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ABSTRACT 

We consider iterative methods for the solution of tridiagonal systems and pre
sent a new iteration whose rate of convergence is comparable to that of the optimal 
two-cyclic Chebyshev iteration but which does not require the calculation of optimal 
parameters. The theory has a natural extension to block tridiagonal systems. 
Numerical experiments suggest that on a parallel computer this new algorithm is the 
best of the iterative algorithms we consider. 
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1. Introduction. 

In this paper we consider iterative methods for the solution of the tridiagonal 
system 

(1.1) Ax = c 

where for convenience A is taken to have unit diagonal: 

'1 b, 

(1.2) A = 

a 2 1 

a 3 1 b 3 

a T 1 b , / 

\
n-l n-1 / 

a n 1 / 
We present a new iteration whose rate of convergence is comparable to that of the 
optimal two-cyclic Chebyshev iteration but which does not require the calculation of 
optimal parameters. We give a sufficient condition for this iteration to converge 
which is also a non-standard sufficient condition for the system (1.1) to have a solu
tion. The theory has a natural extension to block tridiagonal systems. Numerical 
experiments suggest that on a vector computer (i.e., a parallel computer which pro
cesses vectors efficiently) this new algorithm is the best of the iterative algorithms 
we consider. 

The new algorithm illustrates two general techniques of parallel algorithms: 
first, altering a sequential scalar algorithm to obtain a vector iteration which ex
ploits the parallel capabilities of vector computers; and second, arranging the vector 
computations to accelerate the rate of convergence of an iterative method. We also 
discuss a model of vector computation which we use to estimate the performance of 
parallel algorithms,, 

The solution of tridiagonal systems is a ubiquitous problem in scientific com
puting and has received extensive treatment in the context of sequential computers. 
The advent of parallel computers such as Illiac IV, Control Data's STAR-100, and 
Texas Instruments1 ASC has led to the development of new algorithms composed largely 
of efficient vector operations. The work of Stone [1973,1974] dealt primarily with 
direct methods while Traub [197 3] considered iterative methods on parallel computers. 
Lambiotte and Voigt [1974] reported on the implementation of the methods presented in 
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these earlier papers with respect to a particular vector computer, the STAR-100. The 

work presented here is an extension and improvement of Traub 1s earlier work. 

The next section contains an informal derivation of the new algorithm, which we 

call Accelerated Parallel Gauss (APG), together with some techniques useful in paral

lel algorithms. Section Three is devoted to an analysis of APG based on a matrix 

formulation. Several variations of APG are discussed in Section Four. Three of 

these variations are of interest if division is expensive compared to other arith

metic operations. Some empirical observations on the numerical behavior of APG are 

presented in Section Five, and Section Six presents an extension of the theory to 

block tridiagonal systems. 

In Section Seven we review briefly the classical iterative methods which lend 

themselves naturally to a vector formulation. Section Eight contains a detailed 

comparison of the various iterative methods, both theoretically for a model problem 

and computationally for some numerical experiments. 
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2. A New Algorithm. 

In this section we give a precise statement of the Accelerated Parallel Gauss 
algorithm, together with an informal development. This is intended to be more than 
an expository device. We feel that the two major techniques illustrated in this 
section -- vectorizing an "inherently" sequential algorithm and speeding up certain 
types of vector iterations may have wide applicability for parallel algorithms in 
general, and this is the perspective we take in the following discussion. 

The classical Gaussian elimination algorithm for tridiagonal systems may be state 
as follows. 

1. (Factor A =(I + L)D(I + R).) 
Let d, = 1. 

a.b. 
For j = 2,3,...,n let d. = 1 - I 3 1 

3 dj-l 
2. (Solve (I + L) f, = c.) 

a . 
Set I. = —2— for all j > 1. 

3 dj-l 
Let f ! = c ! • 

For j = 2,3,...,n let " °j " ^j fj-l * 

3. (Solve (I + R)x = D"1!.) 
b, f. 

Set r. = and g . = -JL for all j. 
j 3 d j 

Let x = g n ^n 
For j = n-l,n-2,. . . , 1 let = - r_.Xj+^ 

Since any calculation by this algorithm depends upon all previously calculated 
results, the classical algorithm is 11 inherently" sequential. Traub [1973] observed 
that this algorithm could be converted into an iterative algorithm by successively 
approximating the d !s, then the f 1s, and finally the x 1s. For example 

(2 .D d*1* = 1 - af.3~l , for all j > 1. 
3-1 

where the superscripts denote the iteration step. Since all d's are updated simul
taneously, this iteration can be viewed as a vector iteration. This iterative al
gorithm requires many more operations than the classical Gaussian elimina
tion, but it becomes interesting in the context of a computer which can perform 
operations on vectors of length n much faster than it can perform n scalar 
operations. 
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The next observation deals with a method of accelerating certain types of vector 
iterations, namely those for which the updated value of a component depends only upon 
the value of the component with next smaller index. From (2.1) it is obvious that 
<3j"̂  depends only on the value of d!^ 1^ and on no other component of the vector 
d̂ "*"""̂ . If we update all the even-subscripted d's and then update the odd-subscripted ones, 
always using the most recent values available, the result for the odd-subscripted vari
ables will be the same as if all d's were updated twice, but of course with less 
work. By repeating this procedure, each time a component is updated it will seem as 
if two complete updatings of the entire vector have been made. 

In general, for any k we can restructure the vector into k smaller vectors; each 
new vector consists of all components of the original vector whose indices are equal 
modulo k. The preceding discussion was for the case k = 2. Now instead of updating ele
ments of the original vector, we cycle through the k smaller vectors. No more work 
(i.e., arithmetic operations) is done in each complete cycle than in one iteration on 
the original vector, but the effect for each updated component is the same as if k 
iterations on the entire vector had occurred since its last change. Thus the iteration 
has been accelerated by a factor of k. This technique is similar to the use of p-
cyclic matrices to accelerate linear iterations (Varga [1962]). 

Of course, one should not expect that this acceleration is free, although the 
extra cost is nominal. A more detailed discussion of this can be found in Section 8.1. 
In this paper we use k = 2 for convenience. Although this choice may be sub-optimal, 
it is sufficient to give striking results. The optimal choice of k will depend on 
the particular machine and the size of the system. 

Combining these two observations we state the new algorithm studied in this 

paper, the Accelerated Parallel Gauss algorithm (APG). For simplicity we ass ssume n 

is even. 
1. Let d ( 0 ) be given. Set dj_ l } = 1 for all i. 

For i = 1,2,...,ID, let 

d < i } = 1 - , J even, 

a.b. J " 
"3 d 
a ' 1 ' = l j j " 1 , j odd and > 1. 

j-l 
A a . 

Define = for all j > 1. 
dj-l 

Let f ( 0 ) be given. Set f [ l } = c± for all i. 
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For i = 1,2,...,IF, let 
* ( i ) A * ( i - D 
f . ' = c. - I.f\ i , i even, 
3 J 3 3"! 

f i L ) = c. - ^.fi 1}, j odd and > 1. 3 3 J D-l J 

A f U F ) A *• 
Define g_. = ^ I D^ for all j? r^ = for all j < n 

d\ dj 

Let x ^ be given. Set x ^ = g for all i. — ^ n n 
For i = 1,2,...,IX , let 

(i) A A (i-1) . x^ ' = g. - r.x. L l , i odd, 3 ^3 3 3+1 
(i) A A (i) x. = g. - r.x.' j even and < n. 3 ^3 3 3+1 J 

(IX) 
Accept x as an approximation to the true solution x. 
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3. Analysis of Accelerated Parallel Gauss. 
In this section we analyze the convergence properties of APG based on a matrix 

formulation of the algorithm. We begin by examining a sufficient condition for non-
singularity of the coefficient matrix A. This condition is also sufficient for an LDU 
factorization of A by an iterative method. Next we discuss iterative solutions of 
the bidiagonal systems which arise from this multiplicative splitting of A. Finally 
we establish a priori bounds on the error reduction rates of the various iterations. 
Throughout our analysis we will use the infinity norm for both vectors and matrices. 

