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Garrison W. Cottrell was born at a very early age on October 24, 1950, in

Lake Forest, Illinois. Blissfully unaware that he was surrounded by a sea of

Republicans and meat, he managed a happy childhood, rising to the level of

Junior Assistant Scoutmaster in Troop 42, North Shore Area Council. He

graduated from Lake Forest High School in 1968, and left for Cornell

University in the fall. Cornell was a completely different experience than Lake

Forest, although he was not "influenced by the Russians" as alleged by his

mother. His freshman year the Blacks took over the student union, demanding

more Black Studies programs. The student body responded by taking over the

ROTC building, Barton Hall, in a group that numbered around 5,U00 people.

The following three years were spent demonstrating and learning about life,

but alas, not much about his majors, sociology and mathematics.

Surprisingly enough, he graduated on time in 1972 with a respectable

average. This may not seem like much of a feat, but some of his friends from

those years have only recently graduated. Thus, he suddenly found himself in

the real world, and the revolution had not taken place. What to do? He re-

entered Cornell immediately and received an MAT in math slightly late, in

1975. After several years of school bus driving, ice cream scooping, rough

carpentry and auto body work, it was time to reassess and perhaps to leave the

mecca of Ithaca, N.Y. In the fall of 1977 he entered graduate school in

Computer Science at Syracuse University. After two years there, where he

learned that "all AI has accomplished in twenty years is LISP." he transferred

to the University of Rochester in the summer of 1979.

Initially encouraged by the amount of hair in the department, he has now

become disillusioned; his departure will cleanse the department o( its last

remnant of the sixties. While at Rochester, he was a University Fellow in

1979-1980, T.A.'ed Numerical Analysis twice, and held various other R.A. and

T.A. positions. In conjunction with Steve Small and Lokendra Shastri, he

wrote the two papers on connectionist parsing, and several papers on
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connectionist models on his own. He has also distributed several abstracts on

Connectionist Dog iVlodelling, based on his dog and long time friend.

Jellybean. Also while at Rochester, he pursued his hobby of mid-sixties slant

six automobiles. After deciding the fate of his 1965 Valiant, "Prince", 1966

Dart, "Art", and 1965 Fury, "Hell hath noM, he plans to move to San Diego,

California to search for less rusty incarnations of his dreams.
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Abstract

A new architecture for representing parsing of natural language is

described which conforms to psycholinguistic, neurolinguistic and

computational constraints. The parsing model uses a particular spreading

activation or neural network scheme called connectionism which entails a

massive number of appropriately connected computing units that communicate

through weighted levels of excitation and inhibition. Such an architecture adds

considerable constraints of its own which serve to explain some constraints at

the functional level. The model accounts for psycholinguistic data on the access

of word meanings, recent neurolinguistic data on agrammatism, and some of

the apparent parsing strategies of normals.
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CHAPTER I

INTRODUCTION

1.1. Motivation and Introduction to the Problem

While this is a Computer Science thesis, it is in the area of Artificial

Intelligence (AI), and within AI, it ties on the interface to the growing field of

Cognitive Science. Cognitive Science is a discipline whose goal is to

understand human cognition through combining the insights of the fields of

Computer Science, Psychology, Neurophysiology, Linguistics and Philosophy.

The work reported here is motivated by constraints and results from the first

four fields, and applies these to a model of the human sentence processing

mechanism with an emphasis on the problem of lexical ambiguity. Thus there

is a great deal of material in this thesis that is not traditionally within the

domain of Computer Science.

Lexical ambiguity is a problem that was rarely attacked directly in early

work on Natural Language Understanding (NLU) in A I. However, it is

perhaps the most important problem facing an NLU system. Given that the

goal of NLU is understanding, correctly determining the meanings of the

words used is fundamental The problem is not one that appears only in

strange sentences devised by linguists. In an informal study, Gentner (1982)

found that the 20 most frequent nouns have an average of 73 word senses

each; the 20 most frequent verbs have an average of 12.4 senses each. Small

(1978) lists 57 senses for the word "take". Not to be outdone, Hirst (1984)

reports that "go" has 63 meanings listed in the Merriam Webster Pocket

Dictionary. The tack taken here is that it is important to understand how



people resolve the ambiguity problem, since whatever their approach, it

appears to work rather well. The model described here resolves ambiguous

words in what we1 believe to be a clean way, and is at the same time

neurologically and psychologically plausible.

l.l.L Ambiguity Defined

Lexical ambiguity is is of two types, syntactic and semantic. Syntactic

lexical ambiguity simply refers to ambiguity of category, e.g., Noun vs. Verb.

For example, bark is both the sound Jellybean makes and the stuff that gives

him enough grip to get six feet up the side of a tree in pursuit of a squirrel.

This is to be distinguished from structural ambiguity, which refers to sentences

which have more than one phrase structure tree assignable to them.

Winograd's famous example is put the block in the box on the table, which can

be assigned two structures depending on whether Min the boxM modifies

"block" or not. We will not address problems of structural ambiguity in this

thesis; however, we do provide a mechanism for this when it is resolvable by

semantic information; see Chapter 5.

Semantic ambiguity is of two types. Polysemy refers to words whose

several meanings are related. For example, the two uses of fell in Allende's

democracy fell to CIA backed generals and John fell and hurt himself are similar

in meaning, but not literally the same (polysemy, as pointed out by Hirst

(1984), often blends into metaphor). Homonymy refers to words whose various

definitions are unrelated, as in the two uses of ball in they danced till dawn at

the ball versus this dog can be entertained all day with a ball.

Semantic and syntactic ambiguity are orthogonal, since a single word can

have related meanings in different categories (as in can of fruit vs. to can/rw/7),

or unrelated meanings in different categories (as in / saw the carpenter's saw),

lI use "we" in this thesis because I find the use of "\" somewhat egotistical-sounding, and avoiding the use of
the first person leads to a plethora of passive constructions. The reader may think of "we" as referring to me and my
dog, Jellybean, who was a major contributor to my thoughts on connection^ models, but due to University regula-
tions, cannot be cited as a co-author.



or both (/ saw the carpenter saw//7g with the rusty saw). In this work we will

pretend that polysemy is not different from homonymy, treating related

meanings as distinct, although the representation of lexical relations will

include more links and shorter paths between related than unrelated words.

In order to resolve ambiguity, an NLU system has to take into account

many sources of knowledge. For example, often categonal ambiguity can be

resolved on syntactic considerations alone, as in / can do it, where the only

possible syntactic class of can is Verb. The system described here will handle

ambiguities resolvable in this way. Some sentences are globally ambiguous in

this respect, e.g., in His will be done, the category of will is either Verb or

Noun, depending on who is speaking and where, i.e., a minister in church, or a

mechanic in a garage. We will not consider a mechanism for context of this

type in the thesis.

People appear to use semantic sources of information for categorial

disambiguation as well, although this sometimes leads them astray, as in the old

man the boats (the old people operate the boats). Although there is a syntactic

frequency argument as well, one explanation for the "garden pathM nature of

this sentence is that the semantic representation of "old man" overrides the

proper syntactic interpretation. The fact that such semantic garden path

sentences exist is some evidence that the semantic representation of a word can

influence decisions concerning its syntactic representation.

Semantic ambiguities often require global context for their resolution as

well. For example, democracy can mean "a system where a dictator rules by

force" if the speaker is a government official referring to a country with strong

economic and military ties to his own, or it can mean "a system where

governments are elected by the people" if the speaker is a high school history

teacher. However, often all that is required is local context, specifically, the

context provided by the rest of the sentence. For example, in bob threw the

fight, whether fight refers to "propelling" something or "intentionally losing"



something is determined by the presence of fight. The system described here

will resolve such ambiguities,

1.L2. Religion

A fundamental premise of this thesis is that the time is right for the

interdisciplinary development of a computational theory of human language

comprehension. The claim is that there are both sufficient constraints based on

hard data, and an adequate computational theory that can incorporate these

constraints. Throughout the thesis, the model is guided by and related to the

psycholinguistic and neurolinguistic literature, and is presented as one

explanation of some of that data. In building such a model, it must be

possible to form a clear correspondence between elements of the theory and

elements of the world that the theory attempts to explain. It is precisely on this

count that existing theories have broken down: how do the symbol structures

and symbolic inference schemes of computational models relate to the

structures and processing strategies that people use for the same tasks? The

answer in many cases is that the correspondence is at a functional level. The

functions performed by the program must be performed by a human in some

way in order to accomplish the same task. The claim advanced here is that in

order to explain the wealth of psychological data on low-level language

processing, the correspondence must be at a level below the functional; that

the mechanisms involved in carrying out these functions must be considered if

we are ever to have real explanatory power.

Considerations of levels of description have led us to reconsider certain of

the basic tools and metaphors employed for theory construction in Cognitive

Science. The approach taken here is to use a computational paradigm that is

similar to the human brain in form and functional capabilities. The

computational metaphor being rejected is that of the information processing

school (Simon, 1969), which attributes some of the information processing

capabilities of a computer to humans. This is not to say that they believe



humans do floating point multiplications. Rather, it is the view that symbols

can be passed from one system to another (i.e., copied) and manipulated in a

serial fashion. This may be appropriate for describing some of the behavior of

a student solving physics problems, but for a model of sentence processing, we

claim not Some of the constraints that were considered in adopting this view

follow.

1.1.3. Connectionist Models: A Gentle Introduction

The particular paradigm used in this work is the connectionist (Feldman &

Ballard, 1982) version of neural networks. Formal definitions of connectionist

models are given in Chapter 2. The purpose of this section is to motivate their

use and to give an intuitive idea of their operation through an example.

Motivation

Francis Crick (1979) has pointed out the inherent differences between the

conventional sequential computer and the human brain. His comparison (with

some additions) is summarized in Table 1.1. We would like to draw our first

set of constraints on a cognitive model from Crick's observations and

knowledge of human physiology:

(1) The processing units are relatively simple; they should not be more

capable than a neuron. This is not too great a constraint. Recent evidence

Table 1.1. Differences between the brain and digital computers

speed
order

component reliability
faults

signals
programming

computer

fast
serial

reliable
fatal

precise, symbolic
needs it

brain

slow
parallel

unreliable
no degradation
imprecise, terse

does it



(Levy, 1982) shows that neurons are far from simple linear threshold units,

for example. Some computation appears to be going on at the dendrites,

outside the cell body. However, the "cycle timeM of a neuron-how fast it

responds to input-is on the order of 2 msec, or 106 times slower than the

fastest computers.

(2) Another strong constraint is that the brain's connections are fixed; very

few new pathways are grown in the adult brain. What may change is

weights on the connections, thus developing new pathways. However, this

process is probably slow. We presume that this accounts for long-term

learning, and that short-term associations are handled differently, through

systems of dynamic associations (bindings) as outlined in Feldman (1982).

(3) The coinage of the brain is frequency of firing, thus the inputs (and

outputs) cannot carry more than a few bits. This is perhaps the greatest

departure from the typical information processing paradigm. There are not

enough bits in firing frequency to allow symbol passing between

individual units.

(4) Whereas some locations in the brain may control activity in others,

decisions must be completely distributed: each unit computes its output

solely based on its inputs; it cannot "look around" to see what others are

doing, and no central controller gives it instructions.

(5) The model must be noise resistant and robust. Faults in individual units

should not (ordinarily) degrade overall performance. While we do not

address this constraint in our current implementation, we do assume that

redundancy accounts for much of the fault tolerance.

(6) The number of processors and connections must be constrained: on the

order of 1011 processors, with 103-104 connections each.

The first question one might ask is how people can possibly perform

multiple tasks (such as walking and talking) at the same time with these

constraints. We must, based on the relatively slow speed of neurons, be able to



do a lot of computation in a small number of steps. This is Feldman's time

step argument (given in Feldman & Ballard, 1982): mental events (such as

accessing the meaning of a word) occur on the order of a few hundred

milliseconds. Neurons have a "response time" on the order of a few

milliseconds. Then such mental events must only take around a hundred steps

of computation. The only way this could be accomplished is through massive

parallelism and the high connectedness of the system.

This was the motivation for the design of the connectionist paradigm,

which is an attempt at defining a computational abstraction of the information

processing capabilities of neurons. Connectionist models and ones in the same

spirit have been used for models of visual recognition of origami figures with

noisy inputs (Sabbah, 1985), speech production (Dell, 1980), learning control

surfaces (Barto, Anderson & Sutton, 1982), and semantic networks (Shastri &

Feldman, 1984). This thesis is an attempt at building a cognitive model of a

complicated process with the connectionist paradigm. One of the goals of the

work is to show how connectionist models are a good basis for cognitive

models.

A Simple Example

One of the best examples of a connectionist style model is the letter and

word model of McClelland & Rumeihart (1981; Rumelhart & iMcClelland,

1982). Part of the model is shown in Figure 1.1. It is composed of a network

of simple processing units that communicate by spreading activation over

weighted links. A negatively-weighted link is called inhibitory. The network is

divided into three levels. The bottom level units represent input features

activated by the visual system encoded as parts of a letter orthography; these

are positionally indexed. The orthographic units feed into units representing

the letters formed by those features at the next level. These too are indexed by

their position in the word. These, in turn, feed into units representing the

words of which they are a part at the next level. Units representing different



Figure 1.1. A few of the neighbors of the node for the letter "t" in the first po-

sition in a word. Links ending in dots are inhibitory, triangles excitatory. From

(McClelland & Rumelhart, 1981).

letters in the same position inhibit one another, and features which are

incompatible with units at the next level inhibit those units.

This model is used to explain a large body of psychological results which

show that it is easier to detect the presence of letters when they are in the

context of words than if they are presented alone (the word superiority effect).

The effect is explained in this model as a result of feedback to the letter units

from the word units they stimulate. This feedback does not occur when the

letter is presented alone. It is an explanatory model in a strong sense: the units

involved could correspond to neuronal level units, and some of the effects are

a direct result of the architecture used. For example, there is a word superiority

effect for pronounceable non-words (such as "mave") which is shown in their

model to be a result of a "gang effect". There is a "gang" of word units that

share many letters with the non-word (its "friends"). These get partially

activated by "mave" and provide the necessary feedback for the superiority



effect. Their model predicts a similar effect for non-pronounceable non-words

that have many friends. In fact, they found such an effect experimentally.

This effect is predicted by the architecture in a way which may not have

occurred to those designing symbol-passing models. The system also illustrates

an important structuring technique used in designing such networks: division

into layers of processing with connections only allowed between adjacent layers

and within layers.

A connection machine provides us with a new metaphor for cognitive

models to replace the Von Neumann machine. Furthermore, some researchers

are developing actual computer hardware to operate with massive parallelism

and low degradation of overall behavior in the face of local errors (Hillis, L981;

Fahlman, 1980). We would like to be able to use these machines

advantageously. It is not clear that the best idea is to try to convert sequential

algorithms to parallel ones; rather, we would like to start with highly parallel

models. These machines also make feasible the idea of simulating our models

in real time, which is rather difficult on a sequential machine.

LI Overview of the Model

In this section we present an overview of the model. First a word of

motivation. There appears to be a growing convergence of thought in

Linguistics (Bresnan, 1982), Psycholinguistics (Rayner, Carlson & Frazier,

1983), Neurolinguistics (Linebarger, Schwartz & Saffran, 1983) and Artificial

Intelligence (Hirst, 1984, Walker, 1978; Winograd, 1983) that the processing of

syntactic and semantic representations should (or does, in humans) proceed in

parallel. This point of view is adopted here as well.

What started out as a model of lexical ambiguity resolution ended as a

model of (single clause) sentence comprehension, simply because in order to

show how words are disambiguated, one has to specify the sources of the

disambiguating information. The system consists of a three layer, four

component network shown in Figure 1.2. The lowest level is the lexical level:



Figure 1.2. Overview of the model.

this is the input level for our model. It consists of a unit for every word in the

language, and corresponds to the top level of the McClelland & Rumelhart

network shown in Figure 1.1. While morphemic encodings are certainly

possible, we have avoided this issue in this model. These units simply

represent the spelling of a word; ,the definitions are represented at the next

level. Reading a sentence is simulated by activating units at this level

sequentially, with a model-dependent delay between them.

The lexical level units activate nodes at the word sense level representing

the various definitions of the word. Connections are unidirectional from these

units to all their possible senses at the word-sense level, so that a lexical unit

excites its definitions and then decays rapidly. The definitions are positionaily

buffered at the word sense level. They are represented, for the purposes of

this thesis, as a unit for the syntactic class (shared by each meaning of that

class) and a unit for each meaning, labeled with an "awkward lexeme" (Wilks,

1976), e.g., INTENTIONALLY-LOSE for the "threw the fight" meaning of

threw. It is at this level that disambiguation is accomplished. The various

definitions of a word occupying the same buffer position compete through a



mechanism described in Chapter 3. In order to decide on a meaning or

syntactic class, the units in the buffer receive feedback from the next level up

which reflects how well each meaning or syntactic class fits into the developing

semantic and syntactic representations of the sentence.

The syntactic class units in the word sense buffer are connected to the

syntax processing network. This network builds a surface structure

representation of the sentence based only on the syntactic class of the words

and semantic constraints on bindings of constituents to roles (discussed below).

Features such as number agreement are not represented in the current system.

Hence, disambiguations that can be accomplished using this information (see

Milne, 1983) are not handled in this implementation. The representation of

the sentence structure is through activation in units representing syntactic

constituents and roles in those constituents. If a constituent plays a role in

another constituent, it is connected to the role unit through a binding unit,

which represents the assignment of the constituent to that role. In general,

during the processing of a sentence, there is not a unique syntactic

representation of the sentence parsed so far, so the binding units that represent

alternative bindings of a constituent will compete with one another.

The units representing the meaning of a word in the buffer are connected

to the semantic network. This network builds a semantic representation of the

sentence based on case relations (Fillmore, 1968). Cases represent the semantic

roles required by the verb of the sentence. For example, break requires at

least an Object to be broken, along with optional cases such as Agent and

Instrument In John broke the window with a hammer, John fills the Agent

case, the window fills the Object case, and a hammer fills the Instrument case.

We posit an "exploded caseM representation; that is, we use several hundred

case roles that are more specific than Agent, Object, etc., but fall into those

classes (see Fahlman, 1979). At present, this is as far as we go towards a

semantic representation; since a case representation is limited to a single clause,

so is the model. Word meanings that can fill a case role signal this by



activation spreading through a lexicon where this fact is represented. Verb

meanings activate their case frames (the set of cases determined by the verb's

meaning). A conjunction of activation from a filler and a verb causes the case

node to feed back to the filler and verb. Similar to the syntactic

representation, binding nodes represent assignments of fillers to case roles;

these compete until one case frame "wins." This is part of the semantic

disambiguation mechanism; this is discussed in more detail in Chapter 4. The

syntactic and semantic representations constrain one another through

connections between the binding nodes. Thus bindings that are compatible are

mutually supportive; incompatible bindings inhibit one another.

The operation of the model consists of a flow of activation from the

lexical items (introduced in sequence) to their definitions in the word sense

buffer. The meaning nodes in turn, activate the case nodes, and the syntactic

class nodes activate compatible syntactic representations. The representation

that fits the input best will then "win." Winning involves the formation of a

stable coalition, that is, a group of connected nodes in which the overall

excitation exceeds the overall inhibition. Our model can be said to have

"worked" if the proper case roles form a coalition with the appropriate

meanings for the sentence, and the correct syntactic representation wins. Since

many sentences are ambiguous, the network will have to decide on an

interpretation based on word sense frequency and relational knowledge

expressed at the case level. We presuppose higher levels in the network for

making general inferences and for long term memory. We must leave

specifying these to future research. However, these levels provide the famous

"context" (aside from local context) and we can simulate their effects by pre-

loading the network with different biases.

A schematic representation of an example parse of a simple sentence is

shown in Figure 1.3. This is a simplification of the actual nodes involved, but

represents roughly the stable coalition of units that corresponds to the parse of

the sentence. The important thing to note is that the communication between
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syntax and semantics is restricted to links between bindings and the pathway



through the word sefise level2. The fact that the verb is active and the first NP

(Noun Phrase) is th Subject supports the binding of the first Concept to the

Agent role.

This ends the overview of the model. It is appropriate at this point to

mention what has actually been implemented. One version of the

disambiguation mechanism in a word sense buffer position was implemented

and is described in Chapter 3. A preliminary version of the semantic system

was implemented and is described in Chapter 4. An inheritance hierarchy,

which is a fundamental part of the lexicon, was implemented and is described

in Chapter 7. The syntactic processor, along with the word sense buffer and

lexical level, was implemented and is described in Chapter 5. What has not

been implemented is a system for mapping the constraints between bindings in

syntax and semantics, and the complete design of the semantic processor

described in Chapter 4. The following section is a guide to the rest of the

thesis,

1.3. Description of the Rest of the Thesis

Chapter 2 reviews previous AI work in lexical disambiguation, gives a

formal definition of connectionist models, and briefly describes the simulator

used for the thesis networks. Relevant psycholinguistic studies are presented in

the chapters describing the parts of the model they pertain to. Chapter 3

concerns the process of lexical access, that is, the activation of the definitions

of words from their lexical representations. Chapter 4 describes the semantic

interpretation network, and reviews the semantic priming literature. Chapter 5

details the operation of the syntactic processor. Chapter 6 reviews

neurolinguistic data relevant to the model, and discusses the implications of the

model for that area of research. Chapter 7 presents a formal basis for

connectionist inheritance hierarchies, which are an integral part of the semantic

2The links between the bindings are "hard-wired" in the model presented here, but actually require dynamic
linking in a complete model.



interpretation system. Chapter 8 concludes the thesis with a review of t

implications of the model for the various disciplines contributing to Cogniti

Science.



CHAPTER 2

PREVIOUS MODELS

2.1. Introduction

In this chapter we review previous Artificial Intelligence approaches to

lexical ambiguity, related models of cognitive processing from psychology, and

also introduce connectionist models. Notably lacking from this chapter are

results related to lexical ambiguity from psychology and neurolinguistics; these

are included in the relevant chapters.

22. AI Models of Sentence Comprehension

2.2.1. Introduction: Syntax vs. Semantics

Although there has been considerable work in Natural Language

Understanding, only a few researchers have directly attacked the semantic

lexical ambiguity problem in the past, although the numbers are growing: most

notably Wilks (1976), Riesbeck and Schank (1976), Small and Rieger (1982),

and Hirst (1984). The answer proposed usually involves some notion of

"context" Given enough context, the argument goes, nothing is ambiguous.

Context is used either to constrain the search for the proper meaning of the

word, or select it from a set of choices. If the wrong one is chosen, a program

can backtrack. Psychological results to be discussed in the next chapter suggest

that as far as psychological reality goes, programs which access all meanings

and then select the proper one are closest to the human processor in operation.

It is impossible to separate approaches to ambiguity from approaches to

sentence understanding in general; the AI approach to sentence understanding
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can be divided into two schools: (1) those who follow the linguists, that is, they

initially apply syntactic rules to get a first cut at the structure of the sentence,

and then use semantic routines to build a meaning representation (Winograd,

1971; Marcus, 1979; Gigley, 1982); (2) those who apply semantic analysis to

the words to map directly into some kind of meaning representation, only

using syntax when necessary (Wilks, 1976; Riesbeck and Schank, 1976; Small

and Rieger, 1981), These positions are rarely taken to their extreme, that is, no

one believes syntax or semantics alone is enough, although their work is

frequently misunderstood in this way (cf. Gigley (1982) for a recent example).

The syntactic approach has the advantage of having more structure in the

system, (syntactic analysis being well developed independent of semantics), but

the disadvantage often of either having to carry along different possible parses

that could easily have been resolved semantically, or making decisions that turn

out to be wrong later. Applying semantics first usually results in programs

whose structure is hard to follow because of the complexity of semantic

interactions (and lack of syntactic structure!) but they are usually more

oriented towards the disambiguation problem. We will consider each of the

approaches in turn, and afterwards consider some approaches that could be

classified as " mixed/1

With respect to the two types of ambiguity, lexical and structural, our

work has concentrated mainly on the former, although we do have some things

to say about the latter (see Chapter 5). Hence, in this review, we will mainly

be concerned with lexical ambiguity, however, we will briefly mention

approaches to structural ambiguity in each system. As a global comment on

the syntax-first systems, it should be noted that most of them can handle word

sense disambiguation that can be done by means of syntax alone (such as

noun-verb senses), but must usually rely on the semantics component to

disambiguate within-class and structural ambiguity.
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2.2.2. Give me an S, Give me an N, . . . : The Syntax Firsf School

Winograd's SHRDLU System

Winograd's (1971) SHRDLU system, while being of the syntax first

school, was one of the first to combine syntactic and semantic processing in a

relatively graceful way. Rather than applying syntax to the sentence as a whole

first, the two components ran conceptually as coroutines, with the semantic

component verifying the partial results of the parser. As soon as a noun group

was constructed, the semantic component would check it for consistency with

the known world, and could instruct the parser to break it up differently. For

example, in "put the blue pyramid on the block in the boxM the parser will

construct a noun group [blue pyramid on the block], which the semantic

component then finds has no referent in the system's micro-world. The parser

is then redirected to find [the blue pyramid] and parses the rest as a location

Our system will not be able to to resolve ambiguities of this kind that depend

on knowledge of the state of the world, since a model of the world is not

incorporated in the system. However, certain kinds of knowledge about the

world are incorporated in the exploded case system, since constraints on role

fillers are really a kind of world knowledge. Integration of perceptual

information as simulated in SHRDLU, and a model of the world are topics for

future research.

Winograd's treatment of word sense disambiguation is to use selectional

restrictions combined with semantic markers in the dictionary. This allows his

program to make quick checks for compatibility, such as when an adjective

requires an animate object to modify. Thus in his system, there is a certain

amount of semantics in the syntactic component. His "semantic" component

really corresponds to a world model, rather than linguistic-semantic

information. This is a common theme in AI and Linguistics: what counts as

"syntactic" and what "semantic"? The answer is usually a matter of taste.



Marcus Style Parsers

Marcus was one of the first AI researchers with a perhaps substantial

claim of psychological reality: his PARSIFAL system is based on a limited

processor and data structures, combined with a set of grammar rules that are

"activated" as needed. It embodies his Determinism Hypothesis (DH), which

says that natural language can be parsed by a mechanism that doesn't

backtrack or maintain alternative hypotheses; no structure is ever built that is

not part of the final parse. He uses lookahead and a "wait and see" strategy to

avoid this sort of back up. He explicitly states that he does not consider word

sense ambiguity, and if there is structural ambiguity, PARSIFAL will simply

note it, choose one and go on. He claims that the structural choices made by

PARSIFAL are just the ones humans would make, and where PARSIFAL

makes an error, humans would fail also, in "garden path" sentences.

PARSIFAL is mentioned here because a system based on it, ROBIE (Milne,

1982; 1983) which does attack lexical ambiguity will be reviewed next and

because it is interesting to note that the parser described in Chapter 5 follows

the three principles of parsing that follow from the DH.

By using examples from English, Marcus showed that the following three

principles of parsing must be used by any parser following the DH:

(1) It must be partially data driven, but

(2) reflect expectations derived from the partially constructed parse tree, and

(3) use some lookahead.

The data structures used by PARSIFAL to achieve these goals are a three

element buffer (which can hold constituents of any size), giving it two

lookahead items (actually four counting the extra used for parsing NP's), and a

stack of under-construction tree nodes, providing the syntactic context The

interpreter which applies the pattern-action grammar rules is constrained to

match the patterns against the contents of the buffer, the top element of the

stack (the constituent currently being parsed), and the S node on the stack that



dominates the top stack element. As some elements enter the buffer, such as

lexical items that signal the start of an NP, they automatically trigger the

execution of some grammar rules, temporarily suspending other operations

(like an interrupt). This provides the data-driven behavior deemed necessary

by the DH. At other times the interpreter has to decide which rules to apply,

since at times, there may be more than one applicable. This is done by

prioritizing the rules, generally by the rule that Mthe most specific rule applies

first." Constituents are built on the stack from elements in the buffer. As a

constituent is completed, it is popped from the stack and dropped back into

the buffer, where further rules can match against it, attaching it to the

constituent that is now at the top of the stack.

Milne (1982; 1983) has extended Marcus' parser to handle syntactic

ambiguity. His claim is that by simply using multiple definitions of words

(accessing them all in the course of a parse), and allowing patterns that match

one or the other of the definition features (e.g., Noun or Verb) eliminate the

others, many ambiguities are resolved. By adding number agreement tests, he

claims that most syntactic lexical ambiguities can be handled. He also further

reduces the abilities of the parser by restricting the patterns of the rules to only

match buffer elements, rather than the active node stack. However, the state of

the stack is reflected in which rule packet is currently activated (rules in

PARSIFAL come in packets, which can be activated or deactivated by other

rules). For example, one packet is active when the matrix S dominates the top

node on the stack, another when an embedded S dominates. He also claims to

reduce the number of buffer positions to two, but some of his "cleanups" of

Marcus' rules use three buffer elements.

Even with these restrictions, he still gets surprising coverage, and manages

to eliminate many of Marcus' diagnostics, which were ugly rules that handled

some function word ambiguity that related to structure, such as that as a

complementizer or determiner. Given the psychological data on lexical access

(see Chapter 3), his proposal has psychological reality as far as it goes- people



apparently do access all of the meanings of a word, especially when the

meanings belong to different syntactic classes, no matter how biasing the

context towards one of the meanings (Seidenberg et aL 1982). However, every

time his parser cannot handle some construction, he claims it either doesn't

occur often (which may, in fact, be a valid argument: presumably, people

wouldn't use unparseable sentences regularly, and if his model is correct, then

its unparseable sentences should not appear often), or the sentence would be a

garden path. This often involves cases where a three element buffer is

necessary. Also, his cleanup of the Marcus rules sometimes still uses a three

element buffer.

