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ABSTRACT 

The behavior of the vector recurrence Z^-j 8 3 My^ + is studied under 

very weak assumptions. Let X(M) denote the spectral radius of M and let 

X(M) ^ 1. Then if the w^ are bounded in norm and a certain subspace hypothesis 

holds, the root order of the ^ is shown to be \(M). If one additional hypoth­

esis on the dimension of the principal Jordan blocks of M holds, then the quo­

tient order of the ^ is also X(M). The behavior of the homogeneous recurrence 

is studied for all values of X(M). 

These results are applied to the analysis of 

(1) Nonlinear iteratioh with application to iteration with memory and 

to parallel iteration algorithms 

(2) Order and efficiency of composite iteration 

(3) The power method. 



1. INTRODUCTION 

We study the behavior of the vector recurrence 

under very weak assumptions. We apply our results to the power method 

to the analysis of iterations for nonlinear equations and to 

the composition of such iterations. In particular our results can be used to 

study one-point iterations with memory and iterations for solving nonlinear 

equations on parallel computers. 

Let || • || denote any convenient vector norm or the induced matrix norm. 

When the following limits exist, define the root order by 

R ^ ) - lim|| j j i 

and the quotient order by 

1 1 ^ , 1 1 

Clearly, if the quotient order exists, then so does the root order (though not 

conversely), and they are equal. 

Let U be a nonsingular matrix such that 

M - U - 1JU, 

where J is the direct sum of K Jordan block matrices, 

J s J -j 0 J 2 ©••• © ^K" 

The first author presented some of the material in this paper at an ICASE 
Colloquium in August, 1973. 
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Let X^ b e
 t ^ [ i e & i & e n v a l \ i e corresponding to and let the dimension of be 

D. . Let the K Jordan blocks of J be arranged so that 

J.,J0,...,J are called the principal Jordan blocks of M. Denote 
I Z L 

D = D ^ and \ a ^ , Thus |x | is the spectral radius of M, which we shall 

sometimes write as X(M). 

In order to draw the conclusions which follow we must assume that the 

initial vector ^ does not lie in a certain subspace. Since the statement of 

this hypothesis is given in equation (16) and involves certain quantities not 

defined until Section 5, we find it convenient to label this as the "subspace 

hypothesis". We now state our main result; the proof is given in Section 5. 

THEOREM 1. Assume \(M) ̂  1 and 

1. || w j | * w < * for all n, 

|XJ * |X 2| * ... * |X K| f and 

| X 11 = |X 2 I a ..• s |X L| impl 

—n 
2. "Subspace hypothesis". 

Then 
i. R ^ ) - X(M). 

If, in addition, 

3. D, < D for 2 £ k £ L, when k 
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Herzberger [74] has independently analyzed the order of (1). However 

his assumptions are far more restrictive than ours. Of course there are 

important applications of (1) where Herzbergerfs conditions hold. In our 

terminology Herzbergerfs main result may be stated as 

THEOREM 1 1. Assume 

1 • lim w » w < oo 
n-oo -

2. X(M) > 1 

3. M is a non-negative matrix 

4. M is primitive 

Then 

Because of his strong conditions, Herzberger does not distinguish between 

the existence of root and quotient order. Recall (Varga [62]) that primitive 

means both irreducible and the existence of exactly one eigenvalue of largest 

modulus. Herzberger does not include a subspace hypothesis although we be­

lieve one to be necessary. There are many interesting problems where Theorem 1 

holds but Theorem I 1 cannot be applied. See Examples 1, 5-8. 

The example = + w, X < 1, w / 0, shows that Theorem 1 need not hold 

if X < 1. However the conclusions of Theorem 1 hold for all values of X if we 

restrict ourselves to homogeneous recurrences, = 0 for all n. We have 

THEOREM 2. Assume 

1. w - 0 for all n. ~n — 

If X(M) - 0, 

i. RC^) « X(M). 
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If X(M) > 0 and if 

2. "Homogeneous subspace hypothesis" then 

ii. R ^ ) a M M ) . 

If, in addition, 

3. Dfc < D for 2 £ k * L, when | x j - X with X f c - X, then 

iii. QC^) - X(M). 

Observe that if X(M) • 0, then no subspace condition is required. If 

X(M) > 0,then the homogeneous subspace hypothesis is the classical condition 

that the initial vector may not be an eigenvector corresponding to a sub-

dominant eigenvalue. In the notation of this paper the homogeneous subspace 

hypothesis is (16) with f. - 0 and 6 8 8 1 for all X (even |x | • 1). 

