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Abstract

The finite element method is a powerful engineering analysis tool. However, the scope and size

of the problems solved are limited by the capabilities and costs of computers currently used. New

computer architectures with parallel processing capabilities can exploit the parallelism in the finite

element method. Because of the large number of alternative hardware and software configurations

and the high costs incurred in the development of such systems, a methodology is needed to com-

pare proposed finite element systems without implementing either hardware or software. The paper

presents such a methodology.

System architectures are evaluated by simulating the execution of the finite element software

on the hardware. Hardware is represented as a set of processors and resources while the software is

modeled as a set of computational tasks organized into an acyclic directed graph. The simulation is

performed by scheduling routines. The result of the scheduling routines is a schedule consisting of

task-processor assignments and task starting and finishing times. Also, processor and resource

utilization levels are generated. These results provide a means of comparing proposed finite element

systems.
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1. Introduction
Development of the finite element method has been closely linked to advances in computer

technology, allowing users to solve problems of increasing complexity. However, there remains a

class of problems of a higher order of complexity with computational requirements exceeding the

limits of current machines. Recent developments in hardware technology provide parallel processing

capabilities which appear well suited to exploit the parallelism present in the finite element method.

Alternative hardware architectures for parallel processing include:

• Tightly coupled networks where processors cooperate closely on the solution of the

problem (e.g. Cm0 [6]).

• Loosely coupled networks where interprocessor communication is done on a message

basts (i.e. an ethemet-\ike inter-processor communications network).

• Attached processors that range from array processors to special purpose finite element

machines and VLSI systolic arrays [9,15].

However, some issues must be considered to fully exploit the capabilities of multiprocessor architec-

tures.

• Since most multiprocessor machines are still in the experimental stage, they systems lack

user-friendliness and support for software development, thereby making programming

costly.

• The selection of a finite element system (both hardware and software) is complicated by

the large number of possible hardware and software configurations and the high costs

associated with the development of any such system.
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• Tuning the program to the hardware to optimize performance becomes harder with more

complex architectures because additional issues must be considered (management of

private and shared resources, data sharing between processors, interprocessor com-

munications, etc).

Because of the wide range of options and the high costs incurred in the development of both

the hardware and the software, the need to evaluate a proposed system without an actual implemen-

tation arises. A methodology for the preliminary evaluation of proposed system architectures (both

hardware and software organization) is presented here. The methodology does not require that

hardware be configured or software be written and makes use of a resource constrained, network

scheduling framework to model and simulate a system's performance. Thus, proposed system ar-

chitectures may be compared to determine which alternatives appear promising and deserve further

study.

2. Parallelism and Parallel Processing in the Finite Element
Method

2 . 1 . Parallelism in the Finite Element Method

Increasing capabilities of microprocessors and VLSI technology make it feasible to build a

machine with multiple processors cooperating on the solution of a problem. Special purpose proces-

sors that efficiently manipulate arrays are being developed. Such alternatives to the traditional von

Neumann machine architecture can exploit the parallelism explicitly displayed in parts of the finite

element method algorithms and may reduce computational costs.

The basic finite element analysts algorithm for a linear static problem consists of four major

steps:

1. Generate the stiffness matrices and internal load vectors for all elements.

2. Assemble the element stiffness matrices and load vectors into a structure stiffness matrix

and internal load vector.

3. Solve the system of equations for the structure displacements corresponding to the ap-

plied loads.

4. Recover element quantities (stresses and strains) for all elements from the displacements

computed for the structure.



The generation of the stiffness matrices and load vectors for all the elements can be performed in

parallel since the computation of one element quantity is independent from all other elements. Also,

the recovery of element quantities for all elements can be done in parallel once the total system of

equations has been solved. The process of structural stiffness matrix assembly can start as soon as

the stiffness matrix from any one element is available. Parallelism also exists in the solution step:

• The solution of the system of equations governing the behavior of the structure can begin

as soon as all contributions to a node have been assembled. Also, the recovery of

element quantities can start as soon as the displacements for any element have been

computed. Systems using marching solvers use this property.