The syntactic disambiguation mechanism employed by the model

presented here is quite similar All syntactic classes for an ambiguous lexical

item are activated at once, and the ones that fit with the currently viable tree(s)

are selected. However, a concurrent mechanism is used for semantic

disambiguation which uses the same framework, giving the model here an

•advantage over Milne's, Also, since our parser is not committed to making

decisions at every turn, the model can maintain alternative parses for a time.

Gigley's HOPE System

Gigley's HOPE system is an attempt at being psychologically and

neurophysiologically plausible, motivated in part by psycholinguistic results,

but mainly by her desire to have a system which is "lesionable" without

reprogramming or redesign. She uses HOPE to simulate aphasic processing of

language, and to suggest possible further experiments with aphasics. HOPE

bears much resemblance to our own model, using neuron-like units, spreading

activation, and parallel computation among all units.

An overview of HOPE is shown in Figure 2.1. We have taken the liberty

of renaming some of her levels in accordance with our own usages. The

phonetic level corresponds to our lexical level, but words are encoded in a

phonemic representation, which leaves a better structural basis than our model



Figure 2.1. Overview of HOPE.

for incorporating bottom up input from a perceptual network. The main

difference between her model and the one presented here is that she places the

syntactic level between the semantic and the word sense levels, following the

syntax-first school. Even though the model strongly resembles ours, there is no

direct feedback to the word sense level from the case representation: it must

pass through the syntactic level. All meaning nodes for a word are initially

active in the word sense level after a word is "heard", and noun-verb

disambiguation is accomplished by feedback from the grammar in the syntax

network. She uses a categoriai grammar as the mechanism to set up

expectations for following words, so no semantic expectations are used. It

should be noted that she allows an independent pathway to the case level.

However, this level is constructed by procedures which build the case frame

pieces as they are recognized by the grammar, and queries the user for

selectional restrictions ("Is 'dog' animate?"). As such, this level is not

neuronally plausible and has not solved the noun-noun ambiguity problem.



Her examples do not show any instances of noun-noun disambiguation, but

this would presumably have to be done on the basis of this level. Finally, this

level uses the general Agent, Object, sort of representation, without a

mechanism for disambiguation on the basis of more specific constraints (see

Chapter 4),

Selman and Hirst's Connectionist Parser

In very recent work, Selman and Hirst (1985) have described a

connectionist parser that uses the Boltzmann machine (Fahlman, Hinton &

Sejnowski, 1983) computational procedure and the localist encoding scheme.

That is, like the model presented here, a unit stands for a value of a parameter.

Unlike our model, the units use a probabilistic rule for updating their state,

and the probability density is parameterized by a global variable, the

temperature. When the temperature is high, no matter what the input to a

unit, the state change is a fifty-fifty proposition (the units have two states). As

the temperature is lowered, a unit's state increasingly reflects its input This

process of "simulated annealing1' is based on an idea reported in (Kirkpatrick,

Gelatt & Vecchi, 1983). A prime benefit of the computational formalism is

that it allows them to derive rules for connection weights between units. Aside

from the different computational mechanism, the system they describe is very

similar to the one reported in Chapter 5 in structure. The main difference is

that their grammar is simply context free, which allows them to share more

nodes than our grammar allows (see Chapter 5). Also, they have not yet

attacked the problem of semantic interpretation in this framework.

2.23. Give me an Agent, Give me an Instrument,...

Wilk's Translator

Wilks' translator (Wilks, 1976) was one of the first to consider semantic

word sense ambiguity. He believed that a "highly connected'1 (semantically)

representation of a sentence must get most of the meaning and grammar right.



His meaning representation is based on sixty or so primitives; all other

meanings are constructed by means of "formulas" made up of these, which

contain preferences for surrounding constituents in the sentence. For example,

the formula for "drink" in the verb sense, says that it is usually done by an

animate agent, and usually involves a liquid object Finding the meaning of a

sentence begins by matching templates (Agent-Action-Object triples) to the

heads of formulas for the words in the sentence (the "head" is the type of

thing this sense of the word denotes). For example, "Small men sometimes

father big sons" has two assignments of formula heads, depending on the sense

of the word "father":

KIND MAN HOW MAN KIND MAN

KIND MAN HOW CAUSE KIND MAN

and the template MAN CAUSE MAN matches the second (correct)

assignment; no template matches the first. In cases where this is not enough to

disambiguate, the preferences of the formulas are matched against each other.

The assignment of formulas which satisfy the most preferences wins. This is

what Wilks means by the most highly connected representation must be right.

In a sense, we are doing something very similar to Wilks in the way

different meanings can reenforce each other through the case frame artifice —

the case slots impose preferences -on their fillers, and in turn, the fillers

reenforce the verbs whose slots they fill, disambiguating verb senses (see

Chapter 4 for examples of this).

ELI

The ELI parser of Riesbeck and Schank (1976) had a different approach

to ambiguity. They believe that most examples of ambiguity are isolated

sentences, and few sentences are encountered in the real world without some

surrounding context. They conclude from this that parsing must be done in

context, and a parser should never notice ambiguity. ELI used a system

similar to ours in that a case grammar was used to represent the meaning of a



sentence. The words could either set up expectations for case fillers or

predicates whose cases they could fill, or they could satisfy expectations for

case fillers. The words thus would interact with one another and the context to

maintain a narrow band of expectations, so that by the end of many sentences,

the parser would have very specific expectations. The word senses are

arranged in order with respect to the current context, and the highest "rated"

one is chosen. ELI must therefore backtrack on a sentence such as Mthe old

man's glasses were filled with water", but they too (along with Marcus) claim

that people will have to backtrack also. In the system reported here, all word

senses are activated in parallel. Only those that get reinforcement from case

nodes will eventually "win". A subsequent failure of the semantic

representation which forces restructuring will have the effect of inhibiting the

previously "chosen" meaning, and allowing another to become active. Thus

"backtracking" consists of higher level constraints forcing the network to form

different stable coalitions. This comment is speculative, as there is yet no

mechanism in the model for detecting semantic anomalies.

2,2A Mixed Strategies

Word Expert Parsing

Small and Rieger's Word Expert Parser (Small and Rieger, 1981) is based

on the view that language knowledge is embedded in words themselves, rather

than rules about words. Each word is procedurally represented as an "expert"

which knows all of its possible senses and how they can fit with other words.

These experts communicate among themselves until they reach an agreement

on the meaning of the sentence. The relation between this and ELI is that

words can generate expectations for other words, although this is not based on

case relations, but on the way the word can be used idiomatically with other

words. Small and Rieger view all words as being more or less idiomatic, and

feel that a parser should begin with the irregularities of language rather than

the regularities. For example the word "take" can mean different things if it is



followed by ffoff\ "up", "out", etc., and the expert for "take" will set up

expectations for those words, and react accordingly if one of them appears to

its right No choices are made until all the words in the sentence agree, so no

backtracking is necessary. Also, this system lends itself to a parallel

implementation at least at the word expert level. Our system imposes more

structure on the interactions between the words through the case and syntax

levels. The information about idioms such as "bug off is contained in

conjunctive connections from those two words to a node on the word sense

level which represents the meaning.

While WEP and the work on which it was based have led to interesting

results, there are reasons for questioning their underlying assumptions.

Psychological data on lexical decision and aphasia, cited above, suggest that the

processing mechanisms used in these models are not correct (Small and Lucas,

1984). Physiological evidence shows that the human brain functions in a

fundamentally different way than do traditional computers and programs. We

claim that the type of model architecture described below has a better chance

of matching these kinds of data than does the more traditional symbol passing

framework and that it employs a cleaner processing mechanism than WEP.

Hearsay-II

The Hearsayll speech understanding system demonstrated the viability, if

not the efficacy, of a highly distributed set of knowledge sources (KS's). The

KS's are arranged in a hierarchical fashion with respect to the "blackboard",

their medium of communication. The blackboard is two-dimensional; one axis

represents time across the sentence, the second represents levels of abstraction,

ranging from segmental to sentence. Knowledge sources are "fired" by

matching with data on the blackboard that they can make hypotheses about.

Once they get a chance to run, they place new data on the blackboard that

represents a hypothesis of what their input represents at a higher level.

Competing hypotheses are weighted based on the confidence the KS has in



them. New instantiations of KS's are created as input becomes available to

them and they are allowed to run based on the dictates of the focus module.

The system presented in this thesis can be roughly viewed as replacing the

blackboard with connections between all KS's, and replacing KS's with

connectionist versions of their functions. All decisions about KS's "Firing" are

completely local. Thus the system proposed here is analogous to an

implementation of the "neurological Hearsay" proposed by Arbib (1980).

Hirst

Hirst's (1984) semantic interpretation system explicitly attacked the

problem of ambiguity, using a variety of methods that had never been under

one roof before. The input is initially analyzed by a Marcus style parser,

PARAGRAM, and partial output of the parser is analyzed by a semantic

interpreter loosely based on Montague semantics (Dowty, Wall, & Peters, 1981)

called Absity, in tandem with the parser's operation. Every syntactic object is

in one to one correspondence with a semantic object1. Disambiguation of

word senses and of case slots is done by a set of procedures with a superficial

similarity to Small's Word Experts called Polaroid words. There is one of these

per word or slot, each of which determines its correct sense in cooperation

with the others. However, they represent several improvements on the basic

idea of mutually disambiguating words represented by Word Experts. First,

Word Experts had to handle the entire problem of parsing and semantic

interpretation. In Hirst's system, syntactic parsing is factored out making the

job of the Polaroid words that much simpler. Also, Word Experts were hand

crafted pieces of code, often pages long. Polaroid words for meanings within

the same syntactic class use the same procedure. Their operation is based on

. declarative knowledge about the word's meanings stored in the FRAIL

(Charniak, 1981) knowledge base. Part of their operation in disambiguating

lThis suggests that this approach may be useful for our system to exploit (see Chapters 4 and 5) as a way to ease
the computation of the correspondence of semantic and syntactic objects: we intend to examine this possibility in the
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their word's sense is accomplished by marker passing through the FRAIL

frame representation system. When markers sent by Polaroid words intersect

in the FRAIL knowledge base, the meaning of the words involved

corresponding to the source of the markers are given preference.

Contrasting with a spreading activation paradigm, the markers are

artificially restricted to spread by a fixed number of links, in an attempt to

limit "false positives" at higher reaches of the knowledge representation

hierarchy. This makes the abilities of the system to disambiguate limited by

the design of the knowledge base - whether there are 5 or 6 links between

related words, for example.

The major difference between his system and ours is the underlying

processing mechanism used. The model presented here uses a spreading

activation paradigm for all of the functions required, rather than a particular

part of the system. As such, it is a more unified approach than Hirst's, where

some parts of the system use marker passing, and others more conventional

programs. While the Polaroid Words nominally ran in parallel, they were in a

coroutine discipline and communicated through a shared memory. The

parallelism in our model is of a finer grain, uses no shared memory, and is

viewed here as an inherent part of the computational mechanism.

Waltz and Pollack's Spreading Activation Parser

Pollack and Waltz's (1982; 1985) spreading activation parser has much in

common with our own. They too, use neuron-like computing units which

compute by spreading activation and lateral inhibition, and they use a case

representation that conflates cases and selectional restrictions. The major

differences from the approach advocated here are:

(1) The network used for competing syntactic hypotheses is built by an

interpreter as the input comes in, and is then run, rather than using a

future.



completely connectionist implementation from the start. The problems

involved in building a fixed network which responds flexibly to the input are

non-trivial, and are circumvented by this approach,

(2) There is no overall organization to their approach into syntactic and

semantic modules, at least one is not in evidence in the published accounts.

Rather, the syntactic and semantic systems seem to be overlapping in a hodge-

podge, leading to the same sort of complexity inherent in similar approaches,

such as the Word Expert Parser. Also, it is unclear how such an organization

would explain the wealth of results from psycholinguistics and neurolinguistics

which favor independence of these two systems.

(3) Word senses for the same word are mutually inhibitory. It is unclear

whether word senses are shared between different words with the same

meanings. If so, this system would imply that / had a ball at the formal dance

would be hard to understand. If not, it is unclear how a word used with two

meanings in the same sentence would be understood.

2.3. Related Cognitive Models from Psychology

2.3,1. Introduction

The model presented in this thesis has historical roots in predecessors

from psychology, especially Collins and Loftus' (1975) spreading activation

model, which itself is based on an earlier model from AI (Quillian, 1969).

Collins and Loftus' model is described here for comparison purposes. Also,

. Posner and Snyder's (1975) two-component model of stimulus processing has a

fair amount of support in the data (cf. Neely, 1977); although the model

described in this thesis makes no provision for a separate attentional processor,

a provisional mechanism for this is outlined here.

2.3-2. Collins and Loftus

Collins and Loftus* (1975) spreading activation model is an extension of

Quillian's (1966, 1969) model of semantic memory and sentence



comprehension. A concept is represented as a node in a network, with

relations to other concepts represented as labeled links. The links were labeled

depending on the relationship between the concepts. Quillian posited five

kinds of relations: (1) superordinate (MisaM) and subordinate, (2) modifier links,

which link a concept to concepts it modifies, (3) disjunctive sets of links, which

encode alternate definitions of a concept, (4) conjunctive sets of links, which

group concepts together that form a definition, and (5) a residual class that

allows any concept to act as a relationship between any pair of concepts.

These links could be nested or embedded to any depth, in order to be flexible

enough to express anything expressible in a natural language. They were also

marked with a number representing their importance to the concept.

A search through memory for a relationship between two concepts

consisted of spreading "activation tags" from each of the two concepts across

all of the links. These tags also contained a symbol representing the source

node and the immediate predecessor it had come from, to allow an interpreter

to trace the activation back to the source. When an intersection was found

between two paths, the interpreter evaluated the path to see if it met syntactic

constraints imposed by the sentence (this was a model of sentence

comprehension). If not, other paths were evaluated in the order in which they

were obtained. Semantic priming effects2 (Meyer & Schvaneveldt 1971) could

be explained as the result of the path from the prime word being tagged by

activation before the target word's search began, speeding intersections.

Concepts were stored in memory in hierarchical relationships, so that

concepts could inherit properties from superordinates, but the hierarchy was

not strict; if a robins were often seen flying, the fact that "robins can fly" was

stored directly with the "robin" node, rather than inherited. (This was called

the theory of "weak cognitive economy" by Collins and Loftus). This gave the

model the ability to account for Rosctf s (1973) typicality results.

Semantic priming refers to the ability of a word to speed a subjects reaction to a following related word. These
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Collins and Loftus extended this model with several additional

assumptions to account for new data. Their embellishments were intended to

make it more "quasi-neurological," although they still allow paths to be

"evaluated" by some unspecified process. As there are analogs (and opposite

choices) to their extensions in the model presented in the rest of the thesis, we

enumerate some of their assumptions that are related:

(1) Activation spreads in a decreasing gradient from its source, inversely

proportional to the strength of the link.

(2) The longer a concept is actively processed (by the serial attentional

process), the longer activation is released from the node.

(3) In the absence of continued input, activation at a unit decays over time.

(4) Units are thresholded, so that they don't "fire" until activation from

different sources sums to an amount above the threshold.

(5) The conceptual (or semantic) network is organized along lines of semantic

similarity. The closer two concepts are related, the more links there are

between them. Note that two concepts may be "close" in the sense of

having a direct link between them, but unless there are many links

between them, they are not closely related.

(6) The names of concepts are stored in a lexical network separate from, but

connected to, the semantic network. These nodes are organized according

to phonemic and graphemic similarity.

(7) A person can control whether she primes the semantic network, the lexical

network, or both, depending on the task.

(8) In deciding whether two concepts match, evidence from different paths in

memory sum together, and a decision is reached when the evidence

exceeds a positive or negative criterion.

are fully reviewed in Chapter 4.



(9) If the decision is whether something is a subclass of something else, the

superordinate connection between the two is enough evidence to make the

decision.

(10) If comparing two concepts that share a superordinate, but are mutually

exclusive, the "mutually exclusive" link is enough to force a negative

decision.

An attempt will be made to relate these points to decisions made in our

model as we proceed through the thesis. Some of the basic differences can be

discussed now, however. The model presented in the later chapters does not

posit an interpreter evaluating paths in the network. All decisions are made

locally by each unit, but they may be revised by activation from units making

opposite decisions. Thus this is a distributed decision making model, where a

consensus is necessary for a global decision.

Second, the links in our model are not labeled in any way. Whenever it is

deemed necessary to make the relationship between two concepts explicit and

controllable, a node representing that relationship is used between the two

concepts. This is not much different than Quillian's model, since he used the

same device in many instances; we simply have eliminated all labeled links.

Third, there is no assumption in the connectionist paradigm (described in

detail in the last section of this chapter) that activation is attenuated as it

travels; this is controlled by the function computed by each unit. A unit may,

in fact, amplify the signal, simply pass it along, use it to raise its own activation

but not send it because of a threshold, or ignore it completely. The spread of

activation is thus controlled by unit functions. Another difference, then, is that

these units are not restricted to summing their inputs, and may have different

functions from one another.

While no model of the "serial attentional process" is given here, it is

assumed that this too (or something that gives the appearance of being a serial

attentional mechanism), can be implemented in this framework without the



need to posit a homunculus that has global access to, and control of, the

network. We retreat from the dangerous desire to speculate on the nature of

this process and its implementation. However, a brief suggestion of some

mechanisms that might be a part of this is given in the next section. Other

relationships to Collins and Loftus' model will be mentioned at appropriate

points in the thesis,

2.3,3. Posner and Snyder

Like many other researchers (cf. Collins and Loftus point 2 above) Posner

and Snyder (1975) have described a model of long term memory retrieval that

has two components3: The first is an automatic process that is not under the

subjects control (and hence is strategy free), and incurs no resource cost. The

first process is supposed to take place in cognitive domains where the

relationships are often used and "overlearned," as in the relationship between a

the set of phonemes that make up a word and the word itself. The second is

an intentional, strategy dependent mechanism that taps the resources of the

limited-capacity "central processor." Posner and Snyder assume the logogen

model of Morton(1969). A logogen is a memory structure corresponding to

words (or other perceptual events) that are familiar to the person. They are

activated by input from feature detectors; when the input exceeds a threshold,

the logogen fires (this is the same kind of spreading activation process assumed

by Collins and Loftus). This corresponds to recognition of the word.

Semantically related logogens share features, providing a mechanism for

semantic priming. If a word is preceded by a semantically related word, it has

residual activation from the shared features that makes it reach threshold faster

than if an unrelated word had been processed before it. The spreading

activation process has three properties: (1) it is rapid, (2) it occurs without

intention or conscious awareness, and (3) it does not affect the retrieval of

3This discussion of Posner and Snyder follows the one given in (Neely, L977), one of the best supporting studies
reiatmg to their model.



unrelated information.

The limited-capacity attentional mechanism also facilitates processing of

logogens it is focused on. Its three major properties are: (a) it is slow acting,

compared to the first process, (b) it operates only through conscious awareness

and intention, and (c) it slows the retrieval of information unrelated to that in

focus. The manner in which it slows retrieval is of import: It does not affect

the automatic activation of unrelated logogens by the first process; only the

readout of that activation. In order to retrieve information that is not in focus,

attention must be shifted to the corresponding logogen. This attention shift is

hypothesized to take time proportional to the semantic distance from the

concept in focus (using some model-dependent measure of semantic distance).

Posner and Snyder's own test of their theory had some methodological

problems, which Neely's experiments overcame in an ingenious way (see Neely

(1977) for a discussion). His experiments were a strong confirmation of the

Posner and Snyder theory. He developed a way to separate the contributions

of the two processes experimentally. He used a lexical decision task (subjects

have to decide whether a string of letters is a word or not) using a class name

(bird, body, building, or xxx as a control) as a prime. In the bird-prime trials,

most of the time the word targets were birds. However, on the body-prime

trials, most of the time the word targets were building parts, and vice-versa for

building-prime trials. The subjects were instructed to expect this. Now, by

occasionally using body parts on the body-prime trials, and by using a variety

of gaps between the prime and target, he was able to assess the time course of

the effects of the two processes. As predicted by the theory, at short prime-

target durations, given a "building" prime, when the subject was expecting a

body part, "building" would prime "door", through the automatic process, but

as the interval increased, response to "door" was inhibited by the attentional

mechanism. Similarly, no facilitation for "doorM was found from "body" at

short intervals, but facilitation did occur at longer intervals, when the slower

acting attentional mechanism kicked in. There were several other predictions



from the theory about the various conditions in this experiment which were

strikingly upheld; the reader is referred to the original paper for a thorough

discussion.

In this thesis, no mechanism for the limited attention-process will be

incorporated; it is assumed that unless a sentence is some kind of "garden

path" (the old man picked up his glasses and filled them with water), where

"backtracking" is required, or double entendre4 where alternate meanings are so

activated that they enter conscious awareness, sentence processing is in general

an automatic process. However, in a complete model of sentence processing,

some mechanism must be specified which accounts for the apparent

"backtracking" behavior on garden paths, and suspension of decision processes

on double en tend res.

On the other hand, inhibition is definitely used in the "automatic" process

of sentence processing as specified in this thesis. We differ from Posner and

Snyder in this; automatic spreading activation in this model includes negative

activation between competing alternatives for the definition of an ambiguous

word (the most frequently used words are ambiguous; see Gentner, 1982). The

alternatives garner positive feedback from the developing representation of the

sentence, and the one with the most "wins." The process could conceivably be

redesigned so that this competition is unnecessary; the alternative definitions

could be set up so that lack of feedback causes decay. However, the results of

at least one researcher (Lucas, 1984) appear to show inhibition from the

subordinate meaning of a word to the dominant one. The lack of an inhibitory

effect found in other studies of the process of lexical access using allegedly

equi-biased words5 (cf. Swinney, 1979; Seidenberg et al., 1982; discussed in the

next chapter) may be a result of the combination of positive evidence (from the

4I used to have a job working for the Rural Electrification Department, hooking up power lines to outhouses for
the Indians. I was one of the first people to wire a head for a reservation. - Utah Philips.

5Only Lucas (1984) has come up with a method that reliably assesses the frequency of a word's meanings.



lexical item) and negative evidence (from the winning definition).

A minor step toward attentional control can be mentioned at this point.

In the model developed here, concepts that are mutually inhibitory have

"hard-wired" inhibitory links between them. However, a different mechanism

for mutual inhibition between concepts developed by Shastri and Feldman

(1984), specifies a separate unit that computes the maximum of the output of

the competing units, and sends that back to them as inhibition. This

mechanism was developed as a way to reduce the number of connections

needed for mutually inhibitory networks containing N units from N*(N-1) to

2*N, but it has other useful implications. By assuming control on the unit that

actually sends the inhibition by enablement from other units, the mutual

inhibition can be controlled. Some mechanism like this could be an integral

part of attention, and could also be a part of an automatic process that used

inhibition. In going from being a novice at some task, such as driving, to

being a skilled driver, units which control the selection of alternative actions

could originally require conscious activation, but as the skill is rehearsed, their

action could become more and more routinized, to the point where the original

links from the conscious mechanism have been overridden by automatic

control networks (but not replaced; the conscious mechanism can still "take

over" where decisions have to be made, as in passing a car, or backtracking on

an ambiguous sentence). Obviously, this is just a sketch, but it makes the point

that there are mechanisms for control of inhibitory processes in connectionist

models.

2.4. Connectionist Models

Connectionist models consist of simple processing units connected by

links. A unit or node is a computational entity comprised of:

{q}: a small set of states

p: a continuous value in [-1,1], called the potential

v: an output, in the range [0,L0] in discrete jumps of .1 (11 values tote



i:a vector of inputs,

and functions for updating these:

p <- f(i,p,q)

Q <- g(i,p.q)
v <- h(i,p,q)

We will term an application of these functions an update of the unit

Note that there is no interpreter for a connectionist network; all updates are

done locally by each unit in parallel. There are no constraints on the functions

that can be used, though they are usually kept simple. Finally, note that there

is no mention of time in the definition. That is, in serial simulations these

parallel networks, the units could be scheduled for updating in various ways:

They could be kept in lock step (synchronous) or they could be updated in

random order, with some units perhaps being updated several times before

another gets a chance to be updated (simulating asynchrony).

A connection (or link), is an identification of an element of a unit's input

vector with the another unit's output, along with a weight, a value between -1

and 1. Any value transmitted on the link is multiplied by the weight before it

is passed to the unit Links with negative weights are called inhibitory links.

These are drawn with a small circle at their head in the figures. There is

another kind of link, called a modifier link, modifier links. Modifier links are

node-link connections that have the effect that when the unit at their tail has

positive output, they block activation from crossing the link at their head.

These are also drawn with a small circle at their head, but since they are always

incident on other links, there is no confusion between them and inhibitory

links.

The above definitions are relatively abstract, and since there are various

instantiations of these definitions that are often employed in simulations and

models, we will go into them here. First of all, since the input is a vector

(rather than a set), we can think of a unit as having various input sites. For



example, inhibitory links are usually connected to one site. The potential

function is then often broken down into three stages: Site functions, which are

applied to the inputs at one site, an evidence function, which is applied to the

result of the site functions, and an activation function, which computes the

actual potential given the result of the evidence function, the current potential,

and the current state. The activation function usually employs a decay

parameter so that if the evidence goes to 0, so does the activation. A

conjunctive connection is used to refer to two links that must both have non-

zero input for the site function to pass a non-zero result to the evidence

function. We will use an output function that thresholds the potential

(thresholds are usually greater than 0, so negative activation is not spread) and

rounds it to the nearest tenth (this is not always strictly followed; see Chapter

3). A unit that has non-zero output is called firing.

In the so-called localist connectionist models, (see Feldman & Ballard,

1982) an object in the domain is represented as a unit or small set of units (see

Hinton & Sejnowski (1983) for a more distributed approach). The basic idea is

that a unit stands for a value of a parameter (the unit/value principle) and

collects inputs from other units which represent evidence for that value,

positive or negative. For example, in vision, (see Ballard, 1984) a unit could

represent the presence of an edge at a certain angle at a particular (x,y)

coordinate on the retina. The unit's output represents its confidence, on a scale

of 0 to 1.0 (in discrete increments of .1), that there is an edge at the point in

the visual field that this unit refers to. In the sentence processing model

presented here, for example, units will be used to represent words, word

meanings, and relationships between them. Thus, at run time, a unit's output

represents a confidence level in a hypothesis about the parameter it refers to.

An output of 1.0 (or, the maximum possible after decay) represents certainty

about the parameter value represented by the unit. The links between the

units are weighted at the input sites, reflecting the importance to the receiving

unit of the evidence from that link. For example, units representing different



values of the same parameter can be connected with inhibitory links in a so-

called Winner Take All (WTA) network, which guarantees that one value

eventually "wins11. The importance of the evidence in this case is high, since

competing values for a parameter are mutually exclusive. Thus, much of the

information encoded in the network is contained in the connections between

units (hence the name "connectionism").

Connectionist networks are a natural architecture for solving relaxation

style problems. Their "activation passing" is iterative, and constraints between

hypotheses can be easily encoded in the networks as positive or negative links

between mutually compatible or incompatible hypotheses (represented as

processing units). The typical way to go about building connectionist models is

to first decide on which elements of the domain we want to model, choose a

way to encode those as units, and then to wire the units together in such a way

as to encode constraints between the elements. Finally, we must choose an

appropriate function for combining the evidence.

The fact that no restrictions are made on the unit's functions allows

arbitrary functions to be used, but the intent is that these functions can be

replaced by more complex networks of simpler units. Thus a unit can be an

abstraction of a larger set of units. Care must be taken here, though; because

in simulations units are often kept in lock step, what may work when

computed by one unit may not work when computed by several. These and

other timing issues are not addressed in this thesis.

The implementations described in later chapters use an interactive

connection network designer and simulator, ISCON (Small et ai., 1982), written

in Franz Lisp on the VAX 11/780. ISCON allows the user to define types of

units, create, modify and connect them, and run simulations with or without

graphic output. The definition of a type includes specifying input sites and

associated functions, and the functions associated with computing the new

state, potential, and output from the results of the site inputs. The simulator



allows the user to stop at any point and view the nodes of the network, and

modify it if desired. Performance degrades for networks of over a few

hundred nodes, so large networks are converted from ISCON to a

representation suitable for use by a simulator written in C by Sumit

Bandopadyay and Mark Fanty which runs around 500 times faster.

The following chapters use connectionist models to simulate the processes

of lexical access, semantic priming, word sense disambiguation, sentence

parsing and interpretation, and property inheritance in a semantic network.

The fact that the paradigm can be used for all these tasks speaks to the

flexibility and efficacy of the above definitions.



CHAPTER 3

LEXICAL ACCESS

3.1. Introduction

The process of accessing all of the information about a word, phonological

codes, orthographic codes, meaning and syntactic features is called lexical

access. We will mainly be concerned here with the access of meaning and

syntactic class, and will use the term "lexical access" to refer to this process. It

is useful to distinguish three stages the processing of lexical items, of which

access is the second stage: decoding the input and matching it with a lexical

item, accessing the information about that item, and integrating that

information with the preceding context These are termed prelexical, lexical

and postlexical processing, respectively. An important research question is

discovering whether, to what degree, and through what channels these levels

interact Does each level receive the completed output of the previous level

(the "modular" view"), or can processing at one level affect processing at

adjacent or even more distant levels (the "interactive" view), or is the answer

somewhere between these extremes?

3.2. Psycho linguistic Studies of Lexical Access

Recent studies in lexical access have borne directly on the question of

whether preceding context only has influence at the integration (postlexical)

level or whether it can affect the lexical processing (or lexical access) level.

