron is not
i ndependent. Since the interpblation polynomals (3) of the
various orders are all conplete in the sense of Dunne [11l], the

famly of polynomals of any given order nust enbed al |

pol ynomal famlies of all [lower orders. Consequently, the
metric of any given order nust also enbed, in some sense, the
metrics of all lower orders. Just exactly how, wll becone
evident on brief examnation of .the nmanner in which t he

enbeddi ngs of the polynom als thenselves can be represented.

4. Enbeddi ng Operators

Suppose that a certain polynom al p has an exact
representation in terns of the interpolation polynom als of

degree N, say
tM(w) .

e e

=1
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Then it nust also have an exact representation.in terns of the

i nterpol ation polynom als of degree N+1,

M(ned) (NAL) (N ~L)

— (15)
P Z Y; !

a~1
and it is interesting to enquire how the coefficients in egn.
(15) can be derived fromthose in eqn. (1U). To determ ne the

necessary mapping, it suffices to equate the right sides of these

two equati ons,

M (N+1) M)
2 M) ) ) &/(N\ (169
P: 5 = (. P &
Jj=1 =1

and evaluate both sides at interpolation node k of order N+1L
Since the polynomials are interpolative, the left-hand summation

collapses, leaving only a single surviving term:

(N-+4) ey w) (N) (17)
Pe = 2 eV {jee |
=1 p‘

Let a rectangular matrix, with M N+1) rows and M N) colums, be

defined by

(n+1) (18)

L]
t’k
The mapping cf coefficient vectors between eqns. (1M and (15)

is then clearly given, in matrix form by.

P = B (19)
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The matrix B may be ternmed a finite enbedding operator, or an
enbedding matrix, for it enbeds the coefficients related to

degree N in the next higher-order set.

\Wile the matrix B could easily be conputed and tabulated
for wvarious orders, it may be useful to consider another matri x,
which is nore general than B, but allows B to be derived easily.
Consi der again the polynomal of eqn. (14); but this time let it
be nultipliéd by sone quantity which varies linearly wth one of

the tetrahedron coordi nates. This tine,
tA(N)

() W)
PE. = 2 P Se o (20)
=
is of interest, instead of eqn. (14). Equating and evaluating

it at node k of the next higher order node set, as above, one is

quickly led to define a matrix C by
e cwl] | | .
C'ki = [Ttm;_ P(u+,1) : (21)

-

Once again there exist four matrices C, one corresponding to
wei ghti ng ﬁ with respect to each tetrahedron coordinate; the
appropriate coordinate is identified by the bracketed subscript.

The four matrices C are again row and colum pernmutations of each

other, so that there is no need to conpute nmere than one of them

Since the tetrahedron coordinates nmust add to exactly wunity
in any tetrahedron, the matrix B nust be given by the sum of the

-
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matrices C:
B, = o o
. — . (22)
k- 2=L .

The matrices C provide a more general product embedding operation
than does the matrix B. Yet the cost of computing them is
virtually the same. = Hence the computer programs given in the

Appendix calculate and tabulate the matrices C; rather than B.

5. Metrics and Projectors

An interesting special case of embeddings arises when the
polynomial p of eqn. (14) is in fact one cf the interpolation
polynomials of degree N. In this case the right-hand coefficient

vector in egn. (19) becomes one column of the unit matrix, and

(N<4)

(23)
AWoo- oz, Bl

This property is very useful in evaluating projection matrices.
Csendes [1] shows that the best approximation to a polynomial of
degree N in a subspace spanned by polynomials of degree N-1 is
obta_ined'by application of the projector

ALY r (/N-l)-'-i . (N}

pv-" = )_T° ] A can)

where

B
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() _ q(N-") N .(u) aa (25)
A . < 3 ‘

pA

These matrices are easily evaluated. Substituting eqn. (19)

into (25), there imediately results

) L )
AT = [ B T (26)

where the prine denotes transposition. A separate evaluation of
eqn. (25) from first principles, by actual integration, is never

required. In a conparable fashion, one easily derives

T o [geen]’ T gty

(27)

This equation indicates that, at least in principle, there is no
need for prograns to calculate nmetrics of all orders. If the
metric of the highest order elenent to be enployed is known, then
the metrics of all lower orders can be derivable by successive
applications of the enbedding operator. The projector Qf eqgn.

(2M may thus be witten in the alternative form
(N A\ ) (n-1)]"1 N4 Cw)
P ) [(B(u 1\) T ¢ 1)] QW T (23)

‘It mght be observed in passing that the two forns of
differentiation operators, rectangular and square, are also

- related- to each other by an enbeddi ng operation:

=) - C
D( ) - B(N A) D (29)

Thus there is no fundamental nesed to possess both types of

differentiation matrices, although it may at times be convenient
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to do so.

6. The Dirichlet Mutrix

The Dirichlet matrix is very commonly encountered in finite
el enent analysis of potential field problene, and wll Dbe
enployed to illustrate the wuse of the wuniversal - rmatrices
descri bed -here* On a tetrahedral element of unit volune, the
Dirichlet matrix is given by

( (™ )
SJ - )VO‘;,)' VOL_;(N AL (30)

Witten out in detail, this equation reads

thx-voc 49 = L — 2

bz vz O0(; O
YN bs" S‘o‘s o5, asL

The cruciel quantity is obV|oust the integrand on the right-hand

1

side; the termin parentheses is sinply a geonetric constant that
expresses the relationship of the four honbgeneous coordinate
directions to the three Cartesian axes. Using the relationships

above, homevef, this integrand is readily witten as
N*) (N

K OX. (-t (32)
S‘?:..'OS,, . 2; fb ] T D..

in terns of the rectangular differentiation matrices; or as an

anal ogous expression in ternms of the square differentiation

R ———




Uni versal Tetrahedron Matrices Page 17
CGendes **, M nhas, Silvester '

matri ces.

7. Concl usi ons

To derive finite elenent matrices for tetrahedral el ement s,
using the conventional tetrahedron interpolation polynomals, it
suffices to possess the following primtive matrices: (1) a
finite differentiation oper at or, (2) the netric of the
i nterpolation polynomal basis, (3) an enbedding operator that

.maps lowcrder polynomals to a representation one order higher
(4) a projection operator that projects polynoniais onto a space
one order |ower. The differentiation operator may be expressed
in two different ways, each of which has advantages in certain

applfcations.