3.1 Sufficient Conditions for Non-Singularity. 
We derive a sufficient condition for the coefficient matrix (1.2) to be non-

singular; this will be a natural condition for our analysis. Let 

(3.1) A = A L + I + A R 

where A_ has non-zero elements only on the first sub-diagonal and A has non-zero L R 
elements only on the first super-diagonal. Factor A as 

(3.2) A = (I + L)D(I + R) 

where L and R have the same non-zero structure as A^ and A R respectively. 

Thus (3.1) is an additive splitting of A while (3.2) is a multiplicative decomposi

tion. The diagonal matrix D satisfies 

(3.3) D = I - A L D _ 1 A R 

and 

(3.4) L = A L D - , R = D *A R. -1 „ _ 

Let D = Diag (d 1,d 2, . . . ,d n) , L = Subdiag {l2, ly . . . ,^ n) , and 
R = Superdiag (r^r^, . . • ^ n _ 1 ) . Then d± = 1, and for j = 2,3, . . .,n, d^ = 1 - j ^ " 1 -

Furthermore, I. = -, for j = 2,3,...,n, and r . = for j = l,2,...,n-l. 
3 3-1 J j 

We give sufficient conditions for d_. to be bounded away from zero; in this 
case A will be non-singular since det(A) = det(D) which is the product of the d's. 

The following lemma also yields some useful bounds. Let 

(3.5) * = max|4a b | = 4||a AR||. 
j J J 

We assume throughout that A > 0. 
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Lemma Suppose A <̂  1. Then A 1 e x i s t s , and 

(3.6) 1 +
2

y / r ^ < d j < 3 ~ 2

/ i r ^ for a l l j . 

Proof. The proof i s by induction. Clearly d^ = 1 s a t i s f i e s the bounds. Assume d^ 
s a t i s f i e s (3.6). Then 

, , a k + l b k , _ A = 1 + v/ITa 
k + 1 d k 2 ( 1 + / I 3 A ) ~ 2 

d k + l = 1 d < 1 + ZZZT = 9 * • 
K + 1 d k 2(1 + n/TT) 1 

I t fo l lows that i f A ̂  1 then a l l pr inc ipal minors of A are p o s i t i v e and hence 

A i s a P-matrix (Fiedler-Ptak [1966]); A i s a l s o an H-matrix, so there e x i s t s a d ia 

gonal matrix E such that AE i s s t r i c t l y d iagonal ly dominant (Ostrowski [1937], Lynn 
[1963]. A condit ion equivalent to A £ 1 appears in the ana lys i s of SSOR-Semi-iterative 
method (Young [1972]). 

If A > 1, A can be e i t h e r s ingular or non-singular. 

Proposi t ion. For any U > 1 there e x i s t s a s ingular matrix of the form (1.2) for 

which max|4ajbj ^| = u. 

Proof. For |i J> 4 , the 4 x 4 matrix with b^ = g/4 , b 2 = a^ = 0, b^ = a 2 = a 4 = 1 s a t i s f i e s 

the propos i t ion . Now assume 1 < a < 4 . We construct a matrix of order k + 1 for which 

d^+^ = 0, where k depends on (j. Define 6 ^ = 1 and for j = 2,3,... l e t 6. = 1 - —y 

25. 3 j " 1 

Now 6_. p o s i t i v e implies ^j+i < (u + \ ) 3 s o t l i e d e c r e a s e a n d hence there i s a l e a s t 

k such that 0 < $ k 1 4 • Let a j = 4 f o r J = 2,3 , . . . , k ; a k + 1 = 5 k and b.. = 1 for 

j = l , 2 , . . . , k . Then d. = 6. for j = 1,2,...,k; d, = 0, and the maximum value of 

3 3 K+J-
l 4 a j b j - l ' i s V" I 

The usual s u f f i c i e n t condit ion for the ex i s tence of a so lu t ion of a tr id iagonal 

system i s diagonal dominance. I t i s easy to show that the hypothesis A <; 1 can be 

stronger or weaker than diagonal dominance. If A i s in the form (1.2) and 

A' = EAE - 1 , with E diagonal, then the A assoc iated with A i s the same as that 

assoc iated with A'. That i s , A i s invariant under diagonal s i m i l a r i t y transforma

t i o n s . However, diagonal dominance i s not invariant under such diagonal s i m i l a r i t y 

transformations. If A i s symmetric and A <; 1 then A i s diagonal ly dominant and 

p o s i t i v e d e f i n i t e . Another s u f f i c i e n t condit ion i s the fo l lowing. 

Proposit ion. Suppose a^b..^ ^ 0 for j = 2,3 , . . . , n . Then A - 1 e x i s t s and d_. > 1. 
JProof. The proof i s by induction on j : d1 = 1 and i f d . ^ ^ 1 then, 3 -
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3.2 An Iterative Multiplicative Decomposition. 

Equation (3.3) suggests the following iteration. Let D^ 0' be an invertible 

diagonal matrix and compute 

(3.7) D ( l ) = I - A L ( D ( l " 1 ) ) _ 1 A R , for all i ^ 1. 

From D ^ we can approximate L and R by 

and 

If the diagonal elements of D ^ are labeled , . . . ,d̂ "*"', then the iteration (3. 

is seen to be identical to (2.1). 
Using the same technique as in the proof of Lemma 3.1 we can show 

Lemma 3.2. Let A £ 1. If 

i W T E x < d ( o ) < 3 - f f o r j ' > 2 

Z J z 
and dj 0^ = 1, then 

1 + >/l-A . ,(i) s 3 - /l-A - , . . . I 
2 < d j < 2~ ' a 1 an 1* • 

Observe that if D^0^ is taken as the identity, this satisfies the condition o 

the lemma and ||d^ - d|| < -j . The convergence of this iterative multiplicative 

decomposition is established by 

Theorem 3.1. Let A ̂  1 and let D^ 0' be a diagonal matrix satisfying d|°^= 1 an 

U i H < d ( 0 ) < 1 ^ H , for j > 2. 

Then 

( 3.8) l|D(1) - D|| < 1 - " Dll. f o r a 1 1 L-
1 4- v 1 - A 

Proof. From the lemma 



Since 

we have 

d ( i ) d a i b i - l M ( i - 1 ) , . 
d j " d j " d ( i - l ) < d j - l " V ' 

j - 1 j - 1 

||D(i) . D|| < A _ || D(i -D _ D . 

(i + JTT)' 
and the result follows. | 

In the event that = D, it is easy to show that for all larger 
values of i equality will also hold. It is with this understanding that inequal 
ities such as (3.8) should be interpreted in degenerate cases. 

We turn to the useful technique discussed in Section Two to square the 
error reduction factor in the iteration for D. It will be this variation that we 
use in solving tridiagonal systems in Section 3.3. 

Suppose d(°* = d(°* for all j, and for all i ;> 1 let 

a - i b - 4 _ i 
dH = 1 " Lt\\ > J o d d and > I-

3 dj-l 
Then for each i J> 1, 

(3.9) 

2 < i ) = a ( 2 i - D j even, 

_ ,(2i) 

d j - d j , 3 odd. 