The empirical question is whether the context of a sentence constrains the

search for the contextually appropriate meaning of a word or not. The

interactive view holds that context affects the lexical access level, so that only a



single meaning is accessed (the Prior Decision Hypothesis). The modular view

holds that all meanings of the word are initially accessed, since the lexical

access mechanism can't "know" what the context requires, and all meanings

are then passed to the integration level, where context selects the proper one

(the Post Decision Hypothesis). Early research produced mixed results, some

studies supporting one hypothesis, some the other (Conrad, 1974; Foss and

Jenkins, 1973; Holmes, 1977; Lackner and Garret, 1972; Swinney and Hakes,

1976).

Recent work by Swinney (1979) and others (cf. Tanenhaus, Leiman, and

Seidenberg, 1979; Seidenberg, Tanenhaus, Leiman, and Bienkowski, 1982) has

shown that the time course of these effects are important. The cross modal

priming experiments discussed above provide a tool for studying lexical access.

The subject is required to attend to a sentence containing an ambiguous word

presented aurally, while performing a lexical decision task presented visually.

This allows the decision task to be placed anywhere in the sentence, where it

may be used (via the semantic priming effects) to measure the relative

activation of the different meanings of an ambiguous word at different time

points. If a word related to one meaning of the ambiguous word in the

sentence is primed, we may conclude that that meaning has been accessed.

This is superior to previous approaches in that relatively "normal" sentence

processing is possible, and definite evidence of the activation of a particular

meaning is obtained (rather than just an indication of increased processing

load, as in phoneme monitoring experiments.)

When the target is immediately following an ambiguous word, Swinney

found priming from both meanings, but when the target is three syllables later,

(approximately 1000-1500 milliseconds) only priming from the appropriate

meaning is found. This occurred even when there was strong biasing context

for one meaning. An example sentence is: Rumor had it that, for years, the

government building had been plagued with problems. The man was not

surprised when he found several spiders, roaches, and other bugs in the corner of



his room. Both meanings of "bug" were found to be activated by the semantic

priming measure. Swinney's initial experiments concerned noun-noun

ambiguities with equi-biased readings. These results were also shown to hold

for noun-verb ambiguities (Prather and Swinney, reported in Swinney, 1982)

and strongly biased noun-noun ambiguous words (with one frequent and one

infrequent meaning) (Onifer and Swinney, 1981). In the latter study, there was

no significant difference in the priming obtained for the dominant and

subordinate meanings at the end of the word This suggests that lexical access

may be independent of frequency effects. Further support for this hypothesis

may be found in a study by Yates (1978), but his experiment did not employ

an on-line measure.

An interesting variation on these experiments by William Onifer, reported

in Swinney (1982), was done on schizophrenics. Schizophrenics have a well-

documented symptom that involves their interpreting ambiguous words in

terms of the most frequent meaning of the word, regardless of the use in the

sentence. The results for normals replicated with schizophrenics except with

respect to which meaning remained activated. That is, they accessed both

frequent and infrequent meanings initially, but by three syllables later priming

was obtained for only the most frequent meaning of the word, regardless of the

sentential bias. Swinney notes that this is support for the view that lexical

access is independent of and prior to the decision process that chooses the

pertinent meaning of the word, since this decision process appears to be

selectively impaired in schizophrenics.

These results have been confirmed in concurrent research by Tanenhaus,

Leiman and Seidenberg (1979) and Seidenberg, Tanenhaus, Leiman and

Bienkowski (1982). Their experiments used a similar cross-modal priming

paradigm, but the task was to say the word ("naming") presented visually,

rather than make a lexical decision. Also, the ambiguous word was the last

word in the sentence. They studied the time course of priming as well, but in

a much narrower time interval: the test word was presented at 0 and 200



milliseconds after the end of the ambiguous word They found the same

pattern of results as Swinney, multiple activation followed by selection, but

they were able to show that selection happened within 200 milliseconds.

Subsequent experiments by Lucas (1984) at more time points have further

narrowed the decision time to between 125 and 150 milliseconds after the end

of the word (but see the discussion below).

In addition to narrowing the decision window, Seidenberg et al. discussed

two types of context which may differ in their effects on lexical decision. They

contrasted pragmatic context, resulting from world knowledge with semantic

context, resulting from associative and semantic relationships between word

meanings, as in the following sentences.

(1) The man walked on the deck, (pragmatic)

(2) The man inspected the ship's deck, (semantic: ship -> deck)

(3) The man walked on the ship's deck, (semantic and pragmatic)

The first sentence contains a pragmatic bias towards the "ship" related

meaning of deck; one is more likely to walk on that kind The second

sentence contains a word highly semantically related to one meaning. The

third contains both types of information. They did experiments which

contained a completely neutral context, a pragmatic context, or a semantic

context. The results were that multiple access was obtained for neutral and

pragmatic context, but selective access (only one reading active at the end of

the word) for the semantic context. This result held for noun-noun

ambiguities, but not noun-verb ambiguities, where multiple access occurred in

all conditions (including syntactic context, such as they all began to or the

carpenter picked up the ) These results are summarized in Table 3.1.

Our discussion of these results is based on the account given in

Seidenberg et al. (1982). The selective access found for noun-noun ambiguity

is contrary to the findings of Swinney (1979), where multiple access for noun-

noun ambiguities was obtained in a strongly biasing context. However, there



Table 3.1.

Context Type

Neutral
Syntactic
Pragmatic
Priming
Priming

Summary of Results of STLB's

Ambiguity Type

Noun-Noun
Noun-Verb
Noun-Noun
Noun-Verb
Noun-Noun

Experiments

Outcome

Multiple Access
Multiple Access
Multiple Access
Multiple Access
Selective Access

are several differences between the two experiments which may explain the

discrepancy. First, Swinney's experiments used the lexical decision task rather

than naming, which may be subject to "backwards priming1' from the target to

the ambiguous word (see Koriat, 1981). These effects appear to be found in

lexical decision tasks, but not naming (Seidenberg, Waters, Sanders & Langer,

1984). Second, Swinney's ambiguous words appeared in the middle of a

sentence, rather than at the end, as in the Seidenberg et al. (1982) experiments.

The fact of a word being sentence-final may make a difference to lexical access.

If so, this effect would have to apply differentially to noun-noun ambiguities,

and only in a semantic context. The most probable explanation, however,

according to Seidenberg et al., is that Swinney did not differentiate and control

for the two types of context distinguished in their experiments. It appears that

many of his materials did not contain strongly associated lexical items, and

when they did, the associate was often more than four words away from the

ambiguous word. If the priming effect decays rapidly, then the priming words

may have been too far away to affect lexical access.

It remains to discuss why there should have been the selective access

result in the first place. Seidenberg et al. (1982) attribute the result to

intralexical priming by the strong associate preceding the ambiguous word. It

should be noted that the only meaning of "intralexicai" in this context that

makes sense is actually "intrasemantic": A single meaning of the word, and not

the lexical representation of the word itself, is primed. Also, as pointed out by



Hirst (1983), priming cannot spread from the meaning to the lexical item itself,

or priming of all meanings would result (eventually, at least). This is in

accordance with results that semantic priming is not transitive (DeGroot, 1983)

as discussed in the next chapter. So, the appropriate meaning of the word is

primed by the associated word's meaning and blocks or inhibits the alternate

reading. This is a result of the "organization of semantic memory." An

interesting question here is: Where is the line between "semantic memory" and

pragmatic knowledge? What constitutes semantic vs. pragmatic context? The

only definition we have is an operational one, that semantic context is one that

shows priming and pragmatic context is non-priming. The only clue we have

to the difference is that semantic context seems to require a lexical item

associated with one reading of the ambiguous word. Thus semantic context

has to do with the mental representation of word definitions interacting, while

pragmatic context seems to require inference.

However, Lucas (1984) has shown that pragmatic context primes meanings

as well. She used the lexical decision task to look at more time points in the

decision process than any of the previous studies, and also looked at words

with more than two meanings. An innovation of her work was to use non-

homographic homophones1, which allow a precise measurement of the

frequency of the various meanings of the word. This can just be obtained by

looking up the entry in the Kucera & Francis (1967) word frequency norms for

the spelling of the meaning of interest. The time points used were: the

beginning of the priming word, to measure the effects of context, and 100, 125

and 150 milliseconds. According to her results, the time course of meaning

access is roughly as follows: If the context pragmatically biases one meaning,

then there is priming for the pragmatically biased meaning at the beginning of

the word (before it is heard). Thus this study is evidence that pragmatic

context can prime in addition to lexical context. By 100 ms after the end of

l"Non-homographic homophones" is a fancy way of saying "words that sound alike but are spelled differently."
such as heir and air.



the word, the unprimed meaning is active as well as the primed one. However,

if the subordinate is appropriate, it inhibits the dominant meaning, whereas if

the dominant is appropriate, the subordinate just decays.

This is consistent with the hypothesis that frequency information is used

to select the most appropriate meaning unless semantic information overrides

that decision. In the case of appropriate-dominant, no competition is necessary

since the right meaning was chosen by the frequency strategy. In the

appropriate-subordinate case, the semantic information must overcome the

frequency information. This implies it is the semantic information that is

causing the inhibition. It is unnecessary for the dominant meaning to inhibit

the subordinate when it is appropriate, since it will win anyway, based on

frequency. The system appears to have applied a principle of least effort.

There are a few criticisms which may be leveled at this study. First, it

uses the lexical decision task, which as mentioned above, is subject to

backwards priming. As is discussed in the next chapter, lexical access and

naming appear to tap different levels of the system; that is, lexical access

reflects processes happening at a post-access level. This could explain the

finding of a pragmatic priming effect here when it was not found in the STLB

study, which used naming. Second, the pragmatic context effect finding is

compromised by the fact that the subjects still heard the word (the target onset

coincided with the onset of the prime word) which by the time they hit the key

(which actually occurs several hundred milliseconds after the word) may have

been partially due activation from the word. Finally, a close look at her

materials reveals that about a third of the sentences contained lexical items

preceding the prime that were semantically related to or predictive of the

pragmatically biased meaning of the prime. Fischler (1977(a)) has shown that

words that are semantically but not associatively related to the target still have

a priming effect in the lexical decision task (see the discussion in the next

chapter). This compromises the result that pragmatic context is responsible for

the priming.



The next section describes STLB's model of the lexical access process in

order to provide a foil for the model presented in the following section.

3.3. STLB's Model of Lexical Access

Seidenberg et al. (1982) present a model to account for their results. It is

based on four implications they draw from their research. First, that the

results support a modular, autonomous account of the lexical access process.

The only contextual effect, selective access of noun-noun ambiguities, was due

to intralexical priming, which is local to the lexicon in their view. Second, the

results indicate that there are at least two classes of context which interact with

word recognition in different ways. This suggests that there may be more types

of context, and thus a complete model would specify a taxonomy of context

types and their representations. Third, the difference in the results for noun-

noun and noun-verb ambiguities suggest that syntactic information is encoded

in the mental lexicon. Indeed, in any computer model of parsing, syntactic

information about a word is always encoded in the lexicon. It is difficult to

imagine where else it would be. The point is not vacuous, however. What

they are really interested in is how syntactic information is encoded. It is

possible that a word's syntactic class is encoded with the lexical representation

or with the meaning representation. The distinction will become clear in the

comparison of their model, which chooses the former, to the one advocated

here, which chooses an intermediary position. Finally, the results suggest that

studies which illuminate the time course of comprehension processes are

essential to decoding the structure of the processor(s).

STLB's model is a combination of Morton's (1969) logogen model and

Collins and Loftus' (1975) spreading activation model. A lexical logogen

governs recognition, and is connected to semantic memory where it activates its

meaning(s) via spreading activation. The meaning nodes are accessed in the

order of relative activation levels, which reflect frequency. The meaning nodes

may be primed by the access of words highly related to one meaning, which is
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the only exception to the automaticity and autonomy of lexical access. They

posit that if there are large differences in activation due to frequency or

priming, then selective access obtains. Since this has been shown to be false

for frequency by Onifer and Swinney (1981), then perhaps they would

attribute this result to the nature of the task (lexical decision) and relegate this

to a post-access effect

In order to account for the difference in noun-noun vs. noun-verb results

for semantic context, they posit that nouns and verbs have different

connections to the semantic network from the lexical network. However, they

also assume that they have different nodes with identical recognition

procedures in the lexical network (see Figure 3.1). Now, the story goes, for

noun-verb ambiguities with one meaning primed, both nodes get recognized,

and both meanings are accessed. In the noun-noun case, if one meaning is

primed, that pathway is followed first Note that this explanation implies serial

evaluation of the possibilities in the noun-noun priming case.

3.4 A Connectionist Model of Lexical Access

Our model for the lexical access process is shown in Figure 3.2. We show

the network for the word "deck", since it is at least four ways ambiguous, with

Figure 3.1. STLB's model of lexical access.



Figure 3.2. Our model of lexical access.

two noun meanings and two verb meanings. The network for a noun-noun

ambiguous word would just consist of the left half of this network, (right half

for verb-verb), and a noun-verb ambiguous word would just have the outer

"V" of seven nodes. The lowest node represents the lexical item and is

assumed to be activated by a phoneme or letter recognition network (such as

the one described in McClelland & Rumelhart, 1981). The top row of nodes

represent the various meanings of the lexical item and are assumed to be

connected into a sentence processing and/or an active semantic network. The

lexical node activates its meaning nodes through a discrimination network,

starting with the grossest distinctions possible, then progressively finer ones.

Note that the most efficient way to do this is to make two-way splits between

large classes of alternatives (divide and conquer), if possible (but we don't

assume all splits are two-way), since the inhibitory connections are minimized

this way2. We assume that syntactic information is more discriminatory than

2For n nodes to be mutually inhibitory, we need O(n*n) inhibitory connections. If we arrange put them at the
leaves of a binary tree discrimination network, we need O(n) inhibitory connections, but 2*n-L units, so we are making
a connection/unit tradeoff. This is motivated by the observation that we can't assume the network is pre-wired (in hu-
mans). The connectionist model of forming connections involves recruiting units that are on the path between two un-
its (Feidman. 1982). Thus, by conserving connections, we are really conserving units as well.
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semantic information, i.e., that the distinction into "noun" and "verb" divide

the possibilities up more than divisions based on meaning.

The alternatives at any discrimination inhibit one another, so that one

path through the network eventually "wins" and the meaning nodes that the

other paths support fade away. This is the decision process. We assume that

this process is driven by feedback to the meaning nodes from higher levels in

the network. In the case of a biasing sentence, this would be from higher level

nodes representing the role that meaning could play in the sentence (see

Chapter 4). (We also assume there is not a direct link to such role nodes.) In

the case of semantic priming, we assume the meaning node is directly primed

by a node representing the relation of the priming meaning to this meaning, as

in the Collins & Loftus (1975) model of semantic priming. The unfortunate

meaning node that does not get top down feedback (or does not get as much)

will not be able to provide as much feedback to the pathway nodes which

activated it, and its pathway will be inhibited by the pathway nodes that do get

more feedback.

In order to account for the modular nature of lexical access, we had to

make two simple assumptions about the units. We assume that the units are

thresholded (i.e., they can collect activation but they will not fire until they

cross threshold, as in Morton's (1969) "logogen" model) and that top-down

links have lower weights than bottom-up links. A unit may thus be activated

above threshold by bottom-up evidence, but not by top-down evidence. This

combination of threshold and weighting acts as a barrier to top-down

information affecting lower level processes by itself, such as recognition. It

may come in to play, however, after recognition of the lexical item has begun,

in the decision process. This assumption is independently motivated at all

levels of our networks by the need to prevent top-down activation from

hallucinating inputs.



An interesting feature of this network is that the meanings themselves are

not mutually inhibitory. When one considers constraints between units, there

is no functional reason to assume that a particular meaning in isolation from its

source (a particular lexical item) is not compatible with another meaning.

However, it is reasonable to assume that the assignments of different meanings

to the same use of a word is inconsistent. Indeed, if the meanings themselves

were mutually inhibitory, we would expect that a word with the same meaning

as an inappropriate reading of a previous word in the sentence (assuming the

meaning node is shared) would be harder to process than a control word

However, as we saw in the Swinney experiments, a word related to the

unbiased meaning is not suppressed after decision, it is just not primed. For

example, mutual inhibition at the meaning level would imply that it should be

hard to understand "I had a ball at the formal dance" Our model would

predict, however, that people would be slower at processing sentences such as
MIhada6a//atthe6a//.M

3,5. An Example Run

We present the result of running the model using the ISCON simulator

(Small et al, 1982) in Figure 3.3. It will be helpful to refer to Figure 3.2 to

understand the trace. We include a driver node, ml (not shown), that provides

constant feedback to SHIP-FLOOR throughout the simulation. (In a complete

model this would be a node representing one of the types of SHIP-FLOOR.

For example, ml could be PART-OF-SHIP, activated by the context prime

"ship's"). The units average their input from three sites, bottom-up, top-down,

and inhibitory. The first two sites take the maximum of their inputs, and the

inhibitory site uses a parameterized arctangent function to enhance the

difference in inhibition between two units that are close to each other in

activation level. This helps avoid the problem of two units getting into

equilibrium without one suppressing the other below threshold. Bottom up

weights are 1.0, top-down are .5, and inhibitory weights are -0.5. The threshold
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Figure 3.3. Trace of the simulation of the network in Figure 3.2 (x means fir-

ing).

is set at 0.3. The potential function is similar to the one used by McClelland &

Rumelhart(1981).

At step 5, SHIP-FLOOR has been primed by the context prime ml. Now

we activate "deck", and continue feeding it for 30 steps. We skip along to step

13 where the semantic discrimination nodes (the "as Xmeaning" nodes) have

just fired (not visible at Figure 3.3's resolution), but their activation has not

spread to the meaning nodes yet. Notice that SHIP-FLOOR has been primed

now to near threshold. Thus the bottom-up activation from "as Nmeaningl"



causes it to fire in step 14, while the other meaning nodes have to accumulate

more activation for several steps before they will fire. This gives SHIP-

FLOOR a chance to increase the relative activation of nodes that are on its

feedback path, before the other meaning nodes fire. This allows the nodes on

that path to begin to win over their competition so that by step 24, "as

Nmeaning2M has been suppressed. This results in CARD-DECK fading from

lack of support Also, Mas Nmeaningl" is no longer inhibited by Mas

Nmeaning2", so it rises, giving more support to "asNOUN", which then

suppresses "asVERB". Later, KNOCK-DOWN and DECORATE fade due to

lack of support from MasVERBM.

3.6* Discussion

This model makes several claims about lexical access. First, decisions

within a syntactic class happen "nearer" the meaning nodes than decisions

between classes, so the incorrect meaning nodes fade faster when within the

same class as its competitors than when its competitors are in different classes.

Thus noun-noun decisions are faster than noun-verb decisions, as was seen in

the sample run. Thus it predicts that verb-verb ambiguities, which have not

been tested (to our knowledge) in the psycholinguistic literature, will act like

noun-noun ambiguities. However, the STLB study used homonyms (words

with unrelated meanings). Verbs tend to polysemy (related meanings).

Because this may affect the results, we restrict our claim to verb-verb

homonyms.

In order to explain different context effects we have to mention some

claims about context. We saw how in our model feedback does not flow freely

downward from the priming node (ml) through the meaning node (SHIP-

FLOOR) because it is blocked by SHIP-FLOOR's threshold. However, when

activation comes up from "deck" through the other nodes, the barrier is

broken, and feedback flows down. If we assume that higher levels of

processing act the same way, then in the case of pragmatic context, no



feedback to meaning nodes would occur before the meaning node actually

fired because it is too far away in the network. By this time, multiple access

has occurred, and a target word to be named (say, "spade") can take advantage

of the priming from all of "deck"'s meanings.

The case illustrated in the sample run was one of priming context with a

noun-noun ambiguity (ship»deck). Here, the contextual priming word is so

closely related to one of the ambiguous word's meanings that they are not far

away in the semantic network and direct priming of the meaning occurs (eg.,

"shipV->SHIP-PART->SHIP-FLOOR). A decision will be reached much

more quickly than in the case of pragmatic context, where the feedback has to

come from "farther away" (semantically) in the network. Therefore, the model

claims that there will be faster decisions in strongly priming contexts. Yet,

contrary to STLB, multiple access did occur in our version of a semantic

context We rely on our prediction of the relative speed of ambiguity

resolution in different contexts to resolve this. Naming presumably requires at

least two stages, recognition and production. The word to be named is

presented at the end of the contextually primed ambiguous word. If the

decision for the ambiguous word is over before the recognition stage of naming

completes, the naming process could not make any use of priming from the

alternate meaning of the ambiguous word3. Thus we claim multiple access

always occurs, and if the word to be named were presented slightly before the

end of the ambiguous word, we would see multiple access.

Finally, in the case of four way ambiguous words such as "deck", the

model predicts the pattern of results seen in the sample run: In a semantic

context, the alternate meaning within the same class would be deactivated first,

then the meanings in the other class.

3This claim can be relaxed if we assume che barrier (the threshold) is "leaky", that is. with enough top-down ac-
tivation, the meaning node might actually cross threshold before it got bottom-up activation. It would then be able to
pnme the semantic decision node below it to the point where the alternate meaning never gets active. This can be
made to happen by using more pnming from mi. The model is therefore in the "chameleon" class with respect to this
particular issue.
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Several differences from the STLB model should be pointed out. First,

arcs in this model's network pass activation, and are automatic (like wires).

There is no notion of "following an arc" as in the STLB model. Second, there

is no reason to assume a different set of connections to the semantic network,

or separate nodes with identical recognition procedures. Third, this model

places the decision processes in the access procedure itself, while requiring the

information for the decision to enter the process as feedback from the semantic

network. Finally, we assume that multiple access always happens, but the

speed of the decision process varies with frequency and priming.

3,7. Conclusion

We have designed and built a model of lexical access within the

connectionist framework that accounts for the data and makes empirically

verifiable claims. This model has several advantages over STLB's in that (1)

we don't have to posit nodes with identical recognition procedures, (2) the

decision process is motivated by the discrimination network and the difference

between nouns and verbs "falls out" of that representation, and (3) it is a

computational model. With respect to Artificial Intelligence, we have a parallel

model which tackles the major problem of the decision process between the

possibly many meanings of a word. An interesting problem now is specifying

the levels above this which drive the decision process. These are the subjects

of the following chapters.



CHAPTER 4

A BASIS FOR SEMANTIC DISAMBIGUATION

4.1. Introduction

Our model of lexical access made no assumptions about the source of the

disambiguating information. In this chapter we specify one of the origins of

disambiguating feedback: the semantic portion of the model. The basic idea is

to use case structure (Fillmore, 1968; Schank, 1972; Bruce, 1975; Cook, 1979)

to represent the meaning of the sentence, and also to provide the feedback to

those word meanings that best fit with the developing structure.

There is considerable data on disambiguation at the sentence level.

However, since many of the studies disagree, it seems premature to use their

data when even the lowest level organization of the lexicon is not yet known.

Given that Seidenberg et al. (1982) hypothesize that semantic priming led to

the anomaly in their results (selective access for noun-noun ambiguities), a

survey of the semantic priming research is in order, to provide insights into the

semantic organization of lexical memory supporting this hypothesized function.

This will lead to a preliminary model of semantic priming. Coupled with the

linguistic work on case grammar, the following hypothesis emerges: Case roles

are cognitiveiy real objects that contribute to the disambiguation process using

the same mechanism as semantic priming. Cases constitute a semantic relation

between words, and the process than the one used by our model of semantic

priming suffices to explain both phenomena.

This chapter will thus begin with a review of the semantic priming

research, and a brief introduction to case grammar, since this is the major



linguistic tool the model uses in interpreting the "meaning" of a sentence.

Following this introductory material, we sketch a model of semantic

priming consistent with at least some of the data, leading into a description of

the semantic disambiguation model. Examples from a preliminary

implementation demonstrate the feasibility of the approach.

4.2. The Data

4.2.1. Semantic Priming

What is it?

The semantic priming effect discovered by Meyer and Schvaneveldt

(1971), has been used for several years as a window into the cognitive

representation of the lexicon (Meyer, Schvaneveldt & Ruddy, 1975; Warren

1972). The basic effect is that subjects are faster and more accurate at

responding to a word (the target) in some task (e.g., reading the word aloud,

referred to as a naming task) if the subject is previously exposed to a

semantically related word (the prime). For example, Meyer & Schvaneveldt

(1971) found that subjects are significantly faster at saying "DOCTOR" (that is,

the onset of their response is faster) if it is preceded by "NURSE" than if it is

preceded by "BREAD". They are also faster at classifying "DOCTOR" as an

English word (a lexical decision task) if they have just classified "NURSE"

versus just having classified "BREAD". Their reason for studying this effect

was to determine how context affects the processing of words. However,

researchers interested in the cognitive organization of the lexicon can use this

type of evidence as clues to that organization. Other studies (discussed below)

have shown that "higher order" relations also produce priming in certain tasks.

How might it work?

Most models of sentence processing (cf. Forster, 1979; Garrett, 1978) posit

several levels of processing (see Figure 4.1), including (a) encoding the stimuli



Types of operations Level of representation

Selection of message to be
encoded in linguistic form .^^IVIESSAGE LEVEL (conceptual, non-linguistic)

Lexical units selected corresponding
to meaning elements in message level
representation

Functional roles of lexical units
specified ^^^FUNCTIONAL LEVEL

Syntactic frame is selected
Phonologically specified lexical

units are inserted into frame — - ^ > POSITIONAL LEVEL

Phonetic detail of lexical
units and grammatical morphemes
is specified . ^SOUND LEVEL

ARTICULATORY INSTRUCTIONS

Figure 4.1. Levels of representation in the language processor (from Saffran,

1982).

into phonemes and/or graphemes; (b) assembling these into morphemes

and/or lexemes; and (c) their ultimate translation into the syntactic and

"message" levels. The lexical level entries are often postulated to be organized

in some sort of semantic network (Collins & Loftus, 1975; Forster, 1979) in

order to explain semantic priming effects. As such, it is often argued that the

effects are solely due to processes at the lexical level, at the expense of making

that level rather complex. As Forster says,

...semantic priming is an intralexical effect, rather than an interlevel

effect That is, there is no evidence to suggest that priming involves levels

of processing other than the lexical level. Once we have postulated a se-

mantic network defined over lexical entries ... we have given the lexical

processor sufficient computational power to encompass the effect.

However, one could now argue for different effects depending on the relative

levels of items within the semantic network. The appeal to levels of processing
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has been traded off for a many-leveled level!

Forster goes on to say:

It would be quite a different matter if it could be argued that the

priming effect was produced by the action of the message-level processor

on the lexical processor, so that the context effect of a sentence fragment

and the context effect of a single lexical item were seen as different man-

ifestations of the same phenomenon.

The model described here accounts for these two types of context as "different

manifestations of the same phenomenon", but without the direct action of the

message level on the lexical level. Rather, the process and structure which

account for the phenomena are uniform among levels.

Returning to the discussion of the phenomenon itself, the way in which

the effect arises, either through spreading activation (as in the Collins & Loftus

(1975) model described in Chapter 2) or through some ordered search across

links in the network (Forster, 1979) is still in dispute, but our connectionist

orientation leads to sympathy for the spreading activation account. The effect

is explained as the result of activation from the logogen representing the prime

to the logogen of the target, lfpre-activatingtf it, so that it operates more quickly

than in an unprimed state. Given the above discussion, it is of interest to

discover the nature of the pathways that can give rise to the effect. That is,

what kind of links can be crossed in the posited semantic network? How far

can the activation spread? Does it go "down", "up", or "across" levels in the

semantic network? While many of Collins & Loftus' original detailed

hypotheses have been shown to be incorrect, these errors were based on their

particular hypotheses about spreading activation, and do not implicate the

notion itself.
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Possible pathways

Many different relationships between words have been shown to elicit

priming, leading to a picture of the organization of lexical memory as a richly

interconnected structure. Table 4.1 provides a partial list. Not all of those

listed are "semantic" relations. One difficulty in this type of research is

controlling for the other types of priming relationships while trying to test for a

particular one.

The earliest type of "semantic" priming found was due to associative

relationships between words (Meyer & Sch vane veldt, 1971). These

relationships are derived from word-association tests. Because of this, it is hard

to say whether this type of priming is due to relationships in the semantic

network hypothetically overlaying the lexicon, or whether this is simply an

artifact of the test used to get the associations, which engages the speech

production system. That is, association norms may just be due to frequencies

in which the two words follow one another in normal speech. If the task used

to obtain the effect is one which also engages the production system, such as

naming, then it is suspect to attribute the effect to a semantic relationship.

Table 4.1. Priming Relationships (N=Naming, L= Lexical Decision)

Relation Example Prime Example Target Study Task

Associative

Name Identity

Phonemic

Graphemic

Superordinate

Semantic

Perceptual

Conceptual

nurse

APPLE

hair

couch

bird

bread

ball

banjo

doctor

apple

bare

touch

robin

cake

cherry

harp

Meyer at al. (1975)

Warren (1977)

Hillinger (1980)

Seidenberg et al. (1984)

Neely (1977)

Fischler(1977(a,b))

Schreuder et al. (1984)

Schreuder et al. (1984)

L,N
N

L,N

L,N

L
L

NX
L



However, the effect arises in the lexical decision task as well (Meyer &

Schvaneveldt, 1971). Given that the stimuli pass through various levels of

processing, the question arises as to which levels are affected by semantic

priming. Meyer et al. found that associativity interacts with stimulus quality.

That is, the priming effect is increased when the quality of the stimulus is

degraded Assuming an additive stage model (Sternberg, 1969), one can

conclude that stimulus quality and associativity affect the same stage of

processing. This and other considerations led Meyer et al. to conclude that

associativity affects the encoding stage. It is hard to interpret this result.

Could perceptions be semantically encoded at a very early stage of processing?