EXAMPLE 1. We give an example where root order exists but quotient order does 

not. Consider (1) with 

The eigenvalues of M are j4, so X(Mj)= 4. Notice that 
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. 2n/u\ 
*2n = 4 U 
•2211+1 

2n+l[2 v 
for n = 0,1,2,... 

u, 

1_ J _ 
2n . .. A I \ I I 2n 

1 ^ , 1 1 ™ - M i f f J I I 2 " 1 , -> 4 as n -* <». 

Clearly R ^ ) « 4 « XCMj). Since X-, - 4 and X2 - -4 while Dj - D 2 « 1, hypoth­

esis 3 of Theorem 1 does not hold, and thus the quotient order part of Theorem 1 

does not apply. Indeed does not have quotient order. Let 

A -
n 

rn+1 

- o 
and b = 

Then A 2 n - 4b/a and - 4a/b. Clearly quotient order exists if and only 

if a - b. For I norms, a • b if and only if 2|u| 8 3 |v|. 
P 

Let with and y_g as above. Then 

Therefore 

- 2 n / | u + v) for n = 0,1,2,... . 

- X(M 2). 

We summarize the rest of this paper. Applications are considered in the 

next three sections while the proof of the main theorem is deferred until the 

last two sections. Readers interested primarily in the proof should turn 

first to Section 5. Section 2 discusses utilization of the power method to 



-5-

calculate the spectral radius. Section 3 discusses the matrix repre­

sentation of nonlinear iteration and utilizes the representation in the 

analysis of parallel algorithms. New results on the order and efficiency of 

composite iteration are analyzed in Section 4. The main result is proved in 

Section 5. Proofs of estimates needed in the proof of the main theorem may 

be of independent interest and appear in Section 6. 
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2. THE POWER METHOD 

If s 0. for all n, then (1) becomes Z^-j 8=5 My^ and the are the 

iterates of the power method. From Theorem 2 we can then conclude that the 

root order is always X(M) provided only that the subspace hypothesis holds. 

This hypothesis is non-restrictive in practice. We shall not pursue here 

whether this is the basis of a practical algorithm for estimating X(M). 

Usually the quotient order is used to compute X(M). 

Since Bernoulli's method for polynomial zeros is a special case of the 

power method with M a companion matrix, Theorem 2 can be applied to Bernoulli's 

method when it is used to calculate the modulus of the largest zero. 

One application for the calculation of the spectral radius is in con­

nection with the determination of optimal relaxation factors for SOR. Young 

[71^ p* 206} points out that the power method can be used to determine 

if a) < u)b« (We are using Young's notation.) Theorem 2 shows that the root 

form of the power method can be used even if a) ̂  a^,and thus (at least in 

theory) the root form of the power method can be used for all u). 
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3. MATRIX REPRESENTATION OF NONLINEAR ITERATION: 
APPLICATIONS TO ITERATION WITH MEMORY AND TO 

PARALLEL ALGORITHMS 

Let a sequence of vectors {x^} be generated by the vector-valued func-
N N tion eg: R -> R and 

(2) ^ -fflC^). 

Assume that at least one component of converges to at least one component 

of the constant vector a. Let the components of x^, j ^ , and a be labelled 

Xn,j> y n , j ' a n d V L E T 

yn,j " l 0 8' Xn,J " "J I 

Then IIZjJI "* 0 0 a s n °°* For many important problems, the vectors 2^ 

satisfy (1). Examples are given below. We then call 

(1) the logarithmic error equation (or simply the error equation) for the 

sequence \ x ^ } and call M the matrix representation of the iteration function eg. 

If (1) is the error equation of (2) we define the root order of eg as 

R(cg) B R ^ ) 

and the quotient order of eg as 

Q(eg) - Q C ^ ) * 

A comprehensive discussion of the order of iterative processes may be 

found in Ortega and Rheinboldt [ 70 ]. We have confined ourselves here to 

definitions of root and quotient order sufficient for our purpose. 

The importaat idea of matrix representation of nonlinear iteration is 

due to Rice [ 71 ]• His matrix representation seems unnecessarily complicated. 

Rice's analysis does not distinguish between root and quotient order. 
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We turn to a number of examples and applications. 

EXAMPLE 2 

Assume that a is a zero of a scalar function g. One-point iterations with 

memory are of the form 

(3) z n + ] - 9 ( V Z n - 1 " * " Z n - N + l ) 

with errors satisfying 

b1 b N 
(4) z n + 1 - a « c n + 1(z n-a) ... -or) , 

where the b i are non negative integers. Examples of iterations satisfying 

equations (3) and (4) are interpolatory iterations (Traub [64]) and more 

generally HIFs (Hermite interpolatory iteration functions) denoted by 

(b 1,b 2,...,b N). See Feldstein and Firestone [67] and [69], Hindmarsh [72]. 