From this we conclude that for even j and for i 2 2 

Idl1* - * I - l*<2i-l> 
d.| = Id* 2 1" 1) - d.| < (l^HzKV \4{2i-3)- d. 

m / i ^ g ) 2 | d ~ ( i - 1 ) _ d 

* j-2' 

and similarly for the odd subscripts. Thus 

(3.10) ||D ( i ) - Dll < f 1 " WS^-U - D | | t f o r i 2 2 . 

V i + ST^kJ 
For i = 1, the error reduction factor is not squared„ 



Henceforth we will drop the tilda over d and D and refer to this accelerated iter

ation as the D-iteration. 

3.3 The Accelerated Parallel Gauss Algorithm. 
The multiplicative splitting of the matrix A, together with the solution of the 

two bidiagonal systems, defines an algorithm for the solution of the system Ax = c_. 

Let A = (I + L)D(I + R) as before and define £ by 

(3.11) (I 4- L)f = c. 

The vector x which satisfies 

(3.12) (I + R)x = D _ 1 f 

is the solution of Ax = c_. 
Using the classical Jacobi iteration on system (3.11) produces the iteration 

f}^ = c - L f / o r , in components, fj"^ = c j " ^jfj-l"^ • This is a vector iter

ation; all components of the vector f_ can be updated in parallel. We note that this 

iteration, like the iteration for D, can be sped up by alternately updating the even-

indexed components and the odd-indexed ones. A similar argument applies to the system 

(3.12). 

This accelerated Jacobi iteration for bidiagonal systems is also a Gauss-Seidel 

iteration where the equations and unknowns have been re-ordered according to a red-

black (or odd-even) scheme. Since for bidiagonal systems with unit diagonals the 

optimal SOR parameter is unity, the accelerated Jacobi iteration is an optimal SOR 

iteration as well. 
The Accelerated Parallel Gauss algorithm consists of the following steps: 

1. Compute the LDU factorization of A by the accelerated D-
iteration (3.9). Compute L and R by (3.4). 

2. Solve the system (3.11) iteratively using an accelerated Jacobi 

method. 
3. Solve the system (3.12) iteratively using an accelerated Jacobi method. 

The component form of the algorithm was given at the end of Section Two. For 

the purpose of analysis it is more convenient to use the following equivalent matrix 

formulation. 
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Let D ( 0 ) , f ( 0 ) , and x ( 0 ) be given. Then 

D U ) = I - A L(I - A L ( D ( i " 1 ) ) " 1 A R ) " L A R , i = 2, 3,..., ID. 

Let 6 denote D ( I D ) and define L = A ^ " 1 and & = 6 _ 1A R. Then 

f ( i ) = c - ia + tff^-V, i =2,3,..., IF. 
Let £ « 6 - V I F ) - Then 

x* 1* = + R 2 x ( i - L ) , i = 2,3,...,IX. 

Since the bidiagonal systems we solve are only approximations, we next consider 
the effects of using these approximations on the final accuracy obtainable by the 
algorithm. The following discussion leads up to the main results of this paper, 
Theorems 3.2 and 3.3, and reduces their proofs to simple calculations. 

Suppose that instead of solving (I + T)y = h, we use an accelerated Jacobi method 
to solve a slightly altered system (I + ^)y = 6, where both T and $ have only one 
non-zero diagonal. Then 

and 
2 

_ y = h - T h + T y 

and hence 

(3.13) £ U ) - y = * 2 ( ^ ( i " 1 ) - i ) + (I-THJU) + (£ 2-T 2)j£+ (T-T)ft. 

Taking norms we have 

where 

n = II*21| 
and 

6 = ||I - T||||£ - hH + ||*2 - T2||||̂ || + ||* - T||||£||. 

For r\ < 1, this iteration will be norm reducing as long as 

(3.14) 6 < (1 - t O I ^ 1 - 1 * - ill 

and this condition may be insured by requiring ||$ - t|| and ||£ - h|| to be sufficiently 
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s m a l l . W e c a n r e w r i t e (3.14) a s 

6 y ii A ( i-1) n 

i ~ n — v: II 

T h i s m e a n s t h a t a s r\ a p p r o a c h e s u n i t y , g r e a t e r a c c u r a c y i s r e q u i r e d i n T a n d ft 

t o a c h i e v e a g i v e n a c c u r a c y i n _y* W e g i v e a n u m e r i c a l e x a m p l e o f t h i s p h e n o m e n o n i n 

S e c t i o n F i v e . 

A n a p p l i c a t i o n o f t h i s d i s c u s s i o n t o t h e b i d i a g o n a l s y s t e m s i n S t e p s 2 a n d 3 o f 

A P G y i e l d s b o u n d s o n t h e r a t e s o f c o n v e r g e n c e o f t h e s e i t e r a t i o n s . 

T h e o r e m 3.2. L e t ||£2|| < 1 a n d ||62|| < 1. T h e n 

( i ) - 111 £ l l^ 2||||f ( i" 1 ) - 111 + 6 f , i = 2 , 3 , . . . , i f ; 

( i i ) l | x U ) - x|| £ l|a 2 | | | | x ( i - 1 ) - x|| + 6 X , i = 2 , 3 , . . . , I X 

w h e r e 6 f a n d 6^ d e p e n d u p o n t h e p r e v i o u s s t e p s a n d c a n b e m a d e a r b i t r a r i l y s m a l l . F o r 

i = 1 t h e e r r o r r e d u c t i o n f a c t o r s i n v o l v e £ a n d 6 i n s t e a d o f £ 2 a n d $ 2 . 

P r o o f . I t f o l l o w s f r o m (3.13) t h a t 

f(i) . f = £ 2 ( 1 ( i - l ) _ 1 } + {t2 _ L 2 } 1 + ( L _ t ) £ 

f r o m w h i c h ( i ) h o l d s w i t h 

« f £ ! l £ 2 - L2iii|f|| + \\t - L i n y . 

A l s o f r o m (3.13), 

x ^ - x = R ^ x ^ U ) + ( £ 2 - R 2 ) x + (R-6)6- 1f { I F ) + ( I - R H ^ f ^ - D ^ f ) 

a n d ( i i ) h o l d s w i t h t h e o b v i o u s b o u n d o n 6x- F o r i = 1 t h e p r o o f i s s t r a i g h t f o r w a r d . | 

3.4 A P r i o r i B o u n d s . 

S i n c e £ a n d & a r e c a l c u l a t e d i n t h e L D U d e c o m p o s i t i o n a n d a r e a v a i l a b l e d u r i n g 

A P G , t h e h y p o t h e s e s o f T h e o r e m 3.2 a r e e a s i l y v e r i f i e d b e f o r e t h e s o l u t i o n o f t h e 

b i d i a g o n a l s y s t e m s i s a t t e m p t e d . O n e c a n , h o w e v e r , d e t e r m i n e c o n d i t i o n s b a s e d o n l y o n t h e 

m a t r i x A i n o r d e r t o b o u n d t h e r a t e o f c o n v e r g e n c e o f A P G b e f o r e t h e L D U d e c o m p o s i 

t i o n i s c a l c u l a t e d . T h i s i s t h e c o n t e n t o f T h e o r e m 3.3. 

F o r t h i s p u r p o s e w e n e e d t h e f o l l o w i n g d e f i n i t i o n s . L e t 

1 1 
a = m a x | a a | 2 = | | a 2 | | 2 

j 3 J~L L 

a n d -L 

3 = m a x | b b | 2 = | | A 2 | | 2 . 
j J J R 
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From the definitions of £ and £ and from the bounds on D given by Lemma 3.1, 
we note that if A <; 1, then 

'|A2 I, 

and 

i i 6 2 h < /_ifL—y 
Vl + ^ 1 - A ' 

Theorem 3 . 3 . Let A , a , and 0 be as above (c.f.(3.5)). Assume that A ̂  1, 
2a £ (1 + 7 1 7 a ) , and 2 8 ̂  (1 + / ] T a ) . Then for APG 

l l D ( i ) 

D|| < f 1 - ^ y i l p t i - l ) - d||, i = 2 , 3 , . . . , I D ; 
\ i 4- / i T a / 

- f|| < / — ^ = ) 2 | | f ( i - 1 } - f | | + 6 f , i = 2 , 3 , ...,IP; 

l|x ( 1 ) - x|| < A _ M _ \ 2 | | s ( i - l ) . + f l i « 2 , 3 , . . . , 1 X . 

