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ABSTRACT

The behavior of the vector recurrence Yo = Mzn + LA is studied under
very weak assumptions. Let A(M) denote the spectral radius of M and let
A(M) =1, Then if the w are bounded in norm and a certain subspace hypothesis
holds, the rcot order of the ¥, is shown to be A(M), If one additional hypoth-
esis on the dimension of the principal Jordan blocks of M holds, then the quo-
tient order of the ¥, is also A(M). The behavior of the homogeneous recurrence
is studied for all values of A (M).

These results are applied to the analysis of

(1) Nonlinear iteratioh with application to iteration with memory and
to parallel iteration algorithms
(2) Order and efficiency of composite iteration

(3) The power method,



*
1. INTRODUCTION

We study the behavior of the vector recurrence

M Ty =My, ¥y,

under very weak assumptions., We apply our results to the power method

to the analysis of iterations for nonlinear equations and to

the composition of such iterations., In particular our results can be used to

study one-point iterations with memory and iterations for solving nonlinear

equations on parallel computers.

Let |

- || denote any convenient vector norm or the induced matrix norm.

When the following limits exist, define the root order by

1
R(yz,) = lim|| y |7
n—e

and the gquotient order by

Clearly, if the quotient order exists, then so does the root order (though not

conversely), and they are equal.

Let U be 2 nonsingular matrix such that

M= U-]JU,

where J is the direct sum of K Jordan block matrices,

J = .J.l G5J2 ®... &J,.

*

The first author presented some of the material in this paper at an ICASE
Colloquium in August, 1973.




Let kk be the eigenvalue corresponding to Jk and let the dimension of Jk be

D Let the K Jordan blocks of J be arranged so that

k.

Il zInt 2. 2 {3, end

|K1| = |12| 2 .. = |RL| implies D1 = 02 Z L., 2 DL'

JI’JZ""’JL are called the principal Jordan blocks of M. Denote

and )\ = KT. Thus Il[ is the spectral radius of M, which we shall

D = D,,

sometimes write as A (M).

In order to draw the conclusions which follow we must assume that the
initial vector b4 does not lie in a certain subspace. Since the statement of
this hypothesis is given in equation (16) and involves certain quantities not
defined until Section 5, we find it convenient to label this as the ''subspace

hypothesis'. we now state our main result; the proof is given in Section 5.

THEOREM 1, Assume )} (M) = 1 and

1. |]3n” £ w < » for all n,

2, '"'Subspace hypothesis'.

Then
i. R(zn) = A(M).

If, in addition,

3. D_<D for 2 <k <L, when |xkl = |2|with N # %, then

ii, Q(xn) = A(M)



Herzberger [74] has independently analyzed the order of (1}. However
his assumptions are far more restrictive than ours, Of course there are
important applications of (1) where Herzberger's conditions hold. In our

terminology Herzberger's main result may be stated as

THEOREM 1'. Assume

1. limw =w<<w®
-n -
n—

2. A >1

3. M is a non-negative matrix

4, M 1is primitive
Then

R(y,) = Q(y) = Aq0).

Because of his strong conditionms, Herzberger does not distinguish between
the existence of root and quotient order. Recall (Varga [62]) that primitive
means both irreducible and the existence of exactly one eigenvalue of largest
modulus. Herzberger does not include a subspace hypothesis although we be-
lieve one to be necessary. There are many interesting problems where Theorem 1}
holds but Theorem 1' cannot be applied. See Examples 1, 5-8,

The example Yo = hzn +wW, A<, wi 0, shows that Theorem 1 need not hold

if A < 1, However the conclusions of Theorem 1 hold for all values of A if we

restrict ourselves to homogeneous recurremnces, LA 0 for all n. We have
THEOREM 2. Assume

1. w o= 0 for all n.

If A(M) = 0,

i. R(zn) = A(M).
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If (M) > 0 and if
2. '"Homogeneous subspace hypothesis" then
ii. R(xn) = A(M).
If, in addition,
3. D, <D for 2 <k S 1L, when ]lkl = A\ with Ak = A, then
iit. Q(zn) = l(ﬂ).