The projection operators, and the tw forns of t he
differentiation operator, mmy be derived easily from the first
t hree priﬁitive matri ces above by sinple matrix rmanipul ations.
Furt her, and  nere i mportantly, finite el ement mat ri x
representations of many |inear operators may be constructed from
three primtives: (1) the rectangular differentiation matrix of
order N, (2) the nmetric of order N, and (3) the enbeddi ng between
orders N1 and N  Conputation of these matrices is relatively
strai ghtforward, and prograns for doing so are given in the

Appendi Xx.
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9¢  Appendi X

The three elementary matrices described above are readily
generated using the compute programs of this Appendix. The
“programs are written in near-standard Fortran, and are configured
as input-output free subroutines. No file handling and no
character handling is involved, so that there should be little

trouble in compiling and running the programs at any computer

installation.

There are three subroutines to generate the three matrices:
DIRVTX, BvBMTX and METRIC. These in turn call other routines.

The second-level routines are:

ADERV1 returns the value of the directional derivative (in the

direction toward vertex no. 1) for a specified
interpolation function at a specified point in a
tetrahedron;

ARNCT computes the functional value of a specified tetrahedron

inter polation function at a specified place in the

tetrahedron, see eqgn. (3) above;

FACICR is the factorial function, in double precision, for

integer arguments not exceeding 30.

FDERIV returns the first derivative of any one of the

semi-interpolative polynomials of egn. (2) above

W e mm— = L= R
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FRUNCT returns values of the semi-interpolative polynomials of

eqn. (2);

PRECIS finds the machine precision, i.e. the smallest numba s

such that (1 + s) is distinguishable from 1.

FSYMBL creates an array of coefficients of the various powers of
the argument, thus giving an analytic representation of the

semi-inter polative polynomials of egn. (2);

QUCRA generates the set of closed Newton-Cotes qguadrature

weight? for a tetrahedron, of degree 2N; by calling WHGHT,

WHGHT computes the quadrature weight at a specified quadrature

node.

The various routines are designed to be reasonably
self-supporting, in the sense that they include a broad variety
of error and consistency checks. All floating-point wak is done
in double precision — which of course will vary considerably
from machine to machine and installation to installation. Ore
measure of the precision achievable is the so-called "machine
epsilon”, the smallest numbe s such that (1 - 9 is
distinguishable from unity Withih the actual operating precision
of the machine. This numbea is fixed for any given installation
by the hardware and system software. However, users do not often
know the value of this numbe; the present program Sljite

therefore computes an approximation to it by a sequence of binary
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chops. The accuracy obtained is fully sufficient for present
purposes. A need to know this number arises In several
subroutines, where floating-point equality comparisons must be

made.

The methods employed for finding the matrices D and C, which
do not involve volume integration, are straightforward; the
programs amount in essence to no more than computer
implementations bf eqns. (8) and (21). The method U3ed for the
metric differs slightly from those described in earlier
literature. Since the integrand in eqgn. (13) is exactly
polynomial, of degree not higher than 2N, it is known that it can

be integrated exactly by a Newton-Cotes quadrature formula of

order 2N [10]. Computation of T therefore proceeds in two
stages.' First, the quadrature weights for a closed Newton-Cotes
formula of order 2N are calculated. Secondly, T is computed

exactly as it is defined in eqn. (13), save of course that the
integration is replaced by a numerical quadrature. It must be
emphasized that no numerical approximation is involved. here; the
guadrature formula“is specifically generated of high enough order
to render it exact, except for roundoff error. The quadrature
formula generating programs are designed to be essentially
independent, so that users Wishing to make use of -these

guadrature weights elsewhere may find it convenient to do so.

Program robustness and precision have been considered

paramount in the design of the attached subroutines. However,

o e A e o mm o ey s e e mmm - e = o - e
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little attention has been paid to nenory requirenents and to
conputi ng tine,- on the supposition that the elenentary matrices

will be generated ab initio only very occasionally.

O the three matrices, T is the nbst sensitive to numeric
stability. Using a 32-bit machine (64 bits in double precision),
with a machine epsilon of 1.Me-17, it has been estimted that
loss of precision in conputation wll not exceed 3 deci nal
figures for sixth-order tetrahedra, i.e, that the results should
contain mantissas good to at least 13 - 14 deci mal figures.
Accuracy deteriorates for higher elenent orders. But it is
rat her doubtful that seventh or higher order tetrahedra will find
extensive application, since elenments with 120 or nore nodes are

conputationally unw el dy!

Computing tinmes rise very rapidly wth elenent order,
particularly since the prograns do not very seriously attenpt to
take advantage of subscript symetries or  other possi bl e
econom es. Should conputing tines be a factor of inportance, the
running times of the T matrix routines in particular can probably
be reduced by a factor of ten, or nore, by clever exploitation of
the many symmetries possessed by this matrix. Time requirenents
were not considered a major issue in program design, because it
is likely that the matrix generation progranms will be used only a
very few times at any one computer installation. The progranms as
gi ven here were devel oped and_verified on a PDP-11/03 cohputer

with the RT-11 operating system On this ‘small machine,
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computation of the matrices for first through fourth orders takes
about two hours; of course, only a few minutes are required on a

large main-frame machine.