Any iteration satisfying equations (3) and (4) may be cast into the form of 

equations (1) and (2) as follows. Let 

Xn+l,1 " 2 n+ l 
x . - z ,- 4 for j - 1,2,...,N. 

n, j n + l - j 

Hence x n + 1 > j - x ^ ^ for j = 2,3,...,N. 

Then (3) may be written as 

( 5 ) \ x M , . - x n , . for j - 2,3,...,N. 

Let all components of a be a . Taking absolute values and the logarithm of (4) 

yields 
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(6) y = My + w where 

Observe that M is the companion matrix for the indicial polynomial of the 

linear recurrence obtained from (4) by taking logarithms. 

Conclusions i and ii of Theorem 1 hold for all HIFs. The quotient order 

was first established by Traub [64] for the equal information case b^ • • .. 

• b^, and by Feldstein and Firestone [67] for arbitrary non-negative integers 

b^,...,b^ using recurrence equation techniques* • 

EXAMPLE 3 

Write (2) in components as 

Assume that the errors satisfy 

N m . 
x . • a. • c . II(x . - a.) . n+1,i I n,i ^ n,j j 

This equation holds if each cp± is a HIF (Feldstein and Firestone [67 ]). 

Then the error equation (1) holds with 

* n a ( l 0 g l C n , l l ' - - " l 0 g l C n , N l ) T 

and with the elements of M given by the m . 
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EXAMPLE 4 

We wish to calculate a simple zero ot of a scalar function g on a parallel or 

vector computer. A number of authors (Feldstein and Firestone [67], Shadier 

[67], Miranker [69],RiCe [71]) have suggested generating N estimates of a at 

each iterative step. N may be the number of processors of a parallel machine. 

Most iterations proposed for this problem have the form of Example 2 with all 

components of a equal to a . Suppose that processor i uses the scalar algorithm 

cp̂  which satisfies the error equation in Example 3 (such as when each processor 

uses a HIF) . Then the error equation (1) holds with M • (m^ ^) and as given 

in Example 3. • 

Care must be taken as to how the matrix M is constructed for paral­

lel processing. For instance, if there are three processors and the first one 

uses the secant method (1,1), the second one uses the HIF (2,2), and the third 

one uses Newton1s method (2), then the matrix representation is 

On the other hand if the second and third processors are interchanged, then 

EXAMPLE 5 

M - ( 2 2 0 

M -

Suppose instead that there are two processors and the first one uses Muller's 

method (1,1,1) while the second one uses the HIF (2,2,2); then a 3 dimensional 

vector of iterates is needed at each step. Both processors work on all three 
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components. The output of the first processor is * n + j ^ and of the second 

processor is X q + ^ 2* There are three simple choices for x^ +^ ^: 

x ., _ • x , or x or x . n+1,3 n,l n,2 n,3 

These choices result, respectively, in the following three matrix representa­

tions : 

M ^ ^ J J ^ and XCM^ - „ 3.303 

M 2 - ̂ 2 2 2^ and X<tf2) - M 3.562 

M - [ 2 2 2) 
V ° 0 V 

and X(M3) - 3. 

In both these cases the maximum order corresponds to that algorithm which sup­

plies the best information to that processor which uses the highest order 

scalar method. • 
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4. COMPOSITION AND EFFICIENCY 

We turn to the order of a composite iteration. (We could also study 

the order of composite vector recurrences.) Let C£̂  and gĵ  ̂ e 2 iteration 
N N 

functions both of which map R -> R . (It is sufficient to consider the 

composition of just 2 iteration functions. Multiple composition is handled 

similarly.) Suppose that 

N N 

Then the composite iteration function i 8 8 CQ2
 0 %9 w h e r e A : R "* R > a n d t h e 

composite iteration sequence {x^} are defined by 

Let 2-j a n d 2 2 ^ave characteristic matrices and with logarithmic error 

equations 

y < 2 ) - M y ( 2 ) + w ( 2 ) 

Let M • M-M, and v ,, • M. + w ^ 2 } . Then * has the error equation 2 1 —n+1 2 —n+1 —n+l •* 

EXAMPLE 6 

Consider the two HIFs (1,2) and (2,1) along with their composition ( 

as discussed by Feldstein and Firestone [67, 69], Hindmarsh [72], and 

[71]. It is possible to obtain a matrix representation for the composit 

ithm by application of Example 2. Observe the following: 
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Algorithm Logarithmic Error Equation Matrix 