Observe that if A(M) = 0, then no subspace condition is required, If
A(M) > 0,then the homogeneous subspace hypothesis is the classical condition
that the initial vector ¥, may not be an eigenvector corresponding to a sub-
dominant eigenvalue. In the notation of this paper the homogeneous subspace

hypothesis is (16) with £ = 0 and 6 = 1 for all A (even |A| = 1),

EXAMPLE 1. We give an example where root order exists but quotient order does

not, Consider (1) with

e (0 (O ot 1= (DD

The eigenvalues of M are +4, so R(M])= 4. Notice that



e

2n,u
Don 4 v)

=4&ﬁ15v for n= 0,1,2,...
Lo+ \2 u

L 1
lg, 12 = s N 4 asn s

1 1 1
||12n+]” 2n+l 4” (g . ” 2n+1 a4 as p = o,

Clearly R(zn) 2 4 = K(M]). Since l] = 4 and 12 = -4 while D1 =D, = 1, hypoth-

esis 3 of Theorem 1 does not hold, and thus the quotient order part of Theorem 1

does not apply. Indeed M.| does not have quotient order. Let

a = vVl vl -

am I man = 1E I

Then A2 = 4b/a and A2 = 4a/b, Clearly quotient order exists if and only
n

]

if a=b, For £ norms, 8 = b if and only if 2|u| = |v].

20
Let M2 (\1 2) with w and XO as above., Then

-2(—u+9 for n= 0,1,2,... ,
Therefore

by IV Il 1 2 = 204,). .

We summarize the rest of this paper. Applications are considered in the
next three sections while the proof of the main theorem is deferred until the
last two sections. Readers interested primarily in the proof should turn

first to Sectiom 5. Section 2 discusses utilization of the power method to
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calculate the spectral radius., Section 3 discusses the matrix repre-
sentation of nonlinear iteration and utilizes the representation in the
analysis of parallel algorithms. New results on the order and efficiency of
composite iteration are amalyzed in Section 4. The main result is proved in
Section 5. Proofs of estimates needed in the proof of the main theorem may

be of independent interest and appear in Section 6.
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2. THE POWER METHOD

If w

- 0 for all n, then (1) becomes y ,, =My, and the y are the

iterates of the power method, From Theorem 2 we can then conclude that the
root order is always A(M) provided only that the subspace hypothesis holds.
This hypothesis is non-restrictive in practice. We shall not pursue here
whether this is the basis of a practical algorithm for estimating A (M).
Usually the quotient order is used to compute A .

Since Bernoulli's method for polynomial zeros is a special case of the
power method with M a companion matrix, Theorem 2 can be applied to Bernoulli's
method when it is used to calculate the modulus of the largest zero,

One application for the calculation of the spectral radius is in con-
nection with the determination of optimal relaxation factors for SOR. Young
{71, p. 206] points out that the power method can be used to determine Ke:fw)
if w < w, - (We are using Young's notation.) Theorem 2 shows that the root
form of the power method can be used even if w = uh,and thus (at least in

theory) the root form of the power method can be used for all w.



3. MATRIX REPRESENTATION OF NONLINEAR ITERATION:
APPLICATIONS TO ITERATION WITH MEMORY AND TO
PARALLEL ALGORITHMS

Let a sequence of vectors {En} be generated by the vector-valued func-

N
tion ¢: R - RN and

2) X" m(_:_gn).

Assume that at least one component of X converges to at least one component
of the constant vector w. Let the components of X ¥ s and g be labelled

sy and ¢,. Let

X .
n,j’ yn’j b

Yo,y = loslx, ;- o

Then |&nH = ®as n - » For many important problems, the vectors N

satisfy (1). Examples are given below. We then call

(1) the logarithmic error equation (or simply the error equation) for the

sequence {En} and call M the matrix representation of the iteration function ©.

If (1) is the error equation of (2) we define the root order of ¢ as

R(®) = R(z)

and the quotient order of © as

Q) = Q(xn).

A comprehensive discussion of the order of iterative Processes may be
found in Ortega and Rheinboldt [ 70 ]. We have confined ourselves here to
definitions of root and quotient order sufficient for our purpose,

The importamt idee of matrix representation of nonlinear iteration is

due to Rice [ 77 ]J. His matrix representation seems unnecessarily complicated.

Rice's analysis does not distinguish between root and quotient order.



We turn to a number of examples and applications.

EXAMPLE 2
Assume that o is a zero of a scalar function g. One-point iterations with

memory are of the form

(3 ZaH o ¢(zn’zn-l""’zn-N+l)

with errors satisfying

b b

) = —ag= cn+1(zn-oD 1...(zn_N+]-a) N,

n+1

where the bi are non negative integers. Examples of iterations satisfying
equations (3) and (4) are interpolatory iterations (Traub [64]) and more
generally HIFs (Hermite interpolatory iteration functions) denoted by

(b1,b2,...,b See Feldstein and Firestone [67] and [69], Hindmarsh [72].

