NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

TRANSMTSSION FACILITY PLANNING IN teleconmunication networks: a heuristic approach

by

${ }^{2}$ I. Baybars \& K.O. Kortanek

December, 1982
DRC-21-13-82

Transmission Facility Planning in Telecommunication Networks: A Heuristic Approach
 by
 I. Baybars ${ }^{(1)}$ and K.O. Kortanek ${ }^{(2)}$
 October 18, 1982

${ }^{(1)}$ Graduate School of Industrial Administration \cdot
(2)

Department of Mathematics
The research of both authors is partially funded by National Science Foundation Grant ECS-8026777 and ECS-8209951.

ABSTRACT

The transmission system cost functions can be decomposed - approximately

- into a fixed charge part and linear cost part. These parts represent the initial investment cost of installing a transmission system on a specific link of the network and the cost of installing circuits of that system, respectively. We present a mixed integer programming (MI?) model to minimize the present value of facility installation costs subject to satisfying linkwise circuit requirements in each period of a fixed planning horizon* The model treats (i) alternate transmission systems with limited supplied, (ii) general circuit requirements and (ill) pre-specified alternate routes, for circuit assignment.

A heuristic procedure is developed for obtaining approximate optimal solutions for a case of empirical interest, where transmission supplies are unlimited tavi where there is only one alternate route for circuit assignment. Numerical results are presented for moderate size facilities networks over a 3 period planning horizon.

1. INTRODUCTION

1.1 Telecommunications Networks

A telecomminications network is a collection of junctions (or points) some or all of which are joined by direct communication links. A link is a collection of facilities known as transmission equipment which when taken * together comprise a transmission system such as cables, radios, satellites, etc. The main components of a transmission system are the circuits. such as wires, frequencies, channels, etc. One of the traditional transmission facilities is the cable consisting of a large number of wires. Recently, however, the use of radios, satellites, and fiber optics has been rather common.

Traffic, in the form of voice telephone calls, originate at a junction A, such as a city, to be transmitted to another junction B, termed the destination. If there is a direct link in the network which joins point A to point B, the call is transmitted through that link as long as not all the circuits of that link are in use at a given time. If all the lines of the direct A-to-B link are busy, then there are two possibilities: the caller may receive a message requesting that the destination number be re-dialed at a later time, or if there are switching facilities at A, the A-to-B traffic may be switched to some other link, say A-to-C. The call can then be transmitted to B through the links $A-t o-C$ and $C-t o-B$ or via some other sequence of direct links. In this paper switching facilities shall be distinct from transmission facilities, and emphasis will be on planning models for the latter only.

A telecommunication network can be pictorially represented by a graph whose "vertices ${ }^{11}$ and "edges ${ }^{11}$ correspond to the "points ${ }^{11}$ and the "direct communication links" of the network, respectively. The graph of Figure 1 represents a telecommunications network with 8 points and 15 direct links.

From hereon, "link" shall mean "direct communication link ${ }^{11}$. Furthermore, we will not distinguish between A-to-B and B-to-A traffic. Our graph theoretic terminology is standard; for definitions not given here, see Harary [9]. A link joining point i to point j will be denoted by the doublet (i, j). Occasionally, a link will be represented by e_{j}, when the point-pair it connects need not be distinguished.

1.2 Transmission Facility Planning in Telecommunications Networks

The process of facilities planning consists of two major steps.
Originating demand for a service such as voice transmission is estimated in units of traffic load, typically erlangs, or hundred call seconds (CCS) per hour, where 36 CCS equals one erlang. Actually, to assess the eventual alterations of the network one requires estimated traffic for the peak times of the year ("busy-season, busy-hour"). It is necessary to first translate these demands into transmission channels or trunks which by definition are dimensionless units with a single trunk being needed to carry on a two-way voice communiuation. One could term this first step of the planning process as trunking analysis, and an example of an optimization approach to this task is given in Kortanek, Lee, and Polak [11]. The approach in [11], as well as many others; employs a network hierarchy which permits blocked traffic on a link to be switched through other junctions, eventually reaching the intended destination. The idea of alternate routing appears to have originated in a classic paper of Truitt [17] in 1954.

The output of the trunking analysis is a list of trunks between all point pairs (including 0 trunks between some point pairs). Normally, these requirements for trunks would be computed in the short run, for a given year, say t_{0}. The trunk requirements get satisfied by actual facilities installation re*. gardless of their level of technology (e.g., overhead cable vs. underground fiber optics). But facilities alterations are definitely long run phenomena, since, once in place, such facilities remain so for possibly 20 to 30 years comprising the planning horizon. Therefore, it is necessary to obtain trunking requirements for the long run also, say for years $t_{0} t_{0}+1, \ldots, t{ }_{0}^{4-29 .}$ One way of doing this is to first estimate customer calling demand in CCS
between point pairs for each year of the planning horizon. Then, repeated implementation of a trunking analysis procedure such as the one given in [11] would yield point-to-point trunking requirements for each year of the planning horizon.

At this point of the overall facilities planning process, it is convenient to anoint the so-computed trunks as inputs to a facilities planning model by referring to them formally as circuits. The task then at this stage may be termed the transmission facilities planning problem in telecommunications networks: given point-pair circuit requirements for each year in the planning horizon, find a minimum present value cost facility installation plan by specifying the type of transmission systems and the links themselves on which the systems are to be installed as well as the number of circuits to be installed on each such link in each period of the finite planning horizon. Formally, this combinatoric optimisation problem is a fixed-charge multi-commodity flow synthesis problem and is an enormously difficult one to solve (see, for instance, Lawler [12]. A recent survey by Luss [13] on capacity expansion problems provides an excellent discussion and comparison of similar problems and solution approaches presented in [5], [7], [16], [18] and [19]. Other relevant works include [1], [2] and [3].

Our purpose here is to attack this computationally intractable problem through approximate, tractable means by simplifying the problem as described below.

Basically, an overall model formulation such as Yaged [18] permits imputed circuit demand to be literally "routed ${ }^{11}$ along any sequence of links joining any particular pair of points. Concurrent with this task is the determination of actual facility equipment for any or all of these links. The idea of our formulation is to severely limit the number of choices for routing che circuit requirements of pre-specified links. For example, the simplest
model approximation would permit any circuits required for a point-pair (a) to be installed on that direct link or (b) routed along the uniquely determined alternate route stemming from the original, a priori, network hierarchy underlying the trunking analysis which generated the circuit inputs for the planning horizon in the first place* This approximation is designed to be consistent with the given network hierarchy. The model that we present in Section 3 allows more complicated hierarchies in the sense that some point pairs may have many alternate routes.

2. A GRAPH THEORETIC-MATHEMATICAL PROGRAMMING APPROACH

2.1 Network Hierarchy

In most telecommunication networks not all pairs of points are connected by links because of obvious economic reasons. In graph theoretic terms, this means that the corresponding graph is non-complete. However, we assume that the graph is connected and, therefore, given switching facilities, it is possible to reach any point of the network from any other point.

Consider a network represented by the graph of Figure 2. Suppose that the dashed edges of this graph correspond to links which can only carry its own traffic. For instance, the link $(3,5)$ can only carry point 3-to-point 5 traffic. Note that there is no link between points 4 and 6 . This means that the point 4-to-point 6 traffic is transmitted along links $(4,7)$ and (7,6). If all the line-circuits of the link $(4,7)$ or $(7,6)$ are busy, then the 4-to-6 traffic is blocked, i.e. lost.

On the other hand, there is a link, namely (5,7), joining point 5 to point 7, and, therefore, the point 5-to-point 7 traffic can be carried along this link. However, if all the circuits of link $(5,7)$ are busy, then the excess 5-to-7 demand can be transmitted along links $(5,1),(1,2)$ and $(2,7)$ subject to idle capacity. The designation of a subset of the links of the telecommunication network in this fashion results in a simple hierarchy: a link (A, B) is termed high-usage if (i) (A,B) can not carry the traffic of pairs of points other than that of A and B, and (ii) it is possible to transmit the A-to-B traffic via an alternate route. All other links are termed final. Thus, by definition, the excess traffic on a final link is lest; the (excess) traffic on a high-usage link can be switched to an alternate route.