(2.1) < = 5 > . t t f l - 2 . n + . n _ 1 + 0 O X = > ( * J ) 

0,2) < = 5 > z n + 2 > - z n + 1 + 2 Z n + 0 ( l ) < ^ > 

The latter equation can be rewritten with the index reduced by 2 as 

z = z - + 2z 0 + 0(1) n n-1 n-2 

Eliminate and z^ ^ from these three equations to obtain 

(1.2) o < 2 , D O V 2 - 5 2 n - 2 V 2 + <><,)<=> 

Thus, this matrix representation of the composite algorithm (1,2) o (2,1) has 

a negative entry and Herzberger!s result (Theorem 1') cannot be applied. • 

In the following theorem the use of D, Dfc, X, X^ and the subspace hypoth­

eses all refer to the matrix M = M
2
M-| • ^ e s t a t e t h e m a ^ n Composition Theorem. 

Its proof is an immediate consequence of Theorem 1 plus the fact that ^ has 

the error equation 

Since we refer to convergent iteration functions in Theorem 3, we have included 

the hypothesis that X(M2M.|) ^ 1 . This hypothesis may be 

deleted for homogeneous composite vector recurrences. 

THEOREM 3. Assume 

1 • 1 ^ + ! || ^ w < » for all n 

2. "Subspace Hypothesis11 

3. X(M 2M^ :> 1 

CM 
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Then . 
R(tg2 o STJ) = XO^Mj). 

If, in addition, 

4 . D < D .for 2 * k * L, when \\\ - |x | with \ / X, then 

In the discussions that follow we do not distinguish between root and 

quotient order; either order is represented by p(cj)). We shall denote p^ • pCffî ) 

and p ± j - p ( ^ o ^j)* 

EXAMPLE 7 

Consider the three HIFs cp1 - (1 ,2 ) , cp2 = (2 ,1 ) , cp3 - (2 ) . It is instruc­

tive to consider the possible composite algorithms - cp ° cp. with order 

Pi j' Th e matrix representations and orders are 

By Theorem 2 

Then 

M i • ( i O ) A N D Pi " 2 

p 2 - 1 + ^ 

P 3 - . 2 

+ 1 , 2 0 ( L O) ' ( l 0 
and p 1 2 

* 3 , 1 ^ D * ( l o ) - ( l 2 ) and p 3 J 

+ 3 , 2 < ^ ( i Q) * ( i O) " ( 2 l) and p 3 > 2 

4.562 - P 1 > 2 < P ^ - 2 ( 1 + ^ ) „ 

4 a P 3 , 1 ' P 3 P 1 = 4 

5 - P 3 j 2 > P 3P 2 
= 2 (1+^ ) « 

,828 
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Thus, a composite algorithm may have an order of convergence either less than, 

equal to, or greater than the product of the orders of the individual algorithms, 

If the characteristic matrices and do not have the same dimension, 

the size of the smaller one can be increased in a fashion which does not alter 

its association with the underlying algorithm and which still permits the ap­

plication of Theorem 3. Suppose M 1 is NxN in size. Define its (N+l) x (Nfl) 

extension as follows: 

Clearly XC^) - X(M). Furthermore, if M ] and M 2 are NxN matrices, then 

X C M ^ ) » X(M?MJ. 

If M 1 represents the map from x , to the N vector (x x X T ) T , then M* 
^ l 1 n,I n,N ' 1 

represents the map to the (N+l) vector (x ,,...,x X T S x } T 

n,l n,N* n-ljN 7 • 
Since (Wilkinson [65]) XQljMj) - X Q l ^ ) , then Theorem 2 implies that 

'1,2 P 2 ^ and we have 

COROLLARY 1. Order is invariant under commuting of 

EXAMPLE 8 

Corollary 1 is false for three 

two compositions. 

equal X ^ M ^ ) . For example, let 
compositions, because X0*,^Mj) need not 
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Then 

M M M 8 5 i I and p = 4 . 1 2 3 \g 0/ P1,2,3 * 

M M M 8 3 i I and p = 3 . 3 2 1 V3 Oj 3,2,1 

The iteration M ^ M ^ appears in Traub [64, Example 8-1] and is also considered 

by Rice. The iteration M^M^M^ represents successive applications of Newton 

iteration. • 

If eg-) a n c* egg a r e iterations with the same matrix representation M, then 
2 2 

\(M 1M 2) - \(M ) • X (M). In particular this holds if ^ = c^. Thus we have 

the very useful 
COROLLARY 2. Order multiplies under self-composition. 

