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SUMMARY, The use of arbitrary spaces to represent the velocities

and pressures in the Navier-Stokes equations typically leads to

unstable finite element approximations. We show in this paper

that if spaces of piecewise polynomial functions are used and

if the grid for the velocity field is sufficiently fine compared

to the grid for the pressure, then the resulting finite element

approximations are stable and converge at the optimal rates.
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81. Introduction

This paper is concerned with the identification of finite

element spaces which yield stable and convergent approximations

to the Navier-Stokes equations. It has been known for several

years that the selection of arbitrary finite element spaces will

typically lead to instabilities in the pressure ([1] - [2]). Only

special choices will work. This is analogous to the situation

that exists with finite difference approximations, where only

specially constructured schemes will be stable.

Previous work has identified a number of special spaces which

yield stable approximations. For example, in the planar case it

has been shown [3] that if the space of velocities consist of

continuous piecewise quadratics and the space of pressures are

piecewise constants, then the resulting finite element scheme is

stable. A similar result holds if the space of velocities consist

of continuous piecewise linear functions augmented by suitable

trilinear functions. These results do require that the grid be

regular and satisfy an angle condition, but there are no other

restrictions on the shape of the elements. On the other hand,

for specially shaped elements such as the crisscross pattern

the smaller space consisting only of continuous piecewise linear

functions is stable [4] .

The work contained in this paper is an extension of first type

of element cited above in the sense that there are no restrictions

on the shape of the elements. In particular, we show that the finite



element scheme is stable provided that the dimension of the

space of velocities is sufficiently large compared to the

dimension of the space of pressures. This can readily be trans-

lated into a mesh ratio condition which is familiar from previous

work on hybrid finite methods [5].

In this last section we show that similar results also

apply to the Poisson equation when written as a first order

system.



§2. The Brezzi Condition

Let Q be a bounded region in 3Rn (n = 2 or 3). We consider

an incompressible flow in D where u denotes the velocity, p

the pressure, jE the body forces, and v the viscosity. We shall

be interested in the nonlinear case where the equations of motions

take the form

(2.1) -v A u + (u*grad)u + grad p = £ in Q

(2.2) div u = 0 in Q

(2.3) u = 0 on dQ

It is known that (2.1)-(2.3) has a unique solution provided the

generalized-Reynolds number [ 6 ] is sufficiently small. We shall

assume this without further comment in the sequel. We shall also

be interested in the linear case where the terra u*grad is

replaced with u*grad for some known divergent free velocity
A

field u. In the latter case the restriction on the Reynolds

number is not needed.

To define the approximation procedure we let

(2.4) 3J(Q) = {V : grad v € L2(Q)f v = £ on

and

(2.5) L2(Q) = {q : q € L2(Q) , / q = 0}.0

We select two finite dimensional subspaces



(2.6)

and seek a pair

<2-7' 2h 4 V PH
 € 8H

such that

h(2.8) / {grad u^ • grad v + (u^grad u^) «v 3 - J* PH div v = J* f̂ -V

(2.9) J qH div u^ = 0

holds for all v in W and q in Su. Once a basis has been

chosen for U, and £„, the above reduces to a set of nonlinearn H

algebraic equations [ 3]•

As noted in the introduction this system will in general be

unstable, and only special choices for V, and Sfl will lead to

convergent approximations. The condition for stability was first

formulated by Brezzi [ 7 ] , and it takes the following form (see

also [ 1 ] for an alternate but in this context equivalent

formulation) :

(2.10) sup {jqH div v
1*} > p|qH||

h -»
Here the sup is taken over all v in \s with

In the sequel we shall use standard Sobolev space notation with

II • U denoting the norm on Hr (fl) or H37 (Q) .



and qR is any element in 8 . The number 3 should satisfy

0 < p < co and should be independent of q... In addition, it

should be bounded away from zero as the dimension of the spaces

Uh x g approaches infinity.



§3, A class of finite element spaces.

We are now prepared to state and prove our main result.

Here we assume that lru and §„ are finite element spaces
n ti

with h and H being mesh spacings. It is assumed that these

spaces have the standard approximation properties; i.e.,

(3.1) inf Ku - vnlx < CAh
J

(3.2) inf |jp - gh|L < C.H'

for suitable intergers 1 < k £ K, 1 £ *.£ L# and for a positive

constant C- independent of h, H, u and p.

For spaces S of piecewise polynomial functions we have

(3.3) »H 5 H
€(0)

for some € > 0. For example, if $_. consists of discontinuous
rl

piecewise polynomial functions (such as piecewise constants),

then € can be any number in the range 0 < e < 1/2. In

addition, if the grid for S__ is quasi regular, then an inverse
XI

property is valid. . More precisely there is a number

0 < C. < co independent of H such that

(3-4) «qH!!£ ^ CIH-!!qHll0

holds for all qn in &„.
xl xl

Theorem 1. Let (3.1)-(3.4) hold. Then there is a constant C

independent of H, h, ja, and p such that if

(3.5) Ch/H < 1,

then the Brezzi condition (2.10) is valid.