One does not have to go this far. The usual model (cf. Becker, 1980; Meyer,

Schvaneveldt & Ruddy 1975) assumes only that the detectors are primed

through semantic relationships to already recognized words, so that the

perceptual processes that feed those detectors are not the locus of the effect

However, there is reason to believe that it is not the encoding stage which

is affected by semantic priming. Meyer at al.'s argument depends critically on

the assumption of an additive stage model. In this model, the information

processor is assumed to operate in discrete stages, with each successive stage

operating only after the previous stage has completed processing. If this

assumption is rejected, as in McClelland's (1979) Cascade model, the argument

does not hold up. The Cascade model maintains the stage assumption, but

assumes that successive stages can begin to operate on the partial results of

previous stages, that is, before they have completed processing. In such a

model, interactions between variables do not imply that they operate on the

same stage. If one stage is affected, this may be reflected in its output to

succeeding stages. If the succeeding stages are affected by a different variable,

the effects of the two variables can interact, through the interaction of the

input changes to the later stage and the processing changes at that stage.

Assuming such a parallel processing model, which is consistent with the

connectionist paradigm, we can tentatively reject the idea that semantic



priming affects the encoding stage. This illustrates how the model one chooses

as an analytical tool influences the interpretation of the results.

Task Effects

Another important consideration concerning the loci of priming effects

needs to be discussed before considering the rest of the evidence. In recent

years, there has been a growing body of evidence suggesting that the tasks of

naming and lexical decision lap into different levels of processing. This was

first proposed by Forster (1979). His idea is that naming reflects processing at

the lexical recognition level, and lexical decision reflects post-lexical processing.

This has since been successfully applied by other researchers (West &

Stanovich, 1982; Seidenberg, Waters, Sanders & Langer, 1984). Forster's

rationale for the distinction is that in order to say a printed word, it would

seem sufficient to simply access its representation through the spelling, and

from there access the phonological codes. The "meaning" level need never be

accessed. In lexical decision, many non-words fit the phonological and

orthographic constraints of English. Hence it appears necessary to access the

meaning of the word to see if it has one. If so, the subject can decide it is a

word. Given that the meaning does appear to be accessed in naming anyway,

as evidenced by the Seidenberg et al. (1982) study, this can't be completely

correct We will survey some of the research that supports the view that the

two tasks access different levels, and then submit a hypothesis based on

spreading activation that appears to bring the data together.

There is abundant evidence for the view that naming and lexical decision

tap different levels of the comprehension system. Koriat (1981) showed that

lexical decision is sensitive to "backwards priming". That is, facilitation occurs

when there is an associative relationship between the target and the prime (but

no "forward" association between the prime and target). This effect held only

on early experimental blocks, giving way to forward association dominant

priming on later blocks. Koriat interpreted this as evidence of an automatic
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priming effect (the backwards priming) giving way to an expectation effect as

subjects noticed the relatedness of the primes and targets. If so, it is hard to

see why an ''automatic" effect disappears on later trials. Whatever the

interpretation of these results, they are not replicated in naming experiments.

Seidenberg, Waters, Sanders & Langer (1984) showed that there are no effects

of backward priming in naming.

Koriat (1981) also found no effects of prime-target association strength on

the amount of facilitation in lexical decision. This was in a high validity

condition, i.e., where the predictive value of the prime (in the sense that the

subject can expect a related word, rather than a particular word) is high. Some

investigators assume that under such conditions, the limited capacity attentionai

mechanism is deployed. In a low validity condition (that is, where the

probability of prime-target association is low), there was no priming due to

associativity in a long SOA1 condition, and a mild effect in a short SOA

condition. However, in a color naming paradigm (which appears to measure

the same level as naming) Warren (1972) found significant effects of associative

strength on the strength of facilitation.

Further evidence of the differences between naming and lexical decision is

that lexical decision appears to be sensitive to strategic effects (that is, ways of

doing the task that appear to be consciously applied) (Becker, 1980) whereas

naming does not (Seidenberg, Waters, Sanders & Langer 1984).

The final straw in the argument rests on some recent investigators' more

sophisticated interpretations of the term "semantic". Fischler (1977b) found

that words that he judged to be semantically related (e.g. bread-cake) that were

not associatively related produced an equivalent amount of priming as

associatively related words in a lexical decision task. In fact, he found that

semantic relatedness correlated better with priming strength, than associative

strength did. This suggests that researchers have been seeing a priming effect

Stimulus Onset Asynchrony, i.e., the time between the offset of the prime and the onset of the target.



from semantic relatedness confounding their results with associated materials.

More recently, Schreuder et al. (1984) distinguished between what they termed

perceptual relatedness which is based on perceptual similarities, such as shape,

color, size, etc, and conceptual relatedness which is based on more abstract

properties such as functional properties, class membership, etc. By controlling

these two dimensions, they were able to show that both perceptual and

conceptual similarity primed additively in the lexical decision task, but only

perceptual similarity primed in a naming task. This suggests that perceptual

similarity information comes into play earlier in processing than conceptual

information, given that naming latencies are generally shorter than lexical

decision latencies. It also conforms to the hypothesis that naming and lexical

decision tap different levels of lexical processing.

A Spreading Activation Account of Task Effects

The point of view taken here is that the basic idea that naming and lexical

decision tap different levels of the system is correct, but this must be

modulated by consideration of the time course of activation spread through the

system. As the duration of the prime and/or the SOA increases, there is more

time for the effects of the prime to spread to different layers of the system (see

Figure 4.2). Specifically, the point of view we will adopt is that naming at

short prime durations demonstrates effects of lexical recognition processes, i.e.,

the graphemic and phonological codes, and at longer prime durations

demonstrates continuously greater effects of the semantic organization of the

lexicon. Also, the task of naming a word uses the language production system,

whereas lexical decision does not. We hypothesize that some processes and

pathways specific to production are thus engaged. For example, as mentioned

above, words that often follow one another in speech may develop associations

that are contingent on the engagement of the production system. On the other

hand, lexical decision would not be affected by these pathways, except at long

prime durations and/or long SOA's. Also, since naming does not require a
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decision, but involves overlearned, automatic mappings, it is less likely to

engage the limited capacity attentional processor hypothesized by Posner &

Snyder (1975). As noted in the discussion of Posner & Snyder's model,

Becker's (1980) results would lead us to expect that since the set of objects

under consideration (all the words in a subject's vocabulary) is large, lexical

decision effects would be facilitation dominant, i.e., the effects will be the

result of facilitation of the related targets, rather than inhibition of the

unrelated targets. Also, since no one has a detailed model of how decisions are

arrived at, there are surely going to be effects of the decision making apparatus

which can not be factored out.

A detailed model has not been worked out, but we also assume that prime

duration and SOA have a different kind of effect (see Figure 4.3). While both



Rrime. target
duration 8

SOA

Figure 43. Stimulus Onset Asynchrony (SOA) and prime duration.

would give the activation a longer time to spread, increased SOA should give

rise to weaker effects than increased prime duration. The reason is simple:

while the prime is still being shown to the subject the detector for that prime

is still being driven by bottom-up input and so will continually fire. On the

other hand, with increased SOA, the activation will still spread, (we don't

assume that activation is automatically attenuated at distances, as Collins &

Loftus do), but the source will begin to decay after a while.

We are now ready to assess the research in terms of what it says about the

cognitive organization of lexical (and possibly other) information. We assume

that naming studies reflect the structure at or near the lexical recognition nodes

plus the effects of the speech production system, and that lexical decision may

also reflect influences attributable to the decision process, making data from

lexical decision tasks somewhat harder to interpret with relation to the

structure of the lexicon. These assumptions must be tempered by time course

considerations. That is, the longer the SOA during a naming task, the "farther

away" from the recognition node the priming effect may be coming from.

No study shows this better than Warren (1977); In a naming study, he

varied the duration of the prime from 75 msec to 225 msec, with 0 msec SOA.

He used associated prime-target words with various semantic relationships and

found no effect of association strength. However, when he analyzed the results
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taking into account the type of semantic relationship between the associated

words, he found significant differences in the amount of priming at different

prime durations. Synonyms primed when the duration of the prime was 75

msec, decreasing to zero at 150 msec (see Figure 4.4). Sex shifts (boy-gir() and

weak antonyms (soft-hard) showed little priming at 75msec prime duration,

increasing to 20 msec facilitation when the prime was on for 150 msec. One

might take this as evidence for a Collins and Loftus style model. Synonyms

are probably initially activated because they are strongly related to the prime,

but have to be suppressed after a short time in order to avoid confusion with

each other. This is especially true since these were strongly associated

synonyms, pointing to a production system effect That is, we suppose strongly

associated synonymous words are arranged in a WTA which is only active

during production, since the selection of which word to say would presumably

Q. • synonyms
£r~ — A strong antonyms
V -V weak antonyms
O Q sex shifts

40 "•
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Figure 4.4. Warren's (1977) results: Msec of facilitation as a function of
prime duration and type of semantic relation between prime and target.



select a set of synonymous words, whereas we would only want to say one of

them (see Dell (1980; 1984) for a connectionist speech production system that

would support such a process). Alsp, Warren found that strong antonyms were

activated earlier than weak ones. One might conclude from this that the

stronger relationship was primed earlier, supporting Collins and Loftus. But as

Warren says,

There is some question whether a definitive test of the Collins and

Loftus (1975) hypothesis regarding the rate of spread of activation in

memory is possible. They propose several factors that determine the state

of activation at any particular unit in memory after the presentation of a

prime: (a) the strength of the connection between the tested unit and the

priming unit (b) the time elapsed since prime presentation, (c) the rate of

spread of activation, and (d) the distance of the two units in the network.

It would seem that any observed level of of activation could be accounted

for by these factors.

Also one might mention the function used by the unit to compute its activation

from its input Unfortunately, the model proposed here has similar problems.

Refutable theorys apparently require strong simplifying assumptions. For

example, one could make stronger assumptions about the organization of the

memory units, i.e., about the number of units between the prime and target

and assume no other connections between prime and target. Then, concern

arises about the strength of the connections between the units along the path.

However, it seems that even with this, just the variation in the strengths of

connections along the path could explain many things. Also, assumptions

about the number of units along a path can be changed to match the data. We

will not presume to provide an answer to these problems.

Warren has shown that an association does prime in naming, and that the

time course of the priming varies with semantic relationship. This supports our

hypothesis that as SO A increases, semantic relationships that are "farther
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away" in the lexicon begin to take effect2. On the other hand, as noted above,

Fischler (1977b) showed that priming in lexical decision appeared to be

correlated with semantic relatedness rather more than associative relatedness.

And finally, there is the Schreuder et al. (1984) result that conceptual

similarity, which is probably most related to what Fischler called semantic

relatedness, does not prime in naming. How can these data be reconciled?

First of all, recall our hypothesis that association priming is due to a

production system effect, since the naming task engages the production system,

and association norms are gathered using word association tests. Then the fact

that pure semantic relatedness without association does not affect a naming

task appears to be consistent3. One caveat to this is that as the duration of the

prime or SO A increases, we would expect to find more effects of semantic

relationships, since the there would be more time for activation to spread tfup"

to the higher levels of the system, and feed back "down" to the recognition

level. That there are effects of the type of semantic relationship within the

association effect is not surprising, given that such relationships have an effect

on the lexical decision task. Especially so, since the time course of these effects

are what is affected. That is, the association effect in naming is increased by

the engagement of the speech production system, but then the time course of

the effect is mediated by the semantic organization once the semantic pathways

between prime and target have been opened.

The result that perceptual similarity primes in both naming and lexical

decision implies that the locus of this effect is at the lexical recognition level

since this level has to be passed through for lexical decisions, so that the effect

is simply additive to whatever higher level effects are present. This effect is

2Stanovich & West (1983) provide further support for this model. They found that sentential context has effects
on naming at long SOA's.

3 Actually, Seidenberg et al. (1984) found effects of semantic relatedness in naming. However, their study did not
control for perceptual relatedness, shown by Schreuder et aL (1984) to affect naming latencies. Schreuder et al. did
control for perceptual relatedness and found no effects of semantic reiatedness in naming.



most likely due to a "dual encoding" (Pavio, 1971) of concepts in both a visual

and more linguistically oriented code. This is an automatic effect, and so it is

not surprising that it is additive to the conceptual relatedness effects. However,

there may be effects that are "automatic", but only enabled when the system is

in "production mode". At least, the association effect may be facilitated by the

subject's use of the speech production system. If so, any effect found in

naming and not in lexical decision should be attributable to the production

system. Therefore one would expect to find association effects independent of

semantic effects. That is, if we could factor out associative relatedness from

semantic relatedness, we would expect no effects of associative relatedness in

lexical decision, because the production system is not engaged. Unfortunately,

no one has come forth with a methodology capable of this.

However, a recent study has shown a naming-specific effect that supports

our hypothesis. Seidenberg, Waters, Barnes & Tanenhaus (1984) found that

when the spelling of a word did not match the usual pronunciation (as in

"done"; most words spelled like this are pronounced with a long "o"), it took

longer to pronounce than a word of the same frequency with a regular

spelling-sound correspondence (e.g., "bone"). However, in a lexical decision

task, there were no effects of spelling-sound regularity. This supports our

hypothesis, since it is the phonemic level that is implicated here; the "wrong"

phonemes have been activated by the spelling, and they interfere with the task

of pronouncing the word. One would not expect such interference in a lexical

decision task, since the task of producing the proper phoneme is not involved

On the other hand, it is not surprising to find lexical decision effects

without corresponding naming effects. Indeed, these are what lead to the

hypothesis that a later processing level is reflected by this task. Inspection of

Table 4.1 shows this to be the case.

Finally, we note that Neely (1977) found that when superordinates are

used as primes in a lexical decision task, there appear to be independent



contributions of automatic spreading activation and attention. This is

consistent with the idea that the level of meaning organization is involved in

lexical decision, and that attention is necessary for decision.

An interesting study relating to the range of activation spread was done by

DeGroot (1984). She found that in a lexical decision task, priming between

associates (which were also presumably semantically related) was not transitive.

That is, if two words are associatively related, such as BULL and COW, and

COW is associatively related to MILK, then BULL does not prime MILK.

That is, COW is not a "pathway" for priming between its associates. This is

evidence against the Collins & Loftus model, which assumes no barriers to

spreading activation. We will present a model later which is in accord with

DeG root's data.

4.2.2. Case Grammar

The representation we will use for the "meaning" of the sentence will

consist of nodes representing the meanings of the words, nodes representing

semantic roles in the sentence, and nodes representing assignments of the

meanings to the roles. The roles we use are called cases, first proposed by

Filimore (1968). Although not evident in this early work, later interpreters

(Cook, 1979) proposed that the major tenet of case grammar is that semantics is

the central component of language analysis, and that the case structure of the

sentence is the "deep structure" underlying the sentence. Given that this is the

basis for what we will term "semantic interpretation", we will give a brief

introduction to case grammar here. Our model will not reflect all of the

aspects of case grammar that we will touch upon, however, we plan to rectify

this situation in future work.

Although this discussion will be based mainly on Cook (1979), we follow

Bruce (1975) in defining a case as a binary relation which holds between a

predicate (in the linguistic sense; usually a verb) and its argument (a semantic

role associated with the verb). For example, in the sentence "John hit Jack",



"hit" is the predicate with two cases showing in this sentence:

Agent(hit, John)

Object(hit, Jack)

The Agent case represents the person or thing performing an action, the Object

case is an obligatory case found with every verb, representing the thing being

acted upon, or the thing in the state described by the verb, or the thing that is

changed by the process described by the verb. Other cases listed by Cook

(1979) include Beneficiary (the person or entity that benefits from an action)

Experiencer (the person experiencing an emotion, sensation, etc.) and Location

(the physical location of something). These are the so-called "inner cases" that

are required by the verb, and make up its case frame. The combination of the

verb, these cases and their fillers results in a propositional structure which

represents the meaning of the sentence, independent of tense, aspect and

negation, which are seen as higher order predicates applying to this structure.

What are called "outer" or "modal" cases, such as Instrument, Cause, Time,

etc. are cases of this higher order, surrounding-system. There are obvious

parallels between these outer cases and the sort of information represented in

frames (Minsky, 1975).

Cook sorts verbs into three types, State, Process, and Action. All verbs

take an Object case. Action verbs additionally take an Agent case. Cook

asserts that the Experiencer, Benefactive and Locative cases are mutually

exclusive. This leads to a 3 by 4 matrix of verb types shown in Table 4.2.

Evidence of the usefulness and completeness of this case grammar matrix

derives from Cook's having used it to assign a deep structure to 5,000 clauses

in Hemmingway's The Old Man and the Sea.

Another aspect of case grammar is a set of realization rules for mapping

the deep structure to a surface structure. Part of this mapping is reflected in

the left-to-right ordering of cases in the case frame. This specifies the subject

choice hierarchy. The first case is usually the Subject, [f for some reason



Table 4.2 Cook's Matrix of Verb Types
(from (Cook, 1979), p. 203)

Verb Types

State

Process

Action

Basic Verbs

Os
be tall

0
die

A,0
kill

Experiential

E,Os
like

E,0
enjoy

A,E,0
say

Benefactive

B,Os
have

B,0
acquire

A,B,0
give

Locative

Os,L
be in

O,L
move, iv.

A,O,L
put

(such as passivization), a case is missing or moved in the surface structure, the

next case in the list is moved into the Subject position. For example, in give

[_A,B,O], we go from Kathy gave Jelly Bean a biscuit, to Jelly Bean was given a

biscuit to A biscuit was given. These same rules are applied in reverse by

semantic interpretation programs (Bruce, 1975; Hirst, 1984) to assign case

structure to sentences. Besides being marked by being in "top level" roles

such as Subject or Direct Object, cases are often flagged by prepositions. For

example, in Jelly Bean put the puppy in its place, the Locative case is marked by
MinM. This is the sort of information that must be captured by realization rules

(and, by parsing rules). Often this kind of flagging is verb dependent, and

must be represented somehow with the verb. For example, even though give

and bribe are both Benefactive Action verbs, the Object is flagged by being the

Direct Object of give. The Object of bribe (usually money) is covert, (it is

lexicalized in bribe), but it may appear in the surface structure overtly; if it

does, it is flagged by with.

Also, verbs impose selectional restrictions on the fillers for their cases.

For example, the filler for the Object case of eat must be marked 4-[food].

Semantic interpreters that use cases often include this type of information in



the lexicon with the verb. While complicating the definitions, this type of

information often aids in the disambiguation of the sense of the verb, and the

sense of the nouns4. For example, in Gary wrote his first draft, because the

Object of write must have the feature +[text], it is possible to select the proper

meaning of draft.

(n this work, we will use a combination of selectional restrictions and cases

to help disambiguate word senses. Although there are "hooks" for this in the

model, we wilt ignore, for the moment, Cook's observation that verbs can be

divided into different classes that differentially specify flags for their cases.

However, it should be clear that case grammar is a viable formalism for a

semantic interpretation system, and appears well suited for the purposes of this

work. We now proceed to the design of the system.

43. A System for Semantic Interpretation

We will begin by presenting a model of priming which accounts for true

"semantic" priming, i.e., priming through the conceptual similarity relation.

We will not try to account for associative, phonemic or perceptual priming,

although our model can be extended to include these. We will then proceed to

our model of semantic interpretation which includes semantic priming as a

source for meaning disambiguation.

4.3,1. A Priming Mechanism

We will describe a priming mechanism which is consistent with much of

the data. Basically, it is a review of some of the discussion in chapter 3. That

is, we assume that non-identity priming passes through some intermediate

nodes. We assume that for every relationship between two words or concepts,

there is a superordinate node that encodes that relationship and links the two

(except in the case where one of the concepts is the superordinate concept).

We also assume that weights of subordinate-superordinate links (i.e., bottom-

r e e Hirst (1984) for a good example of Lhe use of this type of information in semantic interpretation.
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up links) are such that if the subordinate node is firing, it causes the

superordinate node to fire. On the other hand, we assume that superordinate-

subordinate links (i.e., top-down links) are of a lower weight, and that

thresholds on units are such that if the superordinate node is firing, the

subordinate is primed to near threshold, but does not fire unless it also has

bottom-up input.

There are several things to note about this model (see Figure 4.5). fn the

following discussion, assume that A fires from bottom-up (perceptual) input.

Then this will cause B, C and D to fire in turn, as activation spreads up

bottom-up links. So one prediction is that superordinate categories are

automatically accessed, without further input. It is assumed that this will

facilitate further processing of superordinate categories. It is not as if the

superordinate categories themselves were recognized (as in name identity

priming) since there is necessarily a time delay before they get activated.

Furthermore, E, F and G will merely be primed, and not fire. So, consistent

Figure 4.5. A model of priming due to hierarchical relationships.



with the data, coordinates will be primed, and we predict that higher level

"aunts" and "uncles" will also be primed. We have not made any assumptions

so far about the activation decreasing as it spreads. For the current model, in

an attempt to make falsifiable predictions, let us assume it does not until

proven otherwise. If it did, we would expect that the higher level relatives

would be primed less. As it is, we only predict that there will be a delay in

priming the farther away a higher level superordinate or relative is.

Finally, H will not be affected at all, (since E is not firing) so that I will

not be primed. Thus this agrees with the DeGroot (1983) results that priming

is not transitive. To see this in more detail, since (as in Chapter 3) we are

assuming that the superordinate sites compute the maximum of their inputs,

subsequent input of I would cause H to fire, but this would not increase the

activation of E, since the maximum of Fs top-down input would be the same

(modulo decay of B and E and weights on links). Therefore, E would not fire,

and H would not get any more activation than if A had not been activated at

all. *

Alternatively, assume that C is activated by bottom-up input (i.e. C is a

category, and the prime is the category name). Now, D (the superordinate)

will get activated, and G (the coordinate) will be primed Also, consistent with

the Neely (1977) results, B and F will be primed Response to A and E will be

enhanced due to the fact that B is primed, as follows: If A is recognized, B will

fire faster due to being primed. Thus A will get feedback sooner from B.

Note that A must be recognized (we identify firing with recognition) before

this effect takes hold.

With this priming mechanism in hand, we are ready to proceed to the

description of the semantic interpretation model.

4.3.2. Overview of the System

Recall that by "semantic interpretation", we mean the assignment of case

roles to conceptual objects specified by the noun phrases of the sentence. In
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particular, we are only interested in dealing with some fairly simple sentences

from the Seidenberg et al. (1982) study. We have implemented a preliminary

version of this system (reported in Cottrell & Small, 1983) and designed an

improved version, which is the major topic of this section. The operation of

the model is as follows. Major lexical items are activated in sequence

(determiners are currently ignored). After a settling period, the result of the

network's operation is a stable coalition of units representing the case structure

of the sentence, where the only units remaining active are: (a) units

representing the appropriate word senses for the sentence (disambiguation); (b)

units representing the appropriate cases for the selected verb sense (case frame

selection); and (c) units representing assignments of the word senses to the

cases. This is the first system (that we know about) that incorporates

completely distributed, parallel processing of sentences in a manner consistent

with (and potentially falsifiable by) psycholinguistic, neurolinguistic and

anatomical data. Our focus is cognitive modelling in this relatively new

framework, and we do not solve any problems that are still the subject of

current research in more traditional paradigms. We will not describe a model

that interprets quantificational scope, resolves anaphora, or handles any of the

more difficult issues in semantic interpretation.

A little history and overview will set the stage for discussion of the current

model. Perhaps by seeing where we started, the reader will see how we got

here. The preliminary version of the semantic interpreter reported in (Cottrell

& Small 1983) consists of three levels of units:

(1) The Lexical Level. This is the "input" level. There is a unit for every word

in the language.

(2) The Word Sense Level. This has a unit for every meaning of a word, with

units at the lexical level connected to all of their "meanings" at this level.

Alternate meanings of a word are mutually inhibitory.



(3) The Case Level. This has units for every possible relationship between the

predicates and objects. We posited an "exploded case" representation; that

is, on the order of several hundred case roles that are more specific than

Agent, Object, etc., but fail into those classes (see Fahlman, 1979). These

nodes as a result are connected to fewer word senses than Agent and

Object would be, and carry much more information directly. Units at the

word sense level representing fillers for cases are connected to those cases;

verb senses are connected to their case frame. The case units are set up so

that they need both filler and verb to fire; otherwise they are strongly

primed. A syntactic processor was posited at this level on an equal

footing with the case network, but the idea was not expanded beyond this

in (Cottrell & Small, 1983).

The operation of the model consists of a flow of activation from the

lexical items (introduced in sequence) to their meanings. The meaning nodes

in turn, activate the case nodes. The relation that best fits the input will then

"win." Winning involves the formation of a stable coalition, that is, a group of

connected nodes in which the overall excitation exceeds the overall inhibition.

The model can be said to have succeeded if the proper case roles form a

coalition with the right meanings for the sentence. Since many words are

ambiguous, the network must decide on an interpretation based on word sense

frequency and relational knowledge expressed at the case level. Thus in a

sentence such as "Bob threw the fight", the sense of "threw" is disambiguated

by "fight", since "fight" only fills the SPORTING-EVENT case of the

"intentionally lose" meaning of "threw", and not, for example, the

MOVEABLE-OBJECT case of the "propel" sense of "threw". See Figure 4.6.

This model had its problems. Since the syntactic module was not yet

implemented, only sentences which were not semanticaliy reversible could be

interpreted. This was seen as a feature rather than a bug; if one considered the

model to be a "lesioning" of the overall model, with access to syntactic

information removed, then it appeared compatible with results about Broca's
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Figure 4.6. Subset of the network for Mbob threw the fight."

aphasics. The problem, however, is deeper than that. In a semantically

reversible sentence, such as MJohn loves iMaryM, no assignment of the Agent

and Object cases, even a random one, was possible. The reason is that the

assignment of a word sense to a case was implicit in the combination of 1) the

two of them being connected and 2) the two of them being active in a stable

coalition. In the case of "John loves Mary", both (the meanings of) "John"

and "Mary" would be connected to LOVE-Agent and LOVE-Object. After

activating "John" "loves" and "Mary", all of these nodes would be active,

resulting in both of them being "assigned" to both cases.

A second problem with this design is that there is no obvious way to

interface syntax with the case assignment mechanism. In order to implement

the Passive transformation, for example, the syntactic information would have

to operate on the connections themselves (an acceptable alternative in

connectionist networks), disabling some and enabling others. The problem

here is that there is no obvious way to make this a general transformation. It



would have to operate on every connection to every exploded Agent and

Object case for verbs subject to the Passive transformation. This is totally

implausible for an operation that is generalized by language learners very

quickly.

Finally, there is not enough underlying structure to this model. There are

no generalizations between related verbs, related nouns, or related cases. The

units are only connected through the case structure, (related nouns would fill

the same cases) which is inadequate for modelling many types of priming.

The current model was designed to overcome these problems (see Figure

4.7). The lexical level activates word sense representations in a word sense

buffer, through the lexical access network described in the previous chapter

The buffered word senses achieve their "sense" through connections into a

lexicon, where information about the sense is stored. The lexicon, for our

purposes, is just an inheritance hierarchy of concepts, with connections to

exploded cases at appropriate points. Thus, in this system, the fact that a word

sense can fill a case can be inherited from a superordinate in the lexicon.

The cases themselves are arranged in hierarchies, one for each of the more

abstract Fillmorean cases, with Agent, Object, etc. at the roots. Thus the fact

that a MOVEABLE-Object is an Object in Fillmore's sense is inherited

through this hierarchy. Verb word senses in the buffer are connected directly

to their appropriate case frames in the case hierarchies. The intersection of

activation from a filler and a verb is still the mechanism which activates a case

node; the difference is that the activation from the filler arrives indirectly

through the lexicon. In the previous model, all cases of the same general type

were mutually inhibitory. Here, competition between different candidates for

the Object case, for example, happens as competition between coordinates in

the case hierarchy, reducing by several orders of magnitude the number of

inhibitory connections necessary. The result of this disambiguation process is

that a path to the root of the hierarchy "wins" (as in the lexical access model).
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Figure 4.7. Overview of the case system.

Bindings between word senses and cases are represented by nodes which

encode the assignment of a buffer position to a case; these binding nodes are

mutually inhibitory, so that, for example, only one of "John" or "Mary" gets

assigned to the Agent case. This replaces the direct connections of the

previous model. Finally, these bindings are to the roots of the case hierarchies,

rather than the exploded cases themselves, greatly reducing the number of such



nodes. This provides a clean place for the interface with syntax.

In the previous model, the result of the interpretation was a stable

coalition of nodes representing case-filling word senses, a verb word sense, and

the case frame for that verb sense. The new model includes two paths between

case fillers and cases, rather than direct connections: A path through the

lexicon, and a path through the root of the case hierarchy and the binding

node network where assignments are decided.

This completes the overview of the model. We now move on to a more

detailed description. We begin with a model of the semantic network

organization of the lexicon, as posited by Forster (1979) and others, based on

our model of semantic priming above. Then we describe how cases are

represented, and finally how they become assigned to conceptual objects. In

the course of this we describe how word senses are disambiguated. It is

perhaps important to point out that the complete model described here has not

been implemented, although portions of it have in other contexts. A role

assignment mechanism similar to the one described here (called the binding

mechanism) is used in the implementation of the syntactic processor described

in the following chapter, and foundational work on inheritance hierarchies

(necessary for the semantic network) is described in Chapter 6. However, we

do go through an example of the operation of the system "by hand", and the

last part of this section describes example runs from the implementation of the

earlier version of the model.

433. A Model of the Lexicon

We assume first of all, that the representation of word senses that are

activated by our lexical access mechanism described in Chapter 3 are buffered.

A mechanism for this is described in Chapter 5. By virtue of their buffer

position, word senses are thus tagged with a unique identifier which will be

important later, when we discuss how they become bound to the case they fill

in the sentence. This means that what we labeled, for example, SHIP-FLOOR,
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in Chapter 3, actually is a unit labeled SHIP-FL00R/C0NC3, where CONC

stands for "concept" and "3" means this is in the third buffer position. Other

meanings for the same word exist in the same buffer position, so CARD-

DECK is labeled CARD-DECK/C0NC3 as well.