• If the solution of the system of equations does not start until all elements have, been

assembled, parallelism in the solver can be exploited through vectorization.

2.2. Parallel Processing Architectures

A hardware configuration consists of a set of processors and their associated resources. A

processor may be a stand-alone unit like a CPU (Central Processing Unit), a functional unit of a CPU

like a vector adder, or an attached processor or a customized VLSI chip. Resources include primary

memory, secondary storage devices, communications channels or data buses, and input and output

devices. In addition, resources can be private to one processor or shared between multiple proces-

sors. The performance of a program executing on a configuration depends upon the size, organiza-

tion and type of available processors and resources. Hardware configurations may be classified

according to the number of processors in the system and the nature of the network linking the

processors. Four general classes of hardware configurations include:

• Uniprocessor systems consist of only one CPU and its associated resources. Examples

are the IBM 3083 or Digital VAX 11/780. A large number of finite element analysis

programs have been written for this dass of machines [11]. However, sequential

machines fail to exploit parallelism, and thereby constrain the performance of programs

by the speed of the single processor.

• Dual processor machines consist of a uniprocessor, the host, linked to an attached

processor by a very high bandwidth channel. The attached processor might be an

array/vector processor [14,15] or a VLSI systolic array [8,9]. Two finite element analysis

programs executing on dual processor systems have been reported, with speedup ratios

of 5-10 [14] and 72-T6[15]. The speedup ratio is the execution time of the program

running on the host alone divided by the execution time on the dual processor system.



Since the attached processor acts as a slave to the host parallel processing does not

occur.

• Loosely coupled networks consist of several autonomous processors that are not neces-

sarily identical. The processors can access private or shared resources and communi-

cate via a medium bandwidth (-70 Mbps) ethernet-llke network. Examples are the Spice

network [12] and the Apollo Domain Architecture. No finite element programs using the

capabilities of loosely coupled networks are known to the authors. Such a program

would be composed of several processes that may execute on different processors.

• Tightly coupled networks consist of several processors where interprocessor com-

munication is hardware supported and is routed via data buses. Examples of such

machines are Cm0 [6], the NASA Finite Element Machine [13] and ILLIAC IV[2]. Tightly

coupled networks may be subdivided into four classes according to the number of in-

struction and data streams concurrently processed:

o An SIMD (Single Instruction stream, Multiple Data stream) machine consists of one

control or master processor and several slave processor which simultaneously ex-

ecute the same instruction stream on independent sets of data as in ILLIAC IV.

o MISD (Multiple Instruction stream, Single Data stream) machines are also known as

pipelined or vector machines. A hardware pipeline consists of a set of functional

units (i.e. fixed point arithmetic, floating point arithmetic, index, data fetch, etc.)

linked together in series where multiple instructions simultaneously act on the data

stream as it goes through the pipeline as in the CRAY-1, or the CDC STAR. Finite

element programs developed for uniprocessor systems can be transported to MISD

machines.

o MIMD (Multiple Instruction stream, Multiple Data stream) machines consist of at

least two general purpose processors linked together by data buses. Multiple in-

struction streams acting on multiple data streams execute concurrently in MIMD

machines. Examples of such machines are Cm0 and the NASA Finite Element

Machine. No commercial finite element software is available for this class of

machines. Using Cm0 for the solution of electrical power networks [4] (which is

similar to finite element analysis), performance improved as the number of proces-

sors was increased, but leveled off with a system of nine processors. Also, using

the NASA Finite Element Machine, the speedup ratios for the various steps of the



solution algorithm (element stiffness generation, assembly, solution of equations,

element recovery) varied between 2.82 and 4.00 on a four processor configuration.

o Systolic arrays [8,9] are computational cells connected in a regular network. A ceil

is a processor with limited capabilities and resources. Data flows continuously

through the network and each processor performs simple computations on the

data. In a finite element system, they can be used as special purpose processors

that perform matrix operations such as multiplication, symmetric triple product,

/.(Afactorizaiion and backsubstitution.