N)'
Any iteration satisfying equations (3) and (4) may be cast into the form of

equations (1) and (2) as follows. Let

xn+1,T = Zni)

X Bz for j = 1,2,...,N.

n,j ntl=-j
Hence xn+1,j = xn,j-? for j = 2,3,...,N.
Then (3) may be written as

Xo1,1 = Pq 00 Xy W

(5) i}
xn+},j = xn,j-T for j 2,3,...,N.

Let all components of y be «. Taking absolute vaiues and the logarithm of (4)

vields
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(6) A = Mxn + ¥ o where

by e by 4 by loglcn+]l
0 0
1 0
. ’ LANE .
0 ] 0 0

Observe that M is the companion matrix for the indicial polynomial of the

linear recurrence obtained from (4) by taking logarithms,

Conclusions i and ii of Theorem 1 hold for all HIFs, The quotient order

was first established by Traub [64] for the equal information case b1 = b2 = ..

= bN’ and by Feldstein and Firestone [67] for arbitrary non-negative integers

bl""’bN using recurrence equation techniques, [

EXAMPLE 3

Write (2) in components as

Xotp,i = O Ky preeenX) ) for io= 1,LL.N,

Assume that the errors satisfy

N

I (x -

nt M %y ey

"Gi':l:

xn+1,i

This equation helds if each 0, is a HIF (Feldstein and Firestone [67 ]).

Then the error equation (1) holds with

T

v o= (loglcn,ll,...,loglcn,N

and with the elements of M given by the m

1,3
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EXAMPLE 4

We wish to calculate a simple zero @ of a scalar function g on a parallel or
vector computer. A number of authors (Feldstein and Firestone [67], Shedler
[67], Miranker [69],Rice [71]) have suggested generating N estimates of « at
each iterative step. N may be the number of processors of a parallel machine,
Most iterations proposed for this problem have the form of Example 2 with all
components of o equal to o. Suppose that processor 1 uses the scalar algorithm
P which satisfies the efror-equation in Example 3 (such as when each processor

uses a HIF). Then the error equation (1) holds with M = (m, .) and v, as given

i,]
in Example 3. |

EXAMPLE 5

Care must be taken a&s to how the matrix M is constructed for paral-
lel processing. For instance, if there are three processors and the first one
uses the secant method (1,1), the second one uses the HIF (2,2), and the third

one uses Newton's method (2), then the matrix representation is

11
Me(22
20

On the other hand if the second and third processors are interchanged, then

and \(M) = 3.

(=R = =]

M= and A(M) = 2,

NN
N O -
(= = =]

Suppose instead that there are two processors and the first one uses Muller's
method (1,1,1) while the second one uses the HIF (2,2,2); then a 3 dimensional

vector of iterates is needed at each step, Both processors work on 2ll three
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i i and of the second
components. The output of the first processor is '.\cn_*_h1 nd o

{ i x :
processor is xn+1’2. There are three simple choices for ntl,3

or X or X

= x -
*n+1,3 n,l n,2 n,3

These choices result, respectively, in the following three matrix representa-

tions:

?D and  A(,) = 3+2 3 . 3.303

JZ

1]
e
O N -

2) and QM) = 2BIL 4 569
5 2 2

=
N
|
A
I\

1
M, =222 and A(M_.) = 3,
REE R

In both these cases the maximum order corresponds to that algorithm which sup-

plies the best information to that processor which uses the highest order

scalar method. ]
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4, COMPOSITION AND EFFICIENCY

We turn to the order of a composite iteration, (We could also study
the order of composite vector recurrences.) Let £, and 9, be 2 iteration
functions both of which map RN i RN. (It is sufficient to consider the
composition of just 2 iteration functions, Multiple composition is handled

similarly.) Suppose that

(D oD
N 91(----n )

22 (2)
X+ QQ(En )

N N
Then the composite iteration function § = L 0 Pys where §: R = R, and the
composite iteration sequence {En} are defined by

T = 40 = 2y )

Let o} and o)) have characteristic matrices M] and M2 with logarithmic error

equations
ST QL)
@ o @ L@
Loy =M 4y T E
Let M= MM, and w =M (1) (2) Then § has the error equation
2 Tt 2 Tn —n+1