This particular type of network hierarchy can be described in graph theoretic terms as follows: the final links are chosen in such a manner that the graph induced by the corresponding edges is a spanning tree, i.e. a connected graph with no cycles. As shown in Figure 3, the solid edges of the graph of Figure 2 induce the spanning tree T. (A graph G_{S} is a spanning subgraph of the graph G if G_{S} contains all the vertices of G and no other vertex.) The remaining links of the network are the high-usage links, and they are, in graph theoretic terms, the chords of that spanning tree. Thas, T, together with any chord, contains exactly one cycle. For instance, the graph G_{1} of Figure 4 is T together with its chord e_{15} and it contains exactly one cycle: ${ }^{e}{ }_{15}{ }_{2}{ }^{e}{ }_{1} e_{3}{ }^{e}{ }_{7}{ }^{e_{15}}$: This implies that there is one and only one path in G_{1} joining the end vertices of the edge e_{15}, mamely $e_{2} e_{1} e_{3} e_{7}$. A similar case actually is true for any chord (high-usage link) adjoined to T. Thus, designation of the network hierarchy in this manner offers a unique alternate path for the traffic of each high-usage liak. By the length of an alternate path we shall mean the number of final links which it contains.

As an approximation to all conceivable routings, we describe this simplest of all network hierarchies as follows. The circuit requirements of a high-usage link can be met in two ways: either by installing a system -and therefore, circuits -- on that link or by wholly or partially meeting the demand through routing along the links of its unique alternate route. Even under this restricted routing plan it follows that more than one set of circuits can be installed to meet the requirements of a particular high-usage liak. While the fixed cost of installing a system is relatively large, the fixed cost per.unit of capacity, as well as the variable cost of
circuit installations decreases as system capacity increases. As a consequence, económies of scale may be realized by installing larger systems for which it may be more economical to route the circuit requirements of (some) of the high-usage links than install transmission equipment on a high-usage link itself. This will become apparent when we present numerical examples in Section 3.3.

2.2 Assumptions

A network topology and-network hierarchy of Section 2.1 is given and fixed. There is no provision for the installation of switching equipment or multiplex equipment at the nodes; nor for the installation of new links in the hierarchy. In addition, all input parameters such as network costs, circuit requirements, and system capacities are assumed to be known constants. No monotonicity assumptions, however, are placed on circuit requirements over the planning horizon.

We shall assume that the life of each transmission facility exceeds the length of the given planning horizon and that end-of-planning horizon effects are negligible.
la. the telecommunications field it has been assumed that cost functions associated with installing transmission systems are concave« reflecting economies of scale. These functions may be decomposed - approximately - into a fixed charge and a linear cost part. The fixed charge part represents the initial investment cost of installing a transmission system (e.g., cable) on a link. The linear cost part, on the other hand, represents the cost of installing the circuits (e.g., wires in cables) of that system. Generally, it is assumed that both of these costs depend on the length of the individual links (i.e., the actual distance between the two points joined by that link).

We assume that there are alternative transmission systems such as cables, satellites, microwave radios, and that any of these systems may be available for only specific periods of the planning horizon. Their supply is limited, as well as the supply of the individual circuits of the specific systems.

We shall assume that system reliability will be enhanced if more than one type of transmission facility is present on each link. This would enable the users to maintain direct contact between specific pairs of points, if,
for instance, the links are insțalled with cables as well as satellites facilities, in case the satellite may fail.

```
3 A GENERAL MIXED-INTEGER PROGRAMMING >K)DEL
We shall use the following notation:
L * {links}; I will denote a link and qs |L{
H > {high-usage links}; h will denote a high-usage link and q}\mp@subsup{\textrm{q}}{}{1}\textrm{s}|\textrm{H}
F > {final links}; f will denote a final link and q" a |FI
Ti(h)
    high-usage link hf i(h) €lh - {l(h), 2(h),\ldots, 信(h)}
Hf < {high-usage links for which at least one alternate route
        contains the final link f}
cjust : cost of installing one system s unit on link I in period t,
    where t€T * £l,\ldots..,t'f and s€S * {l,...,s'}
c?st: cost of installing one system s circuit on link K}\mathrm{ in period t
bst : number of system s units available in period t
B
        horizon
as : circuit capacity of one system s unit
a . : number of system s circuits available for installation in
    SC
        period t
As .: number of system s circuits available for installation through-
        out the planning horizon
r : annual interest rate
wt < (1+r)" : discount factor for t years
ks : parity factor
d!t : circuit requirement of link L in period t
```

The variables under control are as follows:
${ }^{x}$ lat : number of system s units installed on link I in period t $\mathcal{H}_{\text {st }}$: number of system s circuits Installed on link I in period t . ${ }^{i}(h), t$: the number of circuits which will be routed to the $i(h){ }^{\text {th }}$ alternate route of the high-usage link h in period t.

Before presenting the model, we first note that H UF•L and HDF•O. For the network depicted in Fiqure 2, $\overline{\mathrm{h}}(\mathrm{h}) \cdot 1 \mathrm{YhCH}$ and;

$$
\begin{aligned}
& \left.\left.{ }^{{ }^{F}} 1(8) * t^{\left.1,{ }^{2}\right\}}{ }^{\prime}{ }^{F} 1(9) * f r .3 .5\right\} \cdot{ }^{F} 1(10)-. C l .3 .6\right\} . F_{1(U)}-(2,1,3) \\
& F_{1(12)}=\{2,1,4\}, F_{1(13)}-\{2,1,3,5\}, F_{1(M)}-\{2,1,3,6\}, F_{1(15)}-\{2,1,3,7\},
\end{aligned}
$$

On the other hand, $\overline{\mathrm{h}}(\mathrm{h}) \cdot 2 \mathrm{Vh} \mathrm{cH}$ in the network of Figure 5 :

$$
\begin{aligned}
& F_{1(11)}=\{4,3,8\}, F_{2(11)}=\{5,6,1,2,8\}, F_{1(12)}-\{3,4\}, F_{2(12)}-\{2,1,6,5\}
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{P}_{I(15)}=\left\{3,4,5 \wedge \quad \wedge F_{2}(15) \quad \| \quad t^{2}>^{1}>V^{\prime}\right.
\end{aligned}
$$

And, finally, $\overline{\mathrm{h}}(\mathrm{h})-3, \mathrm{Vh}<\mathrm{H}$ in the network of Figure 6_;

$$
\begin{aligned}
& \left.{ }^{F} 1(U) \text { " } *^{4},{ }^{5},{ }^{6}\right\}{ }^{\prime}{ }^{F} 2(U) \text { " }\{2,3,7,5,6\}, F_{3}(U)-\{2,1,9\} \\
& F_{1(12)}=\left\{5,63, F_{2(12)} \| \wedge .2,1,9\right\}, F_{3(12)}-\{7,3,1,9\} \\
& F_{1(13)}=\{5,6,9 \quad\}{ }^{\prime} F_{2(13)} " C L 2.4 J, F_{3(13)}-\{1,3,7\} \\
& F_{1(14)}=\{1,2,4,8\}, F_{2(14)}-\{9,6,5,8\}, F_{3(0)}-\{1,3,7,8\} \\
& F_{1(15)}=\left\{6,5,7, F_{2}(15) "\left\{^{3} 2.4,5,6\right\}, F_{3(15)}-\{3,1,9\}\right.
\end{aligned}
$$

We can now present the model:

Program P

subject Co:

$$
\begin{equation*}
\underset{\text { UT }}{\mathrm{E}} \quad \mathrm{Z} \mathrm{X}_{\text {fst }} \leq \mathrm{B}_{-\bar{s}} \tag{5}
\end{equation*}
$$

VseS

$$
\begin{equation*}
\sum_{\ell \in L} x_{l s t} \leq b_{s t} \tag{6}
\end{equation*}
$$

VseS, VteT

$$
\begin{equation*}
\sum_{L t L} \sum_{\text {ceT }} y_{\ell s t} \leq A_{s} \quad \text { VseS } \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{t \in L} y_{l s t} \leq a_{s t} \tag{8}
\end{equation*}
$$

Vses, VteT

$$
\begin{align*}
& \ldots \sum_{t=1}^{\bar{t}} y_{h s t} \geq d_{h t}-\sum_{i(h) e I h^{U i(h)}, E} \quad \text { Wheif * vtet } \tag{3}
\end{align*}
$$

$$
\begin{align*}
& \text { Wect, VseS, vt"eT } \tag{4}
\end{align*}
$$

$$
\begin{aligned}
& \text { seS, tet, heH, and i(h)elh }
\end{aligned}
$$

$$
\begin{equation*}
\Psi_{\text {fst }} \geq 0 \quad \text { Ve\&I, VscS, VteT } \tag{H}
\end{equation*}
$$

$$
\begin{equation*}
u_{i(h), t} \geq 0 \tag{12}
\end{equation*}
$$

$$
\nabla \pm(h) \in I h, V L
$$

Description of Program P:

The objective function (1) is the sum of the discounted fixed costs of installing transmission systems and the discounted variable costs of installing circuits on the links of the network throughout the planning horizon.