For i = 1 the error reduction factors are not squared. 
Proof. The inequalities are immediate from Theorem 3.2 and inequality (3.10) using 
the above bounds on ||£2|| and | | 6 2 | | . | 

The following definitions allow us to bound all the quantities which occur in 
APG. Let 

a* = max| a . | = ||a ||, 
j L 

and 
0 * = maxlbjl = | | a r | | . 

Note that a <̂  a . From the definitions of L and R and from the bounds on D 
given by Lemma 3.1, we note that if A <̂  1, then 

l|L|| < - S ^ -
and i + / i n 

l l R l l < — ^ 

i + JT-K 
Similarly, 

< 1 + and 

< - J U L 

1 + v / l - A 
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If we assume that 

a < 2 A ^ 2 

so that < 1 and ||R|| < 1 , then from the definition of f and x given by ( 3 . 1 1 ) 

and ( 3 . 1 2 ) , the above bounds on ||L|i and ||R|| allow us to conclude 

(3.15) 
and 

(3.16) 

111II < 

l l x i l < 

T I' 

2 III 

Analogous bounds hold for \\f} ̂  \\ and ||x 

The importance of (3.6) , (3.15) , and (3.16) is as follows. By the bounds on D, 
f_, and x we can bound the initial errors in D^°',f/°\ and x^0^ . For example, if 
f^°) = 0 then ||f^°' - fj| = Hence all quantities occurring in Theorem 3.3 can 
be bounded before the computation simply by inspection of the matrix A and the right 
hand side c_. Thus we can calculate, a priori, the number of iterations ID, IF, and 
IX which will be sufficient to achieve a given accuracy in the computed solution x-

1 -

(i) 
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4. Variations of APG. 

In this section we discuss four variations of APG. The first three are motivated 
by the observation that the divisions in the D-iteration might prove to be dispro
portionately expensive on some computers, so we include alternative "divisionless" 
algorithms. For example, on Illiac division requires about ten times as much time as 
addition. Division is also expensive when the matrix components themselves are 
matrices rather than scalars. Therefore these variations may be of interest for the 
block tridiagonal case which is discussed in Section Six. 

4.1 The N-iteration. 

We can eliminate the division in the iteration D ^ = I - A T (D^ ) _ 1 A 
LI R 

by approximating the diagonal matrix (D^ " " 1 ^ ) " 1 by a diagonal matrix N ^ i _ 1 ^ , then 
updating our approximation. If we use one step of Newton iteration to approximate 
the matrix inverse we obtain for all i 

= I - v i " - 1 ^ , 
(4.1) 

N ( i ) = N ( i - D ( 2 l _ 5 ( i ) N ( i - l ) ) > 

These two equations can be combined as 

(4.2) N
( i ) = N ( i - 1 ) ( 2 l - ( I - A T N ( I - 1 ) A 0 ) N ( I " 1 ) ) . 

L R 
Let N ^ l ) = Diag (n[ l ) , n ^ l ) , . . . ,n^ l )) . Then in component form (4.2) is 

n 1 1 for all i, 

n < " « n < ^ < 2 - (1-a.b. ^ ^ > ) n< ̂ > ) , f o r j > x "j "j ^ a j M j - l " j - l ' n j - i 

As before, let A = maxUa.b. , I . 
j 1 D D-l1 

Theorem 4.1. Let A £ 1 and N ( 0 ) = I. Then 

* ( i ) | | < 2 

and 1+ 
(4.3) | | K (i> - D - l | | < 1 - ^ | | N ( i - D . D - l | , + | | D | | . | | N ( i - l ) 

Proof. We write (4.1) in component form. For all i we have 

D"1!!2, for all i. 

4.1 



( 4 . 4 ) d{.i] = 1 - a-jbj^n^i 1' for j > 1 
and 

( 4.5) n* 1' = n< i' 1 )(2 - a ^ n j 1 " 1 ^ for j > 1. 

From (4.5) it follows that 

( 4 . 6 ) " j 1 ' ^ ~hr 
j 

and as in the proof of Lemma 3.1, we have, using ( 4 . 4 ) and ( 4 . 6 ) , 

3(i) 1 + vTT d. > 2 

Hence 

3 i + v/I^a" 

and the bound on the norm of N ^ is established. After some algebraic manipulation, 

N ( i ) _ D - l = N ( i - 1 ) A ( N ( i - D . D - l ) f l N ( i - D . D ( N ( i - l ) . D - l , 2 

and the rest of the theorem follows from the bound on . | 

Thus asymptotically, the quadratic term in (4.3) becomes negligible and this 
iteration behaves like the iteration for D. The reader is referred to Section Five 
for a numerical example showing this effect. Also, the same technique for squaring 
the error reduction factor in the iteration for D can be applied mutatas mutandi to 
(4.2) and it is this accelerated form that will be used when we wish to avoid division 
in the LDU factorization. We shall refer to this as the N-iteration. Note that 
N^ I N' may be used in place of ( D ^ I D ^ ) _ 1 in (3.4) to obtain the multiplicative decom
position of A, and hence the f_ and x iterations of APG can still be used to solve 
the system Ax = c. 

Global convergence of the N-iteration is not implied by (4.3). It can be shown, 
however, that with the starting value N ^ = I the N-iteration will converge to D - 1. 
Our proof of this is a tedious case analysis and is omitted. 

4.2 Other variations. 
Our second iteration, despite its slower convergence rate, is faster in execution 

time for large dominance cases because of its smaller operation count per step. 
Note that the multiplicative splitting of A involves D _ 1 rather than D. We 
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can write 

D 1 = I + A T D 1 a d D 1 

Li R 
which is immediate from multiplying both sides of (3.1) by D ^ and rearranging 
the equation. This suggests theNiteration 

= I + A W ^ - ^ A W ^ " 1 ) 

u K 

which can be shown to have an error reduction rate of 1 - V l - A , where A is as above. 
The third variation may be derived by viewing d ^ in (2.1) as a continued frac

tion that equals its k t h convergent for k > i. Using the well known relations 
connecting the numerators and denominators of three consecutive convergents (c.f. 
Khovanskii [1963]), we have the associated iteration: 

e j " 1 ' = 1; e (. 0 ) = 1 - a . b . , . 

3 3 3 3-1 Then 

^ e ' - D - a . . b . . . f - 2 ) 3 3 3 - 1 D-i-1 j 

If d(°* - 1 - ajD^_1 , then for exact ar ithmetic 

( i) 
d s ( > for all i and j. 

ej-l 
In particular, we can recover d ( I D ^ from e^ 1 0^ and e j * i ~ ^ using one division at 
the end; thus the "rate of convergence" of this variation is the same as that of the 
iteration for D, (3.8). On the other hand, for ajkj ^ > 0 the approach zero 
and scaling may be necessary. 

Finally, we note that using cyclic reduction on a tridiagonal matrix produces 
tridiagonal matrices whose diagonal dominance is no less than the original (c.f. Stone 
[1974] and Heller [1974]). Since iterative methods become more attractive as the 
dominance of a matrix increases, it may be feasible to switch to an iterative method 
after a number of steps of cyclic reduction rather than using cyclic reduction to 
reduce the system to a single equation. 