Int1 = Mip F ¥y

EXAMPLE 6

Consider the two HIFs (1,2) and (2,1) elong with their composition (1.
as discussed by Feldstein and Firestone [67, 69], Hindmarsh [72], and
{71]. It is possible to obtain a matrix representation for the composi!

ithm by application of Example 2, Observe the following:



fe
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THECREM 3.,

13-

Algorithm

Logarithmic Error Equation

Matrix
2,1

2 1
<:::;>zn+1 = 2zn + z 4 + 0(l)<;:;> (; ;j)

G

(1,2) ®zn+2 - zn+1 + 22n + 0(])®

The latter equation can be rewritten with the index reduced by 2 as

n=1 + Zzn_z + 0(1)
Eliminate =z and z
n+1 n-

] from these three equations to obtain

1,2) © (2,N<>z_, = S2.- 22, + 0>

5 -
T o
Thus, this matrix representation of the composite algorithm (1,2) © (2,1) has

@ negative entry and Herzberger's result (Thé.orem 1') cannot be applied.

8
In the following theorem the use of D, Dk’ A, kk and the subspace hypoth-
eses 8ll refer to the matrix M =

MZMI' We state the main Composition Theorem.

Its proof is an immediate consequence of Theorem 1 plus the fact that § has
the error equation

Topr = ML, + ¥y

Since we refer to convergent iteration functions in Theorem 3, we have included
the hypothesis that A(M2M1) 2 1. This hypothesis may be

deleted for homogeneous composite vector recurrences.

Assume

1. Ibn+1” Sw< @ for all n

2, '"Subspace Hypothesis"

3. A(MZMI) =1



4=

Then R(QQ ° 9 = l(M2M1)‘
1f, in additiom,

4. D <Dfor2=<ksl, when In | = |A| with % # %, then
Qlg, 0 @) = MOM,).

In the discussions that follow we do not distinguish between root and

quotient order; either order is represented by p(p). We shall denote Py = p(g&)

and Py, ° plg © Eﬁ)’

EXAMPLE 7
Consider the three HIFs o, = (1,2),'¢b = (2,1), 0, = (2). It is instruc-
tive to consider the possible composite &lgorithms *i j =9 ° ¢3 with order
]

Pi,j" The matrix representations and orders are
»

12 '
M.l ( and p.l 2

10
1
M, = 10) and p, = 1+/2
. M, = 0 and p, =2
37 \0 o0 3
By Thedrem 2
T 2NN e _ 5t fi7
1,290 0 10 21 Py,2 2
% 0 12 2 4
#3,1@6 0) . (1 0)'(1 2) and  p, , =4
20\ . (21 % 2
*3,2@(1 ID (1 0 (2 ) ed Py,

Then
4,562 s
4 =Py =PgPy =4

5 =Dy, > PyPy = 2(14/2) ~ 4.828
3
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Thus, a composite algorithm may have an order of convergence either less than,
equal to, or greater than the product of the orders of the individual algorithms,
If the characteristic matrices MT and M2 do not have the same dimension,

the size of the smaller one can be increased in a fashion which does not alter

its association with the underlying algorithm and which still permits the ap-

plication of Theorem 3. Suppose M

*
extension M] as follows:

] is NXN in size. Define its (N+1) x (N+1)

.

*
Clearly A(M') = A(M). Furthermore, if M; and M, are NxN matrices, then
* %

*

If M] Tepresents the map from X ., to the N vector (x 1

T
n,l""’xn,N) s, then M

T
represents the map to the (M+1) vector (xn’1,...,xn’N, xn-1,N3 .
Since (Wilkinson [65]) K(M?Mz) = A(MZMI), then Theorem 2 implies that

p],2 = p2,1 and we have

COROLLARY 1,

N AT A G R R

Order is invariant under commuting of two compositions,

EXAMPIE 8

Corollary 1 is falsge for three compositions,

because ‘,\(M.‘ MZMS) need not
equal R(M3M2M]). For example, let
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2 11 o
4 (13)’M2“(10’M3'Go)'

()
MTMZMB (2 0 and Pl,2,3 = 4,

Then

3 -
M3M2Ml (é g) and 533’2,.I = 3,

The iteration M3M2M1 appears in Traub [64, Example 8-1] and is also considered
by Rice., The iteration M]M2M3 represents successive applications of Newton

iteration, B

If 0 and 0 are iterations with the same matrix representation M, then
x(M1M2) = K(MZ) = KZ(M). In particular this holds if @, = @,. Thus we have

the very useful
COROLLARY 2, Order multiplies under self-composition.