The first two constraints represent "circuit requirements ${ }^{11}$: The number of circuits on a final link f in period \bar{t} must be greater than or equal to the sum of the circuits required for that link and the circuits to be used to (partially) meet the requirements of the high-usage links whose alternate

$$
\begin{align*}
& \text { C.I } \\
& { }^{x} l s t \quad \text { _ }{ }^{\circ} \text { and inte } 8^{e} r \\
& \text { V-teL, } \mathbf{V s}_{\mathbf{f}} \mathbf{S} \text {, VteT } \tag{10}
\end{align*}
$$

route (s) contain f. This requirement is expressed by (2). (3), on the other hand, is for high-usage links: the number of circuits on a high-usage link h in period \bar{t} must meet the demand not satisfied by re-routing. (4) represents the capacity of system s units: system s circuits can be installed in link t in period t only if system s units have been installed in periods $I_{9} 2 \ldots \ldots t^{*}$ and there is idle capacity. (5) represents the limited supply of a specific transmission system over the planning horizon whereas (6) represents the limited supplies periodvise. Similarly, (7) represents the limited supply of the circuits of a specific transmission system over the planning horizon and (8) represents the limited supplies of the circuits in each period of the planning horizon. (9) is the parity constraint: in order to avoid dependency on a sole system on a link, at least a specified proportion k_{s} of circuits on every link must be of system s type.

Program ? is a rather large program. Let $q^{f f 1}$ be the number of alternate routes In the network, i.e.,

$$
q^{\prime \prime}-\underset{h e H}{S h}(h)
$$

Then, \mathcal{P} has $q t^{f}\left(1+2 s^{f}\right)+2 s^{f}\left(1+2 t^{f}\right)$ constraints other than non-negativity requirements and $t^{f}\left(2 q s^{f} 4 q^{f f f}\right)$ variables, $q s^{f} t^{f}$ of which are integer. (he should note here that the number of circuits installed on a link in real-life is sufficiently large enough to enable us to permit fractional values for the variables $Y_{s l t}{ }^{f s}$-) For instance, the number of constraints would be 357 if $s^{f} \gg t^{1} * 3$ and $q^{f} \gg 7, q " * 8$ and $q^{\text {lff }} * 8$; the number of variables would be 294 with 135 integer variables. Thus, even for relatively small \mathbf{s}^{f} and t^{f}, Program P remains large.

A reduced problem, which has empirical interest for planning, may be obtained by deleting the supply of equipment constraints (5)-(8) and the parity constraints (9), and by restricting the number of alternate routes of each high-usage links to be one.

In addition we make a simplifying assumption on costs, namely all costs are independent of link length. In other words unit circuit costs are independent of the subscript $£$ (corresponding to link 4). This assumption is plausible for networks having links approximately the same length, or at least where the fixed costs are somewhat insensitive to link length.

Wé shall denote the resulting simplified mixed-integer program as Program \&, which in terms of $£$. consists of (1)-(4), (10), (11) with $\operatorname{Ih}=\{1(h)\}$ for each heH.

Our previous computational experiences in solving Program Q for illustrative problems are reported in [3]. Program 0 is sufficiently large and complex that in our attempts to solve it using "flow theoretic methods" [3] and "general purpose mixed 0-1 programming codes" [14] numerical difficulties were encountered. The magnitude of this computation time led us to seek a methodology capable of finding a "good" solution, rather than the optimum, in a "reasonable" CPU time, two terms which are difficult to define in this context. The need for heuristics for problems of this type are also made clear by Luss [13].
4. A HEURISTIC METHOD FOR SOLVING PROCRAM Q

In order to be able to find a "good" solution in "reasonable" CPU time, we adopted a number of simple rules and constructed a seven step heuristic procedure called HICPQ (See Appendix). The procedure assumes that $|I h|=1, \forall h \in H, i . e$. we consider only one alternate route for each high-usage link. Hence, F_{h} will represent $F_{1(h)}$. We shall now present a summary of HICPQ.

Given the network configuration, we first determine the sets F_{h} and H_{f}, and all control variables are set equal to zero. At this point, if the circuit requirements of a final link \bar{f} in period 1 exceeds the circuit capacity of the lagest transmission system, a decision is made to install as many units of that system as necessary so that the updated circuit requirement of \bar{f} prior to the implementation of Step 1 is less than the circuit capacity of the largest system.

In Step 1 we determine the collection of high-usage links whose circuit requirements should not be routed. This decision is based on the number of final links in the alternate route for a specific high-usage link $\overline{\mathrm{h}}$; for $\left|F_{\bar{h}}\right|$ and/or $d_{h t}\left|F_{\bar{h}}\right|$ way be sufficiently large so that the total variable cost of installing circuits on the links of the alternate route for $\overline{\mathrm{h}}$ may exceed the total fixed and variable costs of installing circuits on that link. If such a high-usage links exists, an installation decision is made, and the circuit requirements of that link are updated as well as the sets $H_{f}, \forall f$ such that $\overline{\mathrm{h}} \in \mathrm{H}_{f}$ 。

Steps 2 and 3 are for initial installations on final links. Since their circuit requirements cannot be routed, the links own requirements are to be met immediately. However, instead of merely satisfying the requirements of a final link \bar{f}, we try to exploit the economies of scale by installing large systems so that excess circuit capacity can be used for routing the circuit requirements of the high-usage links. After the installation decisions are completed, the circuit requirements are updated and excess circuit capacities are calculated.

Step 4: Given the installations on the final links made in Steps 2 and 3, we now turn to high-usage links again. In each period, we first consider the highusage link h with the smallest demand. If the links of the alternate route of h bave unused circuit capacity, sufficient number of circuits are installed on those liaks to meet the requirements of h. Otherwise, we move on to the high-usage link with the next smallest circuit requirements and continue in this fashion until all high-usage links are considered in each period. The high-usage liak eircuit requirements are updared accordingiy. Obviousiy, it is possible that $d_{\text {ht }} \neq 0$ for some $h e$ at chis point, and the question becomes whether routing is best for such a high-usage link or not. In Step 5, the high-usage links are ordered in ascending order of circuit requirements in each period. Starting with $t=1$, the possibilify of installing a system on h versus installing an additional system
on a link of the alternate route is explored. First, the two final links on the alternate route with the least excess capacity are identified. Of these two finals one (or both) having smallest excess capacity is now "eligible" to have a system 1 unit installed during \bar{t}. Without the system added, the limiting factor for the alternate route is the excess capacity of this final. With the system added, the limiting factor is the minimum of the excess capacity of this final plus the capacity of a system 1 unit and the excess capocity of the other of the two. Second, the cheapest way of meeting the circuit requirements for this high-usage is found by considering only the alternatives described above. This least-cost solution will include a system and circuit configuration. However, only the system part of the solution is used here. In this step, as many circuits as possible are installed on the high-usage link; the remainder of the requirements being satisfied via the alternate route. (This is temporary, and Step 6 will adjust this solution.) The idea is to keep, for the moment, as much excess capacity on the finals so that the remaining high-usages to be considered will not be restricted more than necessary.

Step 6 accepts the system configuration from Step 5, and decides whether
it would be cheaper to "trade" some of the circuits on a direct high-usage link for circuits on the alternate route. If it is cheaper, then as many circuits as possible are rerouted along the final.