Architectures offering parallel processing can exploit the parallelism displayed by the finite element

method. However, only loosely coupled networks and MIMD machines maximize the use of paral-

lelism throughout the finite element analysis algorithm. Effective programming becomes harder with

increasing architectural complexity. In particular, scheduling of solution steps on particular proces-

sors and allowing for necessary data communications will greatly influence system performance.

Developing experimental systems is extremely costly and no formal guidelines exist to determine

which alternatives are most cost effective.

3. Modeling and Scheduling a Finite Element System
Architecture

3 . 1 . Problem Description

The objective of the methodology described is to provide a comparison of various software and

hardware designs which exploit parallelism to improve performance. Designs are evaluated by

simulating the scheduling or assignment of computational tasks to particular processors. Alternative

designs are compared based on the estimated costs of sample runs developed from the simulation.

As a first estimate, the cost of a run is taken as its total execution time.

To study the behavior of algorithms on various architectures, the representations of hardware

and software must be independent Furthermore, the software representation must support paral-

lelism in the algorithm and be independent of the size of the problem being solved. Representations

satisfying these conditions treat the hardware as a set of processors and their associated resources,

while the software is modeled as a directed acyclic network where nodes stand for independent

computational tasks in the program and branches represent data flow paths and precedence relation-

ships between tasks.
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The finite element program is modeled as a generic non-iterative program structure independ-

ent of the finite element problem size. Nodes, representing tasks, can be subscripted and as such,

stand for the computation of all the variables generated from the node by varying each of its sub-

scripts over its range. Network links represent data precedence relations between computational

steps. The size independent generic network model is then expanded to build an explicit network

including all the tasks for a given problem, where each task computes one quantity. This expansion is

performed using a set of rules for expanding the subscripted nodes and generating the appropriate

precedence relations and resource constraints [7].

The simulation of the program on a hardware configuration is performed by solving an integer

programming problem whose objective is to find a feasible mapping, satisfying precedence and

resource constraints, from the set of tasks onto the set of processors while minimizing the objective

function (i.e. total execution time). The solution results are the task-processor assignments and the

starting, finishing and execution times for all the tasks. Also, processor and resource utilization levels

are generated by the scheduling procedures.

Because of the deterministic nature of the solution technique used, the programs which are

modeled are restricted to be non-iterative. This forces non-linear systems to have a predetermined

number of iterations per loading step and a predefined number of load steps. Representing the

hardware as a set of processors and resources imposes some limitations on the modeling of inter-

processor communications because some of the information concerning the physical connections is

lost. For example, the cost of communicating between two processors depends on how the two

processors are connected. Furthermore, it has been shown that the problem of finding an optimal

assignment resulting in minimum total execution time of a set of non-preemptible tasks to a set of

processors subject to resource and precedence constraints is WP-complete in almost all cases [5].

To reduce the complexity of the general scheduling problem, some simplifying assumptions are

made, although the simplified problem is still /VP-complete. These assumptions are:

• The resource requirements of a given task executing on a certain processor are assumed

to be independent of all other tasks and processors. An example that violates this as-

sumption is the case of two tasks that must execute in a sequential manner with the

second task using data computed by the first. The data must be communicated over the

network connecting the two processors executing the two tasks. The resource require-

ment of the communication will vary from minimal if the two tasks execute on, the same

processor to substantial if the data must be transferred over many physical links of the



networks. Task-processor uncoupling also assumes that resources utilized by a task

during execution are released after the completion of the task. In certain cases, data

generated by a task must be saved for later use. This data utilizes a memory resource

that is released onfy when the data is no longer needed.

• The time domain is assumed to be an integer space. Although time is usually conceived

of as a continuous space, computer time is discrete because it can be represented by

cycles, where each cycle cannot be decomposed.