In addition to the case covered by Corollary 2, there is another impor-
tant case for which order multiplies under composition. This is when ¢ is

a scalar one-point iteration (Traub [64, Chapter 2]). In general order does

not multiply under composition even in the case of scalar ¢. (See the algor-

ithms in Example 7.) This was first shown by Hindmarsh [72] who used differ-
ence equation techniques in his analysis, and by Rice [71] using matrix repre-

sentation techniques,

To compare iterations we need the concept of an efficiency measure.
Work on efficiency is reported in Brent [ 72], Feldstein [69], Feldstein and
Firestone [67, 69], Hindmarsh [72], Kung [73], Kung and Traub [ 74], Ostrowski
[66] and Traub [72,74 ,74a]. Let c(p) > 0 be some 'cost" associated with comput-

ing x ., from X - The efficiency of ¢ is defined, for p > 1, by

e(p) = log plp)
c ()
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We wish to compare the efficiency of the composite iteration L 0 @

with the efficiencies of ) and ©,- Denote

°5,j ~ °(@ © @) and 1,3 - ey ° .

We assume that c¢ = ¢ . Then by Corollary 1, e = e . It is reasonable
1,2 2,1 1,2 2,1

to assume that €5 3 < < + Cye In the following Theorem assume that P, = 1(M1),
»

Py = K(Mz)’ and Py 4 = A(MZMT). The hypotheses of Theorems 1 and 3 are suffici-
3

ent to guarantee this.

THEOREM 4

1. Let ¢ =
2," C.l + CZ.

a, If RGHZMI) > kﬁMz)l(M1), then min(e1,e2) < e2’1.

b, If 1(M2M1) = 1(M2)1(M]), then tnin(ai,ez) < e2’1 < max(e],ez).

c. If AUH2M1) < K(Mz)A(M]), then e < max(e],eZ).

2,1
2. On the other hand, let c2,1 < <, + €y

Iif A(MZMI) z R(MZ)ACM1), then min(el,ez) < ez’].

PROOF. We confine the proof to case 1b since the remaining cases are proven

similarly.

log A(MZMI) log K(Mz) + log K(M])
e = =

2,1 c ¢y + <,

and the result follows, [ ]
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This theorem gives conditions such that the efficiency of a composite

iteration is greater than the minimum efficiencies of the component iterations.

0f greater practical and theoretical interest is the possibility that the ef-

ficiency of a composite iteration may be greater than the maximum efficiencies

of the component iterations. That is, we hope to obtain

(7a) ez’] > max(e1,e2).

In view of Theorem 4 this can only happen if either of the following conditions

holds:

(7b) c2’.I < ¢y +c,
or

(7c) K(MZM]) > k(Mz) . k(M]).

Example 9 shows a situation where (7a,b,c) all hold. The possibility of using
(7b) in order to increase efficiency was first pointed out by Feldstein and
Firestone [67] and was exploited by them in Feldstein and Firestone [69].
Hindmarsh [72] demonstrated that (7c) might hold.

We can easily calculate sufficient conditions for (7a) to hold, For ex-

ample, assume that ey 17 & + ¢y and that (7c¢) holds., Let
]

T = log k(M2M1) - log A(Mz) - log R(M1) > 0.

Then e, | > max(e1,e2) if

3
> c1(e2-e]), for e, > e,

I > 02(31-e2), for e, < e
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In general we are interested in iterations such that the quantities 1)
and ,, defined by

IJ-'C(%)"'C(CPZ) 'c((on Cp])
are positive and as large as possible. How to do this is an open question.