At the beginning of Step 7? the number of circuits to be installed on each link has already been determined^and thus we now re-evaluate the systems to be installed. We do this by solving a small 0*1 program which identifies the systems needed given the number of circuits to be installed on each link. This is where the discount rate plays a major role. For instance, it is possible that

$$
{ }^{2 w} t s *^{+w}{ }_{t+1} \% *<v \quad i_{t+1}^{+w} \quad t+K ; *-1 .
$$

that is, it may be cheaper to install two units of system s * in period t and one unit of system s^{*} in period $(t+1)$ than one unit of system $\left(s^{*}+1\right)$ in period t and one system of ($s^{*}-1$) in period ($t+1$).

Numerical examples using HTCPQ are presented in the next section.

5. NUMERICAL EXPERIMENTS ON FOUR NETWORKS

In this section we consider four networks $N_{1_{1}}, N_{2}, N_{\tilde{j}}$ and N^{\wedge} shown in Figures $2, £, £$ and $£$, respectively. Network N_{1} is the one studied in [3] and [11\}. The other three networks have been constructed arbitrarily. In each network there exists exactly one alternate route for each high-usage link. Various statistics for these four networks are given in Table 1.

For illustrative purposes, we use a 10-year planning horizon. Period 1, i.e. $t \gg 1$, is the base year of this planning horizon, $t=2$ corresponds to the fifth year and $t \ll 3$ corresponds to the 10th year. The annual interest rate is set at 10%. The linkwise circuit require-
 The circuit requirements in N_{\perp} are obtained from [3] whereas the circuit requirements in $\mathrm{N}^{\wedge}, \mathrm{N}_{-}$and N_{4} have been generated randomly except that all circuit requirements in period 1 were restricted to values not exceeding 1000. Furthermore, high-usage link requirements were in general chosen to be smaller than final link requirements. The rationale for the latter is that a typical final link carries the traffic of pointpairs other than its end-points.

Again, for illustrative purposes, we consider three alternate transmission systems. The fixed and variable costs of each transmission system, as well as the circuit capacity of each such system are based on a hypothetical rescaling of the data in Table 1 of Yaged [18] and are given in Table 6. We should re-state here that facility costs are assumed to be independent of the actual length of the links. In Table 7 < we present the size of each Program Q corresponding to the four networks considered.

The optimal solution for N_{1} is given in Table 8, This solution was obtained by using LINDO (14] on DEC-20 at Carnegie-Mel Ion University. The solution was found in 37 CPU minutes. We should emphasize that LINDO is a general branch-and-bound procedure and that the magnitude of the CPU time for our problem is not a reflection of the capabilities of LINDO. It is well-known that general procedures for solving integer programs of more than 100 variables do not perform well. (See, for instance, [4]*)

The 'approximate optimal ${ }^{1}$ solutions for $N_{1_{1}} \quad N_{-2}, N_{-}$and N_{4} in Tables $£, K$, ${ }^{\wedge} \underline{J}$ and 12 , respectively, have been obtained by the heuristic procedure HTCPQ. The entries under 'installations ${ }^{1}$ in all those tables are the types of transmission systems to be installed on the respective link in the respective period. For instance, in Table 8. we see that one system 2 unit is to be installed on link 3 in period 2, and, in Table 10, we see that two different systems, namely 1 and 3, are to be installed on link 13 in period 1. A zero entry in any period for any link means that no system is to be installed. The number of circuits installed can be easily computed based on the systems installed.

A natural question that arises is on the 'goodness* of the HTCPQ solution. The best way to measure the heuristic solution is, of course, to compare it with the optimal solution. This we can do for N_{1} : the optimal total cost is $\$ 12,188,683$ and the heuristic total cost is $\$ 12,195,223$, within 0.067 * of the optimal. For networks N_{2}, N_{3} and N_{4}, optimal solutions are not available. We have tried solving a reduced but equivalent Program 0 for N_{-}, using LINDQ, and we had to terminate the computations after 3 CPU hours.

We have also used measures of average circuit costs to test the goodness of the HTCPQ solution. All averages are stated in terms of present values.

- \bar{C}_{M} [Average Circuit Cost Using Least Cost Circuits on High Usage Links] For each high-usage link the required number of circuits are met by System 3 circuits (the least cost ones), while no fixed costs are assigned to it.
- $\overline{\mathrm{C}} \mathrm{Q}$ [Optimal Solution Average Circuit Cost]
- $\overrightarrow{C H}_{H}$ [Heuristic Solution Average Circuit Cost]
- \vec{C}^{\wedge} [Average Circuit Cost for No Network Hierarchy]

Observe that for both \bar{C}^{\wedge} and $\bar{C}_{\dot{N} S}$ there is no routing of circuits and the facility planning problem is solved for each final link individuälly. For the no network hierarchy case, of course, all links are treated as final links. The relaxations defining $\overline{\mathbf{~}} \mathbf{M}$. result in a non-feasible solution to the 'original transmission planning problem and thus $\overline{\mathbf{C}}_{\mathbf{M}}$ is an unattainable lower bound on $\bar{C}_{n} \ll$ Without the network hierarchy on the other hand, one obtains feasibility and consequently an upper bound on $\overline{\mathrm{C}}_{\mathrm{n}}$ The average circuit costs for each of the four examples are given in Table 13.

Since HTCPQ itself is a heuristic procedure, there are likely to be other rules which improve the solutions possibly leading to an optimal solution. HTCPQ is consistent with the underlying rationale for constructing heuristic procedures, namely, to be able to find a good solution in realistic $C P U$ times. However, for a specific problem a solution found by this procedure can possibly be improved by studying that specific problem.

6. CONCLUSIONS

The process of telecommunications network analysis includes at least three major tasks: (I) Trunking Analysis, (II) Switching Analysis, and (III) Transmission Facilities Planning. In this paper we have set forth a new mixed integer programming model for a class of problems of type (III) and have provided a heuristic procedure for solution. The basic simplifying feature of the model is that circuit requirements between any two nodes have only one way for which they may be alternatively routed. This restriction aids the development of closed form models, which are inter-temporally dynamic in that one period ${ }^{1} s$ decisions depend on decisions in the other periods in the fixed finite planning horizon. The model highlights the interaction between large, fixed cost components and the much smaller marginal costs of additional circuit equipment. It facilitates the construction of a solution heuristic which incorporates fixed cost information, departing markedly from heuristics which depend heavily on marginal costs* No dynamic programing is required, and one can reasonably anticipate application to large scale problems. For those cases where it is important to consider a large number of alternate routes for point-pair circuit requirements, then our procedure could provide a good initial start for these more complicated computational methods, see Yaged [18].

Task (III) is certainly tied to Task (I) because circuit requirements for (III) are a result of having first solved problems of type (I), repeatedly, once for each time period within a fixed planning horizon. The output from (I) is actually more extensive, providing in addition, period by period circuit terminations and total switched traffic (in erlangs) at each node. These are some of the inputs required to solve problems of type (II). Using these inputs one could incorporate nodal cost models into the facilities planning models of this paper in order to account for switching costs and also in a related way to
account for nodal multiplexing costs.

The heuristic procedure has been illustrated on four numerical examples whose number of nodes and number of links are $(8,15)$, $(15,29)$, and $(32,63)$ and $(98,283)$, respectively. The sizes of the mixed integer programming problems of the latter two problems exceeds the capability of known mixed-integer programming algorithms and codes.

ACKNOWLEDGEMENT

We are grateful to Richard Edahl for the computational work and his suggestions to improve the heuristic algorithm.