In addition to the case covered by Corollary 2, there is another impor­

tant case for which order multiplies under composition. This is when cp is 

a scalar one-point iteration (Traub [64, Chapter 2]). In general order does  

not multiply under composition even in the case of scalar cp. (See the algor­

ithms in Example 7.) This was first shown by Hindmarsh [72] who used differ­

ence equation techniques in his analysis, and by Rice [71 ] using matrix repre­

sentation techniques. 

To compare iterations we need the concept of an efficiency measure. 
Work on efficiency is reported in Brent [ 72 ] , Feldstein [69], Feldstein and 
Firestone [67, 69], Hindmarsh [72], Kung [73], Kung and Traub [ 7 4 ] , Ostrowski 
[66] and Traub [72,74 ,74a]. Let c(^) > 0 be some "cost11 associated with comput­
ing x from x • The efficiency of cp is defined, for p > 1, by 

—ti-r1 —n 

e(cp) - l o g P(S> 
c(ffl) 
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We wish to compare the efficiency of the composite iteration g>2 o g^ 

with the efficiencies of gĵ  and g^. Denote 

ci,j - c ( f f ii ° 2 j } a n d ei,j " e ( % ° V ' 

We assume that c^ 2 " c 2 1 * T n e n b y Corollary E J 2 ° E 2 1 * I F C I S R E A S O N A B L E 

to assume that c 2 ^ ^ c^ + c ^ . In the following Theorem assume that p^ • X(M^), 

P 2 " X Q ^ ) , a n < * ^2 1 ™ ' L ^ M 2 M l ^ * ^ e b y P o t n e s e s °^ Theorems 1 and 3 are suffici­
ent to guarantee this. 

THEOREM 4 

1 . Let c 2 ^ » c 1 + c 2. 

a. If X C M ^ ) > X(M 2 ) X(M 1), then min(e 1,e 2) < E 2 ^ . 

B. If X C M ^ ) - X(M 2 ) X(M 1), then MINCE, , e p £ e ^ £ M A X ( E L T * 2 ) . 

c. If X Q ^ M J ) < X(M 2 ) X(M 1), then e 2 1 < M A X F E , , E 2 ) . 

2 . On the other hand, let C 2 1 < ci + C 2 * 

If XQ^LT,) ^ X(M 2 ) X(M 1), then M I N C E , , ^ ) < e 2 r 

PROOF. We confine the proof to case LB since the remaining cases are proven 

similarly. 

log XCM^) log X(M 2) + log X O y 

6 2 , 1 c ^ C 2 + cl 

_ ^ 2 . + C 1 6 1 
c 2 + c, 

and the result follows. 
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Th is theorem gives conditions such that the efficiency of a composite 

iteration is greater than the minimum efficiencies of the component iterations0 

Of greater practical and theoretical interest is the possibility that the ef­

ficiency of a composite iteration may be greater than the maximum efficiencies 

of the component iterations. That is, we hope to obtain 

(7a) e > max(e ,e ) . 
j 

In view of Theorem 4 this can only happen if either of the following conditions 

holds: 

(7b) c 2 > 1 < C ] + c 2 

or 

(7c) X(M 2M 1) > X(M 2) • \(M 1). 

Example 9 shows a situation where (7a,b,c) all hold. The possibility of using 

(7b) in order to increase efficiency was first pointed out by Feldstein and 

Firestone [67] and was exploited by them in Feldstein and Firestone [69]. 

Hindmarsh [72] demonstrated that (7c) might hold. 

We can easily calculate sufficient conditions for (7a) to hold. For ex­

ample, assume that c 2 ^ + c 2 and that (7c) holds. Let 

T] « log X(M 2M ]) - log X(M 2) - log X(M^ > 0. 

Then e 2 1 > maxCe^e^ if 

71 > ^(ej-e^, for e 2 > e ] 

T) > c
2

( e r e 2 ^ f o r e 2 < 61 
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In general we are interested in iterations such that the quantities 7] 

and p. defined by 

Tl - log XCMJJM^ - log X(M2) - log X(M^ 

p, - c (cpj) + c (cp2) - c (cp2 o cp1 > 

are positive and as large as possible. How to do this is an open question. 