EXAMPLE 9
Use the notation and algorithms of Example 7. Let c(gp) = the number of

new function or derivative evaluations per iteration step, Then

e, =2 ¢, =¢_ =2

€1,2 7 %3,1 7 3,2 =3

Thus, (7b) holds., In Example 7 it was shown that AMM,) > A(M,) - A(M,) and
372 2 3

thus (7¢) holds, too. Furthermore,

log 12
e = 4 .4407
2 c
-T2
log A
e3 = P = .3466
3
e =108 12 3
2,3 T'—'—;,.5365
2,3

Thus e > max{e,,e,) and (7a) also holds. N
2,3 2°%3
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5. PROOF OF THE MAIN THEOREM

The proof of Theorem ! uses certain estimates (Lemmas 1 and 2, below)
on the growth as n = « of each block JE for 1 =k £ K, Since the proofs of
these lemmas are rather long and since these lemmas wmay be of independent
interest, we defér the proofs until Section 6 and confine ourselves here to

a statement of the results needed for the proof of Theorem 1. We shall start

from equation (1), written here for notational convenience with primes as

= t '
Yol = Mt Y-

Write M in the Jordan form M = U-1JU. Let

= 1 = 1
¥, = Uy, and ¥ U .

Then

Let C(a,b) denote a binomial coefficient. Let LA be that portion of the
]

vector En which is associated with the Jordan block Jk. Let

0 if |A] =1
8y &=
1 otherwise,

9 Q. = Jolcw, 0-8)),

n
N i
a0 s =) T Eoie

When the limit exists (see equations (28) and (30)) define
3 zi C(n-i,D-1) v

- C{(n,D-8) —i,k’

i=0

gk(z) = 1lim

n—He
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If IhnH < w < = for all n, then we will show (30) that this limit exists and

indeed that f, (z) is amalytic for [z] = ]l'1|.

For 1 =k <K let Wk be the D, X Dk matrix having ones on the superdiagon-

D -1

al and zeros elsewhere. Then Wﬂ =0 for j 2 Dk and Wk is 4 matrix with a

one in the upper righthand corner and zeros elsewhere. If Dk = 1, define Wk =0,

D -1
W koo 1. Usually the subscript of W, will be clear from context, and we will

k k

-1
simply write W. The symbol O(n ) will denote a scalar, a vector, or a matrix
(according to context) each of whose entries is bounded in absolute value by

=1 .
n times some nonnegative constant.

LEMMA 1, Let \(M) > 0, The following hold for 1 <k < K:
=1
1. 1f In ] < [n], then Q p = Om ).

-1
2, If Dk < D-1, then Qn,k = 0(n ).

3. If D =D and [ | = |A|, then

G~ 8 AN 40w,

LEMMA 2. Let AM) 2 1 and || w || <w < ® for all n, The following hold for 1 <k < K:
-1
1. If |n | <[], then g_n,k/(?\nC(n,D-&)) = 0(n"'),

n _ -1
2. If D_ D-1, then §n’k/(k C(n,D-§)) = 0(n"').

3. 1f |a | = [A] end D, = D, then

-D WD-1

s /O0%cm,p-6) = (o /M™) £0:D + o™

n 1-Dy .D-1_ . -1
Lin || 5, (A%co-0] = I "W g alh)

Furthermore gk(z) is analytic for Izl < |1-1,.
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REMARK
In part 3 of Lemmas 1 and 2 notice that lim(Kk/l)n exists if and only if

T

Kk = %, Hence the following limit results hold if and only if Kk = A:

1-D D-
lim Qn,k = ﬁlk DW ], lim 5, k/(RnC(n,D-é)) = A

n—re n—e

1-D_D-1 -1
RO

This point is the important key to hypothesis 3 which distinguishes between

the root and quotient order results of Theorems 1 and 2, because in order for

the quotient order result to hold, the limits above must hold. See also equation
7). a

We now prove Theorem 1, Start from (1) in Jordan form

LD B AT A AR

Let xn,k and zn,k be the portions of the vectors ¥, and v corresponding

to the Jordan block Ji o It may be easily verified from equations (10) and (11) that

n

2) 2w "% Lo ™ Enyk

h wa iven b 10), Let
vhere 5 s giv y (

n
(13 v, = 1,  Jc@,-0).
Substitute (12) and (9) into (13), Then
(18) v, =Q +s_ M C(,D-8)).
-,k n,kzﬂ,k -,k ’

Since Ilg;” is bounded by hypothesis and U is a nonsingular matrix, ]|gnH

is also bounded. Lemmas 1 and 2 may be applied. Parts 1 and 2 of the Lemmas clearly

show that we need to consider only those components for which |Kk| = |A| and

Dk = D both hold, for otherwise A - 0, Apply part 3 of Lemmas 1 and 2 to

those components to obtain

n

a5y o= oM ey + £ 0XD 40w,
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We are now ready to define the subspace hypothesis which is hypothesis 2

in Theorems 1, 2, and 3.