4.3 



5. Numerical Behavior of APG. 
In this section we discuss various aspects of the numerical behavior of APG in 

order to illuminate the theory of Sections Three and Four. For this purpose we report 
on the system Ax = c_ of size 5000 where A is such that all off-diagonal non-zero 
elements are 0.48 (A = 0.9216) and c is chosen such that all components of x will 
be unity. The following starting values were chosen: = N ^ ° ^ = I, = c_} an<3 

x ( o ) , 6 - V I F ) . 

Theorem 3.3 predicts that the error reduction factor for the D-iteration will be 
no worse than 0.3164. On the first iteration, the observed error reduction factor 
was 0.36, falling to 0.2404 on the second iteration, and thereafter increasing to the 
bound 0.3163 observed on the eighth iteration. The poor error reduction in the first 
iteration was due to the squaring effect of the re-ordering on the D-iteration not 
being felt until after the first "half" iteration; that is, the error reduction factor 
was determined by odd-indices of D, which, by equation (3.9), did not benefit from 
the re-ordering until the second iteration. 

The N-iteration began with an error reduction factor of 0.5904, which improved 
steadily as the algorithm progressed and the quadratic term of (4.3) became negligible. 
By the eighth iteration the error reduction factor had become 0.3169. 

The intermediate vector _f^ I F^ w a s calculated such that ||f/IF^ - _f|| < 8.7 x 10~ 6. 

This inaccuracy in f.^IF^, together with the inaccuracy in D^ I D^, effectively limited 

the final accuracy possible for _ x / s u c h that ||x^' - x|| > 2.7 x 10~ 5, for all i. 

The error reduction factor for the x~iteration was predicted to be 0.5625 (setting 

6 f = 0 in Theorem 3.3 for simplicity). The actual error reduction factor was ob

served to be slightly better throughout the iteration. 
In summary, this section has demonstrated the following points about APG. The 

error reduction bounds of Theorem 3.3 are generally pessimistic, aside from the first 
iteration where the squared aspect of the acceleration is ineffective (the un-squared 
bound holds, however). They are, however, approached asymptotically. The error re
duction for the N-iteration approaches that of the D-iteration as the quadratic term 
becomes negligible in comparison with the linear term in the error reduction bound. 
Finally, approximating D and f_ limits the final accuracy obtainable in x-

5.1 



6. APG for Block Tridiagonal Systems. 

The APG algorithm has a natural extension to the case of a block tridiagonal sys
tem. If the blocks are dense (or the fill-in for sparse blocks can be tolerated), 
then APG may be attractive. One important special case of this situation is a penta-
diagonal system viewed as block tridiagonal. In this section we confine ourselves to 
proving the main convergence results for block APG and do not compare it with other 
direct or iterative methods. Again, for the analysis, it is no restriction to assume 
that the matrix has been normalized to have identity blocks on the diagonal. 

6.1 Iterative Block LDU Decomposition. 

If we let the diagonal blocks of the block diagonal matrix D be denoted by D^. 
D 2,...,D n then (2.1) becomes 

D. = I - A .DT^B . -j 3 3 3-1 3-1 

and the associated iteration is 

(6.1) D*1* = I - A j ( D ^ i 1 ) ) " L B j _ r 

Just as Lemma 3.1 was the key to the analysis of the APG algorithm, the following 
definition and lemma are crucial to the block case. For this section only, let 

A = max 41| A || ||B. J| . 
j J J 

Lemma £.JL. Let A ̂  1. Then A is non-singular, and for all j, JJL - D̂ || < 1 " 2 ^ 1 ~-

and HD^II < — . Furthermore, if ||i - D[0) || < 1 ~ a n d D, ( i ) = I for all 
1 1 + /5TA 3 2 1 

i, then HI - D ^ H < 1 - v / r Z I and || (D< i J ) < 2 for all i and j. 

Proof. The bounds are proved by induction. D̂ ^ = I, ||l - D^\\ = 0, and \\D^1\\ = 1 
satisfy the bounds. Since I - D.. = AJDT^B.. 1 we have 

II II II II II -1 „,. „ ILAJLLLLBJ-LLL 1 - V T T 

and also 

The bounds on the iterates D? 1' are established similarly. | 
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T H U S T H E C O N D I T I O N A < 1 A N D D ^ 0 ^ B E I N G " N E A R " T H E I D E N T I T Y A R E S U F F I C I E N T T O 

I N S U R E T H A T A L L A R E I N V E R T I B L E A N D T H E I T E R A T I O N ( 6 . 1 ) I S W E L L D E F I N E D . B Y 

U S I N G T H I S L E M M A I N T H E S A M E W A Y T H A T L E M M A S 3 . 1 A N D 3 . 2 W E R E U S E D I N T H E P R O O F O F 

T H E O R E M 3 . 1 , I T I S E A S Y T O S E E T H A T 

| | D ( I ) . D | | < 1 - | | D ( I - D . D | | 

1 + \/I^A 

A N D H E N C E T H A T T H E I T E R A T I O N ( 6 . 1 ) L E A D S T O T H E B L O C K L D U F A C T O R I Z A T I O N O F A . T H E 

C O N D I T I O N A < 1 A L S O A P P E A R S I N R I C H T M Y E R A N D M O R T O N [ 1 9 6 7 ] , P A G E 2 7 9 , A S O N E A S S U M P T I O N 

T O S H O W T H A T A I S N O N - S I N G U L A R . V A R A H [ 1 9 7 2 ] P R O V E S A R E L A T E D T H E O R E M . 

6 . 2 T H E B L O C K A P G A L G O R I T H M . 

G I V E N A B L O C K L D U F A C T O R I Z A T I O N O F A , O N E C A N S O L V E T H E A T T E N D A N T B L O C K B I D I A G O N A L 

S Y S T E M S I T E R A T I V E L Y A S I N T H E S C A L A R C A S E . A L L T H R E E I T E R A T I O N S C A N B E A C C E L E R A T E D B Y 

R E O R D E R I N G T H E C O M P U T A T I O N . W E G I V E T H E C O M P O N E N T F O R M O F T H E B L O C K A P G A L G O R I T H M : 

L E T D ( 0 ) , F ( 0 ) , X ( 0 ) B E G I V E N . T H E N 

1 . S E T D J 1 ^ = I F O R A L L I . 

F O R I = 1 , 2 , . . . , I D , L E T 

D ! I } = I - A.iD^1:^ )~1B . J E V E N , 
3 3 3 - 1 3 - 1 J 

D ^ L ) = 1 - A . ( D ^ 1 ! ) ~"^B . N , J O D D A N D > 1 . 
3 3 3 - 1 3 - 1 J 

D E F I N E 6 . = D ( . I D ) , £ . = A . £ : \ , 6 . = F ^ B . . 
3 3 3 3 3 - 1 ' 3 3 3 

2 . S E T f | l ) = C± F O R A L L I . 

F O R I = 1 , 2 , . . . , I F , L E T 

F ( . I } = C - fi.F^:1*, J E V E N , 
- 3 - 3 3 - 3 - 1 

F ( . L ) = C . - t.f^] , J O D D A N D > 1 . 
- 3 - 3 3 - 3 - 1 

3 . D E F I N E ^ = ^ T 1 f ^ I F )
 F O R A L L J . 

S E T X ( L ) = Q F O R A L L I . 
— N N 

F O R I = 1 , 2 , . . . , I X , L E T 

( 1 ) A A ( I - 1 ) • 
X . = Q . - R . X . , , 1 O D D , 
- 3 J 3 - 3 + 1 9 J 

X ^ = Q . - 6.X^ f | , J E V E N A N D < N . 
- 3 ^ 3 3 - 3 + 1 J 
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To derive bounds on the rate of convergence of the iterations we need the follow
ing definitions. For this section only, let 

a = MAX(||A.||||A. ,||) 
j J J 

and 
8 = max(||B ||||B J ) 2 . 

j J J 

Then we have the following. 