These labeled word-senses are then linked (two-way) to a concept node in

a semantic network representing that meaning. Thus words are, in one sense,

simply pointers into this network through their various senses. Figure 4.8

shows a pair of buffer locations with the some of the nodes corresponding to

the senses of "Torn" and "threw" in positions 1 and 2, and their links into the

lexicon. (From now on, when we refer to "the lexicon" or "the semantic

network", we will be referring to the same entity.) For our present purposes,

we can just assume that the organization of this network is just the usual IS-A

hierarchy as outlined in (Fahlman, 1979) and elsewhere. The details of the

representation of knowledge in this hierarchy as shown in Figure 4.8 are not

our major concern. What is important is that the actual implementation follow

the assumptions given in the previous section, i.e., links between subordinates

and superordinates are of two kinds: bottom-up links which are weighted so

that the subordinate firing causes the superordinate to fire, and top-down links

which are weighted so that if the superordinate is firing, then the subordinate

will be primed to just below threshold. Additionally, the potential function of

each unit is assumed to be such that if it is firing, top-down feedback can

increase its output incrementally depending on the amount of top-down

feedback. Conversely, we have to assume that once a unit is active from

bottom-up input, increases in that input do not increase its output, since this

would cause a "vicious cycle" of subordinates and superordinates increasing

one another's activation until they saturated. Thus, bottom-up input activates a

unit, but it is top-down feedback that makes discernible changes in its output5.

Thus, all we require is that once a unit activates its superordinates, if one of

5We also assume that decreases in bottom-up input cause a unit to decrease its output, and if the bottom-up in-
put stops, the unit will decay bade to resting state.
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CONC1

Figure 4.8. Two buffer locations with nodes for "Torn" and "threw", and their

links into the lexicon.

those superordinates begins to get some feedback from outside the hierarchy, it

will be communicated down to the subordinate, whose activation will then

increase.

Referring to Figure 4.8, these rules mean that if HUMAN gets feedback

from the case hierarchy (see below), increases in its activation will be

communicated downward to MALE-HUMAN and thence to MALE-



HUMAN/CONCL FEiMALE-HUMAN will simply remain primed unless a

buffer node below it becomes active6. With these additional assumptions

about activation functions, the model of semantic priming as outlined in the

previous section constitutes the model of the lexicon.

In addition to this we assume that links from conceptual nodes in the

semantic hierarchy connect to nodes representing possible cases they can fill (as

described in the next section), and that these are two-way links, so that the case

nodes can provide feedback through the top-down links in the hierarchy to the

nodes in the buffer. The next subsection describes the organization of these

case nodes.

4.3.4. Cases as Cognitively Real Objects

This section develops the basic model of case relations, and its interface

with the lexicon. Identifying the case relations between the semantic objects of

the sentence and the predicate of the sentence constitutes (for the purposes of

this thesis) the semantic interpretation of sentences. Case relations and the

semantic network overlaying the lexicon are adequate for explaining how word

senses are semantically disambiguated in the STLB materials. In particular, we

are not attacking the problem of sentences with more than one clause, where

several case frames have to be related in the final semantic representation. We

leave this to future research.

As noted in the section on Case Grammar, cases represent possible

relations between the predicate of the sentence and the noun phrases. General

cases such as Agent and Object, however, are not very useful as an aid to

disambiguation. For example, in the sentence "Bob threw the fight," the fact

that "fight" fills the Object case does not help determine what sense of "threw"

is appropriate for this sentence. However, the use of more specific cases,

6The careful reader may be wondering how buffer nodes become attached to the semantic hierarchy. We are as-
suming that everything pre-exists in the buffer. The numbers of units implied by this implausible assumption can be
somewhat ameliorated by coarse-coding methods (Feldman & Bailard, 1982). or by using a distributed representation
of the buffer elements. This is discussed a bit more in the concluding chapter.



tailored to the sense of the verb, can reduce the problem considerably. The

idea is to use cases that subcategorize the abstract cases used by Fillmore with

selectional restrictions imposed by the verb sense. Suppose with the sense of

"threw" we call "INTENTIONALLY-LOSE" (which felicitously abbreviates as

I-LOSE), we have a particular kind of Object case, the "I-LObject" case, that

represents a type of game. Then "fight" would fill this case role, but not the

case role "PROPEL-Object" associated with the "PROPEL" sense of "threw".

From this we can determine what sense of "threw" is intended in this sentence,

since it is the only sense that has its (obligatory) Object case filled. We term

this highly typed case system an exploded case representation. Given that we

have a large number of nodes to work with in a connectionist system, it is

feasible to use a large number of specific relations. This permits the encoding

of more specific information in the cases and thus more constraints on the role

fillers.

Verb senses in the buffer are associated with tfieir case frames by simply

being connected to the case nodes that constitute their case frame (see Figure

4.9)7. The potential function of the verb word senses and the weights from the

case nodes are set up so that the obligatory cases must be filled in order for the

verb sense to get enough feedback to remain firing and survive competition

with the other senses. This is the basic disambiguation mechanism for verb

senses. Verb senses with more cases filled win over verb senses with fewer

cases filled. Verb senses with obligatory cases filled win over verb senses

without their obligatory cases filled.

A case node is "filled" when it has input both from a predicate in the

word sense buffer and a filler in the semantic network. When it gets input

from both, it begins feeding back to its verb through direct connection and to

the filler via the semantic network (see Figure 4.10). This is the basic

7A more consistent approach would have the verb representations in the lexicon mediating between the verb
senses in the buffer and their cases in the case hierarchies. We use the more direct approach given in the text to sim-
plify the presentation.
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Figure 4.9. Verb connections from the buffer to their case frames.

LEXICON Case System

Female-Human) f Male-Human

Buffer

Figure 4.10. Feedback path from a case to its filler.

disambiguation mechanism for case-filling concepts: feedback from the case

role via the pathway through the lexicon. HUMAN-Agent feeds back to



HUMAN in the lexicon, which then provides more feedback to MALE-

HUMAN and thus MALE-HUMAN/CONC1. This is thus a mechanism for

cases to "vote" for their fillers. Noun senses that fill a case get more feedback

than noun senses that don't. Notice that there is the possibility of crosstalk in

this design. If a word later in the sentence has the meaning FEMALE-

HUMAN, it will get feedback from the HUMAN node. This implies that in

sentences such as, Mary went to the John, the MALE-HUMAN meaning of

john will initially get more feedback than the other meaning. This is a

prediction of the model design, and may turn out upon implementation to be

undesirable. An alternative would have been to make the feedback from

HUMAN in Figure 4.10 go through a WTA so that only the subordinate that

caused the activation of HUMAN would get the feedback. Then this WTA

could be released upon the binding of MALE-HUMAN/CONC1 to a case

role, allowing other subordinates to get feedback. These factors will have to be

explored further when the system is implemented.

As it stands, the design leaves exploded cases "off by themselves", with no

inherent organization. There are important regularities between exploded cases

that are not captured this way and inefficiencies in the number of connections

from the semantic network. Many verbs have exactly the same restrictions on

the Agent, and so should share this node with each other. Since the cases are

strongly typed, one exploded case can be an instance of another kind. All

Agent cases are instances of Fillmore's Agent case, for example, and some

verbs are not going to place any restrictions on their Agents. It would be

inefficient to connect every node in the lexicon that could be an Agent to the

most general Agent node. An more efficient method is to arrange the cases in

several hierarchies based on the selectional restrictions on the cases, with the

most abstract Fillmorean cases at the roots. Figure 4.11 shows an example

arrangement of the Object case hierarchy with verbs attached at appropriate

points. There is a tantalizing similarity to the semantic hierarchy used for the

lexicon; perhaps in future work we can merge them. They are at least logically
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ObjectJ)< > Imagine

See

Love

Make

Figure 4.11. The Object Case hierarchy.

separate; they have different control characteristics. Case nodes require dual

input from a predicate and a filler in order to feed back to the filler; ordinary
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concept nodes only require bottom-up input are mutually inhibitory. Not so

in the lexicon, where we want them to facilitate one another.

Figure 4.11 also shows another interesting design decision: certain verbs

are connected at more than one entry point to the hierarchy. For example,

EAT is connected to EDIBLE (PLANT) as well as CATTLE This is a radical

departure from most case theories, forced on us by our trying to arrange cases

hierarchically8. Since we don't restrict ourselves to trees, it is tempting to

create a new superordinate every time some "case" does not fit into the

structure, ft is more flexible to simply allow disjoint sets of selectional

restrictions, connecting the verb to the most general minimal contrast

coordinate9 for a particular subset of restrictions. For example, to connect

EAT to the one node that includes everything one might eat, both cattle and

edible plants, given the hierarchy in Figure 4.11, this would be ACTUAL

(OBJECT). As discussed earlier, this is an overgeneralization that would be

relatively useless as an aid to disambiguation. It may be an artifact of a

particular arrangement of the hierarchy, but we would venture to guess .that

any arrangement would lead to this situation for many verbs.

Now we can make use of this structure by connecting nodes in the lexicon

to their most specific roles in the case hierarchy, and allowing activation to

spread up to the more general cases, informing them that there is a filler about.

In this arrangement however, we must insure that only one case of each type

wins, so members of the same type are mutually inhibitory. All nodes that are

immediate children of another node are thus mutually inhibitory. This

guarantees that eventually one path to the root case (say, Object) will "win"

8 A good example of this is trying to handle the different types of Agency of "'threw" in "The tornado {FORCE)
threw the house through the air" versus "Bob (AGENT) threw the bail." Some case systems might have two lexical en-
tires for "threw" with different case frames to cover this. But both entries still "mean" PROPEL. Others would have
the Agent case be general enough to cover both. Given the exploded case representation and the case hierarchies, al-
lowing more than one type of the same general case appears to be a clean way to resolve the issue. We leave it to the
linguists to decide if it is warranted.

9Minimai contrast coordinates are mutually exclusive subordinates of the same node.



(note the similarity between this and our lexical access model; here, though,

the discrimination network is inverted) The linkages are exactly the same as

for the semantic network hierarchy, except for mutual inhibition between

subtypes of the same node; activation spreads "up" to the root, but not

"down" past where there is activation from the lexicon. Thus, we still have the

idea of Agent and Object, but these form the root nodes of hierarchies of more

specific, typed cases.

Details of the Case Hierarchy Semantics

There is more to the design than has been presented, since more control

information is necessary. For example, if a specific case in the Object

hierarchy is activated by the semantic network, and this activation spreads up

the Object hierarchy, what prevents everything in the semantic network

connected to this path from getting feedback? Presumably, the root of the

semantic network, THING, can fill the most general Object case, so how do we

prevent OBJECT-Object (the root of the Object hierarchy) from feeding back

to THING in the semantic network, thus feeding back to everything?

Second, in the first version we gave with unorganized exploded cases, the

semantics of a case node firing was that both the predicate of that case and an

appropriate filler were firing. Now, it seems, we need a case node to fire if it

only has a filler, in order to inform more general cases that they have been

filled How do we prevent this from feeding back to the semantic network

when there is no predicate for these cases?

The problem is that we have many more control problems (or information

channels) here than we can handle with a single node. The answer is to

replace the nodes of the case hierarchy with a small network encoding the

desired semantics. Let us be clear about that semantics first, and then describe

the control network that encodes it.

We call a case filled if it has input from the semantic network. A case is

filled-h if it is filled or if a subordinate case is filled 4-. We call a case satisfied



if it is filled + and one of its associated (connected) predicates is active. A case

is satisfied'+ if it is satisfied or a subordinate is satisfied+ . Finally, we use

superordinate* to indicate the reflexive transitive closure of superordinate.

Now, the proper behavior should be:

(1) A case that is filled and has a satisfied superordinate* should feed back to

the semantic network.

This condition says that only if a case has an associated predicate firing and it

is getting direct stimulation from the semantic network, should it feed back to

the semantic network. Figure 4.12 shows the basic idea The nodes above

where the predicate is attached to the hierarchy are not allowed to feed back to

the semantic network. If the filler is at or below where the predicate attaches,

LEXICON CASE HIERARCHY

Figure 4.12. Filler "a" gets feedback, filler Mb" doesn't (it is too general a filler

for the predicate's case).



then all is well, and the case hierarchy feeds back to the semantic network

where the filler is attached. If a predicate is below a filled case, nothing

happens.

(2) After the network has converged on an interpretation of a sentence, each

case hierarchy should have no more than one satisfied case, and thus only one

satisfied + path to the root.

This condition says that when we are done, no more than one case in the

hierarchy is associated with a predicate by being in the condition "satisfied."

Notice that the existence of only one satisfied+ path to the root does not

imply that there is only one satisfied case. There may be several satisfied cases

on the path. This could only be due to the activity of more than one predicate

linking into the path, since "satisfied" requires that a connected predicate is

firing. It is the domain of the disambiguation mechanisms to reduce the

number of predicates to one, should this occur, so all the machinery of the case

hierarchy need do is provide "path disambiguation." Nor does the existence of

only one satisfied case imply that there is only one filler for that case. There

may be many fillers active at or below the satisfied case, since satisfied on

requires that the case be filled+. Actually assigning a word sense to a case is

the province of the binding mechanism to be discussed in the next section.

Implementing the semantics we want requires several information

channels between cases in the hierarchy and between these and the semantic

network. For example, a case that is filled must communicate this upwards,

implementing the filled 4- relation. A case that is satisfied must communicate

this downward, so that the filled case may then begin feeding back to the

lexicon. For the purposes of the binding mechanism described in the next

section, the satisfied + path to the root must be implemented, and this is

distinct information from filled+, which necessarily also reaches the root. If

we want to restrict ourselves to one unit per case node, one choice is to encode

each type of information as one of the small number of output values, since a



connectionist unit has only one output, A cleaner solution is to apply the

unit/value principle and use a different unit for each type of information to be

communicated. Then the only problem is choosing connections and functions

for the units to encode the control implementing the semantics. Thus each

case "node" will now consist of several units reflecting different states of

information about the case.

Figure 4.13 shows the network for a case role. It is necessary to separate

"filled" from "fllled+ft and "satisfied" from "satisfied + " since in each pair,

different semantics are required. For example, the feedback to the lexicon

should only occur if the case is filled and satisfied, not just filled + and

from
superordinate
satisfied

to
superordinate
filled +

A

to
SoHo

from
SoHo from

subordinate
filled +

to
superordinate

from satisfied +
predicate

to
subordinate
satisfied

from
subordinate
satisfied +

Figure 4.13. The control network for a case role.
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satisfied. So we need separate units to encode filled and filled+ . Also, we

want to communicate upwards to the root that there is a satisfied case with the

satisfied + nodes. However, we need to communicate downward that there is a

satisfied case, in case the filler is below (more specific), so that it is then

enabled to feedback to the lexicon. Propositional schemas of the potential

functions for these units are given in Table 4.3. The reader may check that

these implement the semantics. Presumably we would use a numerical version

of these that would reflect input strengths. Also we would need to have the

satisfied + nodes be mutually inhibitory between coordinates to implement the

constraint that only one satisfied + path to the root should "win" (this is not

shown in the figure).

4.3.5. Bindings

A technical problem that now arises is the "binding problem," that is, how

word senses become associated with the cases that they fill. The pathway

through the lexicon is not sufficient for this, since the lexicon is shared, and

many concepts have the same superordinate nodes, resulting in "crosstalk".

(This is a "feature, not a bug", as explained in the Implications of the design

Table 4.3. Propositional Schemata for Case Network Units. C[i]'s are from lex-

icon, F + [j]'s are subordinate F+'s, S' is the superord. S, S + [j]'s are subordi-

nate S + 's.

Unit Name

F

F+
S

s+
Feed

Potential Function Schemata

OR(C[l],...C(n])

OR(F,F+[1] F+[m])

OR(AND(OR(P[1],... P[k]), F + ), S')

OR(S,S + [1] S + [m])

AND(F,S)
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section). What we are aiming for here is a link between the two,

corresponding to an assignment of a word sense to a case. This forms the basis

of the stable coalition between the verb, its cases, and their associated fillers.

We adopt essentially the simple (rather than the unit-efficient) solution given

in (Feldman, 1982). That is, for every possible binding of a word sense in the

buffer to a case, there is a unit connecting the two. We call such units binder

units. To avoid the combinatorial explosion, we make this binding not to the

exploded case, but to the root case of the hierarchy corresponding to the

exploded case (see Figure 4.14). We can think of these binder units as

corresponding to the assignment arrow in a programming language. In a

Agent Hierarchy Object Hierarchy Locative Hierarchy

CONCi = Locative

Word-sense2/
CONCi

Word-sense1/
ONCi

Figure 4.14. The binding space for CONCEPT!.



successful parse, then, the appropriate word sense for each buffer position is

connected to the appropriate case through a binder unit at the root of the

appropriate case hierarchy. For each position in the buffer, there is a set of

binder units to the roots of all the case hierarchies. These are arranged in a

WTA so that each buffer position is constrained to fill only one case. This is

called the binding space for that buffer position. In addition, there are

constraints between the binding spaces for the buffer positions. The Agent

case should only be filled by one buffer position. This constraint is

represented by making all of the binders to the Agent hierarchy a WTA. The

result is a two dimensional WTA: One dimension represents the constraint that

a position fill only one case; the other that a case be filled by one buffered

word sense (see Figure 4.15). (An implementation of this is described in the

next Chapter.) Thus there is a competition between the assignments of fillers to

their cases.

to Agent node

binding space
forCONCI

Figure 4.15. A two-dimensional binding space.



An interesting and useful consequence of this organization is that as word

senses are assigned to cases through one of these binder units winning, the

binding space for succeeding buffer positions are narrowed by these choices. If

the word sense in buffer position 1 is assigned to be the Agent, then the

binders to the Agent case in succeeding buffer spaces are suppressed, making

the set of choices toward the end of the sentence fewer, and presumably

speeding up the formation of the final coalition. This is similar to the building

up of expectations in so called "expectation based" parsers, such as the Word

Expert Parser (Small, 1980) or ELI (Riesbeck & Schank, 1976).

Another advantage of this organization is that it provides a clear place for

the syntactic module to interface with the semantic module. Let us assume, for

the sake of argument, that we can compute that NP1 is Conceptl, thus

associating the syntactic entity with the semantic entity. Our syntactic module

uses binder units as well (see the next Chapter) to make assignments between

syntactic constituents and their roles. Now, assume that it has computed that

NP1 = SUBJECT (that is, that binder is firing), and that the verb is PASSIVE.

Then the connections shown in Figure 4.16 implement the Passive

Transformation (Chomsky, 1965). They do this by inhibiting the assignment of

the word sense in the first buffer position to the Agent case, without restricting

the other possible cases it could fill. This is just one possibility for interaction

between the two systems. Other syntactic and semantic relationships can be

studied in this framework and it appears to be a fruitful approach for future

work.

43.6. An Extended Example

As we have stated earlier, the full design we have just described has not

been implemented. While running examples from a preliminary

implementation are given in a later section, it is important at this point to work

through an example "by hand", to see how the complete model works. In this

section, we work through the processing of "John threw a rock." While this is



CONCl = Locative

Figure 4.16. The Passive transformation.

not an exciting example, it proves complicated enough to do by hand. All of

the content words need to be disambiguated. "John" could be a toilet or a

person, "threw" could be PROPEL, HOST (in the sense of "threw a party"), or

INTENTIONALLY-LOSE (in the sense of "threw the fight"), and "rock"

could be a noun meaning "a piece of stone" or a verb meaning "cause to move

back and forth"10.

Also, for the kind of disambiguation phenomena we are trying to handle,

an inheritance hierarchy, rather than a complete semantic network, is sufficient.

One possible implementation of such a hierarchy is given in Chapter 6. We

thus have to ignore some important representational issues in parsing. For

example, our representation of an instance of a concept is to simply tag our

words with "concept numbers", rather than to build an explicit frame in the

semantic network. This is inadequate for the representation of complex

concepts. It is even inadequate for simple things such as "a rock." In previous

ed.

l0Recail that Seidenberg et ai. (1982) showed that even in such situations, the verb meaning of "rock" is acuvat-
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work, such as (Finin, 1980) or (Hirst, 1984), the word "a" is a frame specifier,

signaling that an indefinite object frame is to be constructed. (Versus Mthe",

which usually signals that an existing frame matching the concept is to be

found) Such differences are likely to have an effect on sentence processing,

and a mechanism for this should be included in a complete model. However,

constructing a full-featured connectionist semantic network is beyond the scope

of this thesis11.

We assume the buffer and semantic network shown in Figure 4.17. We

are employing several simplifications to keep the example manageable. The

semantic network is stripped down to a few nodes of interest; we ignore the

connections of the verb meanings to the lexicon, since they should not play a

Toilet/ \ / Propel/
CONC1 I I CONC2

Buffer

Figure 4.17. Buffer & lexicon for example sentence; verb connections omitted.

llHowever, see (Shastri & Feldman. 1984; Feldman & Shastri, L984) for a connectionist implementation of some
of the features of a semantic network we would need.



major role in the example; and we only consider the PROPEL and HOST

meanings of "threw". The meanings of "John" are represented as MALE-

HUMAN (abbreviated M-H) and TOILET, and "rock"'s as STONE and

MOVE. Since we don't have conceptual frames in our semantic network, we

ignore the "a" in the example sentence, "John threw a rock." Finally, in the

figures we just use one node per case in the case hierarchy, keeping in mind

that this stands for the case network described above, with the attendant

behavior. We simulate hearing the sentence by having the buffer nodes

corresponding to the meaning instances of "John", "threw", and "rock" begin

to fire at simulation steps 1, 6, and 11 respectively.

Figure 4.18 shows the Agent hierarchy with the connections to the verb

meanings and the semantic network. All of the verb meanings share the

ANIM(ate)-Agent case. We include FORCE as an Agent case, shared by

MOVE and PROPEL. As we saw before, connecting the verbs to their most

Agent Case
Hierarchy

Buffer
position 2 position 3

Figure 4.18. Agent hierarchy for example sentence.



specific cases thus sometimes requires assigning them more than - one

possibility.

The idea is that the predicate is connected to the maximally specific node

that still encompasses all the possibilities. Yet, as we see, there are times when

there may be more than one: when if we went up higher, we would include

types that aren't fillers. So, we connect to the set of maximally general nodes

such that their coordinates don't fit the constraints of the predicate (the

minimal contrastive elements discussed earlier). Rather than having a separate

FORCE case, as some case grammars do, we simply include it as a subtype of

the lNANlM(ate)-Agent type. Thus "Agent" is a rather general notion here.

In keeping with the "upside down discrimination net" plan, disjoint subtypes

ANIM and INANIM are mutually inhibitory. Recall that this is done to

guarantee that one path in the hierarchy from the most specific filled case node

to the root node "win"12. Also, note that HUMAN is connected to ANIM-

Agent, so MALE-HUMAN inherits this property by activating HUMAN. We

show no filler for the FORCE case, since none arises in the example sentence.

Figure 4.19 shows the appropriate (simplified) portion of the Object

hierarchy. Notice that in many cases, corresponding superordinates in the

lexicon and case hierarchy are connected. One of the objectives of the network

for a case role given in Figure 4.13 was to prevent too much feedback in cases

like this. In this example, the semantics of the case nodes prevents feedback

above the Moveable node because no active predicate is attached above there,

so no node above Moveable is satisfied.

Figure 4.20 shows the complete binding space for this example. Of

import is the fact that buffer nodes are only connected to binders that are

appropriate to them, e.g., TOILET/C1 is not connected to Cl = Agent. M-

12Recall that this does not guarantee that a unique case is selected. There must be examples where a single path
would contain a more general case chat is appropriate to a different verb sense than the more specific one. (I can't
think of any...). Such examples presumably are either globally ambiguous, or disambiguable from other information,
either other cases appearing in the sentence, or syntactic information.
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Figure 4.19. Object hierarchy for example sentence.

position 1

Stone/CONC3
. . "

position 3

buffer

Figure 4:20. The binding space for the example.

H/Cl (MALE-HUMAN) is connected to both Cl = Agent and Cl = Object,

since the Object class includes animate Objects, as in "John loves Mary."

Finally, a look back at Figure 4.7 will help to give an idea of how this all fits



together.

The activation rules for the various types of units are given in Appendix 1.

, These rules are meant to reflect the basic design in an expedient manner.

While not particularly plausible when taken as the behavior of single neurons,

they reflect the use of the connectionist caveat that our units can be

abstractions of the behavior of a larger collection of units.

Table 4.4 is the result of executing the simulation by hand. The values

shown are unit outputs, rather than evidence (in the sense given in the

Appendix). For case nodes, since these are complex, the states of the case are

shown, as described in the section on Ugly Details. Although it appears rather

formidable, we hope to guide the reader through it in as painless a manner as

possible. Please bear with us. Helpful hints: The table is organized so that the

various subnetworks are grouped together. The lexicon is laid out with

subordinates above their superordinates, so that the spread of activation up the

hierarchy can clearly be seen in the diagonal progression from left to right

down the table. The letter symbols stand for states of the case node

subnetwork, which are generally the same as in the text above, except that "pr"

stands for ftpredicate", meaning that a predicate attached to that case node is

firing. A blank means the unit is inactive. "Uninteresting" units, that once

activated, never change or play any further decisive role, such as THING in

the semantic network, have been deleted from the table, mainly because it

would not fit on the page otherwise. For the record, FORCE and SOCIAL-

EVENT enter state "pr" at iteration 7 and stay there, and INANIMATE is

actively suppressed from iteration 8 on.

Here we go. At iteration 1, TOILET/C1 and M-H/Cl are activated (from

"John" through the lexical access network as described in Chapter 3). In the

next iteration, the binder units for this buffer position are activated. Also, in

iterations 2 through 4, we can see the activation from the word senses

spreading up the semantic network. As units in the semantic network become



Table 4.4. Unit Outputs of the Hand Simulation of "John threw a rock."
f: filled, f+: filled+ , s: satisfied, s+ : satisfied+, pr: primed

Iteration

MALE-HUMAN

HUMAN

LIVING

TOILET

BATH-FIX

ARTIFACT

STONE

NAT-OBJ

ANIMATE

Agent

MOVEABLE

CONCRETE

Object

M-H/Cl

TOIL/C1

Cl = Agent

Cl=Object

PROPEL/C2

HOST/C2

STONE/C3

M0VE/C3

C3=Object

I 2

4

4

4 4

4 4

4

4

3

4

4

4

4

4

4

4

4

4

4

f

4

4

5

4

f

f+

f

4

6

4

f

f+

f

f+

4

3

3

7

4

s
f+

pr
f

f+

4

4

4

8

5

s

s+
pr

f

f+

4

4

4

9

5

5

s
s+

pr
f

f+

5

4

4

4

10

5

5

s
S +

pr
f

f+

6

5

3

4

4

11

5

5

s
S +

pr
f

f+

6

0

6

3

4

4

4

4

12

5

5

0

4

s
s+

pr
f

f+

7

0

6

0

4

4

4

4

4

13

5

5

0

0

4

4

s
s+
s
f

f+

7

0

7

0

4

4

4

4

4

14

5

5

0

0

0

5

4

s
s+
s

s+
f+

8

0

7

0

6

4

4

6

4

15

5

5

4

0

0

0

5

4

s
s+
s

s+
S +

8

0

8

0

6

0

4

6

4

16

5

5

4

0

0

0

5

4

s
S +

s
s+
s+

8

0

8

0

6

0

4

6

5

17

5

5

4

0

0

0

5

4

s
s+
s

s +

s+

8

0

8

0

6

0

6

6

5

active, they mark the related case nodes in the case hierarchies as 'Tilled11. For

example, HUMAN becomes active in iteration 3, causing ANIMATE-Agent
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(and ANIMATE-Object, not shown) to be filled in iteration 4. This reflects

the fact that a male human, by virtue of being a human, can fill the role of an

animate Agent. In processing terms, it is saying, "there's a filler around for

this case, if anyone wants it" By iteration 6, all of the case nodes that can be

filled by the two meanings of "John" are marked filled or filled+.

Now (iteration 6), the two meanings of "threw" become active in the

CONCEPT2 buffer. These are directly connected to the case nodes

representing their case frames. If one of these is marked filled+ , it becomes

satisfied and begin to feed back to the lexicon (e.g., PROPEL/C2 becoming

active causes ANIMATE-Agent to feed back to HUMAN). Otherwise, case

nodes are simply be ready to be satisfied if a filler comes along. For example,

MOVEABLE-Object and SOCIAL-EVENT-Object immediately become

satisfied if a filler comes along. (We show this by entering Mpr" for

"predicate" in the Table.) The activation levels of the semantic network nodes

remain the same until and unless an attached case node sends feedback to the

"filler" concept For example, ANIMATE-Agent becomes satisfied at iteration

7, causing HUMAN to raise its activation level at iteration 8. This ripples

down the semantic network to M-H/Cl, making it become more active than

TOILET/C1. M-H/Cl get a double dose at this step (10), because it gets

increased feedback from Cl = Agent as well. The "satisfied+" state has spread

up the Agent hierarchy, increasing the activation of Cl = Agent at iteration 9.

This increase in evidence for M-H/Cl kills off its competitor, TOILET/C1.

Thus "John" has been disambiguated by feedback from the Agent case

hierarchy.

The role of CONCEPT1 then gets.disambiguated by a conspiracy between

M-H/Cl and Cl = Agent These two nodes increase each other's activation

until Cl = Agent defeats Cl=0bject We assume a maximum activation of 8,

so the escalation stops there.



Back at iteration 11, the two meanings of "rock" enter the buffer as

STONE/C3 and M0VE/C3. STONE in the semantic network becomes

activated, causing MOVEABLEObject to become satisfied at iteration 13.