- -1 - -
(16) wllz 1{510,k + £ ()Y} # 0 for some k such that In | = [r] and D_=D.

{(Recall that Y5 & and gk in (16) come from the Jordan transform of (1). Recall
2

also that in Theorem 2 £ = 0 and § = 1, always.) Note

(16) implies that the full vector AN has at least one component which,
as n - » is bounded away from zero (recall that kal = |a] #0). By
(13), the same is true for the vector ¥, and thus also for z; .

Since § = 0 when A(M) = 1, the subspace hypothesis becomes

D-1 -1

Mo E O D) F 0

for some k such that [Ak, = 1 and D, = D. There are many nontrivial situation:
that yield gk(l-]) = 0. In such cases Theorem 1 cannot be applied although
R(xn) and ngn) = 1 may still hold. We shall not pursue this in the present

paper.

To establish the root order result, take norms in (15).
1-Dp | -1 -1
” En,k” = ,)tl ” W"D {5” zO,k” + ” gk(hk )” } +0(@m )

Thus_xn is bounded in norm. Since C(n,D-a)/nD-a - 1/(D-8)! as n - =, then

R L
for some vector !'n which is bounded in norm and which by application of the
subspace hypotheses is bounded away from zero for n sufficiently large.

Therefore,

1 D-8
n

1
= Aln ™ [k JF + (] as 0 - =

[

Hence R(x'n) = A(M),
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To establish the quotient order result, we need to consider only k = 1
(by the hypotheses of Theorem 1 and by Lemmas 1 and 2), Since 7\] = A, then

equation (15) becomes (see the Remark following Lemma 2)

.1-D D-1
{s

a7 v, =% W Yo 1

R +£,07H) o™,

An application of the subspace hypothesis shows thatc v 1 has a nonzero limit
1,
as n = «©, Thus there is some vector !1'1, with a nonzero limit, for which

oAy

I z;T1|| . e Y gl

W M o —"-X—nl-l—-'lﬂ as n = «,

Hence Q(y' n) = A(M) which completes the proof of Theorem 1. [ ]

The proof of Theorem 2 is & minor modification of the proof of Theorem 1,

with s = O, and is omitted,
-n,k -~

>
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6. PROOFS OF THE LEMMAS

The statements of Lemmas 1 and 2 were given in Section 5 and will not

be repeated here. Fix k for 1 =k S K. Let lk # 0, since the results
are trivial otherwise. Recall that § = 0 if |A\| = 1 and § = 1 otherw
n D . Then
k Db, -1
k
n -
o= I +W" = Z M Cla,m)W®
m=0

-T

n -m C(n,m

s 3 lkc(“’”)z. A C{;ﬁvf”.

PROOF OF LEMMA 1. Substituting (18) into (9) ylelds

7‘k -m _C(n,m) We
n ko z C(n,D-8)
m-Df § Dy -D
Since C(n,m)/C(n,D-§) = O(n ) =0t for 0 S m =D -1, the

k
oyl = 1™ o67).

1. 1f ]xkl < ||, then llk/lln Q r) “ 0™ ). Thus Q,

as desired.

D, - -1
2. If D, <D-1, then 0 k ?) < 0(n ) while |Ak/x]“ < 1.
- !
Qn,k O(n '), as desired.

3. IfD_=D and hkl = |A|, then

lk n D -2
m C n,mn -1
()L’“kcmna)wm'o(“)
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by the proof of part 2 above. Heunce Qn K is dominated by the term
L]

m = Dk-l; that is,

Rﬁ) 1-D C(n,D-1) 1) -1
nk C(nDG)w + 0(n )-

Since § = 0 or § = 1, then

C(n,D-1)/C(n,D-8) = & + 0(n" ).

Therefore
Q= 8O /W" NP W+ o™,
which completes the proof of Lemma 1. W
PROOF OF LEMMA 2, Write
n
- T
09 Lk L T Enog,k
=D
Recall (10) and app1y||gn” < w. Hence
Dk::
i
I g tnill 5% 2 3T = 0.
i=0

Hence
n
Lin I 2 it 1 WA Ca,D-80)= 0.