• The tasks are assumed to be non-preemptible. A task is said to be preemptible if its

execution can be interrupted by another task and then resumed at a later time. The

non-preemptibility assumption eliminates the need to compute the cost of saving the

status of a task when it is preempted and of setting up the task when it is resumed. To

provide a degree of preemptibility, a task can be decomposed into a set of sequential

tasks, however this eliminates the constraint of having all subparts of a task executing on

the same processor.

The scheduling and computer configuration model as formalized below is capable of representing a

wide variety of analysts algorithms and all of the architectures described above.

3.2. Notation and Formal Model

The description of the computer system consists of the specification of all of its components.

The hardware consists of:

• the set P of processors

p s {p.:j = 1,.,.,/n}

where m is the number of processors. A processor is a CPU, a functional unit of a CPU

(i.e. an adder) or a special purpose chip.

• the set R of private and spooled resources in the system

where / is the number of resources in the hardware system and fi is the number of units

of resource R- Resources include, but are not limited to, memory, disk and communica-

tions channels.

The algorithm is decomposed into:
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• the set T of computational tasks.

T={T.:i= 1 n}

where n is the number of tasks. The execution of the tasks obeys the precedence rela-

tions of the tasks based on data inheritance. This is represented by a binary relation 9on

T2 that induces a partial order on the set T. The relation (T, T.) £ 9 means that task Tj

cannot start executing before task T. has finished. By definition, T, is the starting task

(with a starting time of zero) and 7"n is the last task to execute.

Three sets of variables are used to describe the scheduling problem. These are the resource

requirements variables, the time variables and the task-processor assignment variables.

• The resource requirements variables specify the number of units of a particular resource

which a task will require while executing on a specific processor. Since the number of

resources in the system may be greater than one, the resource requirements of a task T.

executing on processor P. is represented by a vector R.. For simplicity in the notation, it

is assumed that the resource requirements vector FL (task T. executing on processor P.)

is given by a function /? over TxP. Thus,

where rqk is the number of units of resource f\ required by task T. executing on proces-

sor Pp

• The time variables denote the execution, starting and finishing times of the various tasks.

o L is the execution time of task T. on processor P.. The execution time is given by a

function a over TxP.

o ST. is the starting time of task Tj.

o FT. is the finishing time of task T..

o ST^ is the starting time of the schedule, so SIT, = 0 .

° fmax ^ t h e t o t a i d u r a t i o n °f fre schedule, which is equal to the finishing time of task
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• The task-processor assignments are represented by two sets of variables. The first set of

variables ({V-}) are time independent and indicate if a task T. executes on processor P..

{1 if task T. executes on processor P,
1

0 otherwise

The second set of variables ({* i j t}) are time dependent and indicate if a task T. is execut-

ing on a processor P. at a time t.

1 if task T. is executing on processor P. at time t
J

0 otherwise

Two sets of variables are used because it is easier to express the precedence constraints

in terms of the time independent variables, while the resource constraints can be most

readily expressed in terms of the time dependent variables.

The set of time dependent variables ( {^ t } ) completely defines the state of the system at any

time t. The same statement can be made about the set of time independent variables ({ YJ}) and the

starting and finishing times ({ST., FTJ). Therefore, the two representations must be related to avoid

inconsistencies.

Direct relations compute one set of variables once the other set has been determined. The

definition of the time independent variables ( { / - } ) and the starting and finishing times ({ST., FTJ) in

terms of the time dependent variables are:

• Y.. is one if and only if task T. executes on processor P. at some time.

• ST. is the minimum time t at which task T. is executing on some processor.

ST. = t ~=» 3 y; Xst = 1 & X ^ 1} » 0 (2)

• FT is the maximum time t at which task T. is executing on some processor. Task T. is

executing somewhere at time {t-1) but not at time t.

FT. = t ~ 3 y; Xg(t-1) = 1 & X^ = 0 (3)

The time dependent decision variables can be determined from the time independent variables by

noting that X. is one for all times t between ^ and FT^ if task T. executes on processor P..
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1 (4)

0 otherwise

Additional relationships can also be derived by using the properties of the starting and finishing times,

precedence relationships, resource constraints and the properties of the starting and finishing times.