APPENDIX: Procedure HTCPQ

For the heuristic method that will be given below, we need two new notations: let (i) $Y \notin$ denote the number of circuits on link $£$ at the end of period t, and (ii) $v_{f t}$ denote the unused transmission system capacity on final link f at the end of period t. That is,
and

$$
v_{f t}=\sum_{s=1}^{s} \sum_{\bar{t}=1}^{t} a_{s} x_{f s t}-y_{f \bar{t}}^{\prime}
$$

STEP 0: Find $F_{h} \neq h \in H$
Set (i) $x_{\text {l st }}=y_{\text {list }}=0$ if $\mathcal{L}, \operatorname{ses}, t \in T$
(ii) $v_{f t}=0 \quad F f \in F, t \in T$
(iii) $y_{i t}^{\prime}=0 \quad \forall \& \in L, t \in T$

If for any link f, positive integer a

$$
\begin{aligned}
& a_{a^{\prime}} \leq d_{\ell 1}<(a+1) a_{s^{\prime}}, \\
& \text { Set } x_{\ell_{s} 11}=n, y_{\ell_{s} 11}=a_{s \prime}, y_{\ell_{t}}^{\prime}=y_{\ell s \prime 1} \\
& d_{l t}=d_{l t}-y_{\ell_{1}}^{\prime} \quad \forall t \in T
\end{aligned}
$$

STEP 1: $\boldsymbol{F} \mathrm{h} \in \mathrm{H}$;
(i) $\operatorname{set} \overline{\mathbf{s}}=0$
(ii) if (a) $d_{h 1} \geq a_{2}+a_{1}$
or (b) $d_{h 3} \geq 2 a_{2}$ and $d_{h 1} \geq a_{2}$
then set $\overline{\mathbf{z}}=3$ and go to (iii)
if for $s^{*} \geqslant \quad a_{s}{ }^{*} \mathrm{~d}_{\mathrm{h} 1}<\mathrm{a}_{\left(\mathrm{s}^{*}+1\right)}$,
$c_{s \prime 1}^{\prime \prime}\left(\left|F_{h}\right|-1\right) d_{h 1} \geq c_{s} *$
then set $\overline{\mathbf{s}}=\mathbf{s}^{*}$ (if $\mathrm{s}^{*}>0$) and go to (iii).
Otherwise, go to (i) for next h.
(iii)

$$
\text { set } \begin{aligned}
x_{h \bar{s} 1} & =x_{h \bar{s} 1}+1, y_{h \bar{s} 1}=y_{h \bar{s} 1}+a_{s} \\
y_{h t}^{\prime} & =y_{h t}^{\prime}+a_{\bar{s}}, d_{h t}=d_{h t}-a_{\bar{s}} \quad \mp t \in I
\end{aligned}
$$

STEP 2: $V \in \in F ;$ (i) if $d_{f 3}<\boldsymbol{a}_{\mathbf{s}}$ go to (ii)
otherwise: set $x_{f 31}=x_{f 31}+1 \quad v_{f t}=v_{f t}+a_{s}, \quad t \in I$

$$
\begin{aligned}
& y_{f 3 t}=y_{f 3 t}+b_{t} \\
& y_{f t}^{\prime}=y_{f t}^{\prime}+b_{t} \\
& v_{f t}=v_{f t}-b_{t}
\end{aligned} \quad\{t \in I
$$

$$
\begin{aligned}
& \text { where } b_{t}=\min \left\{d_{f t}, a_{s},\right\} \\
& \text { set } d_{f t}=d_{f t}-a_{s}, t \in T \\
& \text { (ii) if } d_{f 3}>a_{2} \text { or } \sum_{t=1}^{3}\left(d_{f t}+\sum_{h e H_{f}} d_{h t}\right) / 3>a_{2} \text {, then set } \bar{s}=3 . \\
& \text { otherwise, if } d_{f 3}>a_{1} \text {, set } \bar{s}=2 \\
& \text { otherwise, set } \bar{s}=1 . \\
& \text { (iii) Perform operations } A-2 \text { and } A-3 \text { with } \bar{t}=1, l=f .
\end{aligned}
$$

STEP 3: If, for any final link $f, d_{f 3}>a_{2}$ and $x_{f 31} \geq 2$, then set $\bar{s}=3$.
Otherwise, compute $\bar{d}_{f}={ }_{h} \mathrm{~d}_{\mathrm{h} 2}$
Then, if $d_{f}-\nabla_{f 2}>a_{1}$, set $\bar{s}=2$. If, on the other hand,
$d_{f}-v_{f 2}>a_{2}+a_{1}$, set $\bar{s}=3$. Then if $\bar{s}=0$, go to the next link. Otherwise, perform operation A-2 on f with $\overline{\mathrm{s}}$ and $\overline{\mathrm{t}}=2$.

STEP 4: Th H, in increasing order of $d_{h t}\left|F_{h}\right|$;
If $d_{h i}<\nabla_{f \bar{t}}, \forall f_{h} F_{h}$, perform operations $A-3$, with $l=s, \forall f_{f} H_{f}$ and set $d_{h t}=0$. Otherwise, go to next link.
STEP 5: Then, in increasing order of $d_{h t}$;
If $d_{h t}=0$, go to next. link, otherwise define
(i) $\nabla_{1}=\min _{f_{\in} F_{h}}\left\{v_{f t}\right\}$
(ii) $\nabla_{2}=\min _{f \in F_{1}}\left\{\nabla_{f t}\right\}$ where \bar{f} is the link which gives ∇_{1} in (i) ${ }_{f}{ }^{-F_{h}}$
$\mathbf{f}=\mathbf{f}$
(iii) MC $=\underset{f \in F_{h}}{E} C_{f t}$ where $M C_{f t}$ is the marginal cost of
$\mathbf{f}_{\boldsymbol{f}} \mathbf{F}$
adding one more circuit to link f in period t.
Then solve the following for \bar{t} :

Program_ Ps $_{\text {s }}$

$$
\begin{array}{r}
\min \quad \sum_{s=1}^{3} c_{s \bar{t}}^{\prime} x_{h s \bar{t}}+c_{I \bar{t}}^{\prime} x_{\bar{f} 1 \bar{t}}^{(1)}+\sum_{s=1}^{3} c_{s \bar{t}}^{\prime \prime} y_{h s t}^{(1)}+\left(M C+M C_{\bar{f} \bar{t}}\right) y_{\overline{f s} \bar{t}}^{(2)} \\
\end{array}
$$

s. to: $\sum_{s=1}^{3} y_{h s t}^{(1)}+y \frac{(2)}{f s t}+y \frac{(3)}{f s t} \geq d_{h t}$

$$
\begin{aligned}
& { }^{\mathrm{y}}{ }^{\mathbf{1}} \mathrm{HSi} \quad \leq \mathbf{a}_{\mathbf{s}} \boldsymbol{x}_{\text {hst }}, \mathbf{s}=1,2,3
\end{aligned}
$$

where (a) $x_{5 \times i f(1)}=11$ if a system 1 unit is added to \bar{f} in \bar{t}
where
fo) $\mathrm{yJ} .{ }^{(1)}$) is the number of system s circuits added to link h in period \bar{t} hst $0 \sim \sim \sim \sim$
(c) $y\}^{(2)}$ - is the number of system s circuits added to each fe F.
est •~"""ヘ^"
before a new system s unit is added to $\overline{\mathrm{f}}$.
(d) $y=(3)$ - is the number of system s circuits added to each $f £ F$, after a new system s unit is added to $\overline{\mathrm{f}}$.

Then, if (i) $x_{n s t}$ - 1 , perform operation A-4, and
(ii) $d_{h t^{-}}>v_{i}$, perform operation $A-2$.

Then perform operation $\mathrm{A}-3 \mathrm{VfeF}_{\mathrm{n}}$ with $£=\mathrm{h}$.

 compute $M C=\underset{f i}{Z} F_{h}{ }^{M C} \underset{f t}{*}$ where $M C-{ }_{f t}$ is computed as in Step 5,

Let $S(L)$ be the last system installed on link h. Then solve the following:

Program $\mathbf{P}_{\underline{E}}$

$\min \quad c_{s(L) t}^{\prime \prime} Y_{h s t}^{(1)}+\operatorname{MCy} \frac{(3)}{f s t}$
s. to: $y_{h s t}^{(1)}+y \frac{(3)}{f s t} \geq y_{h t}$
$\begin{array}{ll}y_{\text {(1) }}^{(1)} & \left.>y_{\text {hst }}^{y}-I\right)\end{array}$
${ }_{y} l_{f S t}^{3} i<\min _{f \in F_{h}}\left\{v_{f t}\right\}$
$y_{\text {hst }}^{11}, y_{f s t}^{l_{s}^{3} i} \geq 0$

$$
\begin{aligned}
& \text { (ii) } \mathbf{v}=\mathbf{=} \mathbf{v}=-\mathbf{Y} \boldsymbol{\mathrm { g }} \mathrm{i}
\end{aligned}
$$

Step 7; vel, solve the following:

Program $_{7}$

$$
\begin{aligned}
& \text { subject to: } \begin{array}{cc}
3 & \bar{t} \\
Z & Z \\
f l t-1 & y_{1 s t}^{\prime} \\
\sim
\end{array} y_{a t}^{\prime}-\bar{t}-1,2,3 \\
& \sum_{t=1}^{E} Y_{l s t}<a_{s} \sum_{t=1}^{E} x_{l s t}, s=1,2,3 \\
& y_{l s t} \geq 0 \\
& x_{\text {let }}=0.1
\end{aligned}
$$

