NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



STABLE FINITE ELEMBTS
FOR THE NAVIER-STOKES EQUATIONS

by |
6«orge J. Fix, Dah-Nain Lee, & Quoping Liang
DRC-21-11-82
April, 1982




Stable Finite Elements

for the Navier-Stokes Equations

G. J. Fix, D. N. Lee, and G. Liang'™)

SUMMARY. The use of arbitrary spaces to represent the velocities
and pressures in the Navier-stokes equations typically leads to
unstable finite element approximations. We show in this paper
that if spaces of piecewise polynomial functions are used and

if the grid for the velocity field is sufficiently fine compared
to the grid for the pressure, then.the resulting fihite element

approximations are stable and converge at the optimal rates.
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§1. Introduction

This paper is concerned with the identification of finite
element spaces which yield stable and convergent approximations
to the Navier-Stokes equations. It has been known for several
yYears that the selection of arbitrary finite element spaces will
typically lead to instabilities in the pressure ([1] - [2]). Only
special choices will work. This is analogous to the situation
that exists with finite difference approximations, where only
specially constructured schemes will be stable.

Previous work has identified a.number of special spaces which
yield stable approximations. For example, in the planar case it
has been shown [3] that if the space of velocities consist of
continuous giecewise quadratics and the space of pressures are
piecewise constants, then the resulting finite element écheme is
stable. A similar result holds if the space of velocities consist
of continuous piecewise linear functions augmented by suitable
trilinear functions. These results do require that the grid be
regular and satisfy an angle condition, but there are no other
restrictions on the shape of the elements. On the other hand,
for specially shaped elements such as the crisscross pattern
the smaller space consisting only of continuous piecewise linear
functions is stable [4].

The work contained in this paper is an extension of first type
of element cited above in the sense that there are no restrictions

on the shape of the elements. In particular, we show that the finite




el enent schene is stable provided that the dinension of the

space of velocities is sufficiently Iarge conpared to t he

di mensi on of the space of pressures. This can readily be trans-

lated into a nesh ratio condition which is famliar fromprevious

work on hybrid finite nmethods [5]. |
In this last section we show that simlar results al so

apply to the Poi sson equation when witten as a first order

syst em




82. The Brezzi Condition

Let Q be a bounded region in 3R (n =2 or 3). W consider
an inconpressible flowin D where y denotes the velocity, p
‘the pressure, jJE the bddy forces, and v the viscosity. W shall

be interested in the nonlinear case where the equations of notions

take the form

(2.1) -v Au + (u*grad)u + grad p = £ in Q

(2.2) div u ’ ‘ =0 in Q
(2.3) u=20Q on dQ

It is knowmn that (2.1)-(2.3) has a uniqUe sol ution provided the
general i zed-Reynolds nunber [ 6] is sufficiently small. W shall
assunme this without further comment in the sequel. W shall also
be interested in the linear case where .the terra u*grad is

: A : .
replaced with u*grad for sone known divergent free velocity

A ,
field & Inthe latter case the restriction on the Reynol ds

nunber "i s not needed.

To define the approxi mation procedure we | et
_ : 2 _ 20}
(2.4) 3J(Q ={V : grad v €L(Qs Vv =£ on

and

(2.9) L*@ ={a: g €L%(Q , Lqg=0}.

W select two finite dinmensional subspaces




(2.6) : SH(Q), 38; L (),

and seek a pair

<2._ T 2h4 V PH€8H,
such t hat

(2.8) /[ {grad u™ < grad \_/_h+ (urgrad u?) «\L_lb - Jé Py div \L_h: J* f"-\/h
Q !

Q
(2.9) J g" div ur =0
.
holds for all v* in W and g* in S,. Once a basis has been

chosen for U’n and £,H, t he above reduces to a set of nonlinear

al gebrai c equations [ 3] ¢

As noted in the introduction this systemw Il in general be
unstable, and only special choices for V, and & wll lead to
convergent approximations. The condition for stability was first
f ormul at ed by' Brezzi [ 7], and it takes the follow ng form (see
also [ 1] for an alternate but in_this cont ext equi val ent

formul ation) :
(2.10) sup {jan div V¥ > plad| (1)

Here the sup is taken over all v in \

), the sequel we shall use standard Sobol ev space notation with

Il .U denoting the normon H (fl) or H'(Q .




and gr is any elenent in EBH. The nunber 3 should satisfy
0O < p <co and should be independent of Ope In addition, it
shoul d be bounded away from zero as the dinmension of the spaces

T, x gy approaches infinity.




83, A class of finite el enent spaces.

W are now prepared to state and prove our nmain result.

Here we assune t hat .ﬁ@ and 8, are finite elenment spaces

n ti
with h and H being nesh spacings. It is assuned that these
spaces have the standard approxi mation properties; i.e.
(3.1) inf ke - v, g G Ml
(3.2) inf lip - gk < GH el

for suitable intergers 1 <k £K, 1€£ *. £ L# and for a positive
constant C_ independent of h, H u and p. |

For spaces S,, of piecew se polynom al functions we have

(3.3) . »u 5 H(0)

for some € > 0. For exanple, if $_. consists of discontinuous
. rl

pi ecewi se pol ynom al functions (such as piecew se constants),

then € can be any nunber in the range 0 <e < 1/2. In
addition, if the grid for S is quasi regular, then an inverse
X
property is valid. . More precisely there is a nunber
4

0 < C < co independent of H such that
(3-4) «d'les M GH!lgd o

holds for all g, in &,.
x| x|

Theorem1. Let (3.1)-(3.4) hold. Then there is a consiant C
i ndependent of H h, ja, and p such that if

(3.5) Ch/H < 1,

then the Brezzi condition (2.10) is valid.