To illustrate the use of this subroutine package, three
small driver programs are appended to the subroutines. These
read the desired value N of matrix order, call the relevant
subroutines, and write out the resulting matrices to the user
terminal. While the subroutine package is written to be
machine-independent, the driver programs will need modification
at evey installation, because input-output érrangements
invariably differ. However, since these programs only contain
about a dozen active Fortran lines each, users should experience
no difficulty in adapting them, or providing locally acceptable

equivalents.
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C .
C «ftftftftaftftoftXttannft*»ftftftoaftft»*ftawmn»ftft e ««ft»»ft* ««® «*»»»»a«»
C

DOBLE PREC SI ON FUNCTI ON ADERVKUKL, ZETA, |ERR
C
C «ftaenftfte»ft*ftonamvaftaanft»ftft«tt «ueraanftacftr»aftaftftftftonftftor«ftr»»ft»
C
C RETURNS DERI VATI VE OF THE | NTERPOLATI ON FUNCTI ON OF
C ORDER N, ALPHA(1,J,K, L), AT THE INTERROR PONT IN A
C A TETRAHEDRON G VEN BY THE ARRAY ZETA. IERR IS AN
C ERROR - | NDI CATOR WHI CH CARRI ES THROUGH THE VALUE OF
C | ERR AS SET BY ' PFUNCT' OR "PDERI V. I F ANY ONE OF
C THE I NTEGERS IN IJKL IS NEGATIVE AN ERRCR EXIT WTH
C ARGUVENT | ERR SET TO 31, 32, 33, 3» RESPECTI VELY,
C | S EFFECTED. IERR = 35 SIGNI FI ES THAT THE FOUR CO
C ORDI NATES ZETA DID NOT ADD UP TO UNI TY.
C

o0 00

00

00

10

20

DOUBLE PRECI S| ON ADERV1, PFUNCT, PDERIV
DOUBLE PRECI S| ON ZETA, EPSLON, Z
DI MENSI ON ZETAU) , | JKL(U)

‘EPSLON |I'S A MACHI NE- DEPENDENT PRECI SI ON | NDI CATOR -

COMWON / PRECSN  EPSLON

| S THE ARGUMENT SET ACCEPTABLE? EXIT IF NOT.
|ERR = 0 .
IE (1JKL(D.LT.O) IERR = 31

IE (1JKL(2).LT.O IERR = 32

|E (1JKL(3).LT.O IERR = 33

IF (1JKL(U).LT.O) IERR = 3»

ADERV1 = -1.0D0 :

ADERV1 = ADERVL - ZETA(I1)

CONTI NUE

| F (ADERV1. GT. EPSLON .COR ADERVI.LT.-EPSLON) |ERR = 35
|E (IERR NE.O) GO TO MO

GET STARTED. SET ORDER N.
N=20 '

DO 20 11-=1,4

N =N+ IJKL(IT)
CONTI NUE

COVPUTE ALPHA DERIVATIVE IN 1 - DI RECTI ON.
ADERV1I = PDERI V( ZETA(1), | JKL(1), N, | ERR)
|F (IERR NE. Q) QO TO 10
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DO 30 11=2,4
IDX = I JKL(11)
Z = ZETA(11)

ADERVL = ADERV1* PFUNCT(Z, 1 DX, N, | ERR)
IE (IERR NE.O QO TO 40
30 OONTI NUE

40 RETURN
END

[ely)

wrftttft*ft«cdftsnftftttftr»ftftftooonfteoon»*«**sannftft*»uoannftft*»»ft*ft

(qp)]

DOUBLE PRECISION FUNCTION AFUNCTUJKL, ZETA, IERR)

«*uftonftoftramnftftoft»*ftoaftft *awcactt»ftonftttft«*»**nftft»Sft«ft»fto»»n*n

RETURNS THE VALUE CF THE | NTERPCLATI ON FUNCTI ON CF
CROER N, ALPHA(I,J,K L), AT THE INTERCR PAONT IN A
A TETRAHEDRON 3 VEN BY THE ARRAY ZETA [ERR IS AN
ERRCR | NDI CATCR VWH CH CARRI ES THROUGH THE VALUE COF
|ERR AS SET BY PFUNCT" CR <PDERIV. |F ANY ONE OF
THE | NTEGERS IN IJKL IS NEGATIVE AN ERRCR EXIT WTH
ARGUMENT | ERR SET TO 21, 22, 23, 24, RESPECTIVELY,
IS EFFECTED. |IERR = 25 SIGNFI ES THAT THE FOR CO
ORDI NATES ZETA DD NOT ADD UP TO UNTY.

' DOUBLE PREC SI ON AFUNCT,  PFUNCT
DOBLE PREQ S| ON ZETA, EPSLQN, Z
D MENSI ON ZETAC4), | JKL(4)

O000000O0O0O0ON0OCO

EPSLON |S A NMACH NE- DEPENDENT PREQ SI ON | NDI CATCR -
COMMON / PRECSN  EPSLON

o0 00

I|SEH'I_\'>HE OARGU\/ENT SET ACCEPTABLE? EXIT |F NOT.
IF (1] LO) LT.O) IERR = 21
IF (1JKL(2).LT.O |ERR = 22
|F (1JKL(3).LT.O IERR = 23
I|F (1JKL(4).LT.O IER s 24
AFUNCT s - 1. CDO

DO 10 I1s1,4

AFUNCT = AFUNCT + ZETA(I1)
10  OONTI NUE

| F (AFUNCT. GT. EPSLCN . CR  AFUNCT. LT.-EPSLON) |ERR = 25
IF (IERR NE O @O TO 40

C GET STARTED. SET CGRDER N

winn

1)



Matrix Generator Subroutines Page
Cendes ', Minhas, Silvester

N =20
DO 20 II=1,4
N = N + IJKL(II)
20 CONTINUE

C COMPUTE ALPHA-FUNCTION

AFUNCT = 1.0D+0

DO 30 II=1,4
IDX = IJKL(II)
Z = ZETA(II)
AFUNCT = AFUNCT®PFUNCT(Z,IDX, N, IERR)
IF (IERR.NE.O) GO TO 40

30 CONTINUE

40 RETURN
END

RERRRRRRRRRRRRRRRRRRRERERERRERRRERRERRRERRRRRRRRRERRER

SUBROUTINE DIFMTX(N, D1, NI, NJ, IERR)

i 2 XXX X222 EXSRRRR22R2 22222 2R 2 2]

RETURNS THE DIFFERENTIATION MATRIX D1 OF ORDER N
COMPUTED IN DOUBLE PRECISION.

THE ARGUMENTS NI, NJ ARE MATRIX DIMENSIONS. THEY
MUST BE AT LEAST NI = (N)(N+1)(N+2)/6 AND

NJ = (N+1)(N+2)(N+3)/6
OTHERWISE IERR = 51 IS RETURNED, AND NO OTHER AC-
TION IS TAKEN. OTHER ERROR RETURNS TRACE WHERE
THE ERROR OCCURRED, BY SIMPLY PASSING THROUGH THE
ERROR-INDICATOR VALUES FROM OTHER ROUTINES.