Operations:
Operation A-1: $S<t$ (i) $x_{h s l}-x^{\wedge} \cdot 1$, (ii) $Y_{h l}^{\prime}=y_{h l}^{\prime}+d_{h 1}$.

$$
\begin{aligned}
& \text { (iii) } K 1 " y y^{\prime} 2+d_{h 2}, \text { (iv) } y_{h 3}^{\prime}=y_{h 3}^{\prime}+d_{h 3} \\
& \text { and (v) } d^{\wedge}-d_{h 2}=d_{h 3}=0 .
\end{aligned}
$$

 $t \cdot \bar{t}, \ldots, 3$

Operation $A-3: \quad$ Set (i) $v^{\wedge}-v_{f t}-d_{f t}$ and (ii) $\boldsymbol{Y}_{f t}^{\prime}=Y_{f t}^{\prime}+d_{l_{t}}$

Operation $A-4 ;$ Set (i) $x^{\wedge} \underset{t}{ } \cdot x^{\wedge} \bar{t}+1$ and $t * \cdot \bar{t}$.
(a) If t* > 3, return. Otherwise;

set ${ }^{\prime}$ hf " Y ht* + V
set $a_{h t}=$

- Set t* • t* + 1

Go to (a) above.
[1] Ash, G. R., R. H. Cardwell and R. P. Murray, "Design and Optimization of Networks with Dynamic Routing," The Bell System Technical Journal 60 (1981) 1787-1820
[2] Baybars, I., K. 0* Kortanek, D. N. Lee and G. G. Polak, "Hierarchical Network Design for Facilities Planning: A 24-Node Example," Proceedings of the 13th Annual Conference on Modeling and Simulation University of Pittsburgh, Pittsburgh, PA, April 22-£3, 1982.
[3] Baybars, I., K. O. Kortanek and N. Mizuno, "A Mixed-Integer Programming Model for Transmission System Planning in Telecommunications Networks with General Circuit Requirements," Proceedings of the 11th Annual Conference on Modeling and Simulation, University of Pittsburgh, Pittsburgh, PA, May'1-2, 1980, pp. 395-402.
[4] Christofides, N., Graph Theory; An Algorithmic Approach Academic Press, New York, 1975.
[5] Doulliez, P. J. and M. R. Rao, "Optimal Network Capacity Planning: A Shortest Path Scheme," Operations Research. 23 (1975) 810-818.
[6] Ford, L. R., and D. R. Fulkerson, Flows in Networks, Princeton Univ. Press, Princeton, New Jersey, 1962.
[7] Freidenfelds, J., and C. D. McLaughlin, "A Heuristic Branch-and-Bound Algorithm for Telephone Feeder Capacity Expansion," Operations Research, 27 (1979) 567-582.
[8] Garfinkel, R., and G. Nemhauser, Integer Programming. Wiley, New York, NY, 1972.
[9] Harary, F.f Graph Theory, Addison-Wesley, Reading, MA., 1972.
[10] Kochman, G. A., and C. J. McCallum, Jr., "Facility Location Models for Planning a Transatlantic Communications Network," European Journal of Operational Research, 6 (1981) 205-211.
[11] Kortanek, K. O., D. N. Lee and G. Polak, "A Linear Programming Model for Design of Communication Networks with Probabilistic Demand," Naval Research Logistics Quarterly 28 (1981) : 1-32.
[12] Lawler, E. L., Combinatorial Optimization, Networks and Matroids, Holt, Rinehart and Whinston, New York, 1976.
[13] Luss, H., "Operations Research and Capacity Expansion Problems: A Survey, ${ }^{11}$ Operations Research 30 (1982), 907-947.
[14] Schrage, L., User's Manual for LINDO, The Scientific Press, Palo Alto, CA., 1981.
[15] Shore, B., Operations Management, McGraw-Hill, New York, NY, 1973.
[16] Smith, R. L., ${ }^{\text {lf }}$ Deferral Strategies for a Dynamic Communications Network," Networks 9(1979), 61-87.
[171 Truitt, C. J., 'Traffic Engineering Techniques for Determining Trunk Requirements in Alternate Routing Trunk Networks, ${ }^{\text {ff }}$ The Bell System Journal, 33(1954), 277-302.
[181 Yaged, B., "Minimum Cost Routing for Dynamic Network Models/ ${ }^{1}$ Networks 3 (1973), 193-224.
[191 Zadeh, N., "On Building Minimum Cost Communication Networks Over Time/ ${ }^{1}$ Networks 4(1974), 19-34.

Figure 1.* A Telecommunications Network
(I. Baybars and K. O. Kortanek)

Figure 2: Telecommunications Network N^{\wedge} (solid lines represent final links; dashed lines represent high-usage links)
(I. Baybars and K. O. Kortanek)

Figure 3: A Spanning Tree T of the Network ^ (Figure 2)

Firgure 4: The Graph G_{1} of N_{1} consisting
of spanning tree $T\left(\begin{array}{c}\text { Figure } 3) \text { and }\end{array}\right.$
the chord e_{15}
(I. Baybars and R. O. Kortanek)

> Figure 5: A Telecommunications Network in which each high-usage link has two alternate routes

Figure 6: A Telecommanications Network
in which each high-usage link
has three alternate routes
(I. Baybars and K. O. Kortanek)

Figure 7: Network N_{2}
(I. Baybars and R. O. Kortanek)

Figure 8:' Network N_{3}
(I. Baybars and K. O. Kortanek)

Figure 9: Network N_{+}
(I. Baybars and K.O. Kortanek)

Figure 10 Heuristic Average Cost, $\overline{C u}_{\mathrm{H}}(\mathrm{m})$
as a Function of M"A춘"
Permitted Length of Alternate Paths, m.

Figure 11 Heuristic Average Cost, $\bar{C}_{H(m)}$ as a Function of Maximum
Permitted Length of Alternate Paths, m.

Network	Nodes	Final Links	High-Usage Links	Mia Alternate \qquad Path	Ave Alternate \qquad Path	Max Alternate \qquad
N_{1}	8	7	8	2	3.25	4
N_{2}	15	14	15	2	3.60	6
${ }^{N} 3$	32	31	32	2	3.81	91
${ }^{\mathrm{N}} 4$	99	98	185	2	6.30	30

Table 1: Numerical Characteristics of the Four Networks $\mathrm{N}_{-1}, \mathrm{~N}_{-1}, \mathrm{~N}_{3}, \mathrm{~N}_{4}$ of Figures 2, 7, 8,9.

Link	$\underline{t-1}$	$\underline{t-2}$	t-3
1	35	60	70
2	21	42	63
3	92	184	184
4	58	99	174
5	47	80	188
6	47	80	177
7	59	100	177
8	2	5	8
9	17	34	68
10	17	39	51
11	7	14	21
12	18	31	72
13	18	31	72
14	18	36	54
15	18	41	72

Table 2: Circuit Requirements for \mathbf{N}_{1}

Link	$t=1$	$t=2$	$t=3$
1	110	130	148
2	201	230	256
3	166	193	193
4	138	178	219
5	173	196	227
6	208	275	299
7	162	169	179
8	233	284	327
9	138	189	231
10	225	252	275
11	146	197	209
12	207	246	259
13	243	321	350
14	237	318	410
15	19	26	33
16	40	51	65
17	29	37	42
18	5	7	8
19	74	97	120
20	50	65	74
21	50	72	91
22	10	15	19
23	50	56	65
24	37	42	45
25	4	5	6
26	32	46	52
27	49	61	79
28	65	69	82
29	61	73	75