• For a task Tj, the finishing time FT. equals the starting time ST. plus the execution time L

of the task on the processor to which it is assigned.

FT) = ST. + £Y.. a(T., P) = ST. + £ Y t
7 1/ - 1 , ' ' ' 7 -1

• The starting time of a given task is greater than or equal to the finishing time of its

predecessors.

ST.> FT. V (T.,

9 denotes the precedence relation acting on 7*. (7., T.) G ^ means that task T cannot

start execution until T. has finished execution.

• The number of units of resources used by a task must be less than or equal to the number

of available units at any time t.

m n

z2 2-, X^p(TltP.) <{f° rf}Vf
1*1 1*1 * ' ' . 1 '

or

S ll X-.ra.<fi Vf,V/c = 1,...,/
Js 1 Is 1

• Each task will execute on one and only one processor.

m

• At any time t, at most one task will execute on a given processor.

n ^

<1 Vff Vy s i,...,m

(5)

(6)

(7)

(8)

(9)

The objective function to be minimized is a function representing the cost of executing the

program on the given hardware configuration. As a first estimate, the cost function is taken as the

total execution time fmax. Thus, the scheduling problem defined above will yield a set of task-
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processor assignments subject to all resource and precedence constraints which minimize the total

execution time fmax. Summarizing, the integer programming (IP) problem defining the scheduling

problem is:

IP: Minimize f „

subject to (1), (2), (3), (4), (5), (6), (7), (8) and (9).

where Y~, X~, are 0-1 variables.

Because this integer programming problem is hard to solve exactly, heuristic techniques are used to

obtain good, feasible, but not necessarily optimal solutions.

3.3. Scheduling Procedure

The scheduling procedure used to determine the total execution time is an extended form of the

Critical Path Method {CPM) [1,16], CPM is a two pass network traversal algorithm that guarantees

optimality in the case of unlimited resources and an unlimited number of identical processors. The

method is modified to handle both a limited number of processors (not necessarily identical) and

limited resources. The result is a heuristic set of scheduling rules which do not guarantee optimality

but should produce relatively good and feasible schedules.

The first pass of the scheduling process generates a feasible earliest starting schedule by

assigning earliest starting times to tasks that become active. A task becomes active when all of its

predecessors have finished execution. It is then appended to the active tasks queue. The scheduler

assigns the task at the front of the queue to an available processor. Since the task may execute on

more than one processor, a set of rules is needed for the purpose of conflict resolution in task-

processor assignments [1,16]. The rules are tried, in turn, until an assignment is made.

1. Select a processor to minimize task finishing time (processor resulting in earliest finish of

task),

2. Select a processor to minimize processor waiting time (last processor to become idle),

3. Select a processor to minimize resource utilization (processor resulting with least

resource requirements of task),

4. Select a processor at random.

The scheduler proceeds with a second backward pass to generate slacks. The slack or float
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time of a task is the amount of time by which its start may be delayed without increasing the total

execution time of the program. Slacks are generated by shifting the tasks forward in time {right

shifting) in a continuous manner (tasks may not jump over other tasks). Because the order of right

shifting of the tasks can affect how far a task will be shifted, another set of rules is needed to resolve

the ties if more than one task is to be shifted at the same time [16]:

1. Right shift tasks in descending order of their earliest finishing time.

2. Calculate for each task a latest starting time assuming that only one task is shifted at a

time, then right shift in order of decreasing latest starting times.

3. Right shift the tasks in order of increasing resource requirements.

4. Right shift a task at random.

The slack of a task is the difference between the latest and earliest starting times. The slacks

can be used as priorities to generate a new improved schedule by an event-driven scheduler. The

resulting schedule provides an estimate on total execution time and a set of task-processor assign-

ments.

4. Examples
This section presents a small illustrative example of the use of the methodology, followed by a

more comprehensive finite element example.

4 . 1 . Illustrative Example

Consider the program shown below, where a, /? and y are scalar variables, A, B, C and D are

n-dimensional vectors and Fan n-dimensional function of a scalar. The tasks are the computations of

A, B, C (the cross product of A and B), y (the dot product of A and B) and D.