Theorem 6.J,. Assume A £ 1, 2a < 1 + Tl^A , and 2 8 < 1 + vT-X. Then for the block 
APG algorithm, 

„D(i> . D | | < / J ^ E E \ 2 | | D ( i - i ) _ D | L i B 2 i 3 m i 

i.(i) 

If - rn < i \ nt - fll + 0 f, i = 2,3,...,IF, 

D|| < / ^ - P \ 2 | | D ( 

ill < / 2a \2^(i-l) _ U + 

LBS(±) - XLL < / 2 * W 1 " " - X | | + ' a x , i = 2,3,...,IX, 

where 6 f and 6 x can be made arbitrarily small. 

Proof. The proof is the same,mutatas mutandi.as that for Theorem 3.3, using Lemma 6.1 
in place of Lemma 3.1. | 
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7. Parallel Algorithms Based on Additive Decompositions. 
We briefly review the classical iterative algorithms for solving Ax = c_ based 

on an additive decomposition of A. These iterations are easily interpreted as 
parallel computations. If we write A = I - J, the Jacobi iteration takes the form 
x^"^ = c 4- J x ^ for all i. In components, 

aj Xj-l j j+l 

for all j, where improper subscripts by convention denote zero elements. 
By partitioning the x vector according to odd and even subscripts, we can ac

celerate the convergence in a manner similar to the iteration for D: 

(7.1) 
3 c . 

3 
*A-i1] - j odd^ 

c. - a.x!" 

3 3 3~L 

^ (i) 
bj xj+l > ^ even. 

This doubles the rate of convergence; however, the problem is that unlike the itera
tion for D, where one could arbitrarily accelerate the iteration by a factor of k 
merely by rearranging the vectors so that indices equivalent modulo k are grouped 
together, here such a grouping modulo k yields a factor less than k for k > 2. Fc 
example, in a numerical experiment the vectors were rearranged modulo three; the ob
served error reduction term was not cubed but rather was raised to the power 2.2. 

Another way of viewing (7.1) is that it is the block Gauss-Seidel iteration ap

plied to a permutation of the original system. In particular, let 

A = *12 
21 

where I denotes the identity matrix, A 1 2 is lower bidiagonal and 

diagonal. Spec ifically, 

is upper b 

and 

A12 

A21 



If we reorder and partition the vectors x and c to be compatible with A', we may 
write the system as 

^21 
Using this ordering, we have the block Gauss-Seidel iteration 

x ( i ) = c - A x 1 1 " 1 1 

—1 —1 12—2 3 

x ( i ) = c - A x ( i ) 

-2 -2 A21-l 

which, when expressed in components, is the same as (7.1). 
The block SOR method is defined by 

(7.2) 

- x * ^ > + o X c 2 . ^ i - D - A 2 1 x } « , . 

The two-cyclic Chebyshev method (henceforth referred to simply as Chebyshev) is de
fined similarly to (7.2), the only difference being that the a? changes with each 
iteration. 

If we denote the spectral radius of J = I - A by p , the error reduction 
factor of block Gauss-Seidel can be estimated by p . For block SOR, the optimal 

2 
parameter co = ZHZI yields 

-0 i + V ^ 

(7.3) | | x ( i ) . v|| ~ 1 - N / l - p 2 l | v ( i - l ) 

1 + \fl- 2 -p" 
The same estimate holds for Chebyshev. Because of the asymptotic nature of these esti
mates, the above error reduction estimates are generally optimistic. They will, how
ever, be used in an analytic comparison of the various parallel iterative methods for 
a model problem defined in the next section. 

In the case where A is symmetric and positive definite the method of conjugate 
gradients may be applied. The formulation due to Reid [1972] expresses the algorithm 
in a form similar to the Chebyshev iteration, but with a different set of parameters 
which must be computed as part of the iteration. 
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8. Comparison of Methods. 
In this section we compare the various methods presented in the paper. We begin 

with a brief explanation of operation counts for algorithms on a vector computer. We 
use this technique in our analysis, first for a model problem which in a certain sense 
serves as a worst-case problem for all the methods, and then for numerical examples. 
The conclusion is that generally APG is the best of these iterative methods. 

8.1 Timing Considerations for Vector Computers. 
The distinguishing characteristic of a vector computer is that it can operate 

homogeneously component by component on vectors of length n much faster than it can 
perform the same operation n times in succession on scalars. This may be accomp
lished by having multiple arithmetic units which perform the same operation on differ
ent operands, as in Illiac where there are sixty-four processing elements which exe
cute the same instruction. Another method is by decomposing an operation into several 
stages, as in an assembly line, so that at any instant many vector components can 
be in different stages. This technique is called pipelining; the STAR processes vec
tors in such a fashion. Both techniques are sometimes combined, resulting in multiple 
pipeline arithmetic units which provide even greater speed. 

The time required to operate on two vectors of length n in a vector computer 
can be estimated by t T~l + s where m depends on the machine architecture (being 
8 for the STAR and 64 for Illiac), and t and s depend on the particular operation. 
One can associate t with the time required to produce m results and s with the 
overhead associated with processing vectors. This is to be contrasted with the same 
number of arithmetic operations performed sequentially, whose time is estimated by 
t'n, where t' is the time associated with each operation. For vector instructions 
to be efficient, — must be somewhat less than t'. On the STAR, they differ rough-

m 
ly by a factor of about ten; on Illiac, by a factor of sixty-four. 

For convenience we will approximate the form of the timing estimates to be simply 
t n + cr . For example, a vector addition on the STAR takes 4 n + 96 clock cycles, 
op op ^ 3 z 

and on Illiac ~ r clock cycles for n > 64. When processing a vector of length n as 
t n 

k smaller vectors, the time required is k( °^ + a ) = t n + ka rather than 
JV ^P ^ P ^P 

t n + a . Thus there is some penalty associated with processing smaller vectors, 
op op 

but if the convergence rate accelerates significantly, it may be advisable to D a y this 

additional cost. 8.1 



When we apply this method of estimating the time required for each iteration, we 
find that APG requires 

(8.1) ( t ^ _ + T +)n + 2(o^ + a +) 

for each D-iteration, and 

(8.2) ( t x + T +)n + 2(ct x + a +) 

for each f and x iteration. Chebyshev, on the other hand, requires 

(8.3) (3 t X + 4 T +)n + 6CTx + 8cr+ 

for each iteration. Conjugate gradients requires 

(5 t + 3 t , + t . )n + I0a v + 6at + 2a. x + ip x + ip 

for each iteration, where ip is the inner product operation. 

8.2 A Model Problem. 

We consider a model problem where the diagonals have constant coefficients. This 
turns out to be a worst-case problem (in a sense discussed below) for all the algorithms, 
and is also analytically tractable. Let 

A . a,b, n 

1 b 
a l b 

a 1 

where A , is of dimension n. For any matrix A with normalized diagonal such a, d , n J 

that | A | <1 A . , p(I - A) p(I - A , ) . The classical methods of Section Seven a, j j , n a, j d, n 
have asymptotic error reduction estimates based on the spectral radius; the appropri

ate model problem with positive coefficients which dominates a given matrix provides 

a worst-case analysis of the behavior of the algorithm. The following monotonicity 

theorem, which generalizes a result of Cryer [1973], establishes a similar result for APG. 