Thus, it suffices to consider t instead of s . Denote
“n,k =n,k

20) g, = £, /0" c(nD-8)).
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Substitute (18) with n = i and (19) into (20). Interchange the order of

summation to obtain

D—]

i-m -n C i,m
2D g = 2. Z Me C(n D-8) n-i,kf

1. Suppose that llkf < |r]. Consider T, 2 1 such that [Ak[ < ITkI < [a].

(T, will be picked later.) Let b x denote the vector,
_1 ’

i-n
(22) Enkl= ‘ -m W ZC(i m() Tk —n-1k-

m=

Then equation (21) may be written as

'Tk n
A -(®) by i/ @D

n (-]
Consider the functions wn(z)= z z' and Y(z) = ZZI. Since lim u[;n(z) = §(z)
: i=0 i=0 e

is analytic for |z| < 1, then lim ¢£m)(z) = ¢(m)(z) is also analytic, and
n—w

thus also absolutely convergent for ]zI < 1 (superscript denotes differentia-
tion). Thus

(m)

|¢£m)(z)| sy (|z]) for |z| <1,

It is not hard to verify that

@y L cm zteal " a @

i=m

Since 0 sm <p -1, A /r | <1, I-rkli'n <1 for D <1 <n, and ”En-i,k” < w,

then the norm of (22) yields
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D -1
k

LN
[ P A VI PR

[ ]

(25)
m=0

Clearly, b = 0(1). Take norms in (23) to obtain

oy, i 1 =P

If |A| > 1, choose 1, < |A|; in this case 4 =00 . 1£ [A| = 1, then &= 0;

-1 _
in this case 1/C(n,D-8) = 0(a”') and thus g_ = 0(n™'). This establishes part I
3

of Lemma 2,

2, Suppose that 1 < Dk < D-1, 1In view of part 1, it is only necessary

to prove part 2 when Ikkl = |K|. Note that 0 <m = Dk-l < D-2,

If |A| = 1, then

n n
Y Ci,m)_ i-n Vo cdam _ C{otl,mtl) -D -1 .
L C(n,DTa) |K| = Z‘ C(n,D) C(n,D) < 0( )y <0(n )

i=Dk i=m

If |A] > 1, then

c(i,m) i-n C(n,D-2) -1 ) -1
Z C(nln 5 AT s Ganpeny ¢ HIMTHIR T s 0.

1=D

Thus, for |A| 2 1 and for 0 <m < D-2,

n
. C(i,m) i- -1
(26) EL C(n,D-z) Al Teo@ .

1=Dk

|hﬂ-i,k” < w, and (26) to obtain

Take norms in (21), apply |Rk| = |1|,

lhn,k” < 0(n‘1). This establishes part 2 of Lemma 2.
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3. Suppose that Ilk, @ ]kl and D = D, Then (21) becomes

k
D-1
4 -nyo-m -n _C{i,m)_
2. oy szk C(n,Dws) “n~i,k
mFD i=
nD-1

Mg) -m =i ¢ n 1 m
( z W 2‘ C(nDa)—lk'
We may write

D D-l ]

0 (T v g0

m=0

i al
where gk,m’n(z) is the vector polynomi

n-D

i C(n-i,m)
GO N ) C(n,D-8) i,k’

i=0
Hence

-i _C(i,m)
@9 | £ (Z> | <w Z Hiak C(n, tha)
i=D

-1
Let z = Ak . Since Ilkl = Il] 2 1, we may apply (26) to (29) and obtain

” £k o n(lil)“ = 0(n_1) for 0 =m < D-2,

Thus 4 in (27) is dominated by the term with m = D-1. Evaluate (29} with
]

m=D-1 for |z| < |A"'|. If [A] > 1, then § = 1 and

Cin,D- ] i~n
£ pq,0@ < w Gl c(n,D-1) Z 2y
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-1 -2
<wO+ AT P =
On the other hand if |A| = 1, then 5 = 0 and
n
Y
llfk,n-1,n(‘)” < [, C(1,D-1) - 13/c(n,D)
1=D-1

= w{c(nt+1,D) - 1}/¢(n,D) < w(n+1)/(n+t1-D) = 0(1).

Thus £

£ o1 ,(2) is bounded in norm uniformly in n for |z]| = |7\-1[. Hence
’ ]

(30

is analytic for |z| < !k'1 . (In fact £ (z) is analytic for |z| =1 for |A] =1

and for |z| < 1 for IA] > 1.) Equation (27) may be written as

1-D _D-1 -1 ~1
K W £k(lk)+0(n Yo

Gp = /DT

To complete the proof, take norms, recall that |)Lk| = ]7\} , and take the limit

as nw, ]
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