Remark. In short this result states that the approximation

will be stable provided the mesh spacing h for the velocities

is sufficiently fine compared to the mesh spacing H for the

pressure. The condition (3.5) is familiar from other results

on mixed and hybrid finite element methods [5] .
«

The starting point in the proof of Theorem 1 is a result

due to Leray which in effort states that the Brezzi condition

(2.10) is valid in the infinite dimensional case where U, is
n

••1 2
replaced with HQ.(Q) and *fl is replaced by LQ(Q). It is normally

stated in the context of the ability to stably decompose a vector

field into a divergence free part plus a curl free part. Here we give

an equivalent form the proof of which can be found in [ 8 ] .

Theorem 2. Leray. Let f € LQ (O) . Then there is a

v € H2,(Q) such that

(3.6) div v = f in Q

(3.7) v = £ on SQ

with

(3.8) kix i cJIfUo'

where 0 < C_ < oo is a constant independent of f and v.
Li

Strictly speaking, the result is valid only for smooth

regions ft that for example are free of re-entrant corners such
oo

as convex regions or regions with C boundaries. In such cases,
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the smoothness of v increases with the smoothness of f. In

particular, we have the following

Corollary. Let f € H6(fi) f» L^fG) . Then there is a v € H1+a(fl)

satisfying (3.5)-(3.6) and

for 0 £ & £ 1.

We are now prepared to prove Theorem 1. To do this we must

show there is a number £ such that for any qH in S we have

H div

for a suitable v, in V_. Let v satisfy

(3.11) div v = qH in : Q

(3.12) v = 0 on T

with

(3-13) W 1 + e £ CLkHl|c .

where C is the constant in Theorem 2. Using the approximation

property (3.1) we select v, in \s, satisfying

(3.14)

Using the inverse property (3.4) this becomes

(3.15)



where

(3.16) C* = C A
C
L
CI

Since div v = q^ we also have

(3.17)

Hence (3.15) implies

(3.18) llv - vh|j1 < ^ ( h / H f t l j .

We now put these inequalities together to establish (3.10)

Indeed, first note that

div j0

Thus, using (3.18) we have

div vh3= J*{qH div v } - J*{qH div (v

> (C"1

But

Thus

S qH
 d i v
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Thus, (3.10) holds with

3 = (1 + C^/Hft-1 (Cj*1 - Ct(VH)
€) .

It follows that j3 is bounded above from zero as h, H -• 0

provided h/H is sufficiently small, in particular, the constant

C in Theorem 1 is
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§4. The Poisson Equation.. We now consider the Poisson equation

which we write in first order form as follows:

(4.1) u -grad cp = 0 in fi

(4.2) div u = f in G

(4.3) cp = g on bCl

The weak form of this system is to seek

(4.4) u € H(div,G) = {v € L2(G) : div v 6 L2(G)3

(4.5) cp € L

such that

(4.6)

(4.7) J" 9 div

J* <p div v

u

f <3Z'~

holds for all v € H(G; div) and cp 6 L2(G). In (4.6) V denotes

the outer normal to D.

As with the Navier-Stokes equations an approximate procedure

is obtained by first introducing finite dimensional subspaces

Vh c H(G, div), SR 5 L
2(G).

One then seeks

such that (4.6)-(4.7) holds with u replaced with u, and cp
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replaced with qp . In addition, v and f are restricted to

U, and Sfl, respectively.

The stability and convergence of this scheme centers on a

condition similar to (2.10) which was formulated in [9]. In

particular, there must be an absolute number 0 < & < co for which

(4.8) sup (v\ q^ > 0liqHLi-

Here (•#•),' H'iLi denote the inner product and norm on H (0) ,

h -•and the sup is taken over all v in V. with

(4.9) ||vh||0 i 1.

We now show that the analog of Theorem 1 is valid.

Theorem 3. Let the assumptions in Theorem 1 hold. Then (4.8) is

valid.

We first establish the analog of Theorem 2. (Actually, it

is a special case of Theorem 2,)

Lemma. Let f € H (0) . Then there is a v € H(Q) such that

(4.10) div v * f in 0. .

Moreover,

for -1 _< 6 _< 1.

Proof. Solve A6 = f in Q, 6 = 0 on dG and let v = grad 6
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To prove (4.8) we l e t

div v = qH.

Then

(4.11) ( d i v v , , „ ) _ , = I q w l _ 2 , > < l / C ) | ! q J I , B v
0

We now s e l e c t a v_ € u. such that

llv - v^ < C h ^ O ^ l Ch€|!qHJl_1+6.

Using the inverse inequality

we obtain

(4.12) ||v - vh|J0 i C(h/H)

Thus (as in Section 3) we obtain

(4.13) (div vh, SH
}-1'- (C1 " C l-l"-hH0

for absolute positive constants C, and Co.
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