Begin
A :» F{a);
B :* lifi);
y :» A * B; {dot product of two vectors}
C := AxB; {vector product of two vectors}
D :» y C;

End.

The generic network representing the program appears in Figure 1. Since some of the nodes

represent the computations of vectors or sum of products, these nodes can be expanded so the
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parallelism inherent to the computation can be fully exploited. By expanding the generic network of

Figure 1 to act on the individual components of the vectors, the network in Figure 2 is derived,

assuming vector length n is 2.

Figu re 1: Generic Network of Sample Program

Figu re 2: Expanded Network of Sample Program

A hardware configuration is shown in Figure 3. It consists of three identical scalar/vector

processing units (PU) with a common shared memory (M). The task duration and memory resource

requirements for the program tasks are shown in Table 1, along with the task-processor assignments,

starting and finishing times. The processor utilization graph for the sample problem is shown in

Figure 4. A horizontal bar is associated with each processor. Blank areas represent idle periods

while filled areas represent active periods. The resource level plot for the memory is shown in Figure

5. The horizontal axis represents time while the vertical axis represents the percentage of memory

used. Such a graph may be produced for each resource in the system.

Figure 3: Hardware Configuration
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Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Process

Start
a
fi

A 1
A 2
B,
B2

Ti

y
c.
C 2

D2
End

Duration

1
3
3
15
15
15
15
10
10
3
23
23
10
10
1

Memory
Reauirement

0
10
10
20
20
20
20
30
30
30
50
50
50
50
0

Starting .
Time

0
1
1
4
4
4
19
19
34
44
34
34
57
57
67

Finishing
Time

1
4
4
19
19
19
3 4 .
29
44
47
57
57
67
67
68

Assigned
Processor

3
3
2
3
2
1
3
2
3
3
2
1
3
2
3

Table 1: Task Data and Results
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Figure 4: Processor Utilization

4.2. Finite Element Example

The second example deals with the execution of a non-linear substructured analysis of a pres-

sure vessel on a network of processors. The finite element model of the pressure vessel to be

analyzed is reproduced in Figure 6 [3]. The pressure vessel is composed of a cylindrical part and a

spherical part which are welded together. The pressure vessel is modeled as three substructures:

cylinder, sphere and junction. Both the cylinder and the sphere substructures have a linear behavior

and are condensed to their interface with the non-linear junction. A pseudo-code listing of the

non-linear finite element algorithm, based on that used in FINITE [3,10], is shown in Figure 7. The

network representation of the algorithm is shown in Figure 8, where the subscripts C, J and S refer to
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Figu re 6: Axisymmetric Pressure Vessel Finite Element Model [3]
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the cylinder, junction and sphere substructures respectively. All tasks generating element quantities

(i.e. stiffness matrix, internal forces and nodal loads) for all the substructures, can be processed in

parallel. Although the condensation of the cylinder and sphere substructures can execute in parallel,

the condensation of a substructure cannot start until all element quantities in it have been computed.

Furthermore, the reduction of the structure stiffness matrix follows the condensation of the cylinder

and sphere substructures and the computations of element quantities in the junction. Finally, the

recovery of element quantities for the three substructures can be performed in parallel. In the

analysis, the stiffness matrix of the junction is updated and reduced only once per load step. In this

example, only one iteration per load step is allowed (all iterations have the same structure and will

scheduled in the same manner). One load step is shown in the graph representation in Figure

8 because the modeling of additional load steps is identical to the first load step.

The graph representation of the finite element algorithm is a generic network which is inde-

pendent of the problem size and element types. As such, it cannot be used directly to determine the

durations and resource requirements of tasks dependent on element types and problem size such as

computing the element stiffnesses of different types of basic elements and assembling the structure

stiffness matrix. The task data for this example were arrived at by performing operation counts

(multiplication, addition, square roots, sines and cosines) for each task and using the durations of

these operations on an Amdahl 470 V/8 computer (each time unit represents 500 machine cycles). A

complete description of the example is presented in [7].