This has several effects: MOVE/C3 gets feedback from MOVEABLE-Object,

as does PROPEL/C213. This causes PROPEL/C2 to win over HOST/C2 since

its obligatory case has been filled. Also, MOVEABLE-Object feeds back

through the semantic network to STONE/C3, allowing it to continue

competing with MOVE/C3. Finally, the satisfied + spreads up the Object

hierarchy, giving C3 = Object a boost at iteration 16. This gives STONE/C3 a

boost at iteration 17. The reader can verify, using the rules in the appendix,

that this leads to a conspiracy between these two like with M-H/C3 and

Cl = Agent, defeating M0VE/C3 by iteration 22. The result is a stable

coalition between the MALE-HUMAN meaning of "John", the PROPEL

meaning of "threw", the STONE meaning of "rock", and the binder nodes

which encode the assignments of MALE-HUMAN and STONE to their roles

in the sentence.

4.3.7. Some Implications of the Design

One thing left to discuss is what the design implies for the disambiguation

phenomena in the Seidenberg et aL (1982) (STLB) study. First, recall that the

disambiguation mechanism given in Chapter 3 already implies that within class

ambiguities are resolved faster than between class ambiguities. The resolution

was based on feedback to the meaning nodes (the buffered concept nodes

here). In this chapter we have specified where that feedback comes from: the

semantic network which overlays the lexicon. We now explain how this

resolves the ambiguities in an appropriate example sentence of the STLB

study. In the sentence, MJoe picked up the straw", STLB found multiple access

l3This appears to be a bug. One sense of "rock", the Noun sense STONE, has tilled a case in the Verb sense,
MOVE! We don't think this is intuitively appealing, even in the case of agrammatic aphasics without syntactic infor-
mation. One solution we have considered is to add binding nodes which bind buffer nodes to Predicate, which would
then be a mechanism for the various possible predicates to compete with each other.



of the meanings of straw. But the sentence 'The farmer picked up the straw"

elicited selective access. How does our model explain the difference? Given

the action of the semantic network that is the lexicon in the model, the answer

is simply that "farmer" primes concepts related to farming, while "Joe" does

not. Thus the meaning of "straw" related to farming activates its primed

superordinate nodes faster than the meaning related to drinking. Thus the

"hay" meaning receives feedback sooner than the "soda-straw" meaning.

Additionally, this satisfies the Object case faster, and receive feedback from

that sooner than "soda-straw" does. The result is that the "hay" meaning wins.

As noted above, due to the structure of the disambiguation mechanism given

in Chapter 3 this happens faster than if the ambiguity was a noun-verb one.

The above explanation requires more semantic relationships represented in the

•network than we have used so far, but the principle is the same as for the 1S-A

hierarchy.

This mechanism can also be used to explain "semantic garden path"

sentences, such as "the astronomer married the star." Due to the priming of

concepts related to astronomy, the "celestial body" meaning of "star" receives

feedback sooner than the "famous actor" meaning. However, due to the case

role mechanism, "celestial body" is not a candidate for "MARRIAGE-Object",

and while initially more active than the "famous actor" meaning, it eventually

loses out due to feedback from the case hierarchy to "famous actor".

4.4 Example Simulations

In this section we present the results of a small network built with the

ISCON simulator (for Interactive Simulator of Connectionist Networks) (Small

Shastri, Brucks, Kaufman, Cottrell and Addanki 1982). This network is small,

using only 40 units, and is based on an earlier design (as reported in (Cottrell

& Small, 1983)), but will serve to illustrate some processing characteristics of

our model, and two ways in which it can disambiguate verb senses. The

differences with our current model are that it does not employ the case
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hierarchy, the lexical semantic network, or binding spaces. Cases and their

fillers are simply directly connected. The syntax portion of the model

(discussed in the next Chapter) was not used either, so the sentences employed

are not semantically reversible. This is an illustration of how far we can get

without these "extras". The network successfully disambiguates the sense of

"threw" (and "ball") in the following sentences:

1) bob threw a bail.

2) bob threw a ball for charity.

3) bob threw a ball to the dog.

4) bob threw the fight.

5) bob threw up dinner.

6) bob threw a ball up.

7) bob threw up a ball.

•8) threw bob ball up.

The last sentence illustrates what we feel is a desirable property of

cognitive models of language understanding: the ability to "make sense" of an

ungrammatical input. While syntax must eventually have a role in our model,

it should not prevent understanding of these sentences, but only impose

constraints on bindings that may be overridden. This is in sharp contrast to

many previous AI models, which would most likely "break," or reject such

input, without making sense of it.



We describe a trace of the processing of sentence 5, keeping in mind the

possibility of sentence 7. Following this we discuss the processing of sentence

1, keeping in mind the possibility of sentence 2, as this illustrates a different

disambiguation process.

The relevant subset of the network is shown in Figure 4.21. Note that

typing information is encoded in the connections to the cases, FOOD ffisa"

VOBJ, but isn't usually a POBJ (here, exploded cases are lexicalized by tacking

on the first letter of the predicate which defines them: PROPEL, VOMIT,

THREW1 ("threw the fight") and GAVE ("threw a party")). Obviously, food

can be propelled, and a low-weighted connection should be included to reflect

this. For this example, we simulate hearing or reading the sentence by

stimulating each word at the lexical level sequentially; the next word is

introduced at each iteration of the simulation. Figure 4.22 shows a trace of the

potentials of each of the relevant units for this example (POBJ and PR EC are

not shown. They do not fire in this example, as neither has a filler). We see

CASE PAGT JC POBJ JVPLOC J VVAGT J l VO8J

WORD-SENSE 1BOB1 J f PROPEL J^VOMIT IUP1 JLFOOO JLSOMEBALL

bob I Vthrew J tup J Vdinner J l a I I bailLEXICAL

Figure 4.21. Subset of the network for example 1.
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Figure 4.22. Graph of unit potential over time from the simulation of example

L An asterisk indicates the unit is above threshold (i.e., firing).

that at iteration 3, BOB1 has primed PAGT and VAGT (along with TAGT and

GAGT, not shown). These units will not cross threshold and fire until they get

additional input from their associated predicates (at iterations 4 and 5,

respectively). This is an example of how we prevent activation from spreading

too much: conjunctive sites are used at the case nodes so that both the

predicate and a filler must be present (i.e., firing) for the case node to fire and

feed back to the filler and predicate. Nodes on the word sense level (fillers and

predicates) have the feedback connections weighted so that they will not fire

from top-down feedback alone; they must have bottom-up input first.

Also at iteration 3, the lexical unit for "threw" has excited the four units

on the word-sense level (not all shown) representing its possible meanings.

Figure 4.23 (from the same simulation) shows how collocations such as "threw

up" are handled: there is a conjunctive connection from "threw" and "up" to

VOMIT, so that VOMIT does not cross threshold until both are on. This is



Figure 4.23. Processing a collocation,

consistent with some results of Swinney (private communication) which show

that the sense of a collocation is not active until all the participating words are

heard.

At iteration 4 in Figure 4.22 we see parallel activation of multiple

hypotheses: both VOMIT and PROPEL are active. A mutually inhibitory

connection between them helps insure that one will win. We also see part of

the case frame for PROPEL has been primed (POBJ and PREG, not shown,

have also been primed). One case, PAGT, has been Tilled; that is, the PAGT

node has crossed threshold and is involved in a mutual feedback coalition with

BOB1 and PROPEL. The rest of the cases are basically in "expectation" state:

if a filler in the noun network comes along, they immediately cross threshold,

as in the next iteration when activation spreads from UP1 to PLOC. (Please

ignore that "up" is not really a noun; we use it here as an indication of

location.)

We skip to iteration 8 (Figure 4.22). Here we show two cases filled for

each predicate; FOOD fills the requirements for a VOBJ, and UP1 fills the
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PLOC (location) case, while both PAGT and VAGT are filled by BOBL

However, all cases are not created equal. The reason PROPEL is no longer

firing by iteration 12 is that weights are set in feedback connections from the

case nodes so that obligatory cases, in this example PAGT and POBJ, must be

firing in order for the verb to keep firing. Hence VOMIT wins here, since both

VAGT and VOBJ have been filled If, instead, Ma ball" had been scanned, this

would have filled the POBJ case, and the PROPEL coalition would have won.

We can liken this to a voting procedure where the cases cast votes for their

verb. The dropping off of PROPEL eventually leads to its cases also fading, so

that by iteration 20 (Figure 4.24) shows ail the units involved in the coalition)

we have a stable coalition showing the result of the parse. This, for us, is the

result: a pattern of activation on nodes representing the correct interpretation.

Note that, since there is still residual activation on PLOC and PAGT,

subsequent reinterpretation ("it splattered all over the ceiling1') should be

easier, although we have not yet investigated mechanisms for effecting this.

Figure 4.24. Result of the parse: A stable coalition.



The second example traces the result of the introduction of sentence 1,

"bob threw a ball". Note that in this case, there are two meanings for "ball"

represented in the network: the round kind and the "dance" kind Here we

have two senses of threw with two cases filled (Agent and Object), so the

disambiguation depends on word sense frequency alone. This is represented by

having different weights on the connections between the lexical nodes and the

word sense nodes. Figure 4.25 shows the relevant subset of the network for this

example.

Figure 4.26 from the processing of the "bob threw the fight" example

mentioned earlier illustrates how connection weights reflect word sense

frequency. (Processing is the same for the current example through iteration

3). Here we show the four senses of "threw" we have represented. The

activation levels of the verb senses reflect the different weights on connections

from "threw"; the senses considered more frequent are thus given

proportionately more activation. This activation level difference is the same,

CASE

LEXICAL bob Jltfirew J l a I I ball I I for I I charity

WORD-SENSE \B0B1 JCPROPEL JVGAVE J I BALL X OANCE J| \CHARtTY

Figure 4.25. The subset of the network for example 2.
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Figure 4.26. Unit potential over time for "bob threw the fight," illustrating fre-

quency differences.

although harder to detect, in Figure 4.27, where we show the case frames for

the senses of interest, PROPEL and GAVE (a poor lexicalization of the "host"

sense). The POBJ and GOBJ cases are filled by the different senses of "ball"

(SOMEBALL fills the POBJ case and SOMEDANCE fills the GOBJ case), so

disambiguation has to result from the frequency effects.

We see this situation in iteration 7 (Figure 4.27). The two senses of ball

(SOMEDANCE and SOMEBALL) are mutually inhibiting. The SOMEBALL

sense, however, has an initial activation level higher than that of the "dance"

sense. This, coupled with the lower initial activation level of the GAVE sense

of "threw," enables the coalition involving PROPEL to "beat" down the

activation of its competing coalition, so that by iteration 14, the SOMEDANCE

unit is no longer firing. Now, with no support for the GOBJ case, it fades in

the next iteration, causing GAVE to fade also, since GOBJ is an obligatory

case for GAVE. In a domino fashion, the coalition for GAVE collapses,
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Figure 4.27. Output from the simulation of example 2. Lower overall initial

activation of GAVE coalition results in PROPEL coalition winning.

resulting in the proper coalition (the four upper units in Figure 4.27, plus

BOB1, not shown).

Now, if the sentence ends with Mfor charity," the beneficiary case of

GAVE (GREC) is filled (see Figure 4.28). The result is that GAVE receives

more feedback (from three cases instead of two). GAVE in turn gives more

activation to GOBJ, enabling more feedback to SOMEDANCE, which is

enough to help it overcome SOMEBALL, resulting in the correct

interpretation.

These examples illustrated several processing aspects of our model:

(1) Parallel processing; all units are updated simultaneously, so processing

occurs at all levels at the same time. Bindings are being established

between the word-sense and case levels while new words are arriving at

the lexical level and stimulating their senses at the word-sense level.



Figure 4.28. Output from the processing of "bob threw a ball for charity." The

third filled case (GREC) helps the GAVE coalition win.

(2) Parallel activation of multiple hypotheses: the four senses of "threw" all

fire simultaneously, while several different agent and object cases fire and

compete over several iterations until the most active wins. Many N'LP

programs choose an alternative and backtrack if wrong. Note that in this

paradigm, it is actually easier to activate all possibilities, with the one that

fits best winning. We saw this happen in all of the examples with the case

nodes moderating the interactions between the senses.

(3) Expectation-based parsing: cases which are primed fire easily. These are

strongly typed case roles so that the expectations are specific to the verb

which defined them.

Also, the examples illustrated some control aspects:

(1) Distributed decision making: decisions between competing coalitions are

decided by inhibitory links between units of the same type. Case roles of

the same type (e.g., all agents) are mutually inhibiting. This is a general



technique in connectionist models: incompatible value units are in a

"Winner Take AH" network (Feldman and Ballard, 1982) that always

settle to only one unit highly active. Note that no homunculus appeared

to force decisions.

(2) Word sense disambiguation: the structure does this in two ways: (a)

Obligatory cases provide more feedback than optional ones, so that a

predicate with all of its obligatory cases filled defeats any other predicates

that do not This is the way in which VOMIT defeated PROPEL in "bob

threw up dinner". Even though both verbs had two cases filled, the

missing POBJ case caused PROPEL to fade out. (b) When two verbs have

their obligatory cases filled, the decision is made based on word sense

frequency differences. The more frequent senses get more initial

activation, and this edge is enough to defeat the competing coalition.

The problems with this design were discussed in the introduction. As we

mentioned there, there is no way in this model to assign case roles in

semantically reversible sentences, no clean way to interface with syntax, and

not enough overall organization. The design presented in this chapter

overcomes these objections, while preserving the positive aspects of this model.

What is lacking is an implementation to verify that these claims are true. We

hope, however, that this presentation has been sufficiently detailed to convince

the reader that this is possible. Also, it should be clear that the technique

employed in structuring the case nodes is general enough to overcome any

problems that might arise. That is, when a particular behavior is required, we

can specify the behavior desired in terms of logical predicates, apply the

unit/value principle to implement those predicates, and use unit functions to

reflect the control specified by the logic.

4.5. Conclusions

In this chapter we presented the design of a connectionist semantic

interpreter. By virtue of it being connectionist, we get to add the modifiers:



massively parallel, completely distributed, and neurologically plausible. The

processes of assigning semantic roles and disambiguating word senses are

mutually constraining, parallel processes that communicate through activation

and feedback channels in an active knowledge representation. The efficacy of

the model was demonstrated in the results from a preliminary implementation.

From a Cognitive Science point of view, our model provides a framework in

which various theories of aphasic and psycholinguistic phenomena may be

tested.

There is, however, much left to do. The "proof of the pudding" of the

current design, an extensive implementation, is necessary before we can claim

that all the problems associated with the earlier design have been overcome.

This design also could use improvement: one would like to have more of the

case grammar of Cook (1979) incorporated here, with covert case roles, verb

types, subject preference orderings represented in some way. We plan to do

this by making use of entries in the lexicon for verbs, as we did for nouns.

The hierarchical relationships relationships between verbs would fall out of

such a representation: Similar verbs would inherit cases from superordinate

verb types, while allowing for exceptions to this inheritance. The connectionist

implementation of inheritance hierarchies with exceptions in Chapter 6 is

viewed as a step toward this improvement. Thus, the specification of the case

frame of a verb would then be through the lexicon, rather than through direct

connection, and idiosyncratic case marking could be represented.

Further along, there is the problem of higher order representations in this

framework: frames, scripts, and plans. This involves structures beyond the

clause, and interactions with the various memory types (short, medium, and

long term; and episodic) that have been identified by psychologists. While

some of the fundamental problems of memory have been addressed (Feldman,

1981, 1982; Shastri & Feldman, 1984), it appears to us that a clear

characterization of memory which addresses the known data on short term vs.

medium term vs. long term memory has yet to be determined. This is fruitful



ground for future research.

Finally, within the scope of the present work, the syntactic level

sentence processing which interacts with the case assignment mechanism ar

disambiguation machinery of this chapter needs to be specified. This is tl

subject of the next chapter.



CHAPTER 5

A CONNECTIONIST SYNTACTIC ANALYZER

5.1. Introduction

Our major emphasis in this work is on word sense disambiguation, rather

than parsing per se. However, in order to provide disambiguating feedback for

noun-verb ambiguities, it is necessary to have a parser. In this chapter we

present the design of the syntactic processor, and the results of a simulation of

the model. While this is a preliminary version, lacking many of the features

one would want in a complete parsing system, it demonstrates the feasibility of

the approach, and there are aspects of this model which are rather general and

interesting as partial specifications of a parsing mechanism in their own right.

These include the mechanism for assigning constituents to their roles which has

a natural interface with our model of semantic role assignment, and the ability

to represent syntactic attachment preferences. Also we might include here ihe

fact that this parser uses the massive parallelism inherent in the connectionist

approach, with the concommitant distributed decision making. And, unlike the

parser of Pollack & Waltz (1982: 1985), there is no interpreter that builds a

network based on the input sentence and then runs it in parallel; this parser

uses a network that is fixed, yet responds flexibly to the input.

Overview

In order to implement this parser, we developed a grammar formalism

suitable to our needs, and wrote a LISP program that takes as input a

dictionary and a set of grammar rules, and outputs commands to the ISCON

simulator to build the network. This network implements a top-down parser.
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Expectations are set up compatible with an S. As input comes in (words are

activated at fixed intervals), the structures compatible with the input continue

to be active, while productions that are incompatible with the input are turned

off. After a settling period, a stable coalition in the network represents the

parse tree. Ambiguous lexical items at the leaves are disambiguated through

feedback from the parse tree as it develops. One important difference from

the Pollack and Waltz (1985) spreading activation parser is that the assignment

of constituents to their syntactic roles is explicitly represented by nodes in the

tree called binding nodes. The combination of top-down expectations and

bottom-up evidence comes about at the binding nodes, which combine the

evidence and compete with one another through mutual inhibition. These

nodes can be used to interface with case role assignment in the semantic

analyzer.

Another important difference from Pollack and Waltz is the fact that we

use a fixed network. This is accomplished by having a pool of copies of

constituent recognizers. These may be activated as needed by constituents that

form their parent constituents. All constituents are permanently connected to

constituents that could compose them through a selection network. Whenever

a constituent is expected by some other constituent, for example an NP by an

S, the S can select the first available unused NP recognizer, thereby activating

it, causing it, in turn, to expect its constituents. The selection rules are such

that a constituent recognizer may be selected as long as it is not bound to a

parent constituent. Therefore, more than one parent constituent can select the

same (sub-) constituent recognizer and compete for it. This precludes the

grammar from being left-recursive, since a constituent could end up picking

itself with these rules.

Current Limitations

As a first cut, this parser is less elegant than one would hope, and less

powerful than what is needed for a "real" parser. Although it can handle



recursive constructs, and thus has a mechanism for selecting constituent

recognizers as needed, no attempt was- made to do the same for buffer

positions, so it accepts only sentences of a fixed maximum length. Also, the

fact that the network is of fixed size means that there are only a fixed number

of constituent recognizers, so the number of constituents of each type that can

occur in a sentence is limited. Also, this parser has not been tested on an

extensive grammar, therefore, take any claims with a grain of salt. Finally, we

haven't done anything about: (1) optional repetition of constituents (2) feature

marking of constituents (hence no feature agreement checking) (3) anaphora or

(4) gapping. We would hasten to point out that this doesn't mean that

mechanisms for handling these phenomena can't be implemented in this

framework; simply that we haven't done it yet

The rest of this chapter is organized as follows: We first review some of

the psycholinguistic and neurolinguistic data on syntax (some of this will be

quick: an extensive review of the neurolinguistic data is the subject of the next

chapter). Then we review what the semantic analyzer needs from syntax, and

describe our grammar formalism, leading into a description of our parser, and

finally, we describe a run of the implementation on a sentence.

5.2. The Data

5.2.1. Introduction

Unlike the semantic analyzer, this parser was not written with a view

toward trying to achieve psycholinguistic or neurolinguistic reality, nor was it

intended to cover a wide range of phenomena. We were only interested in a

parser that could handle the simple sentences of the Seidenberg et al. (1982)

study, so we have not considered representations of gaps or lexical preferences,

for example. However, the parser does have obvious methods for dealing with

attachment ambiguities, and predictions relating to some psycholinguistic

theories are possible. Hence we will only discuss a handful of studies that

seemed particularly relevant, concentrating on relating our work to Frazier's



(1979) parsing strategies. In the service of making this section self-contained,

we will try to point out the relevance to our model here, rather than in the

description of the parser.

5.22. Psycholinguistic Data

We will start with lexical ambiguity results. The Seidenberg et al. (1982)

study discussed in Chapter 3 found that regardless of the strength of the

context, both readings of noun-verb ambiguous words are activated, followed

by disambiguation within 200 milliseconds. We interpret this result to imply

that the human sentence processor is at least in part Mbottom-upf\ that is, all

possibilities (at least for lexical constituents) are activated regardless of the

developing syntactic representation. Our parser follows this scheme, activating

all readings of a word in the word sense buffer, followed by rapid

disambiguation through feedback from the developing tree.

On the other hand, for noun-noun ambiguous words in the first clause of

a two clause sentence, where the disambiguating information is contained in

the second clause (as in the teacher looked at her pupils and noticed that they

were dilated) people appear to be able to maintain the activation of both

meanings for as long as 500 milliseconds (Hudson & Tanenhaus, 1984). In the

model of the word sense buffer we shall present here, (which is slightly

different than the model of Chapter 3), an early (wrong) choice of the meaning

of a semantically ambiguous lexical item does not wipe out the complete

representation of the alternate definition; recovery is easier than if the wrong

syntactic choice is made. Also, syntactic feedback will tend to support both

definitions of the word (for a semantic ambiguity), which should aid in

maintaining both readings longer. We next consider higher level syntactic

aspects of sentence processing.

Frazier (1979) has hypothesized three strategies used by the human

sentence processor, which she also presents data in support of:



(1) Minimal Attachment. Attach incoming material into the phrase marker

being constructed using the fewest nodes consistent with the well-

formedness rules of the language.

(2) Late Closure. Whenever possible, attach incoming material into the phrase

or clause currently being parsed, except where this conflicts with Minimal

Attachment.

(3) Weak Semantic Principle. Constituent assignment decisions are not made

in violation of lexical semantic constraints on the possible relations

between words of a sentence, unless no other analysis of the sentence is

possible. Elsewhere, she restates this as: "The parser uses semantic

constraints during its syntactic analysis but only to reject anomalous

analyses." (Frazier, 1979, p. 73).

The Minimal Attachment Principle is simply a statement of what appears

to be a sound strategy: use the fewest nodes possible to parse a sentence. One

problem with it is that it depends on the grammar one uses; different

grammars would lead to different predictions. On the other hand, one could

assume the Minimal Attachment principle and then try to derive internal

grammars from timing studies. In any case, the model we propose follows the

Minimal Attachment Principle. Without having described the model yet, we

can explain this intuitively as follows: The model works by combining top-

down expectations and bottom-up input. Imagine a grammar representation

which is active, in the sense that as parts of productions are recognized,

activation spreads to the next part of the production. Different productions in

the grammar compete for the attachments of constituents that are found in the

input. The more nodes involved in a particular interpretation, the farther the

activation has to spread, and the longer it takes to activate those nodes that the

input actually attaches to. Meanwhile, if there is a representation that matches

the input that involves fewer nodes, this will become activated faster and get a

head start over the representations involving more nodes. Thus our model



explains Minimal Attachment as a timing phenomenon, involving the latency

of activating simple versus complex representations through a spreading

activation network.

As for Late Closure, the rule for deciding between alternate productions

of the same constituent in our model is a simple voting scheme that prefers

longer productions over shorter ones. On the surface, this looks like it

supports Late Closure, but the interactions with enclosing constituents that

could also take the incoming constituent makes the relationship slightly more

complex. The possible attachments are represented by the binding nodes

mentioned in the introduction. These compete with one another through

mutual inhibition. One source of the evidence for a particular attachment (i.e.,

excitation for a binding node) comes from the production that is the target of

the attachment. The production that has more constituents filled so far will

give more evidence to the binding to itself. So the prediction is that late

closure depends in some measure on how much of the "current" constituent

has been satisfied so far versus the enclosing constituents. This prediction

must be modified by consideration of Minimal Attachment; if one of the

productions that could use the constituent has to do so through "calling"

another production, this will take longer, and it may lose the attachment

competition. All of this depends on particular parameters of the

implementation: how long an attachment takes to "win" over others, how long

it takes for activation to spread to subordinate productions, and of course, the

grammar used.

The Weak Semantic Principle (WSP), according to Frazier, presupposes

that syntactic and semantic analysis proceed in parallel, consistent with our

model. In the restatement of the principle, Frazier's claim is that the syntactic

analyzer uses semantics only to reject parses that would result in anomalous

interpretations, unless that is the only interpretation. In our system, the

syntactic analyzer's attachment decisions get feedback from corresponding

semantic attachment decisions; semantically plausible attachments would



receive more support, and would thus win over attachments that had no

support, due to anomaly. However, if there is no semantically plausible

representation, then the syntactic analyzer would simply not get any feedback

from the semantic analyzer; syntactically plausible attachments are always

constructed, insofar as they match with what has been constructed so far.

There is also the issue of timing here; since we have two independent systems

running in parallel, one may work faster than the other. Since we have yet to

actually connect our syntactic and semantic analyzers, we can only speculate,

but our hypothesis is that syntactic analysis requires less computational effort

than semantic analysis, and so the semantic analysis would generally lag behind

the syntactic analysis. However, it should be possible to manipulate the

syntactic and semantic complexities so that semantic analysis proceeds faster.

Some evidence for this stems from a study by Blumenthal (1966) in which

subjects interpreted sentences such as the man the girl the boy met believed

laughed as a compound subject followed by a compound predicate. However,

it is unclear whether such sentences prove anything, given that they probably

only occur in psycholinguistic experiments and the halls of academic

departments.

Because of these timing considerations, our model spans two hypotheses

Frazier calls the "Intermediate semantic hypotheses", so-called because they

attribute a larger role to semantics than the Weak Semantic Principle:

(1) Semantic constraints are used during the syntactic analysis of a sentence

and these constraints may dominate the parser's syntactic conclusions.

(2) The parser uses semantic constraints during its syntactic analysis but only

uses these constraints to select the most plausible of its competing

syntactic analyses.

We hypothesize that the first possibility (semantics dominating syntactic

analysis) occurs in cases where the semantic analysis is stereotypical, and the

syntactic analysis is not, so that the semantic analysis finishes first This in fact.



is the explanation for some "garden pathM sentences; in one such as the old

man the boats, the semantic analysis has dominated the syntactic analysis,

biasing it to an unrecoverable (without conscious intervention) state. The

second possibility is the more typical case. Our model will pursue all

syntactically plausible attachments that are not otherwise resolved by Minimal

Attachment or the "longer productions are better" rule until semantic feedback

resolves the ambiguity. It is blissfully unaware of semantic implausibility; this

is only indicated by a lack of feedback, rather than negative feedback. Hence,

contrary to the original statement of the WSP, our analyzer works on a

principle of "innocent until proven guilty": it considers implausible

attachments until they are beaten by more plausible ones. Thus the question

of "what information is used when" reduces to "what information is available

when."

Although it is not implemented here, another assumption we make is that

the parser has initial biases for the competition between bindings (in the form

of inhibition biased one way or another) based on frequency of attachment and

lexical considerations. When the semantic selection is for the less frequent

binding, the competition takes longer to resolve. Thus our system does not

neatly fit into Frazier's breakdown of different degrees of use of semantic

information. Rather than conforming strictly to (1) or (2) above, the use of

semantic information depends on the interaction of the assumptions of

independent parallel processing of the two analyzers and the varying relative

processing speeds depending on the input.

Rayner, Carlson and Frazier (1983) have demonstrated that there are

interactions of syntactic and semantic preferences for attachment. Minimal

attachment predicts that in such sentences as the cop saw the burglar with the

binoculars, the PP with the binoculars will be attached directly to the VP rather

than to an NP with the burglar as a sister. When the semantically preferred

attachment is different from the syntactically preferred one, as in the cop saw

the burglar with the gun, reading time is increased, with longer fixations in the



region of conflict This argues for an independent contribution of syntax and

semantics to the attachment process. It does not necessarily mean that one

precedes the other; as discussed above, one system may just operate more

slowly than the other on this input. There is a tantalizing correlation between

the fact that subjects spent more time scanning the syntactically ambiguous

section of the sentence when the semantic preference was for non-minimal

attachment, and the way that minimal attachment preferences fall out of our

model. Perhaps the longer fixation times are necessary to spread activation

through the longer production. This is an area for further study.

Rayner et ah conclude from their experiments that the results support "a

model in which independent mechanisms are responsible for structural parsing

preferences on the one hand, and lexical, semantic, and pragmatic preferences

on the other." We therefore conclude that their study supports the overall

model presented in this thesis.

5,2.3. Neurolinguistic Data

This data is discussed in the following chapter; here, we briefly mention

the implications of some of this data for our model. The general picture

emerging from studies of agrammatic and Wernicke's aphasics is that access to

syntactic and lexical-semantic information can be independently disrupted,

which we take as support for our overall model. Linebarger et al. (1983) have

shown that patients who appear unable to use syntactic clues to comprehend

sentences can nevertheless make relatively complex grammaticality judgements,

which also supports an independent syntactic processor. This result implies

that agrammatics can compute syntactic representations, but can't use them to

form semantic interpretations. We assume that the interpretation this has in

our model is that the syntactic processor and the semantic processor have

become "unlinked", as far as the ability to map syntactic and semantic

constituents to one another. The only pathway left is through the word sense

buffer. Our model currently has no mechanism for the detection of



ungrammatically, so we can't make claims about grammatically judgements,

only about what kinds of information are available to the parser. It is not clear

how much of the problem in detecting certain types of malformed sentences

for these subjects was due to their short term memory problems. Since we also

don't have a model of short term memory, (unless one uses the word sense

buffer for this purpose), we will have to leave for future work the exploration

of the ability of our model to predict the types of malformed syntactic

constructions that can be detected without semantic information or short term

memory.