Theorem 8.1. Let A and A 1 be of the form (1.2), |A| ̂  A', and suppose that both 
A and A' satisfy the hypotheses of Theorem 3.2. Then |L| <; L' and |R | R F . If 
D ( 0 ) ^ D ' ( 0 ), then | L ( i ) | ^ L ' ( i ) and |R ( i } | ̂  R- ( i } , for all i. 
Proof. By assumption | A L | £ A^ and | A R | £ A^, so we need only show D 2 D' and 

D 1 ^ . The proof procedes with an induction on j. Clearly d { = d i = a n d 
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a.b._1 |a.b. | a' b'_! 
if d. n > d' then d. = 1 - j 1 > 1 ] 1 > 1 J,1 = d . The remainder I -1 — i-l i d. , — d., — d I , 1 J J J j-1 j-1 j-1 J 

is proved similarly. | 

As a result of Theorem 8.1, the error reduction factors of Theorem 3.2 for 

A will be no worse than the corresponding factors for A r. The simplicity of the 
constant diagonal matrix A , together with the majorant properties, motivate 

a, jd , n 
choosing A' = A , . -, n J a,b,n _1 J. 

The spectral radius P = p(I ~ A -i ) is 21 ab | cos (—7-7) = A cos . Thus 

a, D , n n-r l n-r x. 
2 2 IT 

p = Acos (n+]_) and by comparing the error reduction rates of Chebyshev (the best of 
the iterative methods, see Varga [1962]) with APG (compare Theorem 3.3 with (7.3)) we 
see that the D-iteration should converge about twice as fast as Chebyshev. A simple 
calculation shows that if a = b then the _f and x iterations should converge at 
about the same rate as Chebyshev converges for the original system. From (8.1) - (8.3) 
it follows that each iteration of APG is about a third as time consuming as Chebyshev, 
so that we expect that the total time required for APG will be about the same as that 
required for Chebyshev. 

What prevents us from a more precise comparison is the following consideration. 
The asymptotic bounds for Chebyshev are generally optimistic, while those for APG are 
conservative, so that APG should do better than we estimate. However, for the model 

2 
problem p < A so that the asymptotic bounds predict that Chebyshev will require 

2 
fewer iterations. In fact, for general matrices A one can show that o < A by 

using the Perron-Frobenius theory (together with a similarity transformation) to pass 

to a model problem which has the same value for A but a larger spectral radius than 

the original matrix. For this majorizing matrix the result is true and hence it fol

lows for the original matrix as well. 

In summary, what the model problem shows is that in the worst case APG should 

behave like optimal Chebyshev (but without having to calculate optimal parameters). 

The numerical testing which follows confirms this observation, and indicates that over 

a wide range of problems, APG is at least as good, and sometimes strikingly better, 

than Chebyshev. 
8.3 Numerical Testing. 

The theory we present gives APG asymptotic error reduction factors slightly 
larger than Chebyshev. However, the error reduction factors for APG are strict upper 8. 3 



bounds while that for Chebyshev is an asymptotic lower bound and thus we have not 
derived a general theoretical conclusion. The numerical testing allows us to make 
some empirical observations. We find that APG is superior to the other iterations 
studied in this paper. In general it behaves like the optimal Chebyshev iteration, 
but with no optimal parameter needed. In addition, it is applicable to some systems 
where the theory of optimal Chebyshev iteration is inapplicable. 

All testing was carried out on the Carnegie-Mellon University Computer Science 
Department's PDP-10 in APL. We estimated the total time to solve a system by the product 
of the number of iterations and the arithmetic complexity of each iteration. For timing 
estimates we used manufacturers' estimates (as of Fall, 1974) in the model described in 
Section 8.1. We neglected the cost of testing for convergence for all iterations. In 
addition, for APG we neglected the pre-processing associated with calculating the products 
cijkj"1' and for calculating L = A L D - 1 , R = D - 1 A R , and c± = D - 1f. For Chebyshev we ne
glected the calculation of optimal parameters. For Illiac we neglected communication 
overhead as well. Since division is expensive on Illiac, we replaced the D-iteration of 
APG with the N-iteration when estimating times for Illiac. Unless otherwise noted, c 

was chosen such that all components of x were unity. We consistently chose the initial 
values D < 0 ) = N

( 0 ) = I, f < 0 ) = o, and x ( 0 ) = S ^ f ( I F ) for APG and x < 0 ) = c for 
the other iterations. 

8.3a The Model Problem. 

We first consider the case of constant diagonals. The number of iterations re
quired to reduce the initial error by 2 is given in the accompanying table. Ml is 
the case a = b = 0.3; M2, a = b = 0.45; M3, a = b = 0.48; M4, a = b = 0.49. The rea
son for the _f iteration taking longer than the x iteration is that it must be con
tinued to greater accuracy in order to achieve the desired accuracy in the x - itera
tion: to an accuracy of 2 ~ 1 7 in the D and _f iterations in M2 and to an accuracy 

-18 
of 2 in the D and f_ iterations in M3 and M4. For M5, a = 0.49 and b = -0.49; 
since all eigenvalues of I-A are pure imaginary, the Chebyshev iteration does not 
converge. M6 is the case a = 0.1 and b = 0.5. Numbers in parentheses indicate the esti
mates based on A and p for the number of iterations necessary to reduce the initial 
error. By neglecting 5 f and 6 x we occasionally underestimated IF and IX in APG. 

For all of these examples we estimated the total time for APG on the STAR would 
be less than the total time for Chebyshev; for example, for M4, APG would require 
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TABLE 
Numerical Comparisons of Iterative Methods 

>roblem APG G-S Cheb _A 2 
P (I-A) 

Tame 
D N f X 

Ml 3(4) 4 6(5) 6(5) 11(10) 6(5) 0. 36 0. 3529 

M2 7(7) 8 14(13) 12(12) 50(46) 13(11) 0.81 0. 7940 

M3 11(11) 13 24(22) 19(19) 128(103) 21(17) 0.9216 0. 9034 

M4 15(16) 17 36(31) 27(26) 258(256) 29(26) 0.9604 0. 9509 

M5 4(16) 5 8(31) 7(26) 122(256) diverges 0.9604 0. 9509 

M6 3(3) 3 3(3) 9(9) 11(7) 9(4) 0.2 0. 1960 

Rl 9(11) 10 17(21) 15(18) 77(75) 17(14) 0.9612 0. 8691 

R2 7(11) 8 12(21) 12(18) 48(45) diverges 0.9612 0. 7 907 

R3 5(11) 6 9(21) 8(18) 43(56) diverges 0.9612 0. 8319 

R4 4(11) 4 7(21) 7(18) 48(75) diverges 0.9612 0. 8691 

R5 5(7) 6 8(13) 8(12) 22(21) 9(7) 0.8326 0. 5958 

Problems Ml through M6 are described in Section 8.3a, Rl through R5 in Section 8 
Numbers under APG, G-S (Gauss-Seidel) and Cheb (Chebyshev) indicate the number o 
iterations required; numbers in parentheses are estimates based on A, a , and p 
for APG and p for G-S and Cheb. The quantities A and pz are given for 
comparison. 
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132n + 26,000 cycles while Chebyshev would take 145n + 30,000 cycles. On Illiac 

the situation would be reversed, with APG requiring 21.8n cycles and optimal Chebyshev 
requiring 19.9n cycles. 

The conjugate gradient method was also applied to several of these problems (Ml 
through M4). It required slightly fewer iterations compared to Chebyshev, but the 
difference was not significant if p(I - A) is known. When p(I - A) is unknown and 
must be estimated as part of the Chebyshev iteration, conjugate gradients may be more 
effective in terms of number of iterations. For example, conjugate gradients re

quired 294n + 65,000 cycles for M4 on the STAR. The inner product was responsible for 
the doubling of the time; however, the estimation of optimal parameters for Chebyshev 
requires inner products as well. 