Remark. In short this result states that the approximation

wi || be stable provided the nesh spacinga h for the velocities

is suffici ently'fine conpared to the nmesh spacing H for the
pressure. The condition (3.5 is famliar fromother results

on m xed and hybrid finite elenment nethods [5] .

.((
The starting point in the proof of Theorem 1l is a result

due to Leray which in effort states that the Brezzi condition

-—h

(2.10) is valid in the infinite dinmensional case where U, s
- n
o] ' 2
replaced with H,(Q and *; is replaced by Lo(Q). It is normally

stated in the context of the ability to stably deconpose a vector
field into a divergence free part plus a curl free part. Here we give
an equi val ert formthe proof of 2vvhi ch can be found in [ 8].

Freotem2—teray— Let f € Lo(O . Then there is a
v € H,(Q such that

(3.6) divve=f in Q
(3.7) ¥+ = £ on SQ
with |
(3.9) kix i “JI"Uo

where 0 < C_ <00 is a constant independent of f and V. i
Li
Strictly speaking, the result is valid only for snooth
regions ft that for exanple are free of re-entrant corners such

. : .., 00 :
as convex regions or regions wwth C  boundaries. |In such cases,




the smoothness of v increases with the smoothness of f. 1In

particular, we have the following

Ri+ .6( Q)

- Corollary. Let f € HG;Q) n Lg;n). Then there is a v €H
satisfying (3.5)-(3.6) and

(3.9) Iellyyg < cplielly

for 0L 8§ 1.

We are now prepared to prove Theorem 1. To do this we must

show there is a number B such that for any Ay in SH we have
(3.10) ?l;{qn div v} > Bllggllylivy Il

for a suitable vy, in Uh. Let v satisfy

(3.11) divy = qg in Q
(3.12) v=0 on T
with

(3.13) Wl € ol -

where CL is the constant in Theorem 2. Using the approximation

property (3.1) we select i in 3£ satisfying

€‘ €
(3.14) Hz - zh“l < CAh l!“1+€ < CAcLh “qH“e
Using the inverse property (3.4) this becomes




wher e
(3 16) : o Cc = CACLC|
Since divv=g" .We also have

(3.17) | laglly < lvl;-

Hence (3.15) implies
(3.18) IV - vlis < A (h/HTtI].

W now put these inequalities together to establish (3.10).

| ndeed, first note that
£{ divjo= lla h? > ¢l ll, vl
G W= ldglg 2 Ty Mplgu¥iy
Thus, usi néﬁl(S. 18) we ha\}e
!g{qﬂ div y,3= Jaw div vi- Mo div (v - v
=(Cyt - e, tvm ) lgfl livll -
But

oy = vl ¢ Iy - wll; ¢ co/affvl;.

Thus

1

Squd Y Yy 2 (14 Ga/EY et - gy flagl v, l, -
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Thus, (3.10) holds with

B= 1+ camylc! - cuvm).

It follows that B is bounded above from zero as h, H = 0
provided h/H is sufficiently small. 1In particular, the constant

C in Theorem 1 is

e .2 1/e
‘c = C*CL) = (CL QACI) .
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§4. The Poisson Equation. We now consider the Poisson equation

which we write in first order form as follows:

(4.1) | u -grad =0 in Q
(4.2) | div u =f in Q
(4.3) ® =g on o0

The weak form of this system is to seek

(4.4) u € H(div,®) = {v € L2(0) : aivyv € 12(D))
(4.5) @ € Lzﬁﬂ)

such that

(4.6) - g u-v + é‘ @ div v = 1[ gv-v

—
€
o7
[
<
(]
]

(4.7) [ of
o

holds for all v € H(Q; div) and ¢ € LZ(Q). In (4.6) Vv denotes
the outer normal to f.

As with the Navier-Stokes equations an approximate procedure

is obtained by first introducing finite dimensional subspaces

T, S H(Q, 4iv), 8, S LP(D).

One then seeks

-y

€L

Uy nh' %y € 8y

such that (4.6)-(4.7) holds with u replaced with u,  and ¢
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replaced with any - In addition, v and f are restricted to

Un and &, respectively.

The stability and convergence of this schene centers on a
condition simlar to (2.10) which was fornmulated in [9]. In

particul ar, there nust be an absolute nunber 0 < & < co for which
(4.8) sup_(v\ g~ > OliguLi-

Here (e#e¢),,' HiLi_ denote the inner product and norm on H"](O) ,

and the sup is taken over all v in V‘n Wi th

(4.9) Mo i 1.
W now show t hat the anal og of Theorem 1 is valid.

Theorem 3. Let the assunptions in Theorem 1 hold. Then (4.8) is
val i d. -

W first establish the anal og of Theorem 2. (Actuall'y, it
Is a speéi al case of Theorem 2,)
0
e, Let f €H (0). Then thereis a » € HQ such that

(4. 10) divvsf in O

Mor eover,

I~

vl < chel,

for -1 <6 < 1.

—

Proof. Solve A6 =f in Q 6 =0 on dG and let v = grad 6.




To prove (4.8) we let
divy = gu.
Then
(4.11) C(divive,, ) o= lgul A, > <1iC)|lgdl
We now select a v;, €, such that

- vA < ChrOAMIl Ch¥lgudl 14
Using the inverse inequality
lagh_y,e ¢ B Clagl_,
we obtain
(4.12) lv - volo i CvH) Slagli_, -

Thus (as in Section 3) we obtain

‘ o <
(4.13) (div vpn, Si-1'2 (C1 " Co(h/E) ) liggl

for absolute positive constants C,_ and GC,.

Bl

M Rk
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