We can however now mention the lesions that would be appropriate in

our model for a Wernicke's aphasic. These patients appear to have severe

comprehension deficits. Their speech is usually meaningless, but fluent. It

generally appears to be syntactically correct, while lacking content due to

severe paraphasias (word and phoneme substitutions). We assume that the

disruption necessary for this behavior in our model would be either the

wholesale destruction of the lexicon, or more forgivingly, simply access

between the word sense buffer and the lexicon. If similar functional units in

production were affected, then all the Wernicke's aphasics could do is activate

the syntactic generator, which would generate a syntactic representation

without the "meaning" nodes filled in in the word sense buffer or semantic

constraints on the function words used The result would be a string of

syntactically correct elements (at a gross level; the classes should be correct)

with the function words and other items that can be wholely syntactically

specified in their proper positions, with random content words of the proper

class in the open class item slots.

On the other hand, we would predict that Wernicke's aphasics could make

grammaticality judgements as well, if they could be made to understand the

task. Unfortunately, this isn't the case. However, patients with echolalia. who

can only repeat what is said to them, have been known to spontaneously

correct syntactic errors in the repeated sentence. This too argues for an



independent syntactic processor.

5.3- The Parser

5.3.1. Background

What Do We Need from Syntax?

There are basically two things we want from our syntactic analyzer. The

first is the syntactic disambiguation of lexical items, to prevent spurious

predicates and fillers from confusing the semantic system. This can be done

through feedback to the syntactic features in the word sense buffer which form

a grammatically correct sentence. The decision machinery in this buffer will

then kill off the meaning features for the meanings corresponding to the wrong

syntactic class, which then will stop sending input to the semantic analyzer.

Secondly, for semantic role attachment the semantic analyzer needs constituent

role assignment information. For example, there is no way for a purely

semantic analyzer to make the assignment of Agent and Object in John loves

Mary, since both John and Mary are equally likely candidates for both roles.

Of course, the semantic analyzer could have the weights between binder nodes

set so that the first " = Agent" node activated always won over the lf = Object"

node. But then it would never interpret the Passive correctly. There must be

information from the syntactic analysis corresponding to the Passive

transformation (see Figure 4.16, reprinted here as 5.1). There are two

components to this process, of which we we shall describe only one. The first

is mapping syntactic entities to their corresponding conceptual entities (shown

as direct links in the Figure); this we shall not implement here. This would be

part of the process of getting all of these components we have described to

work together. As a tactical measure, we have decided to leave that for future

research. The mechanism needed is essentially a binding mechanism similar to

the one described here for constituent-role assignment. The second is

activating binding nodes that represent the assignment of the syntactic entities



CONCl = Object

CONC1 = Locative

Figure 5.1. The Passive Transformation,

to their roles; this our parser accomplishes.

The Role of Binding Nodes

Binding nodes are really the heart of the whole system. In the sense that

what we are implementing here is a constraint relaxation process, connections

between binding nodes encode constraints between assignments. Within syntax

or semantics, the local constraints are that the same constituent can't be

assigned to more than one role, and one role can't have more than one

constituent1. Thus connections locally are generally inhibitory. Between these

two systems, there are constraints such as, if the verb is Passive, then the

semantic constituent corresponding to the syntactic constituent filling the

Subject role is not the Agent. Constraints go the other way too. In the cop

saw the burglar with the binoculars, the attachment of the prepositional phrase

is underdetermined syntactically. It can be attached to the enclosing VP or to

an Nbar with the adjacent NP (apologies for the "mix and match'1 linguistic

lThis constraint would have to be relaxed in che case o( covert cases in semantics. For example, "John" is both
the Agent and the Object in "John ran" The Agent case is overt, but the Object case, che thing being affected by the
running, happens to be equal to the Agent here. See Cook. (1979) for a discussion.



terminology). This is true semantically as well, but one would usually assume

that the binoculars were used for the seeing; rather than that the burglar was

carrying (perhaps stealing?) the binoculars. This is clearer in the case of the

cop saw the burglar with the gun where it is less likely that the cop was using a

gun to see the burglar (a flashgun? a gun with a telescopic sight?). This is a

case where the semantic role assignments can constrain the syntactic ones (see

Figure 5.2). In this figure, we are assuming the implementation of conceptual

frames in semantics. The CONC4 = CONC3MOD is intended to represent the

assignment of Mthe gun" to a role in the "burglar" frame.

C0NC4 = INSTRUMENT represents the assignment of Mthe gun" to an outer

case of "see". Since the former is more likely semantically than the latter, and

corresponds to a modification of an NP by a PP syntactically (among other

constructions), this will lend support to the proper attachment.

At this stage the reader hopefully sees what we mean by the centrality of

the binding nodes to our theory. Since they correspond to the assignment

arrow in a programming language, what we have here is a parallel competition

between assignments. The result gives a simple interface between the syntactic

and semantic systems: the binding nodes in one constrain the binding nodes in

the other. Thus, our design of the parser started "from the inside out", with

PP1 a VMOD! )< CONC4 s Location

CONC4 «'
C0NC3M0D

Figure 5.2 Mutual constraints.



the necessity of binding nodes.

The Grammar Formalism

The grammar that we have developed to enable us to automatically

generate the parsing network explicitly represents roles and the constituents

that can fill those roles. Hence we call it a role-constituent grammar. We are

not aware of any formalism in linguistics that is similar to this although it

appears to be weakly equivalent to a context free grammar. However, as has

often been remarked, the notation one uses can affect the way one thinks

about a problem. In this case, the notation is handy for generating a network

which contains binders for constituents to their roles in parent constituents.

An example grammar is shown in Figure 5.3. The left hand side of a

production in this grammar is a constituent. The right hand side is a list of

roles followed by a set of constituents that can fill those roles. In this example,

the Head of a noun phrase can be filled by either a PRO a NOUN.

Since there are sometimes a number of alternative constituents that may

fill a role, the dot between the role and the set of possible constituents

corresponds to a set of binders that must compete for that role. On the other

hand, every set that a constituent is in corresponds to a possible role for that

constituent, so that binders for that constituent to these roles must compete as

well. For example, any particular NP could be the Subject, Direct Object etc.,

S-> Subject.{NP} Predicate.{VP}
Predicate.{VP}

VP-> Main.{VERB} DirObj.{NP}
Main.{VERB} IndObj.{NP DirObj.{NP}
Main.{VERB}

NP-> DetPhrase.{DET} Head{NOUNf
Head.{NOUN}

Figure 5.3. A sample role-constituent grammar.



so binders to these roles compete. The network is set up so that unless a role

is expected, then that binder doesn't become activated, -so in practice

competition does not involve all of the binders.

Another thing to notice about this grammar formalism is that the role a

constituent can fill is context sensitive within a production. For example, in

the first production for an NP, a NOUN can fill the role of the Head, but not

a PRO. In the second production, the Head can either be a NOUN or a PRO.

Thus there must be two "Head recognizers", one for each kind of Head. Of

course, because we haven't implemented feature marking, this production is

unnecessarily complicated, since the determiner would mark the NP as

"determined", which would conflict with a PRO Head.

Now given this grammar, a dictionary containing the possible syntactic

classes of the lexical items, and some "magic numbers" (how many copies of

each kind of constituent recognizer there will be, and how long the word sense

buffer will be), we can generate a network that will recognize sentences that

match these grammar rules. After a tour of the word sense buffer, we shall

describe this network in greater detail.

The Word Sense Buffer

We used a slightly different version of lexical access from the model of

Chapter 3, basically because it was easier to implement with respect to the

interface with the syntactic analyzer. However, it has some interesting

properties in its own right, which we will describe here. For comparison

purposes, we show the network for "deck" in Figure 5.4. The lexical node

"deck" activates "grandmother cells" for each of its definitions. These are

self-stimulating, to keep the definition around after the lexical node decays.

(Thus the lexical node can be re-used later. Enablement of the "def" nodes in

successive buffer positions is handled by control nodes that sequence through

the buffer. This figure represents one buffer position.) The definition nodes,

in turn, are connected to feature nodes representing syntactic class and



SHIP'S CARD DECORATE STRIKE

Figure 5.4. A word sense buffer position. Inhibitory links
between DEF nodes left out.

meaning. The definition nodes are also mutually inhibitory, but the inhibition

weights are such that they can't defeat one another until decisive feedback to

the meaning nodes supports one "def node over another. The "meaning"

nodes are the word sense nodes of the previous chapter, and have no further

connections to the syntax network. The syntactic class nodes are shared

between meanings of the same class. Thus feedback to one of these from a

role node above will support both definitions within a class, and kill off the

out-of-class syntactic node, followed by the out-of-class meaning and definition

nodes. (Of course, if there is only one meaning for a syntactic class, then

feedback to that class is enough to cause that "deff and meaning node to win.)



Feedback to one of the meaning nodes, on the other hand, will kill off the

other meaning nodes, but the supported definition node, say "deft", will

increase the activation of N0UN1, which causes it to win over VERB1.

However, "def2" will get both extra support and extra inhibition. It gets extra

inhibition from "defT, but since there is a positive pathway between the two,

through the N0UN1 node, it also gets extra support. With the current settings

of weights we have used in our simulation, the result is that "def2" gets

inhibited, but not below threshold. However, since MCARD" has been killed

by "SHIP'S", Mdef2M is invisible to the rest of the network. Only the features

compatible with the Mdefl" are visible. A prediction this network makes is that

it would be easier to recover from a within-class mistaken meaning choice,

since the "deO" node is still firing.

Thus, the major difference between this network and the one of Chapter 3

is that the out-of-class meanings go first, rather than the within-class meanings.

This difference may be an artifact of connecting all of the meaning nodes

inhibitorily. The meaning nodes corresponding to the inappropriate syntactic

class definitions of the word are inhibited by the alternate meaning nodes. If

we just connected the within-class meaning nodes inhibitorily, we would get

the same prediction as in Chapter 3 modulo weight settings (again, there is a

positive path between SHIPS and CARD through DEF1-NOUN1-DEF2, so

the behavior is not determined by the network structure as much as it is by the

weights and unit functions). This is a problem with connectionist networks;

the setting of weights often makes the networks "chameleons" of modelling

behavior. This tends to put them in the class of descriptive, rather than

explanatory, models. To the degree that the settings of weights can be

independently motivated, the term "explanatory" becomes justifiable. As yet

we have no independent motivation for the weight settings in this portion of

the model.

Again, as in Chapter 3, the lexical access network is the decision

machinery for disambiguation. Now, all that is needed is the feedback from



higher levels that drives this process.

This description of the word sense buffer leaves many unanswered

questions. For example, in what sense is this a buffer? What is the

mechanism for reading things in to the buffer? How are different buffer

positions represented? These questions will be answered in the

Implementation Details section. For the moment, the reader should simply

know what the notation means: N0UN2, for example, represents Ma Noun in

the second buffer position1', not "the second Noun to come along".

5.3.2. The Parser

The parsing network is generated by a LISP program that reads the

grammar and a dictionary and outputs commands to the ISCON simulator to

build the network. We will start by explaining at a high level what is

generated by a production for one constituent with several productions. Then

we will go into slightly more detail about how productions for a single

constituent compete with each other, and how the binding nodes compete with

each other. Following this, we will describe a sample run of the parser. The

penultimate section covers implementation details.

Overview of the Network Generated by a Production

Figure 5.5 shows a production and a high level description of the network

fragment generated by it. The nodes in Figure 5.5 represent networks in the

implementation. For the purposes of exposition, however, this level of detail is

more appropriate. It should be pointed out that the numbers on the

constituents, e.g. NP1, are significant only as identifiers of which constituent

recognizer copy is being used; copy 1 of the NP recognizers in this example.

The S recognizer is connected to two "production recognizers" which

correspond to the two productions for an S constituent. These are not

selected; they are a part of the constituent recognizer machinery for this copy

of the S recognizer. These implement a simple voting scheme for comparing



SUBJ.{NP} PRED.{VP}

PRED.{VP}

rule 1

rule 2

Constituent
recognizer

1
I Production
• recognizers

Role
recognizers
(sequenced)

I Binders

j

Constituent
recognizers

Figure 5.5. The network generated by a grammar rule.
Dashed rectangles indicate possible competitors.

evidence between the two productions. If the difference in the amount of

evidence for the two productions is greater than a certain amount (called the

competition window) the one with less evidence gives up.



The production recognizers are connected to "role recognizers", that

sequence through the roles of the production. As evidence comes in for the

Subject role for example, expectations are set up for the Predicate role,

activating that recognizer. As mentioned above, since roles can be filled by

different constituents depending on what production they are in, there have to

be two Predicate recognizers, (n any case the control is different for the two;

the Predicate recognizer in the first production has to wait for the Subject to be

recognized.

The role recognizers operate by enabling the binder nodes for their role,

and setting up expectations for the possible role-filling constituents. These

constituents, in turn, are recognized by another set of constituent recognizers.

These role-filling constituents are selected by the role recognizer from the set

of inactive constituent recognizers of that class. As input comes in, it activates

the constituents appropriate to it that are expected, and the binders for that

constituent compete. If it was possible, for example, for both Predicate

recognizers to be active (it isn't, given that the presence of a Subject would kill

off production 2), the two VP1 = Predicate nodes would compete with one

another. In practice, the competition would be between binders from a

constituent to roles in different higher level constituents, such as ones with

common prefixes. Binders get feedback from the production recognizers, so

that a binding to a well satisfied production will tend to win over others.

This network is repeated for every production in the grammar. It

"bottoms out" on buffered syntactic class nodes, for example NO UN 2 or

VERB3, which are directly connected "downwards" to the definition node for

a lexical item, and "upwards" to binding nodes for roles such as Head in NP1

or Main in VP1.

Implicit in this discussion has been the fact that this parser starts out with

top-down expectations, and merges them with bottom-up input. So, in the

beginning, expectations are generated for everything that could start an S. This



means that the constituent recognizers are enabled and ready to go. Then the

input that matches with those compete through the binders nodes. The binder

nodes represent a merge of bottom-up input with top-down expectations.

Whether or not we have a good algorithm for combining these types of

evidence, we at least have a paradigm for testing different evidence

combination functions.

The end result of a successful parse is that there is a unique binder that

has won over its competition for every constituent, and one production that has

won for every constituent, from the top level S on down. In the next sections

we cover some of the aspects of this model in more detail.

Production Competition

The production competition is a simple voting scheme which favors longer

productions over shorter ones, and as discussed earlier, roughly favors "late

closure" (Frazier, 1979) of constituents. It works as follows: Every production

gets two votes for every "filled" role. "Filled" here means that a binder for a

constituent filling that role has won over all competing binders. This is

communicated to the production competition network by a higher firing rate

for that binder than is possible while it is in competition with other binders.

Each production gets one vote for an unresolved role. "Unresolved" here

means that there is evidence that a constituent for this role exists, that is, a

binder for a role-filling constituent is firing, but it is still competing with other

binders. The evidence rule for each production then is:

if Max(votes for all productions) - My Votes < Competition Window

then continue competing;

else lose;

In the current implementation, the competition window is 2 votes. Since the

votes for this production are included in the Max of votes for all productions,



if this is the winning production, the left hand side of the inequality is zero,

and the production continues. If a competing production is ahead by two

votes, it kills this production. This evidence combination rule favors writing

grammar productions with alternatives that are not greatly different in length;

very long productions, if only partially satisfied, could win over shorter ones.

However, this seems to be a natural restriction on grammars.

While particular rules like this are certainly arguable (this one is), the

point is that we have a good framework for evaluating such rules; they are

intrinsically interesting because they are completely local to the production

competition network; there is no global interpreter making decisions about the

"best fit" to the grammar. Thus this is a testbed for exploring decision

algorithms for a parser that works in a completely distributed manner.

The careful reader will have noticed a problem with the rules as given.

See Figure 5.6. Given that these two productions have a common prefix, and

given input that matches the prefix, i.e. an unmodified NP, how does

production 2 ever win? One answer is to add a "Closure" role that requires no

filler (see Figure 5.7). Then, if no PP comes along, production 2 gets an extra

2 votes and wins. The problem is deciding when the Closure role should fire.

Simply having it start firing after an arbitrary interval won't work, since

different PP's will have different recognition latencies; they may arrive quickly,

unfairly beating production 2 before the Closure role fires (the proper

Nbar-> Head.{NP} Mod.{PP} (1)

Head{NP} (2)

Figure 5.6 Production competition: the closure problem.

Nbar-> Head.{NP} Mod.{PP} Clos.{} (1)

Head.{NP} Clos.{} (2)

Figure 5.7 The closure problem: A solution.
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attachment isn't necessarily to this Nbar) or it may arrive too late to come to

the rescue of production 1. One answer is to make the Closure role fire when

either the PP is recognized, or input inconsistent with a PP is recognized. This

can be computed directly from the grammar, using the "Follow setM (Aho &

Ullman, 1977) (used in predictive parsers of computer languages) of the NP, in

this example. Members of the Follow set inconsistent with the PP would cause

the Closure role to fire. This solution is not currently implemented. By this

mechanism, the shorter production will not win too soon. We can then depend

on the semantic feedback to resolve the attachment of the PP, and the reader

can check that our evidence rule will make the appropriate decision once this

binding has been resolved (and not until then). While this appears plausible,

we won't feel confident in it until we have tested it on an extensive grammar2.

Binders

Binding nodes use a similar rule to the production competition one:

if (inhibition - support < window)
{ /* keep going */

if (inhibition = = 0 && support > criterion) then win;
else continue;

}

else lose;

One minor difference from the production competition code is that the

inhibition doesn't include what this node sends out. (Here we are using the

absolute value of the inhibition, which is usually negative.) The competitors of

a binder are determined from the rule that the same constituent can't be

assigned to more than one role, and one role can't be filled by more than one

constituent. The inhibition is the maximum of the input from these

competitors. "Support" is the sum of bottom-up and top-down input. Top-

down input comes from the production evidence network, and reflects how

2We would appreciate counterexamples, if the reader can come up with one.



well the production is doing. As more roles in a production get filled, the

binders to those roles get more feedback. Thus if a binder for another role in

the production wins, this is communicated indirectly to the other binders

through increased feedback.

Details

There are several details that have been suppressed in this exposition; we

return to them later in the "Implementation Details" section. Most of these

stem from the use of a fixed network: Mechanisms had to be implemented to

allow role recognizers to select constituent recognizers from a pool of them; the

word sense buffer is of fixed length, although a similar selection mechanism

might work here too; and just the existence of copies of constituent recognizers

with the exact same control structures is not particularly palatable. However,

recent advances in connectionist tools make the future look brighter.

McClelland (1985) has developed a system called Connection Information

Distribution (CID) which allows the storage of connection information in one

central network (a knowledge source) to be "loaded" into a programmable

buffer (like a Hearsay blackboard, Lesser & Erman, 1977) as needed. While

the mapping of our system into the CID framework is not immediately

obvious, the idea holds promise for avoiding many of the "fixed network"

uglinesses.

5.4, An Example Run

This system was implemented on a VAX/750 running Franz Lisp and C;

the network builder is coded in Lisp and feeds commands to the ISCON

simulator which actually builds the network. This in turn is "compiled" into a

representation suitable for a much faster network simulator written in C by

Sumit Bandopadyay and Mark Fanty. The actual network for the simple

example we will present contains over two hundred nodes and over a thousand

connections. Hence, we will only give a high level description of the network's



behavior3.

Given the sentence he cut the roll there are two cases of lexical syntactic

ambiguity, cut and roll There are no interesting closure problems, as any

difference between this and he cufr can be handled by using "period" as a

lexical item. We simulate reading this sentence by activating each lexical item

every 30 steps of the simulation. These are then "read in" to the definition

buffer described earlier, and after 7 more steps, the syntactic class and meaning

nodes are activated (these and the other nodes in the buffer accumulate

activation slowly). About the same time that PRO is activated in the buffer, an

NP is expected by the Subject role of the S production. Since "he" is

unambiguous, PRO has no competitors and gets highly active quickly. It then

rapidly becomes bound to the Head role in the first NP (by iteration 16) since

there is no competition for it.

The network then expects a VP, and the two productions for a VP (with

and without a Direct Object) set up expectations for a VERB, When "cut"'s

features (NOUN2 and VERB2, the "2" indicating buffer position) become

activated at clock step 38, they inhibit one another, driving each other below

threshold Since this cuts off the inhibition, they rise up again, like flickering

bits, but now feedback from the binder for VERB2 to the Main Verb role in

the VP gives extra support to the VERB2 node, allowing it to remain above

threshold while NOUN2 doesn't, resulting in a win for VERB2. Thus, "cut"

has been disambiguated as a verb. By a few steps later, the node

corresponding to the "meaning" of "cut" as a noun also loses.

After this is propagated up the network, expectations are set up for either

a "period" or a Direct Object which can be filled by an NP. The Direct

Object role recognizer selects NP2 (the next unused NP recognizer) which sets

3Eye witness reports that this really works can be obtained from my friends.

4Recall that we haven't implemented features. In particular, there are no verb subcategorizauon features, so if
we wanted to represent that cut is different from left we would need to encode them as different syntactic classes in
the current parser. Since we haven't, he cut is acceptable to our parser.



up expectations for either a DEL NOUN or PRO. After "the" has been

processed, the NP2 recognizer is only expecting a NOUN, and so when "roll"

comes in, it is quickly disambiguated. Eventually the production

corresponding to a VP with a Direct Object wins, and the resulting stable

coalition represents this parse with the appropriate binding nodes in a highly

active state.

Thus our parser has disambiguated the two ambiguous lexical items on

the basis of their "fit" into the developing parse tree. Anything incompatible

with the expectations developed at the "frontier" of the developing tree was

quickly extinguished. If there had been more structural ambiguity, lexical

items compatible with either structure would have remained ambiguous until

some production won over another. While this may seem implausible, it is

compatible with the results of Hudson and Tanenhaus (1984).

5*5. Implementation Details

This section is intended for those die-hards that want to see how it really

works. We first answer the previously posed questions about the word sense

buffer, then detail the operation of the binding nodes, show the actual

networks corresponding to constituent and role recognition, show how copies

are selected from the recognizer pool, and finally detail the production

competition network.

5-5.1. The Word Sense Buffer

The word sense buffer must be activated by lexical items and activate

their "definitions" in sequential locations. The way this was done requires that

only one lexical item be active at a time; while psychologically implausible, it

was expedient In every buffer position, there is a copy of every word's

definition units (the "def nodes of Figure 5.4) and syntactic and semantic

feature units. All of the definition nodes are self-stimulating, so they keep

themselves going once activated, until inhibited by alternate definitions with
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greater feedback from the feature units. Syntactic feature nodes are shared

within a buffer position, so every definition node in position 3 for example,

that corresponds to a Noun, is connected to N0UN3. Thus the interface to

the rest of the grammar is restricted to these few syntactic class nodes in every

position.

All that is necessary to read a word into a buffer position is to activate the

"def" nodes in that position corresponding to its various definitions. There are

three nodes per buffer position that control the sequencing (see Figure 5.8).

The "enable" unit enables all of the definition (and the feedback) nodes in a

buffer; without input from the enable unit, the definition nodes will not

respond to input from the lexical nodes. The feedback unit is of the same type

as the definition nodes, and serves as an indicator that the definition node is

position 1 position2

Figure 5.8. Sequence control of buffer positions.



firing. All of the lexical units are connected to each of the feedback nodes.

This is logically unnecessary, as the definition nodes can serve the same

purpose. The feedback node turns off the enable node, and gives input to the

"ready-to enable" (rte) node for the next position. The rte node is inhibited by

the lexical units. So the semantics of the rte unit is "not word." As long as a

lexical item is firing, the rte unit isn't. When the lexical unit decays below

threshold, the rte unit quickly* begins firing (it has been getting input from the

feedback node all this time), activating the enable unit for the next buffer

position. The enable unit is self-stimulating, so it continues to fire until

another word comes in and the feedback unit for that buffer position turns it

off. It also "bites the hand that feeds it", turning off the rte unit that started it

up in the first place. This is how the buffer positions are sequenced. It would

be desirable to have a mechanism for this that doesn't require the implausible

assumption that only one word unit at a time fires.

5.5.2. Binding Spaces

The "binding space" for a constituent is the set of roles that it can have.

Since the roles are in many copies of constituent recognizers (see the next

section), there has to be a controlled way in which the binding units for the

various copies of the parent roles interact. An early problem with the

implementation was that after a binding unit to a particular role had become

active, when another constituent of the same type came along with the same

role for the already bound constituent (for example, another NP copy for the

Direct Object when, say "he" was already bound to the Head role in the

Subject NP) the binder for the new role became active. Thus we connect all of

the binders to copies of the same constituent in a left-to-right WTA, with a

strong inhibitory weight, so that if a constituent becomes bound to a role in

constituent copy i, it can't become bound to a role in constituent copy i +1 .

This is only a stop-gap measure, since the left-to-right WTA's are only for

binders to constituents of the same type (NP, VP, etc.). If a constituent of



another type tried to bind the already-bound constituent, the same problem

could arise. The problem stems from the function used for binder nodes,

which has since been changed to use state transitions that prevent new

competitors from activating once a binder has won. However, since we haven't

tested it without the left-to-right WTA's, we don't want to make unwarranted

claims. The new binder unit function causes any binder that is receiving

inhibition and is not enabled (expected) to enter the "lost" state. Once it is in

this state, it refrains from ever becoming active as long as there is still

inhibitory input. This just implements the semantics that an "already bound"

constituent should not be bound to anything else.

The fundamental problem is that there is no way in the current system of

marking the span of the input that the constituent covers. The order is

determined solely from who is active when. This could also lead to constituent

recognizers "skipping over" portions of the input. The design (but not the

implementation) thus now incorporates a special binder for every role that

becomes activated by input incompatible with the role, which kills the

production. Another solution suggested by McClelland (personal

communication) is to use recognizer copies that only apply to specific portions

of the buffer, similar to his Trace model of speech recognition (Elman &

McClelland, 1984). It would be interesting to determine whether such a

(relatively drastic in the number of copies) measure is necessary to parse most

sentences, or whether a system that has less of a strict ordering such as the

present design is sufficient. We intend to explore these questions in future

research.

A second problem is setting the parameters in the binding node WTAs.

There is a fine balance between allowing competition and squashing it. For

competitors that should be allowed, the weights have to be low enough to allow

each other to keep going when the evidence is not overwhelming for one

binder, yet high enough to kill off the competition when the evidence for one

binder is strong. "Weight twiddling" is an unsavory affair, and it appears that



what should replace it is a better theory of combining evidence for distributed

decision making. The way decisions are made in this implementation is rather

draconian; once a unit has lost it has lost forever. We believe that using

probabilistic units of the type used by Hinton and Sejnowski (1983) would

allow a more forgiving decision mechanism; units that have low evidence, once

"squashed", would have a chance to recover if better evidence arrived5.

The function computed by the binding nodes is shown in Figure 5.9. The

basic idea is that if the difference between the evidence for this binder and the

evidence for its competitors is not larger than the user settable competition

window, it continues to compete. Otherwise, it loses. If it has lost, and

receives no inhibition, its competition has lost as well, and it returns to the

initial state. The evidence is a weighted sum of the bottom-up and top-down

support.

5.5.3. Constituent and Role Recognizers

The networks involved in recognizing the Subject of an S are shown in

Figure 5.10. Expectations are started by activating the "Expectation" node for

a constituent recognizer. This has to start somewhere, and so we give the

"Expect-S" unit a non-zero resting potential, thus expectations originate with

it6. We will first trace the flow of top-down expectations through one layer of

the network, and then follow the effects of bottom-up activation from a

recognized constituent

Once the an "Expect" node is activated, it remains firing until either the

companion feedback node is activated, which turns off the expectation node, or

the role node that started the constituent recognizer is itself turned off because

its production lost (there is none for the "Expect-S" node). The Expect-S node

has two effects: It enables the Feedback-S node, and starts the recognition

5Wait! I've just been handed a bulletin! As this thesis was being placed in final form, I received a paper which
takes this very approach, (Selman & Hirst, 1985). A few remarks on this paper were included in Chapter 2.

6In a grammar with embedded S's. it is useful to have a surrounding production in "which the top-level S fills the



support = 0.6 * bottomup + 0.4 * topdown;

switch (state){

case qO: if (enabled and there is bottom-up input and

(|inhibition| - support < competition_window)) then

{

state = competing;

return(support);

}:

/* if we got here, then either: not enabled, */

/* no bottomup input, or not enough support. */

/* If anyone is competing, we should lose. */

if (inhibition) then state = lost;

return(O.O);

case competing: if (enabled and there is bottomup input and

(|inhibition| - support < competition_window)) then

{

if (no inhibition and

bottomup input >= win_threshold) then

state = winner;

return(support);

}

/* if we got here, then either: not enabled, */

/* no bottomup input, or not enough support. V

state = lost;

return(O.O);

case winner: return(0.8);

case lost: if (no inhibition) then state = qO;

retum(O.O);

}

Figure 5.9: The function computed by binding units.

role of "Matrix".
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Figure 5.10. Recognition of an S.

networks for each of its productions. It does this by stimulating the production

evidence nodes. We will go into this in detail in the Production Competition

Network section. As long as the constituent is expected, the production

evidence nodes get this input. They, in turn, enable the feedback and output

nodes for their production and start the sequence of role recognizers for their



production. Starting the role recognizers consists of activating the first role

evidence node, in this case the Subject evidence node of the first production

for an S. This has several effects: 1) a constituent recognizer for each

constituent that can fill this role (e.g., NP1 for an NP to fill the Subject role) is

selected by the mechanism described in the next section, in effect activating its

expectation node (Expect-NPl), 2) binders for those constituents to this role

are enabled, and 3) the feedback node for this role is enabled (Feedback-

Subject). Thus expectations cascade down the left side of Figure 5.10, until a

DET is expected This means that binders from all DETs in the buffer to the

DetPhrase role are enabled.