SUBROUTINE CALLING STRUCTURE:
DIFMTX CALLS PRECIS

CALLS ADERV1 CALLS PDERIV
CALLS PFUNCT

a0 0000 a0

DOUBLE PRECISION D1(NI,NJ), ZETA(4), ADERV1
DIMENSION JARR(4), IARR(Y4)

EPSLON IS A MACHINE PRECISION INDICATOR, FOR SET-
TING TOLERANCES. IT IS TAKEN AS FOUR TIMES THE
LEAST DEVIATION DISTINGUISHABLE FROM UNITY.

2 X2 K2 X2K%
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DOUBLE PREQ SI ON EPSLON _
COMWON / PRECSN  EPSLON e

START BY SETTI NG EPSLON
CALL PREA S
EPSLON = 4. D+O«EPSLON

00

00

CHECK DI MENSI ONS | N CASE COF ERRCR
*IliO(NI.GE.I\F‘(N+1)«(N+2)/6 AND NJ. GE (1) «(N#2) *(N#3)/ 6) GO TO

| ERR = 51
QO TO 140
10 CONTI NUE

QUTER LOOP:  GENERATE THE I NDEX STRING | ARR FCR
LE INDICES OF CRDER N1. IC IS THE COr
RESPONDI NG SI NGLE | NDEX.

O0000

20 CONTI NUE

| NNER LOOP: CGENERATE THE | NDEX STRING JARR FCR
QUADRUPLE INDICES OF GRBER N JC IS THE CORRES-

PONDI NG SI NGLE | NDEX.
JC=0
NL = N +
Oy aRR( 1)

N2 = N1

DO 90 12=1

JARRC2

00000

1
=1, Nl
= Nl - l%
- JARR(1
:,N2
=N - 12
- J

30 CONTI NUE
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C
C BOTH | NDEX STRINGS ARE NON IN_HAND.  COVPUTE
C THE COORDI NATE VALUES ZETA, AT THE NODE OF OR-
g DER N-1, AND FIND THE DI ENTRY AT (1C, JC).
|F (N.GT.1) GO TO 50
DO WD J=1,
ZETA(J) = 0.25D+0
VD CONTI NUE
GO TO 70
C
50 CONTI NUE
' DO 60 Jsi, H
ZETA(J) = | ARR(J
ZETALJ) s ZETA(J)/ (N-1)
c 60 | CONTI NUE
70 CONTI NUE
’ DHI C. JC) = ADERVL(JARR ZETA, | ERR)
80 CONTI NUE
90 CONTI NUE
. 100 CONTI NUE
110 CONTI NUE
120 CONTI NUE
130  CONTI NUE
C
1M RETURN

END

ftean*»ft wftftftftovaonftftftfiftftaonaftftftftsftacftftacfto»on*ftonftftft«»

- SUBRQUTINE EMBMIXCN, C1, NI, NJ, IERR

oftftnftftftftftoftftocftftnftftftonfinftftaftftonftnftitftaftoftftftoaftoftftftftoftft

RETURNS THE DI FFERENTI ATI ON MATRI X C1 OF ORDER N
COVPUTED I N DOUBLE PRECI SI ON.

THE ARGUMENTS NI, NJ ARE MATRI X DI MENSI ONS.  THEY

MUST BE AT LEAST Il\\lb = HI%&E{NNI%E“IS //g AND
OTHERW SE | ERR = 61 | S RETURNED, ' AND NO OTHER AC-

TION | S TAKEN. OTHER ERROR RETURNS TRACE WHERE
THE ERROR OCCURRED, BY SI MPLY PASSI NG THROUGH THE
ERROR- | NDI CATOR VALUES FROM OTHER RQUTI NES.

O O00000O00OO00 OO0
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SUBROUTI NE CALLI NG STRUCTURE:
EMBMIX CALLS AFUNCT CALLS PFUNCT

Page

CALLS PREC S

O0O0000

DOUBLE PRECISION C1(NI{NJ); ZETAU),

DIMENSION JARR(U), IARR(U)
DOUBLE PRECISION EPSLON
COMMON /PRECSN/ EPSLON

SET EPSLON TO START.

OO0

CALL PRECI S _
EPSLON s M CD+0»EPSLON

oo

T (N GE Ne(NeL)*(Ne2) 76 . AND
|ERR = 61
GO TO 110

10  CONTI NUE

ADRUPLE | NDI CES OF ORDER N-1.
ESPONDI NG SI NGLE | NDEX.

|1C=0
ML
DO

olelelele

Z
o+
| )

xS
==

n N
e
==
Q ,

e
Lt

8%;H|I
— Lo
> Il
A(_.

o
pu
NN
A1
S
SR

1
Y
~ N

__38®
0 11
35S
O;U;g'é‘*
oW
|
1"
5=
AN
HI
(]
w

)

I
=
nHw=

P

RR(U) -

a4z
)
pzapy,

C’—\
m=s

20

—Q
it
5
.

ADRUPLE | NDI CES OF- ORDER N
ONDI NG SI NGLE | NDEX.

o000 @

AFUNCT

ALLON 4 TI MES EPSLON
AS THE MARG N FCOR FLOATI NG PO NT CALCULATI ON.

CHECK DI MENSI ONS IN CASE OF ERROR

NJ. GE. (N+1) »(N#2) *(N+3)/6) GO TO

OUTER LOOP:  GENERATE THE | NDEX STRING | ARR FCR

IC IS THE COR-

| ARR(J)

| NNER LOOP:  GENERATE THE | NDEX STRING JARR FCR
JC IS THE CORRES-

T
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30

O0O0O00

40

50
70
80
90
100

110

DO 60 12=1, N2

JARRCIZ\? SN2 - 12
N3 = N2 - JARRC?)

DO 50 13=1, N3
JARR(3) =
JARR( 4) =
DO 30 J=1
JARR( 4)
CONTI NUE
JC=JC+1

N3
N
3

- 13

JARR(4) - JARR(J)

BOTH | NDEX STRINGS ARE NOVN | N HAND.  COWPUTE
THE COORDI NATE VALUES ZETA, AT THE NODE OF OR-
AND FIND THE C1 ENTRY AT (I1C,JC).