The problem was scheduled on a variety of hardware configurations. To prevent the simul-

taneous updating of a structure matrix during its assembly, only one element is assembled at a time.

To model this action, fictitious resources restricting access to the structure matrices are used. A unit

fictitious resource is attached to each structure matrix and all tasks updating this matrix require this

resource. There are seven such resources in the system, one for each stiffness matrix and load

vector. Schedules were generated for hardware configurations consisting of a variable number (one

to ten) of identical processors. Table 2 presents the schedule lengths and processor utilization levels

for the ten schedules. The charts in Figures 9 and 10 show the variation of the speedup ratio and the

average processor utilization versus the number of processors in the system. The speedup ratio of a

program executing on a system of identical processors is the execution time on a single processor to

the execution time on the multiprocessor machine. Processor utilization for a system with ten iden-

tical processors is shown in Figure 11. As can be seen from Figure 10, the average processor

utilization dropped from 93% in the case of two identical processors to 50% in the case of ten identical

processors. This low processor utilization indicates that the algorithm cannot exploit the full
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1.

2.

2.1

2.1.1

2.1.2

2.1.3

2.1.4

2.1.5

2.1.6

2.1.7

22

2.2.1

22J2

a
ai

3.2

3.3

a4

4.

4.1

4.2

4.3

5.

a
6.1

&2

Initialize the three substructures.

FOR ALL substructures sub, WHERE sub: = cyl, jun, sph,

FOR ALL elements m, WHERE m : = 1,..., N E ^ , DO

Compute [ y ^

Compute [k^

Compute { p 1 ^

Compute {f f F } m

Compute [k 1 : = MmfrJm [yl^

Compute { p ^ : » M ^ p ' ^

Compute {f>F}m: = M^{^ F } m

FOR ALL elements m, WHERE m : = 1 A/E^, DO

Assemble [k Jm into [ K ] ^

Assemble { p ^ into {P}sub

FOR ALL substructures sub, WHERE sub: = cyl, jun, sph,

Reduce [ K J ^

Compute [ k ] ^ : = [ K J ^ - [K fe£ |b [ K g ^ [ K J ^

Compute {p } -^ •= ^Psub " ^iJsub ^eJsub ^e^sub

Compute {f}^: = { P ^ } ^ - [ K J ^ [ K J ^ { P 1 ! ^

FOR ALL substructures sub, WHERE sub: = cyl, jun, sph,

Assemble [ k ^ into [K]

Assemble {p}sub into {P}

Assemble {pF}sub Into {P^}

{A}:=[K]- 1 ( {P} . {P F } )

FOR ALL substructures sub, WHERE sub: * cyl, jun, sph,

Select {u}sub from {A}

Compute{Al :* [K r1 ( [ K J {A^ - {PJ

DO

DO

b

DO

DO

f

Assemble Substructures

Element Properties

{Rotation Matrix}

{Local Element Stiffness Matrix}

{Local Element Nodal Load Vector}

{Local Element Internal Forces Vector}

{Local to Global transform}.

Substructure Quantities

Condense Cylinder and Sphere

{Condensed stiffness matrix}

{Condensed load vector}

{Condensed Internal Forces Vector}

Assemble Structure

Solve

Element Quantities

{Substructure Displacements}

6.3.3

6.3.4

FOR ALL elements m, WHERE m :« 1,..., N E ^ , DO

Select {u}m from {A}a | b

Compute { u ' } m : = M m { u } m

Compute {e}m: = spatial derivatives of {u f}m

Compute {a} m := [El m {e} m

{Global Element Displacements}

{Global to Local transform}

{strains}

Figu re 7: Non-Linear Substructured Finite Element Analysis Program
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Figure 8: Graph Representation of Pressure Vessel Analysis Algorithm
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Schedule