EXAMPLE 9 

Use the notation and algorithms of Example 7. Let c(^) = the number of 

new function or derivative evaluations per iteration step. Then 

Cl " C 2 " c3 " 2 

C1,2 " °3,1 " C3,2 = 3 

Thus, (7b) holds. In Example 7 it was shown that XQi^) > X(M 0) • XQt,) and 

thus (7c) holds, too. Furthermore, 

log X 9 

e„ - M .4407 
2 c 2 

log X, 
e. = n « .3466 
3 c 3 

e - l o g X 2 3 e2,3 ^Ts.5365 
c2,3 

Thus e 2 3 > max(e 2,e 3) and (7a) also holds. • 
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5. PROOF OF THE MAIN THEOREM 

The proof of Theorem 1 uses certain estimates (Lemmas 1 and 2, below) 

on the growth as n -* 0 0 of each block J £ for 1 ^ k ^ K. Since the proofs of 

these lemmas are rather long and since these lemmas may be of independent 

interest, we defer the proofs until Section 6 and confine ourselves here to 

a statement of the results needed for the proof of Theorem 1. We shall start 

from equation (1), written here for notational convenience with primes as 

Write M in the Jordan form M = U" 1JU. Let 

y 8=8 Uy 1 and w^ = Uw^« 

Then 

Let C(a,b) denote a binomial coefficient. Let w , be that portion of the 
n, K 

vector w which is associated with the Jordan block J. . Let —n k 

# 0 if |X| - 1 
(8) 6 

1 otherwise, 

(9) Q n > k - j£/(\nC(n, D-6)), 

DO) J J V I ( K . 
i-0 

When the limit ex^sl^ (see equations (28) and (30)) define 

n i-0 
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I F IKJJI < w < <» for all n, then we will show (30) that this limit exists and 

indeed that fj^z) is analytic for |z| ̂  | A. 1 | • 

For 1 ^ k ^ K let W, be the D, X D matrix having ones on the superdiagon-
R . k D -1 J k al and zeros elsewhere. Then W£ » 0 for j ^ and is a matrix with a 

one in the upper righthand corner and zeros elsewhere. If D = 1, define W - 0, 
D -1 k k 

= 1 . Usually the subscript of will be clear from context, and we will 

simply write W. The symbol 0(n ^) will denote a scalar, a vector, or a matrix 

(according to context) each of whose entries is bounded in absolute value by 

n ^ times some nonnegative constant. 

LEMMA 1. Let X(M) > 0. The following hold for 1 £ k £ K: 

1. If |\k| < |\|, thenC^ = 0(n~ T). 

2. If D <: D-l, then Q . « 0 ( n - 1 ) . 
K. n, K 

3. If Dfc = D and |X , J - | X | , then 

Q n , k " 6 V X ) n ^ W 0 " 1 + 0 ( n - Y 

LEMMA 2. Let X(M) £ 1 and || w j | £ w < » f o r all n. The following hold for 1 £ k <: K: 

1. If | X J < | X | , then ̂ ^/(X^Cn.D-S)) = 0(n"V 

2. If D. £D-1, then s /(XnC(n,D-6)) = 0 ( n _ 1 ) . 

3. If |XKL - |X| and Dfe - D, then 

s^k/<XnC(n,D-5)) - ( \ h ) n * l ~ B W 0 " 1 ! ^ 1 ) + ° < n _ 1 ) 

i i ; II • B F K A N C < n , D - » j | - L ^ L ' ^ L L W ^ C X ^ 1 ) ! ! 

Furthermore ^ ( z ) is analytic for |z| £ |*X_"* | • 
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REMARK 

In part 3 of Lemmas 1 and 2 notice that lim(X^/X) n exists if and only if 
n - K » 

X^ 8=8 X. Hence the following limit results hold if and only if X^ 855 X: 

lim Q - e X ^ V " 1 , 11m s ,/(XnC(n,D-6)) - ^ " V " 1 1 ( V 1 ) 

This point is the important key to hypothesis 3 which distinguishes between 

the root and quotient order results of Theorems 1 and 2, because in order for 

the quotient order result to hold, the limits above must hold. See also equation 

(17). • 

We now prove Theorem 1 # Start from (1) in Jordan form 

O D ^ - J ^ + I W 

Let ^ k a n (l 5^ k ke the portions of the vectors ^ and corresponding 

to the Jordan block Jfc. It may be easily verified from equations (10) and (11) that 

( 1 2 ) *n,k " J k *O,K + \ K 

where s , was given by (10). Let n, K 

< 1 3 > ^ , K B ^ > N C ( N » D - 6 ) ) -

Substitute (12) and (9) into (13). Then 

( 1 4 ) \ K A Q N A K + 2 n , K ^ C ( L L ' D - 5 ) ) -

Since || w^|| is bounded by hypothesis and U is a nonsingular matrix, || w^l 

is also bounded. Lemmas 1 and 2 may be applied. Parts 1 and 2 of the Lemmas clearly 

show that we need to consider only those components for which |X^| = |X | and 

- D both hold, for otherwise ^ -* J). Apply part 3 of Lemmas 1 and 2 to 

those components to obtain 
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We are now ready to define the subspace hypothesis which is hypothesis 2 

in Theorems 1 9 2 , and 3. 