DER N-1,

DO 40 J=1,4
ZETA(J
ZETA(J

CONTI NUE

CONTI NUE
CL(1CJO) s

CONTI NUE _
CONTI NUE

CONTI NUE

CONT

| NUE

CONTI NUE

CONTI NUE

" RETURN
END

ZETAC) 1 (W)

ZETA( 1) * AFUNCT( JARR, ZETA, | ERR)
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Fuft*»ftacft*»*on*ttftoftftftoft»*»ft*»uftoftft*fttacft»ftovanaftann»ac*»tt»ft«

DOUBLE PREC SI ON FUNCTI ON FACTCR(N, | ERR)

RETURNS THE DOUBLE- PRECI S| ON FACTOR AL OF THE | NTEGER
N IERR IS SET TOZERO IF ALL IS WELL; IF N IS NEGA
TIVE, IERR IS RETURNED AS 75. |F N IS LARGE ENOUCH
FCR TRAILING SIGN FI CANT FI GURES TO BE LOST, IERR IS
SET TO -76.  |IF N EXCEEDS 30, IERR IS SET TO77. |F
IERR IS PGSl TI VE, NO CALCULATION IS CARRIED QUT; IF
IERR IS NONPCSI TIVE, THE FACTORIAL | S COWPUTED.

DOBLE PREA SI ON FACTOR, EPSLON
COMWON / PRECSN  EPSLON

N NONNEGATI VE?  ERRCR | F NOT!

IF (NLT.O IERR =75
IF (N.GI.30) IERR s 77
IF (IERR NEEOQ QO TO 20

FACTOR = FACTOR*|
| F (FACTOR*EPSLON. GT. 1. DO |ERR = - 76
QONTI NUE

EXIT
RETURN
END
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SUBRQUTINE METRIC(N, T, ND, | ERR

ft*accaennftft»ftfturac*«ftXoft*»*ftunftftftftfto»o»ft»*ftracem»amm»»ft»»»*»»

RETURNS THE METRC T GF GRBER N GOMPUTED I N DOUBLE
PREC S| O\

THE ARGUMENT ND IS THE MATR X DIMENSION. | T MUST BE
AT LEAST ND = (N)(N+1)(N+2)/6 OTHERWSE |ERR = 101
IS RETURNED, AND NO OTHER ACTION |S TAKEN. OTHER ER-
RR RETURNS TRACE WHERE THE ERRCR OOCURRED, BY JUST
PASSI NG THROUGH THE ERROR- | NDI CATCR VALUES FROM THE
CALLED ROUTI NES. NOTE THAT WGT |S THE ARRAY OF
DRATURE NODES, AND MUST BE DI MENSI ONED SI M LARLY TO

I TS SIZE I'N SUBROUTI NE QUADRA.

SUBROUTI NE CALLI NG STRUCTURE:

METR C CALLS AFUNCT CALLS PFUNCT
CALLS PREA S
CALLS QUADRA CALLS VEIGHT CALLS PSYMBL
CALLS FACTCR

DOUBLE PRECI SI ON T(ND, ND), WGT( US5)

DOUBLE PREC S| N AFUNCT

DI MENSI ON [ ARR(U), JARR(M), KARR(

DOUBLE PREQ SI ON EPSLON, SUM ZETA(M), TERM, TERW
COWDN / PRECSN  EPSLON

SET EPSLON TO START. ALLON FOR TI MES EPSLON
AS FLQATI NG PO NT PREC S| ON

CALL PREA S

EPSLON = U. OD+O«EPSLON

CHEOK DI MENSI ONS | N CASE OF ERRCR

IF (NDGE(N+1) (N+2) *(N+3)/6) GO TO 10
|IERR s 101

GO TO 180

CONTI NUE

NONV MAKE UP THE SET OF QUADRATURE NCDES FCR THE
TETRAHEDRON CF DEGREE 2N.

NBY2 = 2«N

CALL QUADRA(WGT, NBY2, |ERR

QUTER LOCP: GENERATE THE | NDEX STRING | ARR FCR
LE INDICES - CGRDER N IC | S THE COR-
RESPONDI NG SI NGLE | NDEX

10
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BFo
|:\'II I

_8

| ARRU) - | ARR(J)

2
FZHA

20

O
(72}
@)
+
[EEY

| NNER LOCP: GENERATE THE | NDEX STRING JARR FCR
QUADRUPLE INDICES OF CRDER N JC IS THE CORRES-
PONDI NG SI NGLE | NDEX.

JCs O
DO 140 11=1,NL
JARR(1) = N1 - 11
N2 = N1 - JARRC1)
DO 130 12=1,N2
JARR(2) = N2 - 12
N3 - N2 - JARR(2)
DO 120 13=1,N3
JARR(3) = N3 - 13

o000 <

JARRU) = N
DOJA?igR(JLj)l’B JARRCA) - JARR(J)
30 CONTI NE.
c JC=JC+ 1
C BOTH | NDEX STRINGS ARE NOW IN HAND, COMPUTE
C THE NEWON- COTES TURE AT THS NCDE, BY
C SCANNI NG THROUGH TURE NCDES THE SAME AS
8 | NTERPOLATI ON NODES OF ORDER 2*N
C DO ONLY LOMR TR ANGULAR HALF — GET THE
C REST FROM SYMVETRY.
IF (JC.GI.IC GO TO 120
- SUM = O OD+0
C GENERATE | NDEX STRING OF DEGREE 2«N
C KC IS THE SINGLE INDEX TO @O WTH I T,

KC = 0

N1 = NBY2 + 1

DO 110 K1=1,N21
KARRCL) r N21 - Ki
N22 = N2l - KARRCL)

11
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DO 100 K2=1, N22
KARR(2) s N22 - K2
N23 = N22 - KAHRC2)
DO 90 K3=1, N23