8.3b Random Coefficients. 

A model problem with n = 100, a = b = 0.48 was perturbed by subtracting a uni
formly distributed random quantity X, where 0 £ X <̂  0.03, from the off-diagonal 
elements. Call this problem Rl. Next, one third of the lower diagonal elements were 
negated at random. Call this problem R2. Then an additional one half of the positive 
elements of the lower diagonal were negated, creating R3. Finally, R4 was the result 
of negating all lower diagonal elements. The results are presented in the Table. For 
all cases A = 0.9612, as for the model problem M3. For APG the initial error was 
reduced by 2 ~ 1 7 for the D and f_ iterations and by 2 ~ 1 5 for the x - iteration. For 
Gauss-Seidel and Chebyshev the initial error was reduced by a factor of 2 ~ 1 5 . The 
relationship between M3 and Rl is that of a model problem which dominates a matrix 
with varying coefficients. The remaining random coefficient matrices illustrate the 
effect of negative quantities in the convergence of APG. The problems R1-R4 illus
trate the conclusions of Theorem 8.1. 

A similar problem, R5, was created by using larger perturbations so that all off-
diagonal elements fell in the range 0.23 to 0.48 with A = 0.8326. In APG, the initial 
error was reduced by a factor of 2 ~ 1 6 for D and 2 " 1 5 for f and x-'I" Gauss-Seidel 
and Chebyshev, the initial error was reduced by 2 ~ 1 5 . 

8.3c A Boundary Value Problem. 

The boundary value problem on [0,tt] given by 

-x" + 1000sin(t)x = cos(t) (1000 sin(t) + 1) 
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with x(0) = 1 and x ( i r ) = -1 has an analytic solution x(t) = cos(t). The problem 

was discretized with uniform mesh spacing of At = r^y to generate the tridiagonal 

system 

— x -J- 2x. — x 
— \ + 1000 sin(t.)x. = cos(t.) (1000 sm(t.) + 1) 

At 

where t^ = iAt. The equations were normalized with the result that the off-diagonal 

elements fell within the interval (-0.4926,-0.3369). If the discretized problem were 

solved exactly, it would agree with the analytic solution to six decimal places at the 

mesh points. 

For this example, A = 0.9564 and p(I - A) = 0.8958. The Chebyshev iteration took 

thirteen iterations and Gauss-Seidel required forty-nine to reduce the initial error by 

2 ~ 1 5 while APG took seven, twelve, and ten iterations for the D,.f, and x iterations 

to achieve a comparable error reduction in the x iteration. On the STAR the times 

would be 50.5n + 15,000 cycles for APG, 65n + 23,000 cycles for Chebyshev and 

147n + 50,000 cycles for Gauss-Seidel. 

8.3d Counterexamples. 

The next two examples are included for mathematical completeness. The first shows 

that the sufficient condition A £ 1 is not necessary; the second that diagonal dom

inance is not necessary either. 

A model problem with n = 50 and a = b = 0.4 was perturbed by setting 
a26 ~ a27 = ^25 = ^26 = F o r t^-is case A = 1.44 so the APG theory does not apply. 
The spectral radius of I - A is 0.962 and the system has a solution for which Cheby
shev took twenty iterations and Gauss-Seidel 138 iterations to reduce the initial error 

-15 
by 2 . The APG algorithm took seven, eleven and ten iterations for the D,_f, and x 

iterations to achieve comparable error reduction in the x iteration. On the STAR the 

times would be 49n + 9 772 cycles for APG and 105n + 22,000 cycles for Chebyshev. This 

example shows that the A <̂  1 condition is not necessary. However, d2 7 = 0.345 < -j,i.e 

both the hypothesis and conclusion of Lemma 3.1 (which governs the convergence theory 

of APG) have been violated. The applicability of APG, and its desirability over Cheby

shev, is greater than the theory we have presented would seem to indicate. 
To show that diagonal dominance is not required for APG, consider the case where 

= b_. = jj; for j odd and a_. = b_. = -g- for j even. Here A = -g- and the spectral 
radius of I - A is 0.9354 cos(—TT) since this matrix is similar to A with 

n+1 a , a , n 8.7 
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a = (-32") = 0.4677. In order to pick up sixteen bits in the D and f_ iterations, 
and fifteen in the x iteration, APG required eight, seventeen, and fifteen itera
tions. In comparison, Gauss-Seidel required seventy-eight and Chebyshev sixteen. 

8.4 Comparison to Direct Methods. 

A direct method for the solution of Ax = c yields an answer in a time dependent 
only on the size of the system. This is in contrast to the iterative methods where 
the time for an answer also depends on the desired accuracy, the rate of convergence 
and the initial estimates. Moreover, the choice of a method from either class is 
computer dependent. Analysis shows that there are crossover points between the two 
classes of methods. 

In general, if A and p(I - A) are near unity, the iterations converge very 
slowly and a direct method is preferred. Lambiotte and Voigt [1974] report that cyclic 
reduction is the most efficient direct method for the STAR for systems of size greater 
than approximately 120. Based on our test cases, cyclic reduction should be used for 
large n and when A > 0.8 and good initial values for APG are not available. For small 
n, Gaussian Elimination should be used. In particular, the model problem A _ _ , 
which arises from a discretization of Poisson's equation in one dimension, should be 
solved using a direct method. The error reduction estimates in Theorem 3.3 are unity 
and the predicted convergence of APG does in fact occur numerically, albeit slowly. In 
fact, the error reduction is so slow that a finiteness property of APG is operative: it 
is easy to show that for I ^ F , D ( L ) = D. Also if D ( I D ) = D then for i > ^ J [ ( L ) = f 

and if D ( I D ) = D and f ( I F ) = f then for i ̂  F , x ( i ) = x-

For systems such as Ml with n = 1000, APG is much better than cyclic reduction, 
requiring (on the STAR) 33,000 cycles versus 40,000 for Chebyshev and 69,000 for cyclic 
reduction. In general, for systems with some dominance APG will be faster than cyclic 
reduction. For systems of size 128 to 512, APG will take no longer than cyclic reduc
tion when a and (3 are both less than 0.46. 

8.5 Computational Considerations. 

Two important computational aspects should be considered in comparing APG with the 
other methods. The first deals with the calculation of optimal parameters, the second 
with termination criteria. Neither of these was included in the above analysis; their 
consideration makes APG even more attractive than the other iterative methods. 
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For general tridiagonal systems Chebyshev requires the estimation of p(I - A ) . 
This estimation is usually in terms of two inner products involving residuals. For 
the STAR the inner product operation is considerably more expensive than a vector 
addition (by a factor of about eight). The result is that an inner product requires 
about as much time as the Chebyshev iteration for tridiagonal systems. This has a 
deleterious effect on the actual performance of Chebyshev on general systems. Our 
analysis which showed APG as roughly equivalent to Chebyshev with respect to total 
execution time ignored this problem by calculating p(I - A) before Chebyshev began 
and by excluding this calculation from the timing estimate. The APG algorithm, of 
course, needs no optimal parameter estimation. But, on the other hand, APG requires 
the termination of three iterations whereas Chebyshev requires only one termination. 

The above analysis also ignored the cost of checking to see if termination 
criteria for the iterations had been met. Depending upon the implementation strategy, 
testing for convergence can be quite expensive on vector computers; in any case, be
cause of the arithmetic simplicity of these iterations for tridiagonal systems, con
vergence tests are not negligible. In striking contrast, the steps of APG, although 
presented as iterations, have readily calculable a priori upper bounds for the number 
of iterations required (and also for the degree of accuracy needed for intermediate 
quantities). In fact, this can be done by table look-up. 
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