(16) W J " 1 ^ FC + 4 ^ ) } / 2 . F O R S O M E K S U C H T H A T ' X K ' = I X ' A N D D K " D # 

(Recall that jTq k and f^ in (16) come from the Jordan transform of (1) . Recall 

also that in Theorem 2 f^ • 0 and 6 • 1, always .) Note 

(16) implies that the full vector v has at least one component which, 

as n » is bounded away from zero (recall that |XjJ • |x| / 0) . By 

(13), the same is true for the vector ^ and thus also for 2^ • 

Since 8 8 8 0 when X(M) • 1 , the subspace hypothesis becomes 

W > * • 

for some k such that |XjJ • 1 and Dfc • D. There are many nontrivial situation! 

that yield .^(X ^) « 0. In such cases Theorem 1 cannot be applied although 

R C Z j j ) a n d Q ( Z n ^ a 1 m a y s t i l l hold. We shall not pursue this in the present 

paper. 

To establish the root order result, take norms in (15). 

II 2n,KLL * U|1' D||W||D- 1C6|| I O > K L L + || 4 ( ^ ) 1 1 ) + 0 ^ ) 

Thus is bounded in norm. Since C(n,D-6)/n " -> l/(D-8)l as n -* «, then 

i _ T T-1 *n D-6 • 
*n * U *n • X N V N 

for some vector v' which is bounded in norm and which by application of the 

subspace hypotheses is bounded away from zero for n sufficiently large. 

Therefore, 

1 Pjl6 1 

Hence R & ' ) - \(M). 
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To establish the quotient order result, we need to consider only k - 1 

(by the hypotheses of Theorem 1 and by Lemmas 1 and 2) . Since 858 X, then 

equation (15) becomes (see the Remark following Lemma 2) 

(17) - X ^ V " 1 ^ ^ + ^(X' 1)} + 0(n _ 1) . 

An application of the subspace hypothesis shows that v - has a nonzero limit 
~"n>» 

as n -> <». Thus there is some vector v^, with a nonzero limit, for which 

Hence Q(yf ) = X(M) which completes the proof of Theorem 1. • n 

The proof of Theorem 2 is a minor modification of the proof of Theorem 1, 

with s , 8 3 0, and is omitted. -n,k — 
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6 . PROOFS OF THE LEMMAS 

The statements of Lemmas 1 and 2 were given in Section 5 and will not 

be repeated here. Fix k for 1 ^ k ^ K. Let \^ / 0, since the results 

are trivial otherwise. Recall that 6 8 3 0 if |X| « 1 and 5 = 1 otherw 

n ^ D,_. Then 

m=0 

PROOF OF LEMMA 1. Substituting (18) into (9) yields 

X K \ X / L k c(n>D-8> 
m=0 

Since C(n,m)/C(n,D-6) - ©(n*" 1* 8) £ 0 (n k J f or 0 ^ m ^ D k»l, thei 

I I V r I I * I V M " ° ( " V ! ) -

1. If | X J < | X | , then | X F C /X| Q 0 ( 1 k ^) - O C n " 1 ) . Thus Q n 

as desired. 

2. If D k * D-1, then 0 * w h i l e * 
Q , * 0(n" 1), as desired. n,k 

3. If Dfe « D and | X J « | X | , then 

m=0 
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by the proof of part 2 above. Hence Q n fc is dominated by the term 

m - Dfc-1; that is, 

Qn,k \ \ ) \ \ C(n,D-8) W J ° U ' 

Since 6 - 0 or 5 - 1, then 

C(n,D-l)/c(n,D-6) - 5 + 0 ( n _ 1 ) . 