Table 3: Circuit Requirements for N_{2}

	Link	t-1	$t>2$	t-3
	1	4	4	4
	2	151	152	196
	3	157	230	232
\therefore	4	69	87	111
	5	248	409	609
	6	32	47	67
	7	168	250	367
	8	181	320	432
	9	271	382	546
	10	41	43	45
	11	236	261	331
	12	168	255	334
	13	116	142	147
	14	128	238	242
	15	196	313	403
	16	68	92	110
	17	2	2	2
	18	276	425	539
	19	98	110	151
	20	72	85	85
	21	111	157	191
	22	51	54	70
	23	60	95	104
	24	157	262	343
	25	144	192	255
	26	24	45	* 47
	27	71	105	119
	28	114	165	217
	29	24	31	34
	30	130	201	293
	31	174	309	333
	32	24	26	30
	33	25	42	55
	34	30	49	68
	35	22	22	26
	36	21	22	29
	37	16	23	30
	38	25	25	34
	39	15	21	27
	40	7	13	16
	41	17	29	31
	42	9	16	22
	43	18	24	33
	44	11	15	15
	45	25	34	38
	46	5	9	12
	47	13	18	27
	48	21	23	31
	49	52	78	81
	50	9	15	15
	51	19	19	25
	52	56	81	98
	53	15	15	20
	54	42	53	73
	55	66	72	90
	56	17	17	18
	57	11	16	18
	58	15	15	18
	59	14	15	21
	60	22	30	44
	61	15	25	30
	62	16	29	40
	63	11	21	31

Table 4: Circuit Requirements for N_{3}

Link	$t=1$	$t=2$	$t=3$	Link	$t=1$	t=2	$t=3$
1	489	537	563	45	112	183	195
2	167	250	343	46	404	472	641
3	$\therefore 125$	245	257	47	238	275	369
4	276	380	497	48	240	472	646
5	162	241	281	49	314	329	454
6	422	481	596	50	297	412	412
7	315	365	390	51	459	610	671
8	332	590	590	52	218	398	577
9	288	313	444	53	478	497	591
10	181	260	293	54	408	518	574
11	256	471	546	55	347	440	484
12	234	425	616	56	430	756	816
13	262	393	471	57	363	468	496
14	378	495	712	58	237	367	502
15	351	491	500	59	484	566	616
16	283	390	522	60	498	692	851
17	497	656	728	61	397	432	622
18	160	212	226	62	410	541	589
19	311	466	484	63	316	436	518
20	342	530	535	64	312	355	468
21	373	484	687	65	370	388	442
22	274	405	510	66	278	428	440
23	299	502	687	67	339	454	525
24	169	309	321	68	479	507	507
25	112	118	129	69	347	388	527
26	352	468	547	70	360	511	526
27	382	542	601	71	186	347	464
28	319	424	614	72	481	658	684
29	333	502	672	73	276	438	477
30	149	260	291	74	369	542	617
31	340	452	519	75	338	385	504
32	204	401	489	76	276	347	385
33	321	369	439	77	496	639	677
34	344	509	519	78	356	519	685
35	269	425	437	79	472	585	672
36	146	273	360	80	267	365	503
37	372	531	584	81	393	495	613
38	424	466	615	82	342	533	575
39	331	377	539	83	324	411	567
40	343	445	614	84	462	535	663
41	478	683	730	85	489	523	523
42	277	426	621	86	324	450	670
43	217	269	392	87	199	250	372
44	163	317	418	88	351	526	662

Table 5: Circuit Requirements for N_{4}

Link	$t=1$	$t>2$	t»3	Link	$t=1$	$t>2$	t>3
89	121	145	159	134	7	7	13
90	373	559	721	135	68	97	13
91	227	442	574	136	26	30	109
92	324	612	862	137	14	15	19
93	137	178	299	138	74	85	118
94	329	365	386	139	42	47	118
95	434	546	627	140	62	95	141
96	296	390	436	141	66	66	r 81
97	471	480	590	142	68	76	115
98	34	46	67	143	95	96	166
99	3	5	8	144	27	44	166
100	97	106	186	145	21	37	75
101	16	20	32	146	16	20	52
102	12	21	37	147	11	16	24
103	55	84	107	148	8	13	19
104	16	16	27	149	80	157.	24
105	84	147	224	150	23	34	243
106	63	87	113	151	24	41	66
107	33	59	112	152	62	120	56
108	57	64	115	153	59	120	180
109	18	28	42	154	91	108	136
110	25	47	58	155	21	91	158
111	23	44	57	156	95	165	54
112	52	71	140	157	81	143	173
113	37	48	77	158	69	143	177
114	70	116	208	159	43	115	159
115	56	89	115	160	72	47 141	70 177
116	99	131	227	161	23	42	52
117	16	24	35	162	96	184	255
118	31	60	85	163	49	81	82
119	68	74	139	164	8	819	17
120	74	84	152	165	79	146	233
121	27	35	66	166	41	75	130
122	29	56	77	167	31	54	95
123	16	28	40	168	62	78	131
124	11	11	20	169	74	79	121
125	35	38	39	170	8	12	12
126	38	56	66	171	55	81	82
127	31	44	53	172	67	97	169
128	66	128	142	173	95	143	221
129	14	14	27	174	69	80	121
130	68	70	116	175	71	97	189
131	20	30	30	176	18	30	57
132	64	83	161	177	96	100	156
133	5	5	9	178	55	79	101

(Table 5 continued)

Link	t-1	t-2	$t>3$	Link	士^1	t=ㅡㄴ	t=3
179	73	116	143	233	19	36	53
180	67	125	235	234	66	90	109
181	27	33	60	235	49	70	104
182	99	181	260	236	80	151	160
182	35	181	74	237	4	4	6
184	94	145	159	238	41	75	75
185	53	102	189	239	52	60	81
186	78	105	112	240	79	109	119
187	34	66	128	241	87	125	150
188	32	63	86	242	69	91	157
189	92	154	177	243	46	46	84
190	97	191	212	244	43	64	118
$\cdot 191$	64	89	90	245	24	46	46
192	19	26	26	246	62	65	89
193	35	51	64	247	85	105	123
194	12	18	19	248	56	59	97
195	37	55	80	249	77	112	132
196	22	22	33	250	17	32	52
197	4	6	7	251	63	75	90
198	32	62	71	252	12	22	33
199	13	18	27	253	86	149	213
200	65	103	124	254	7	8	8
201	86	131	187	255	38	69	* 80
202	29	36	38	256	40.	71	126
203	94	133	168	257	28	36	69
204	34	37	53	258	94	145	184
205	77	132	201	259	17	21	22
206	67	132	137	260	18	27	30
207	25	38	68	261	55	64	86
208	55	79	113	262	15	26	48
209	62	94	165	263	93	140	212
210	44	63	79	264	30	52	59
211	30	38	63	265	25	49	59
212	32	59	68	266	37	52	91
213	76	123	227	267	68	90	128
214	81	153	165	268	98	168	310
215	56	106	144	269	82	109	172
216	34	55	84	270	94	137	198
217	23	44	51	271	10	12	17
218	78	135	202	272	16	27	51
219	2	3	3	273	25	25	38
220	66	104	118	274	40	73	144
221	94	124	243	275	84	111	170
222	60	90	142	276	51	90	140
223	11	12.	21	277	78	117	228
224	83	85	159	278	58	67	72
225	45	48	73	279	93	123	156
226	74	138	155	280	10	11	17
227	3	3	4	281	86	91	170
228	99	132	211	282	61	73	81
229	69	75	93	283	52	59	112
230	12	17	17				
231	52	81	104				
232	82	106	165				

(Table 5 continued)

SfMtm* (»)	thaad Cost CcM (dollars)	$\begin{gathered} \text { Variable Cost. } \\ \text { (dollars) }{ }^{\left(c^{\mathrm{a}}\right)} \\ \hline \end{gathered}$	
1	530,000	3,100	30
2	-70,000	1,070	90
3	1,400,000	277	270

Table 6: Costs and Capacities of the Transmission Systems and Cost of the Circuits

Network	Program 0		
	Constraints	Integer Variables	Other Variables
N_{i}	180	135	159
${ }^{2} 2$	348	261	306
${ }^{\mathrm{N}} 3$	756	567	663
N_{4}	3396	2547	3102

Table 7: Numerical
Characteristics of the Associated Optimization Problems of
the Four Networks

Link	Installations		
	Si	t»2	t»3
1	3	0	0
2	3	0	0
3	3	2	0
4	3	0	0
5	3	0	0
6	3	0	0
7	3	0	0
8	0	0	0
9	0	0	0
10	0	0	0
11	0	0	0
12	0	0	2
13	0	0	2
14	0	1	0
15	0	0	2