KARR(3) = N23 - K3
KARR = 2«N
DOKL/kRR(:l\/% 3 KARR(U) - KARR(J)
40 CONTI NUE
KCs KC+ 1
. | F ( DABS(WGT(KO) . LE. EPSLON) GO TO 90
C FIND COORDI NATES AT QUADRATURE NCDE
|F (N.NE.O GO TO 60
DO50J=1, 4
ZETA(J) = 0.25D+0
50 CONTINUE
QO TO 80
60 DO 70 Js1, 4
ZETA(J) s KARR(J
- ZETA(J) = ZETA(J)/ NBY2
70 CONTI NUE
C
C ADD NODAL CONTRI BUTION TO SUM
80 CONTI NUE
TERM = AFUNCT(1 ARR, ZETA | ERR)
IF (1ERR NE.O) GO TO 180
| F_(DABS( TERM ). LE. EPSLON) GO TO 90 °
TERV0 r AFUNCT(JARR ZETA, | ERR)
IF (1ERR NE.O) GO TO 180
. SUIM = SUM + ( KC) »TERM » TERMJ
90 CONTI NUE .
100 CONTI NUE
C110 CONTI NUE
T(1C JO) = SWM
. T(JC IC) = SM
120 CONTI NUE
130 CONTI NUE
0140 CONTI NUE
150 CONTI NUE
160  CONTI NUE
C170 CONTI NUE
180 RETURN

END

12
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DOUB

DOuUB
COMM

CHEC
IERR
IF (
IF (
IF (
IF (

SET
PDER
IF (

coMP
FN =
DO 2
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I E XSRS R2ES 2RSSR SRR RS2SRRSR R 2K 3 )

LE PRECISION FUNCTION PDERIV(Z, M, N, IERR)

2R 222 RRRRSRRREEZRRRRE22 2222 RRZRERERRR 2R R

RETURNS THE VALUE, AT ARGUMENT VALUE Z, OF THE DE-
RIVATIVE OF THE SEMI-INTERPOLATIVE P-POLYNOMIAL M.
HERE N IS THE ORDER OF INTERPOLATION, IERR IS AN
ERROR FLAG, SET TO O IF ALL IS WELL. POSSIBLE ER-
ROR FLAG SETTINGS ARE: 11 FOR ARGUMENT Z OUT OF
RANGE, 12 FOR NEGATIVE VALUE OF N, 13 FOR VALUE OF
M OUT OF RANGE.

LE PRECISION PDERIV, Z, PR, FN, FI, FJ, EPSLON
ON /PRECSN/ EPSLON

K ARGUMENT VALUES FOR VALIDITY. SET IERR.
=0
Z.LT.-EPSLON .OR. Z.GT.1.0DO+EPSLON) IERR = 11
N.LT.0) IERR = 12
M.LT.0 .OR. M.GT.N) IERR = 13
IERR.NE.O) GO TO 30

VALUE, RETURN IMMEDIATELY IF M = 0.
IV = 0.DO
M.EQ.0) GO TO 30

UTE DERIVATIVE IF M NONZERO, SUMMING TERMS.
N
0 J=1,M

= J

PRODUCT FOR ONE VALUE OF J -- OMIT J'TH FACTOR.

PR

= 1.D0

DO 10 I=1,M

IF (I.EQ.J) GO TO 10
FI =1
PR = PR®(FN*Z-FI+1.D0)/FI

CONTINUE

PDERIV = PDERIV + FN*PR/FJ
CONTINUE

.

RETURN TO CALLING PROGRAM WITH VALUE.

RETURN

END

Page

13
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DOUBLE PRECQ SION FUNCTION PFUNCTU, M N | ERR

wxxctt*»ounftftft»ft »*ft»»ft *»ovvn«tt »aft <t ft»«tft st «rarnaaft arnft*«ft

RETURNS THE VALUE, AT ARGMENT VALWE Z, OF THE P-
POLYNOM AL M N = ORDER OF | NTERPQLATI ON, |ERR =
ERRCR FLAG SET TOO IF ALL IS WELL. PCSSI BLE ER-
RCR FLAG SETTINGS ARE: 1 FCR ARGUMENT Z GQJT CF
RANCE, 2 FOR NEGATIVE VALLE O N 3 FCR VALLE COF M
QUT CGF RANGE

DOBLE PREA SION PFUNCT, Z, FN  FI, EPSLON
COMWON / PRECSN  EPSLCN '

O—EO(AORGU\/EI\I'I'VALLESFO?VALIDITY SET I ERR

| ERR =

|F (Z LT.-EPSLON . (R ZGT1CI)+O+EPSLO\I) IERR =1
I|FE (N.LT.O |ERR = 2

IF (MLT.O.CR MGI.N) IERR = 3

IF (IERR NE.O GO TO 20

SET VALUE, RETURN | MVEDI ATELY |F M = 0,
PFUNCT = 1. D0
IF (MEQO ‘@ TO 20

COWUTE P | F M NONZERQ.
FN = N
FN = Z«FN
[DFllO l|:1, M
PFUNCT = PFUNCT* ( FN- FI +1. DO) / FI
CONTI NUE

RETURN TO CALLI NG PROGRAM W TH VALLUE.
e

14
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C
C

SUBROUTINE PRECIS
C
C REERERERERERERERERE R AR RER AN AR ER SRR AR A AR RN ERRERERER
c |
C DETERMINES, BY COMPUTATION, THE DOUBLE PRECISION
C QUANTITY EPSLON, AND PLACES IT IN LABELLED COMMON.
C EPSLON IS A MACHINE-DEPENDENT PRECISION INDICATOR =
C SUCH THAT 1.0D+O AND (1.0D+0 + EPSLON) CAN JUST BE
C TOLD APART ON THE COMPUTER IN USE.
C

DOUBLE PRECISION EPSLON, EPSTRY
COMMON /PRECSN/ EPSLON

BEGIN. BY TAKING A BAD GUESS AT EPSLON
EPSLON = 1.DO

o000 o0

KEEP DIVIDING BY 2 UNTIL THE DIFFERENCE BECOMES
INVISIBLE TO THE MACHINE.
10 EPSTRY = EPSLON/2.DO
IF (1.DO+EPSTRY.EQ.1.D0) GO TO 20
EPSLON = EPSTRY
GO TO 10

SUCCESS! EXIT.
20 RETURN
END

0o

(ep]

SUBROUTINE PSYMBL(COEF, M, N, IERR)

- RETURNS | N ARRAY "OCEF» THE CCEFFI G ENTS CF THE
SEM - I NTERPCLATI VE FUNCTION PM Z), OF CRDER N
THE ARRAY ELEMENT COEF(1) CONTAINS THE CCEFFI C -
ENT CF Z»«(1-1)-0ON RETURN |ERR IS RETURNED AS
ZERO IF ALL IS WELL, AS 81 IF M IS QUIT O RANGE
RELATIVE TO N  ARRAY CCEF | S DI MENSI ONED TO BE
SUFFIAQ ENT FCR N = 1M TO ALTER FCR OTHER PCLY-
NOM AL ORDERS, | NCREASE NOM I N DATA STATEMENT
BELON AND THE DIMENSION OF COEF, TO (N « 1).