Therefore 

which completes the proof of Lemma 1 # • 

PROOF OF LEMMA 2. Write 

( 1 9 ) **fk " L i Vi,k-
L " D K 

Recall (10) and apply || w j | £ w. Hence 

1 = 0 

Hence 
lim || s . -t . P X n C(n,D-6))= 0. 
n-*» 9 9 

Thus, it suffices to consider t^ fe instead of s^^. Denote 

( 2 0 ) V K s W a n c ( n ' D " 8 ) ) * 
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Substitute (18) with n - i and (19) into (20). Interchange the order of 

summation to obtain 

D, -1 

(21) q - ) W Y C(i.m) I 
U , ; *n,k L * \ L \ * C(n,D-8) =n-i,k/ * 

m=0 ^i"0!, J 

1. Suppose that |X fc| < |\|. Consider T R * 1 such that | x j < J T F C | £ | \ | 

(T F C will be picked later.) Let b . denote the vector 
V ? " A m 

( 2 2 ) • L 
-m m ) C ( i , m / T

1 - n
 w 

' *k W ^ \ T
k / k ^"i.k • 

0 i - D U V K 

Then equation (21) may be written as 

n 
( 2 3 ) V k - ( r ) K j c ^ - v -

n 
Consider the functions ^(2)= ^ z* and ^r(z) = ^ z 1 . Since lim t n ( z ) - ty(z) 

i=0 i=0 ^ 
is analytic for | z | < 1, then lim i | r^ (z) == i | r^ (z) is also analytic, and 

thus also absolutely convergent for | z | < 1 (superscript denotes differentia­
tion) . Thus 

| ^ m ) ( Z ) | £ t ( m ) ( M ) for |.| < 1. 

It is not hard to verify that 

n 

(24) I « * - > « * - = : 
i^m 

Since 0 ^ m ^ D k-1, \ \ / r k \ < 1, I T J 1 " 1 1 * 1 for Dfc £ i <; n, and I F C ^ * w, 
then the norm of (22) yields 
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V 1 

<»> KJ"l M ^ L L I . * W < L * K L / K K L ) - " ' . 
m=0 

Clearly, b = 0(1). Take norms in (23) to obtain 

If | X | > 1, choose T f c < |X |5 in this case ^ - 0 ( n - 1 ) . If |\| - 1, then 6 - 0; 

in this case l/C(n,D-6) - 0(n _ 1) and thus ^ fc« 0(n'V This establishes part 1 

of Lemma 2. 

2. Suppose that 1 ^ Dfc <. D-l. In view of part 1, it is only necessary 

to prove part 2 when |AjJ = |A|. Note that 0 <• m £ Dk-1 £ D-2. 

If J XJ - 1, then 

n n 
\" C(l.m) Kil-n ) C(l tm) . C(n+1,m+1) ̂  p ^ 1 ' 0 ) ^ ( n ' 1 ) , 
L C(n,D-6) | A | ^ C(n,D) C(n,D) 

= D k 

If |X| > 1, then 

i=D i=m k 

1 5 » W'-'Mfr- < ' + N - ' + W - 2

+ . . . ) . . ( . - ' ) . 

i=D, 

Thus, for |X| i 1 and for 0 £ m £ D-2, 

i«D-k 

Take norms in (21), apply |\J = | X | , kl| ̂  w, and (26) to obtain 

LLŜ  K | | £ 0(n" 1). This establishes part 2 of Lemma 2. 
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3. Suppose that |XjJ • |X | and Dfc - D. Then (21) becomes 

D-1 n 

*n.kmL X X k C(n,D-6) Vi,l 
m«=0 i=D 

/x.\nD- n"D 

(hi) V , -m „m Y ,-j C(n-l.m) 

< 2 7 ) VK'(r) I C wC> 

m=0 i=0 

We may write 

. 0-1 
m=0 

where f, (z) is the vector polynomial —te,m,n 

Hence n 
1 
5) 

i=D 

Let z - X f c
1. Since | X J = | X | * 1, we may apply (26) to (29) and obtain 

L L 4,m,n ( Xk 1 ) H = ° ( n " 1 ) f ° r O * m * D - 2 -

T h u s ^n,k i n ^ 2 7^ l s d o m i n a t e d b v the term with m » D-1. Evaluate (29) with 
D-1 for |z| £ |X~ 1 1. If |X| > 1, then 6 - 1 and m 

i=0 
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1 ry 

£ W(1 + |X|" +|X|" +...) = -JY 

On the other hand if |\| = 1, then 6 = 0 and 

w x| 
-1 

n 

4 , D - l , n ( ! E ) l l ^ 1 C ( i * D - 1 ) " iyc(n,D) 
si=D-1 

= w{c(n+l,D) - l}/c(n,D) <. w(n+1 )/(n+l-D) - 0(1). 

Thus f. n « (z) is bounded in norm uniformly in n for |z| ̂  |X ^|. Hence 

(30) 4 W ^ 4 , D . l , n W 

is analytic for |z| £ |x" |. (In fact f^z) is analytic for |z| £ 1 for |X| = 1 •1 

and for |z| < 1 for |x| > 1.) Equation (27) may be written as 

To complete the proof, take norms, recall that = | x | , and take the limit 

as n-*». • 
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