#Proc Length AVQ. 1

Processor Utilization

fi S a is

1

2

3

4

5

6

7

8

9

10

30,688

16,573

12,196

9992

8689

7820

7203

6736

6379

6085

9 + AP 2314

100

93

84

77

71

65

61 •

57

53

50

88

100

100

77

71

61

63

52

100

46'

53

90

•

85

75

66

67

61

60

48

55

43

85

•

-

100

100

60

56

58

57

45

50

87

-

-

•

70

100

55

52

57

45

43

86

•
•

•

•

65

100

52

48

45

43

85

-

-

•

•

•

57

100

49

45

43

86

•

-

-

•

-

•

53

50

100

100

85

•
•

•

-

•

-

-

43

47

43

87

•

-

•

•

-

-

•

-

52

43

87

•

-

-

•

•

•

-

•

44

100

Table 2: Processor Utilization Levels

capabilities of the hardware system. The same conclusion can be reached from Figure 11. For a

significant portion of the total execution time, only processor 7 is active. This is so because the

duration of one critical activity (reduction of the stiffness matrix of the total structure) consumes 29%

of the total execution time during which nine out of ten processors are idle.

The pressure vessel problem was also scheduled for a hardware configuration consisting of

nine identical processors and one array processor. The array processor is four times faster in per-

forming scalar operations and sixteen times faster in performing matrix operations. The schedule

length and the processor utilization levels are given in the last row of Table 2 (the number of proces-

sors is 9 + Array Processor). The processor utilization chart is given in Figure 12. Compared to the

schedule generated for the ten identical processors, the schedule length was reduced by 62% while

the average processor utilization jumped from 50% to 88%. The changes occurred because the

durations of the critical and time consuming tasks have been reduced by a factor of sixteen, thus

reducing the schedule length and the processor idle time.

Developing a complete set of schedules for a given hardware base and program structure for a

variety of problems will illustrate such bottlenecks such as those described above. Other alternative

program organizations for this problem which reduce this bottleneck include the development of a

multiprocessor solver and the development of an asynchronous finite element analysis algorithm.
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Ideal Speedup

Actual Speedup

5 6 7 8 9 10
Number of Processors

1 2 3 4

Figu re 9: Speedup versus Number of Processors
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Figure 10: Average Processor Utilization versus Number of Processors
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Alternatively, the problem could be modelled with more than one substructure in the junction.

Analysis of a variety of such alternatives provides a rational basis for comparisons of alternate system

configurations.

5. Conclusions
This paper has presented a methodology for the preliminary evaluation of the performance of

finite element system architectures. This methodology provides a tool for the selection of a system for

further study without initially incurring the costs of developing such a system. The evaluation is

performed by simulating the execution of the program on the proposed hardware configuration. The

physical system is modeled as a set of processors and resources while the finite element program is

represented by a directed network where the nodes are independent computational tasks and the

links represent precedence constraints on the order of computation. The simulation is based on a

heuristic scheduling algorithm representing a modification of the critical path method. The result of

the scheduling is an estimate of the cost of solving a problem on a proposed hardware and software

configuration. Based on a set of such simulations, alternatives can be ranked and those deserving

further study or implementation can be selected.

The methodology provides one approach to the evaluation of finite element systems. It

provides a flexible mechanism to represent a wide variety of algorithms and hardware configurations.

Regrettably, the current methodology does not place sufficient importance on the issues of inter-

processor communications and data sharing which have been identified as potential bottlenecks in

actual system performance. However, these reservations can be alleviated by extending the

hardware and software models and the scheduling procedure.

Possible extensions to the methodology include better models for the hardware and software

and extensions to the scheduling problem and the scheduling technique. The hardware model can

be improved to include information describing the communications network linking the processors.

An extension to the software model is needed to allow the representation of iterative, conditional and

asynchronous algorithms. The scheduling problem can be modified to allow the preemption of tasks,

to handle resource requirements which depend on the processor used for another task and to model

global resource usage. Also, a more elaborate cost function can be used, including items such as

resource utilization and resource costs. Finally, the scheduling technique can be extended by

developing more sophisticated selection rules and using slacks as priorities to generate an improved

schedule.
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