DOUBLE PREA SICN COEF(15), DN DE, F1, F2

00000000000 O
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DATA NDIM / 15/ .
| S THE REQUEST REASONABLE? ‘

IERR = 0
:EZMLT.O.CR MGI.N IERR = 81
I F

ol@)

N GI. NDI | ERR * 82
| ERR NE. &0 TO 50

CLEAR THE ARRAY AND START
DO 10 1=1, NDI'M
COEF(l) = 0.0DO
10 CONTINUE

00

OO0

FOR M = 0, POLYNOMIAL IS ALWAYS UNITY.
COEF(1) = 1.0DO
IF (M.EQ.0) GO TO 50

EVALUATE PRCDUCT EXPRESSI ON RECURSI VELY.
ImCﬂjlo\lll SlTII\—|/|E FACTCRS | N THE PRODUCT.
si,

000

C J LOCATES THE TERM OF CRDER (J-1) IN OCEF,'
COEF(1+1) = F1* COEF(I)
IF (I.EQ1) @ TO 30
DO 20 JBACK=2, |
J =1 - JBACK + 2
CCEF(J) = FI*QOEF(J-1) * F2* QOEF(J)
20  CONTI NUE
30 QOEF(1) = F2*OOEF(1)
HO OONTI NUE

50 CGONTI NUE

RETURN
END

B e R Tt I A TR
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«ft*ft*ft omnanft«*«*ftitftonamvac»ftft»ftoomn*fttt «*ft «c«ft »*»** f.:[ ft»«ft»

SUBRCQUTI NE QUADRA(WGT, N, | ERR)

«»*nXtt »revav»uftftrttenftrctt»»ftftft»»unft»»»arctt SE»a»»«* ««* »»ft »»«

RETURNS THE DOUBLE-PRECISION VECTOR WGT OF WEIGHTS
FOR NEWTON-COTES QUADRATURE (CLOSED FORM) ON A TE-
TRAHEDRON. THE QUADRATURE IS OF ORDER N. WGT MUST
BE DIMENSIONED AT LEAST (N+1)(N+2)(N+3)/6. TO ALTER
DIMENSIONING, CHANGE WGT AND ALSO NDIM IN THE DATA
STATEMENT BELOW. IERR RETURNS AS 0 IF ALL IS WELL,
AS 91 IF DIMENSIONING EXCEEDED.

DIMENSION 1ARR(U)

DOUBLE PRECISION WEIGHT, EPSLON, WGTC455)
COMMON /PRECSN/ EPSLON

DATA NDIM /12/

ZERO THE OUTPUT ARRAY AND CHECK ARGUMENTS,
IERR = 0
IF (N.GT.NDIM) IERR = 91
IF (IERR.GT.0) GO TO 60
NEND (NDIM+1)»(NDIM+2)* (NDIM +3)
NEND = NEND/6
DO 10 1=1,NEND
WGT(I) = 0.0D+0
CONTINUE

GENERATE INDEX SEQUENCE AND FILL THE ARRAY.
NI = N + 1
IC = 0
DO 50 Ilal.N1
IARR(1) = N1 - 11

N2 = N1 - IARR(1)
DO 40 12=1,N2
IARRC2) = N2 - 12

N3 = N2 - IARR(2)
DO 30 13=1,N3
IARR(3) = N3 - 13

IARRU) = N

DO 20 J=1,3
IARR(U) = IARR(U) - IARR(J)
CONTINUE®
FI ND WEI GHT FOR EACH SET CF | NDI CES.
IC=I1C+ 1

WGT(1 C) = WEI GHT(| ARR, TOTAL, | ERR)

17
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I|F (IERR GT.O @O TO 60
CONTI NUE

CONTI NUE

CONTI NUE

CONTI NUE
RETURN
END

DOUBLE PRECISION FUNCTION WEIGHTUJKL, TOTAL, IERR)

RETURNS THE NEWON- COTES QUADRATURE "WEI GHT AT THE NCDE
DESCRI BED BY ARRAY |JKL, ON A TETRAHEDRON. THE D MEN-
SSON G- CCEF IS G VEN BY THE NMAXI MMM QUADRATURE CRDER
PLUS ONE, BY 4. TO ALTER FCR H GER ORDERS CHANGE THE
DI MENSION CF CCEF, ARR AND ND'M I N DATA STATEMENT. | F
IERR IS RETURNED AS 84, TH S DI MENSI ONI NG WAS | NSUFFI -
G ENT. : ‘

ON RETURNING THE SINGE-PRECA S| ON VAR ABLE TOTAL CON\-
TANS THE SUMM O ABSCLUTE VALUES CF ALL TERVS TOTALLED
TO FIND THE QUADRATURE VEI GHT — AN ERRCR ESTI MATOR

DI MENS| ON | JKL( 4)
DOUBLE PREC S| ON WEI GHT, COEF( 15, 4), FACTOR EPSLON
DOUBLE PRECI SION TERV SUMP, SUWN, ARR(15), C2, C3, CM

.COWON / PRECSN  EPSLON

DATA ND'M / 15/
DETERM NE CRDER OF PCLYNOM ALS FROM | JKL

II\IERR =0 . ‘ -

DO 10 1=1, 4

N =N+ IJK(I)