Table 8: Optimal Solution for N_{1} (Total Cost: S 12188683)

Link	Installations		
	t-1	t-2	t-3
1	3	0	0
2	3	0	0
3	3	2	0
	3	0	0
5	3	0	0
e	3	0	0
7	3	0	0
8.	0	0	0
9	0	0	2
10	0	0	0
11	0	0	0
12	0	0	0
13	0	-	2
14	0	,	2
15	0	1	0

Table 9: Heuristic Solution for N_{i} (Total Cost: \$ 12195223)

LiInk $\frac{\text { Installations }}{t \geqslant 1} \quad t-2 \quad t \geqslant 3$

1	3	0	0
2	3	2	0
3	3	1	1
4	3	0	0
5	3	2	0
6		6	a
7	3	0	0
8	5	0	0
9	3	0	0
10	3	2	0
11	3	0	0
12	3	2	0
13	4	2	I
14	3	3	0
15	0	0	0
16	2	0	0
17	1	1	0
18	0	0	0
19	2	0	0
20	0	0	0
21	2	0	0
22	0	0	0
23	0	0	0
24	0	0	0
25	0	0	0
26	0	0	c
27	2	0	d $^{\prime \prime}$
28	2	0	0
29	C	1	1

Table 10: Heuristic Solution for \mathbf{N}_{2} (Total Cost: \$ 34,411,299)

Link	Imatallations				Link	Installations		
			$\underline{3}$					t=3
1	1	c	0		33	0	1	0
2	3	0	c		34	2	0	0
3	3	0	0		35	0	0	0
4	3	0	c	-	36	0	0	0
3	- 4	3	3		37	0	0	0
E	3	c	c		38	0	0	2
7	3	3	0		39	2	0	0
E	3	E	0		40	0	0	0
9	6	0	1		41	1	0	1
10	2	0	0		42	0	0	0
11	5	0	0		43	0	0	0
12	3	2	0		44	0	0	0
13	3	0	0		45	0	0	1
14	3	2	0		46	1	0	c
25	3	3	0		47	0	0	0
16	3	0	0		48	0	0	0
17	2	0	0		49	c	i	1
18	6	0	0		50	c	0	c
19	3	0	0		51	0	0	1
20	2	0	0		52	2	0	:
21	3	0	0		53	c	0	1
22	3	0	0		34	0	c	2
23	3	0	0		55	0	0	0
24	3	0	2		5ε	c	0	c
25	3	0	0		57	0	$=$	c
26	1	1	0		¢3	c	0	0
27	2	1	0		59	1	0	0
28	3	2	0		60	c	c	2
29	3	0	0		61	0	:	0
30	3	3	0		52	i	c	1
31	3	2	0		63	0	c	こ
32	0	0	0					

Link	$\xrightarrow[\text { Ins }]{\text { Ind }}$	Installations		Link	isstallationis		
						$t=2$	$\pm=£$
1	$\overline{\text { e }}$:	C	41	9	3	0
2	3	3	c	42	6	2	0
3	3	3	\%	43	6	1	0
4	6	3	\pm	44	6	3	0
$\bar{\square}$	3	2	1	45	3	3	0
S	3	2	*	46	9	$0-$	0
T	6	0	2	47	3	1	2
c	-	\leq	$=$	48	6^{\prime}	3	0
\bigcirc	s	0	\because	49	6	2	0
$\because:$	e	0	$=$	50	6	0	1
	6	3	0	51	6	3	0
12	6	0	2	52	6	1	3
13	6	3	0	53	6	0	2
14	8	3	0	54	6	2	0
15	6	2	0	55	6	0	1
16	6	2	0	56	9	3	0
17	6	3	0	57	6	3	0
18	3	2	c	58	6	3	0
19	6	, 0	0	59	9	0	0
20	6	2	0	60	9	3	0
21	- 6	3	0	61	6	0	2
22	6	2	0	62	6	- ${ }^{3}$	0
23	6	3	0	63	6	3	0
24	3	3	0	64	6	2	
25	3	0	0	65	6.	0	0
26	5	3	0	65	$6{ }^{\prime}$	3	0
27	6	2	0	67	$\underline{6}$	3	0
28	6	0	2	66	6	1	
29	6	1	3	69	$\underline{6}$	0	0
30	3	3	0	70	£	0	0
31	6	2	0	71	3	3	0
32	$\underline{6}$	3	0	72	6	3	0
33	S	3	0	73	6	2	0
34	ε	3	0	74	8	3	0
35	4	3	0	75	6	0	0
36	3	3	0	76	6	0	0
37	S	3	0	77	9	0	0
38				78	6	3	0
39	E	8	0	79	9	0	0
40	${ }^{\circ}$	3	2	80	6	0	0

Table 12: Heuristic Solution for \mathbb{N}_{4}
(Total Cost: \$473,501,920)

Link	Installations			ILnk	Installations		
			$t=3$				$t=3$
81	6	2	0	221	2	0	0
82	6	3	0	122	2	0	0
83	6	0	1	123	$!$	0	1
84	7	3	0	124	1	0	0
85	6	3	0	125	2	0	c
86	6	0	3	126	2	0	c
87	6	0	0	127	c	c	c
88	6	0	3	128	c	i	0
89	3	0	0	:2E	c	0	c
90	6	1	3	130	0	C	$三$
91	5	3	2	131	1	0	0
92	6	4	3	132	2	0	2
93	6	0	0	133	1	0	0
94	6	3	0	134	0	0	0
95	9	0	0	135	0	0	0
96	6	0	0	136	1	0	1
97	6	2	0	137	1	0	-0
98	3	2	0	138	0	0	$\because 2$
99	0	0	1	139	2	0	0
100	3	0	0	140	3	0	0
101	0	0	0	141	0	0	2
102	0	0	0	142	0	0	2
103	0	1	2	143	2	0	0
104	0	0	0	144	0	0	0
105	0	0	3	145	1	1	0
106	1	0	1	146	0	0	1
107	2	0	1	147	0	0	0
108	2	0	1	148	0	0	0
109	0	0	0	149	0	0	3
110	0	0	1	150	0	0	1
111	0	0	2	151	1	1	0
112	2	0	2	152	3	0	0
113	0	0	2	153	0	0	0
114	1	0	2	154	0	0	3
115	2	0	0	155	0	0	0
116	3	0	0	156	0	0	3
117	1	0	1	157	3	0	0
118	2	0	0	158	0	0	2
119	2	0	2	159	2	0	0
120	2	0	2	160	3	0	0

Link	Xnstall*tions		
	$\underline{E l}$	$\underline{t m}$	tes
245	0	0	0
246	0	0	0
247	2	0	c
248	2	C	c
249	C	0	c
250	C	0	c
251	0	0	0
252	0	0	0
253	3	0	0
254	1	0	0
255	2	0	0
256	2	0	2
257	0	0	2
258	3	0	0
259	1	0	0
260	0	0	0
261	0	0	0
262	1	0	1
263	3	0	0
264	1	1	0
265	1	2	0
266	2	0	1
267	0	0	3
268	3	0	2
269	0	0	3
270	3	0	0
271	1	0	0
272	1	0	1
273	0	0	0
274	0	1	2
275	3	0	0
276	0	0	0
277	0	0	2
278	0	0	0
279	3	0	0
280	0	0	0
281	3	0	0
282	0	0	2
283	2	0	1

(Table 12 continued)

Network	$\overline{\mathrm{C}}_{\mathrm{M}}^{\mathrm{C}_{1}}$	$\overline{c_{0}}$ Optimal	$\overline{\mathrm{OH}}$ Heuristic	Maxizsum
${ }^{\mathbf{N}} \mathbf{i}$	6228	8400	8405	10706
${ }^{\mathrm{N}} 2$	5265	N.A.	7754	8217
N_{3}	5933	N.A.	7791	8465
${ }^{\mathrm{N}} 4$	4575	N.A.	6706	6906
C_{m} (Average Using Least Cost Circuits on High _Usage Links); (F (Average Optimal); (^(Average Heuristic); C_{NS} (Average without Network Hierarchy				

Network	CPU Seconds
${ }^{\mathrm{N}}$ 1	0.36
${ }^{\mathrm{N}} 2$	0.41
${ }^{\mathrm{N}} 3$	0.57
I_{4}	3.98

Table 14: OPU Times