CONTI NUE

IF (N.GT.NDIM 1) |ERR = 84
IFgIERRNE.O) G0 TO 80

NL =N+ 1

GET THE COEFFI O ENT STRINGS FCR ALL FOR A(Z>
DO 30 1=1, 4

CALL PSYMBLCARR 1 JKL(1), N, IERR
DO 20 J=1, NDI M

18
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COEF(J,l) = ARR(J)
20 CONTINUE

IF (IERR.NE.O) GO TO 80
30 CONTINUE

C .
C MULTIPLY AND INTEGRATE SYMBOLICALLY
SUMP = 0.0D+0
SUMN = O.0D+0
DO 70 HU1.N1
CM = 6.0D+0* COEF(IH,i»)*FACTOR(14-1,ERR)
IF (IERR.GT.O) GO TO 80
IF (CM.EQ.0.0D+0) GO TO 70
DO 60 13=1»N1
C3 s CM«COEF(I13,3)*FACTOR(I3-1,|ERR)
IF (IERR.GT.0) GO TO 80
IF (C3-EQ.0.0D+0) GO TO 60
DO 50 12s1,N1
C2 = C3*COEF(12,2)*FACTOR(I2-1,|ERR)
IF (C2.EQ.0.0D+0) GO TO 50
IF (IERR.GT.0) GO TO 80
DO HO IU1,N1
IF (COEF(11,1).EQ.0.0D+0) GO TO MO
TERM = C2*COEF(11,1)*FACTOR(I1-1,|ERR)/
« FACTOR(I1+I2+13+14-1,|ERR)
IF (IERR GT.0) GO TO 80
| F % ERM. GT. O.0D+0) SUMP s SUMP & TERM
ERM. LT. 0.0D+0) SUMN s SUMN + TERM

50 CONTI NUE

60 CONTI NUE

70 CONTI NUE
VE| GHT = SUWMP « SUW
TOTAL = SUWP - SUW

80 RETURN
END

f e el wmee W f e s gt T
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EXAMPLE DRIVER PROGRAMS

~The following three programs are given to illustrate the use of the
matrix enerator subroutine package. While the subroutines are written
in near-standard (ANS 1968) Fortran, the driver programs are machine
and system dependent; the¥ will probably need modification by the user.
The principal npnstandard eatures used are: (1) Fortran logical unit 7
used for terminal input and output, f(2) the FRORAM statement, (3)
free-format terminal input, (4) use of $ as a carriage control
character, (5) lower-case characters in Hollerith strings.

PRORAM  CDEMON

THS IS A NMAN PRORAM TO | LLUSTRATE THE QGPERATI ON CF
EMBMIX. |IT READS A VALLE G N FROM TH= USER TERM NAL
(UINT 7) AND PRINTS QUT THE NATR X AT THE TERM NAL.

DOUBLE PREQSION C1, EPSLON
D MENS| ON C1( 84, 56)

COMWON / PRECSN  EPSLCN

NOTE: NONSTANDARD CARR AGE CONTROL AND READ FCORVAT!
10 WRITE (7, 999)

READ (7,*) N

IF (NLT.O GO TO 40
g«g N+2g «E N+3§/6

0000 < O O O

@]

00

»(NF3)*(N+4)/ 6
EMBMIXCN, Cl, 84, 56, |ERR)
TO 30

,998) |, (CKI, J),Jsl,K
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GO TO 10

WRITE (7,997) 1ERR

GO TO 10

STOP

FORMAT (18H$Please enter N: )
FORMAT (11X, 12, (3X, 10F7.3))

FORMAT (27H Error encountered; IERR

END

t Z XSRS RS2 22 2222 2R 2R RZRRRE 2]

PROGRAM DDEMON

THIS IS A MAIN PROGRAM TO ILLUSTRATE THE OPERATION OF
DIFMTX. IT READS A VALUE OF N FROM THE USER TERMINAL
(UNIT 7) AND PRINTS OUT THE MATRIX AT THE TERMINAL.

I3)

THE MATRIX IS PRINTED OUT TRANSPOSED,

THE TERMINAL SCREEN BEST.

DOUBLE PRECISION D1, EPSLON
DIMENSION D1(35,56)
COMMON /PRECSN/ EPSLON

NOTE: NONSTANDARD CARRIAGE CONTROL AND READ FORMAT!

WRITE (7,999)
READ (7,%*) N
IF (N.LE.O) GO TO 40

K = N¥(N+1)%*(N+2)/6
M = (N+1)®(N+2)®(N+3)/6
IERR = O

CALL DIFMTX(N, D1, 35, 56, IERR)
IF (IERR.NE.O) GO TO 30
DO 20 J=1,M

WRITE (7,998) J, (D1(1,Jd),1I=1,K)
CONTINUE
GO TO 10 .
IF (IERR.NE.O) WRITE (7,997) IERR
GO TO 10 .
STOP
FORMAT (18H4$Please enter N: )
FORMAT (1X, I2, (3X, 10F7.3))

FORMAT (27H Error encountered; IERR

END

I3)

TO MAKE IT FIT

Page
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OO0 0O O O

00

10

20
30
999

998
997

PROGRAM  MDEMON

»unft »ft»ft»»»*ft «»KE»»ft «mv»»aftft»»*tt «»* | »ft »* »»»au»»* a«nnu»»»ft»

THS IS A MAN PROZRAM TO | LLUSTRATE THE CPERATI ON CF
METRIC. |IT READS A VALLE G- N FROM THE USER TERM NAL
(UNT 7) AND PRINTS QUT THE MATR X T AT THE TERM NAL.

DI MENSI ON | ARR( M)

DOUBLE PRECI SI ON WEI GHT, EPSLON,  T( 35, 35)

COMN / PRECSN  EPSLON

NOTE:  NONSTANDARD CARRI AGE CONTRAL AND READ FCRVAT!

VWRI TE (7#999)
READ (7,7) N

. LT.O GO TO M
N+1) »( N+H2) «(N+3) / 6

T
—_
—~Z2

=0

METRI CU, T, 35, |ERR
ERR NE. O @O TO 30
J=1, M

(7,998) J, (T(1,J3),1s1,M

IF (IERR NE.O WRTE (7,997) IERR

FCRVAT (18H$BPl ease enter N )
FCRI\/ATglx, 12, (3X, 10F7.3))

27H Error encountered; IERR =, 13) '
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