Now, we will suppose that a "the" comes in, activating DET1, and follow

the effects of bottom-up activation. (Since all of this machinery is enabled

top-down, nothing happens unless the constituent is expected.) First, all of the

binding nodes for the DET1 that are enabled become active. The one for the

first role in production 1 of NP1 (DET1 = DetPhrase) sends activation to the

feedback node for the DetPhrase. This becomes active, and has two effects. It

sends its activation up to the feedback and output nodes for this production

(production 1 of NP1) and enables the next role expectation node for this

production (Head in NP1) which begins firing immediately since it is getting

top-down input from the production evidence node. Thus the recognition

process for the next constituent in the production is begun. The second effect

of the role feedback node is to give evidence to the production feedback and

output nodes (they collect the bottom-up "votes" for the production).

The production feedback node then sends the evidence to the evidence

node for production 1 of NP1, which then decides this production should

continue competing, and to the evidence node for production 2, which turns

itself off. Also, the feedback node for production 1 of NP1 sends activation

back down to the DetPhrase role expectation node. This is the path for top-

down feedback to the binders. The circulation is: binders -> role feedback ->

production feedback -> role expectation -> binders. Since all of the role



feedback nodes for this production (DetPhrase and Head) feed the production

feedback node, this is a way of having the contextual effect of a winning

production increase the probability of attachments to itself.

The output node for production 1 of NP1 sends its evidence up to the

feedback node for NPL The NP1 feedback node takes the maximum of the

evidence from the various productions for NP1, and sends this up to its

binders. Currently, the feedback node is thresholded and starts sending output

as soon as about a third of a production is recognized (that is, one third of the

roles are filled, counting the Closure role). Another possibility would be to

gate the output of the constituent feedback node by the last role of the

production, so that it would not start sending output until an entire production

is recognized- We would like to explore the effects of different schemes here

further. This one was chosen because it speeds the spread of activation, and

allows higher levels in the grammar to work with partial results. Another

effect of the constituent feedback node firing is the inhibition of its partner

"expect" node. The feedback node must then take over some of the function

of the expect node, and so is connected to the production evidence nodes. The

expect node must be inhibited as part of the constituent copy selection process,

described next.

5-5.4- Constituent Copy Selection

When a role recognizer needs a constituent recognizer, it has to select one

from the pool of available ones. It does this through the network pictured in

Figure 5.11. The role evidence node activates all of the selection nodes. The

selection nodes are arranged in a strict, locking WTA, similar to the one

described in (Feldman & Ballard, 1982). Once a selection node wins, it stays

on forever (unless the parent role dies due to its production losing). The

selection nodes, in turn, activate the "Expect" nodes for the constituent copies.

Any constituents that have been recognized will have their "Expect" node

inhibited by their "Feedback" node as described above. Thus, the selection
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Figure 5.11. Constituent Copy selection.

node for this copy will not get feedback from its "Expect" node, and will lose

the competition forthwith. The "Expect" nodes are arranged in a left-to-right

WTA, so the "leftmost" constituent copy that has not been recognized yet will

inhibit the ones to its right. This will result in more feedback to its selection

node, which will then kill the others, and lock on as a permanent pathway

between the role expectation node and the constituent expectation node. One

thing to notice about this is that any other role that needs this particular

constituent can select the same recognizer, as long as the constituent hasn't

been recognized yet.
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5-5,5. The Production Competition Network

Figure 5.12 shows the network which implements the production

competition and its links to the outside world. As discussed above, this

network becomes activated by a constituent expectation node, which activates

all of the production evidence nodes. The functions computed by the nodes in

this network are shown in Figure 5.13. The feedback nodes collect the

bottom-up votes for this production from the binder nodes. Based on the

input from each binder, they decide whether it has won or not (the binder

nodes put out a certain maximum amount if and only if they have won),

convert that to two votes for a winner and one vote for a binder still

Feedback-Constituent

rod2 \ / prod2
eedback1 I output

prodi J /prodi \ / prodi \ /prod2
evidences vfeedbackl \ output / levidenc

f°'?t\
from roles from roles to roles from roles from roles

to
rolei

to
role 2

to
role 3

Figure 5.12. The production competition network.



/* Rule Evidence node: Outputs sum of site input V

{

input = topdown + bottomup + inhibition;

if (there is topdown input) then return(input)

else return (0);

/* Rule Feedback node: Outputs sum of votes V

if (enabled) then

{

votes = 0;

foreach(input)

if(input > 0) then

if (input > binder_win_threshold) then

votes = votes + .2:

else votes = votes + .1;

return (votes)

}

else return (0);

/* Rule Output node: Outputs normalized average of votes V

if (enabled) then

{

votes = 0:

foreach( input)

if(input > 0) then

if (input > binder_win_threshold) then

votes = votes 4- .2:

else votes = votes + .1;

return ((vqtes/number_ofjnputs)*5); /* Average votes, */

} /* Normalized to [0,1] */

else return (0);

Figure 5.13. Pseudocode for Rule Competition Network nodes,

competing, and add it all up. It then sends this to every production evidence



node in the network as inhibition, and to its own evidence node as excitation.

Thus it cancels out its inhibition on its own production. This is not a no-op,

since the evidence node takes the maximum of the inhibition from all

productions. The production evidence nodes add the input from the feedback

node, a fixed value for top-down input (a user settable parameter, the

"competition window1') and subtract the maximum of the inhibition. The

result is always a value between 0 and the competition window (the potential

has a floor of 0). When the potential goes to 0, everything enabled by the

evidence node goes off, killing the production.

The production output node computes the same function as the feedback

node, except it scales the votes according to the length of the production.

Thus the competition between productions is based on an absolute scale of the

number of roles filled but the output to the constituent feedback node is

normalized. The rationale for this is that if the competition were scaled as

well, productions of length two (three, counting closure) quickly get an unfair

advantage over productions of length three, for example. The absolute scale is

also easier to control, since with normalized production competition, it is hard

to determine a useful "competition window", since the difference between the

amount of weight accorded to any votes for a role varies with the length of the

productions7. On the other hand, we decided that the evidence that goes to

the constituent feedback node should be scaled, so that constituents of

different lengths could compete on an equal footing for attachments.

Conclusions

We have presented a parsing model which has the following features:

(1) Completely distributed. The decisions between alternatives are made solely

on the basis of information local to each processor. There is no global

interpreter that can view the whole tree to make attachment decisions.

7Seiman and Hirst (L985) use the scaled approach. Early advantages for shorter productions are apparently less
of a problem for them because of the flexibility of the probabilistically updated units.
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Global coherence is maintained by mutual constraints between competing

and cooperating hypotheses at neighboring levels of the system.

(2) Massively parallel. All units run in parallel, and there are a lot of them!

The parallelism is at a much finer granularity than most previous systems.

(3) Automatically generated from a grammar. The only other system of this

type that is generated from a grammar is that of Pollack and Waltz (1985).

However, in their system, the network is generated in response to the

input, and is tailored specifically to the input. The system reported here is

generated once from the grammar, and is then ready to accept whatever

input is dictated by the grammar.

(4) Does not use symbol passing. Most Al systems build large symbol

structures and pass them around. This appears to be neurologically

implausible (at least, improbable) while the spreading activation used by

the connectionist paradigm is more in line with what appears to be the

mechanisms used by the brain.

(5) Uses a fixed network. Again, the use of a fixed network lends neurological

plausibility to the model. Furthermore, an often heard argument against

connectionist networks is that since they are fixed, they are incapable of

"X", for some X. We have shown that parsing, at least, is not equal to X.

(6) Minimal Attachment "falls out'1 of the mechanism's operation. Many

systems "explain" Minimal Attachment as some parameter setting in their

model. In this model, Minimal Attachment is a property of the way

computation is carried out, i.e., by spreading activation through a

grammar system. This appears to be a more fundamental explanation.



CHAPTER 6

IMPLICATIONS FOR APHASIA

6.1. Introduction

One test of the validity of the model presented in the previous chapters, if

it is truly neurologicaily plausible, is to evaluate its adequacy at accounting for

neuroiinguistic data. This is the goal of this chapter. After reviewing some

evidence regarding breakdowns in the language system, we try to account for

some of the data in terms of "lesions" to our model The model is shown to

be adequate for explaining some of the overall effects.

The major finding that is consistent with our model is the (controversial)

unintuitive result that there exist patients who appear to be able to make

grammatically judgements without the ability to use grammatical information

in understanding. This is explained in the model as a loss of the svstem that

maps the constraints between syntactic and semantic attachments. The model

then makes some predictions based on the remaining pathway between the two

systems in the word sense buffer.

Lexical disorders are also considered as they relate to our model of the

lexicon. Implications are drawn for our model and extensions to it.

It is interesting to note that models such as the one presented in this thesis

are "lesionable" without reprogramming. This makes them interesting testbeds

for theories of aphasia. iVlost AI models require considerable programming

effort in order to "remove" routines that correspond to hypothesized deficits.

The fact that connectionist models still "run" when parts of them are missing

considerably reduces this effort.



6.2, Neurolinguistic Evidence

6.2.1. Introduction

SafFran (1982) has argued that much can be learned about the language

processor by studying the language behavior of aphasics. "The selectional

impairment of language functions can help to reveal the componential

structure of the language system." (Saffran, 1982, p.317). In addition, the error

data used by many psycholinguists to analyze the system (Garrett, 1980) are

plentiful in aphasic patients. Finally, the findings relating to aphasic patients

are sometimes so unexpected as to require alterations of existing theories of the

structure of the language system.

A brief characterization of three types of aphasia are in order. It should

be pointed out, however, that (as Saffran advocates) a much finer grained

classification of aphasic disorders based on detailed linguistic analyses is

needed The data from patients within these classes can vary wildly, simply

because the classifications are much too broad to be useful. .

(1) Broca's Aphasia. These patients generally display an inability to produce

fluent speech, characterized by the omission of function words and bound

morphemes, labored speech, "serial naming" in severe cases, and often

omissions of the verbal element. In the last ten years, studies have shown

that this deficit is paralleled in comprehension, notably by an inability to

use syntactic cues to comprehension.

(2) IVernicke's Aphasia. This syndrome is characterized by the fluent

production of speech, which is, however, devoid of content and error

prone. Often these patients will display paraphasias, in which semantically

related words are substituted for the target word (called semantic

paraphasias), or phonemic substitutions which result in gibberish which

nevertheless follows the phonemic rules of their native language. In

contrast to Broca's aphasics, Wernicke's aphasics will often produce

function words and correct syntactic frames, but the content words will be



scrambled.

(3) Anomia. Anomia means Mword-finding difficulty". Anomics have not lost

the words, they just have trouble accessing them. Often these patients will

be able to describe the word they are seeking, and find it without realizing

it. (For example, in searching for the word comb, they may say, "It's

something you use to comb your hair, but I can't think of it..").

In this discussion, we consider disorders of two aspects of the linguistic

system as they relate to our model: Lexical disorders and agrammatism.

Rather than doing a wide ranging review of the literature as in the previous

section, we will base our discussion on review papers and a small number of

recent studies that seem particularly relevant to our work.

6.2*2. Lexical Disorders

We will follow the review of Buckingham (1981) on lexical and semantic

aspects of aphasia. This data is particularly relevant to models of the lexicon.

It is necessary to begin with a brief review of semantic feature systems, since

they have clinical correlates. Selectional restrictions are rules that subcategorize

verbs on the basis of features for their subjects and objects. For example, a

subject that is human would be marked [ +Human]. This is then picked up by

the verb as 4-[+HumanJ, indicating the subject is human. In some cases, this

will select one sense of the verb over another, especially when combined with

restrictions from other verb arguments. For example, in The slug operated the

vending machine (Hirst 1984), the sense of "operate" is selected by the

restrictions on the cases of the different meanings of "operate".

Two ways of organizing features (which appear to have psychological and

neurological correlates (Keil, 1984; Goodglass and Baker, 1976) are along

paradigmatic, or hierarchical relationships, and syntagmatic or "horizontal"

relationships. Paradigmatic relationships are the basis of the familiar [S-A

hierarchies of Artificial Intelligence. They are usually divided into semantic

fields, such as color, kinship, spatial relationships, temporal relationships, body
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parts, etc. An important concept here is minimal contrastive sets. This refers

to elements that are immediate children of the same superordinate type

(minimal), and yet are mutually exclusive (contrastive), i.e., one and only one

word in the set can apply to any given particular. For example, chair and sofa

are both elements of the set of furniture, but a chair is not a sofa and vice

versa. These are also sometimes called contrast coordinates.

Paradigmatic features can be further divided into so called defining and

characteristic features. Defining features are more abstract and general, such as

"Human", "Male", "Artifact" and so on. Characteristic (or residual) features

are more ephemeral, such as "married", "ferocious", etc. A linguistic test

which separates these is whether they survive under negation. For example, a

"husband" has features + [Human], + [Male], and + [married] The

presuppositions about the referent of "husband" in "that person is not a

husband" are that the person is +[Male], while the "married" feature switches

to -[married]. Basically, characteristic features are more malleable. Kiel (1984)

did some interesting experiments in which he told children a story about*

something in which all of its characteristic features changed until it resembled

in every way a member of a different category (for example, a raccoon that was

changed to look like a wind-up toy), and the children still maintained that it

was a raccoon (if they were old enough).

Syntagmatic relationships are - based on contiguity of three types1:

Predication, such as adjective noun relationships ("red ball") copulative

sentences ("Joe is a lousy lover"), object-location ("the boat is in the water"),

or functional relationships ("watches are for telling time"); Coexistence, such as

"peanut butter and jelly", "bread and butter", etc. and synecdoche which

refers to using a part to stand for a whole, as in "wheels" for "car", or "tube"

for "TV".

lAccording to Buckingham. The classification of these three types of relationships under one roof seems strained.



The reason for laboring through these definitions is that they have clinical

correlates. Loosely speaking, Broca's aphasics become insensitive to

syntagmatic relationships, while Wemicke's aphasics lose sensitivity to

paradigmatic relationships. It is interesting to consider these phenomena in

terms of their implications for models of the lexicon. The major implication to

be drawn is that these distinctions between paradigmatic and syntagmatic must

have cognitive correlates, and that there are separate anatomical structures and

systems in which they are represented.

Fortunately, there are more specific conclusions to be drawn. An

interesting fact about semantic paraphasias, where a semantically related word

is substituted for the intended word, is that the substitution is often a contrast

coordinate. If we assume that the lexicon is shared between production and

comprehension (more on this later), then contrast coordinates must be stored

"closely1' to one another. We take this as evidence that the natural hierarchical

representation of paradigmatic relationships is reflected to some degree in the

actual cognitive representation of the lexicon. In accessing the word to be

spoken, these aphasics appear to be accessing the lowest level category of the

word they want, but then the selection machinery breaks down. We

hypothesize that (as mentioned w.r.L synonyms in the semantic priming

section) there is a Winner Take All network for each coordinate set in the

hierarchy of concepts that is enabled by the production system2. It is the

control of these WTA's that appears to be disrupted in semantic paraphasias.

Often the exchanges that are seen are very similar to the results o( word

association tests. Besides contrast coordinates, antonyms are also substituted.

Like contrast coordinates, antonyms often share a superordinate category (for

example, "hot" and "cold" are both temperatures). Finally, it is not only

coordinates that are exchanged. Superordinates are also substituted.

2 A type of Winner Take All network that can be controlled in this way is described in Shastn & Feldman i L984).
Basically, a separate node is connected to all the units in the WTA and computes their maximum output, which it
sends back to all units in the WTA as inhibition. If this node is controlled, then die WTA can be turned on or off.



Further evidence for the hierarchical nature of the representation is the

existence of category-specific anomia. These patients display word-finding

problems for only certain semantic categories. For example, category anomias

have been found for colors and body-parts. This suggests that the route to a

word is through initially accessing the category (as hypothesized above), and

second, that categories are accessed as a unit, or at least through some specific

pathway that has been disrupted Finally, there are also errors that substitute

totally unrelated words. This leads to the question as to whether these patients

have disrupted their access mechanism at the highest levels of the hierarchy,

and are putting out whatever word becomes most activated (It should be

pointed out that these patients with paraphasias, mostly Wernicke's aphasics,

often don't realize anything is wrong with their speech. Therefore they can't

be monitoring it for errors.)

All of these data derive necessarily from the production system. On the

comprehension side, perhaps more relevant to a model of comprehension,

there are parallel deficits. Returning to an earlier point, Saffran (1982) argued

that if we find that one kind of deficit is always accompanied by another kind,

then we can almost safely infer that they share some common component. The

"almost" caveat follows from the observation that the reason two deficits

always co-occur may be due to the neurological systems they use being simply

close together physically, rather than being identical. With that in mind, we

will blithely accept for now the hypothesis that the data support a common

subsystem, the lexicon, for use both in production and comprehension.

The parallel deficits in comprehension are best described (still following

Buckingham's discussion here) in a study by Goodglass & Baker (1976). They

were following up some earlier work by Zurif et al. (1974) who found

significant differences between Wernicke's and Broca's aphasics (and normal

controls) w.r.t. the way they would group words they considered "similar"

together. Wernicke's tended to group things along syntagmatic lines (given

mother, husband, and cook, one patient uttered "My mother is a good cook" as



he grouped mother and cook together) while Broca's showed sensitivity to the

+ [Human] feature. The Broca's aphasics, though, did tend to group things

outside of the + [Human] class along residual feature lines rather than

paradigmatic features. Goodglass & Baker tested aphasic and normal

sensitivity to paradigmatic and syntagmatic relationships between words,

including superordinate, contrast coordinate, and functional associates of the

words. First, they pre-tested the group on a set of 16 pictures of objects that

corresponded to 8 high frequency and 8 low frequency words, to see if they

could name the objects. Then, they showed the pictures and played a tape of

related and unrelated words, asking the subjects to respond if the word

reminded them of the pictured object. First of all, they found that everyone

did well when the word was the name of the picture (identity). However,

normals and Broca's aphasics did very poorly with contrast coordinates, while

Wernicke's did fairly well (compared to their performance overall, which was

poor). We suggest that, following the discussion above, in the normals' and

Broca's aphasics' mental lexicons there is mutual inhibition between contrast

coordinates that the Wernicke's aphasics appear to have lost.

Contrary to expectation, the Wernicke's aphasics did not show sensitivity

to functional associates, a syntagmatic relationship. However, they basically

did poorly on everything. One significant result was their 50% higher error

rate on pictures they couldn't name, suggesting a correlation between naming

problems and the associative structure of the lexicon. It should be noted that

Broca's aphasics did as well on pictures they could name as ones they could

not. Other research has indicated that their mental lexicons are intact, so their

problem appears to be more one of access rather than disorganization.

In conclusion, Buckingham delineates three explanations for word finding

problems. He obviously favors the first, which says that word finding difficulty

is a result of lexical associative disruptions (i.e., the structure of the lexicon has

been disrupted). The other two are not as popular; the disconnection

explanation is that the connection in the brain between the lexicon and visual



associates is broken. This has little to recommend it; it does not explain the

apparent disruption within the lexicon, nor the ability of aphasics to recognize

the name of a picture when they hear it. The last is the ffneurodynamicM

explanation of Luria (1974). It is similar to the one we have alluded to in the

above discussion; he posits that a general inhibition mechanism has been

disrupted. In his theory, lexical (production) processing is comprised of two

phases, a general excitation phase, in which a multidimensional matrix of

associated lexical items are stimulated, followed by an inhibitory phase in

which attention is directed to the proper word and all others are inhibited. It

is the second, inhibitory phase which has been disrupted, according to Luria.

The subject has not only the target word, but all associated words activated,

and is unable to select from them. This would explain why associated words

are - often exchanged with the desired word. However, according to

Buckingham, this explanation does not appear to fit with the results of

Goodglass & Baker, where it is apparent that the associated words are not

activated, since the subject does not respond to them. However, it should be

said in defense of Luria that if patients often substitute associated words for

the target word, then Goodglass & Baker's results are not assessing the

associations available during production. It is dangerous to generalize in this

way, though, since we don't know the specific production behavior of the

patients they used. It is important, as Saffran (1982) points out, to be more

specific linguistically about the type of deficit each patient has.

Our explanation is similar to Luria's, but takes the structure of the lexicon

into account We hypothesize that the normal subject accesses the semantic

section (or field) of the lexicon for the word to produce, and moves down the

hierarchy, inhibiting alternatives not wanted until reaching a single word. We

hypothesize that at least some patients with semantic paraphasia are often

accessing the section of the lexicon that they want, but can't inhibit

alternatives. If these patients correspond to the ones in Goodglass and Baker's

study who did not respond well to any associates, then we would argue as
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above, that their method is not assessing the associations engaged by

production. Of course, the other explanation cannot be ruled out; that is, in

severe cases, the structure itself may be disrupted,

A final item in Buckingham's review appears to support our explanation

over his. Weigel-Crump & Koenigsknecht (1973) (hereafter, W-C& K) report.

on the results of naming therapy on anomic patients. They chose 40 words the

patients could not name initially such that they were equally divided among

five superordinate semantic categories. The patients were then drilled on half

of the words, but words from one category (foods) were left out. After

therapy, the patients made significant improvements in naming both drilled

and undrilled items, including those from the undrilled food category.

Buckingham claims that this does not disprove the lexical structure disruption

account. His explanation is that their therapy strengthened the associative

bonds for the words in the drilled category, which Mby fiat", delineated the

undrilled words in that category as well. To account for the improvement in

the undrilled category, he generalizes this explanation to say that since the

therapy concentrated on four of the categories, then "by fiat" the fifth was

drawn into sharper distinction from the rest, making it easier to label. One

wonders whether, if W-C&K had tested other categories, they might not have

found that naming had improved on them as well. If not why would "food"

in particular be improved? This would weaken Buckingham's argument. It is

one thing to say that the therapy brought into sharper focus the elements of

the category that was drilled. It is another to say that drilling on four

categories brings all other categories into sharper distinction. Rather, it

appears that the control of a general access mechanism, such as the successive

inhibitory selection of more specific levels, has been improved Further

research should be done to distinguish these two explanations.



6-2-3- Syntactic Disorders

This section concentrates on the results of a small group of researchers

whose work seems particularly relevant to our model. We will follow to some

extent the review of this work in Saffran (1982). As mentioned earlier, it is

possible with aphasics to view subsystems in relative isolation, fn particular,

one could interpret agrammatic aphasics' behavior as reflecting the operation

of the semantic interpreter without the aid of a syntactic parser. While this is

perhaps an overgeneralization, it is a useful one. Within the group of aphasics

identified diagnostically as Broca's aphasics there is considerable variation in

syntactic deficits. We will concentrate on a subset that displays specific

grammatic impairments termed agrammatic aphasics. The explanation of those

difficulties is still hotly debated, but the resultant behavior is generally agreed

upon (except where it does not agree with someone's explanatory theory). It is

this behavior and its interpretation as a reflection of the semantic system in

isolation that we are interested in. (Of course, we will not be able to avoid

discussion of explanations, since we want to throw in some of our own!)

We will give a brief review of the three major explanations of agrammatic

deficits in production first, as a vehicle for discussing previous work. While

our model is not a production model, this data is of interest because there

appear to be parallel deficits in comprehension, and this will prime the reader

for that discussion. These explanations each concentrate on implicating a

particular level of the system (see Figure 4.1 for reference). The first is that

the sound level is impaired (Lenneberg 1973). The argument here concentrates

on the observation that Broca's aphasics appear to have trouble initiating

sentences with unstressed words; thus, since function words are most often

unstressed, they are omitted most often at sentence-initial positions (cf.

Gleason et al., 1975). This explanation says that there is a more complex

representation than what we observe, because the patient simply cannot

vocalize the unstressed elements well. Vocalization problems notwithstanding,

the data of Saffran et al. (1980a), discussed below, indicates that the underlying



structure is not correct.

A second level that has been implicated is the positional level (Kean,

1979; Berndt and Caramazza 1980). According to some theories (Garrett,

1980), at this level the syntactic frame has been specified, i.e., the grammatical

morphemes in order with slots for content words. The deficit at this level is

thought to be either one of disrupted access to the grammatical morphemes, or

more generally a disruption of the syntactic processes that specify these frames.

However, Saffran and her colleagues (Saffran et al. 1980a) have identified

a more serious problem. Most theories assume that word order, at least, is

preserved in these syndromes. Saffran et al. found that agrammatics have

serious difficulty in producing words in the right order when the major roles in

the situation described are reversible. For example, in a situation such as a

man running to a woman, where either person could potentially fill either role,

runner or runnee, the subjects would often reverse subject/object order.

"These results suggest that the capacity to map relational roles onto

Noun-Verb-Noun sequences is seriously impaired in agrammatic

aphasics. In lieu of normal mapping procedures, they seem to rely on

pragmatic strategies such as the production of the animate (or more

generally, the more potent or more salient) noun first" (Saffran, 1980,

p.321).

Saffran defends this view over the positional level view by noting that if the

positional level itself were the problem, then the ordering problems should be

random. They are not. They correlate with parameters involving case role

mappings onto syntactic roles. If the positional level alone were the difficulty,

then the relative animacy of the role fillers should not make a significant

difference.

Saffran points out that there is no reason to suppose that only one level of

the system is affected. Researchers generally try to implicate only one for

parsimony reasons. Her point is that what she terms the functional level,



which is responsible for mapping case roles to syntactic roles, is definitely

implicated by these results.

Turning to comprehension in agrammatics, we find a similar set of deficits

and explanations. Broca's aphasics have a remarkable ability to understand

utterances when the semantic constraints of the lexical items are enough to

determine the relationships among them. For example, they have little

difficulty on sentence-picture matching tasks with complicated-looking

sentences such as The apple that the boy is eating is red However, similar to

their production behavior, if the sentence is reversible, such as The cat the dog

is chasing is black, their performance falls to chance levels (Caramazza & Zurif,

1976). Also, on sentences where the position of a grammatical element is

crucial, such as The woman is showing her baby the pictures vs. The woman is

showing her the baby pictures, their performance indicates that they are not

sensitive to the position of the (Heilman & Scholes, 1976). Again, the

prevailing theory here is that the deficit is at the positional, or syntactic level3.

However, Schwartz et al. (1980) found that some agrammatics performed

poorly in a sentence-picture matching task even on simple sentences such as

The dog chased the cat, where the nouns are of equal animacy, while

performing well on sentences with animate subjects and inanimate objects.

Again, this implicates the functional level. Saffran has pointed out that it is

not a good idea to average over aphasic populations, and that this is one

discipline where single case studies are valuable. In this regard, it should be

pointed out that in the Schwartz et al. (1980) study, there was a variety of

behavior among their five subjects. Two out of the five performed reliably on

active voice sentences when the syntactic subjects and objects were familiar,

usually human, fillers for these roles, such as "clown", Mdancerf\ "man",

"dog", etc. These two performed at chance levels on passive sentences using

the same nouns and verbs. When the active sentences were altered to only use

3It should be noted that even though this is termed the positional level, proponents of this account generally as-
sume the deficit is a structure-building one. rather than an inability to appreciate the order of the words.



"square" and "circle" (with suitable stick figure pictures), one of the two was

no longer able to decode them properly, while the other continued to perform

reliably. A third subject (B.L) appeared to be generalizing S-V-O4 to passives

in the study with normal Subjects and Objects, but performed at chance with

the squares and circles, A fourth subject performed at chance on all tasks

relating to word order. Such results led Schwartz et aL to conclude that these

subjects had a syntactic mapping deficit which they were compensating for by

applying various heuristics inconsistently across the tasks, using different sets of

rules at different sessions,

Linebarger, Schwartz and Saffran (1983) found that aphasics who

performed poorly on the above active/passive discrimination test (one of the

subjects was in the Schwartz et al. study) could reliably discriminate between

syntactically correct and incorrect sentences for a wide range of types of

grammatical errors, including problems involving verb subcategorization,

particle movement, subject-aux inversion, phrase structure, etc. They did

poorly on some types of errors, such as tag questions {*John is very tall doesn't

he?). Overall, however, their performance was surprisingly good, considering

the prevailing theories stated that either agrammatics had no access to functor

information, or that their syntactic processor was in general, disrupted (cf.

Berndt & Caramazza, 1980). Of particular interest here is that they did very

well on sentences such as *She went the stairs up in a hurry vs. She went up the

stairs in a hurry, where it appears to require an appreciation of order

information to discriminate between them.

Thus agrammatic aphasics can perhaps compute syntactic representations,

but cannot use that structure for interpretation. This suggests that the overall

picture of the system given in Chapter 1 is not-that far off the mark: that is,

there are independent access routes from the lexicon to the syntactic and

semantic processors, and there is another path between the two of them that

4Subject- Verb-Object: the canonical structure of English sentences.



has been disrupted in agrammatic aphasics. After we have explicated our

model in more detail, we will return to these results with an eye towards

explaining them in terms of our model.

63. Implications for Aphasia

Let us return now to the results concerning agrammatic aphasics. Does

our model have anything to say about them? Suppose that, following the

Linebarger et al. (1983) results, that we assume that the constraints between

syntax and semantics are gone. That is, the main pathway between syntax and

semantics in our model, the connections between the binding nodes in syntax

and the binding nodes in semantics (cf. Figure 4.16 and the next chapter) is

disrupted5. The point of these connections in the model is to transmit

constraints back and forth between the assignments of constituents to their

roles in one system to the same assignments in the other.

Suppose that these constraints are gone; what could one compute in the

semantic side? The example runs we just saw show that we can interpret a

sentence correctly if semantic constraints are enough, conforming to the results

of Caramazza & Zurif (1976). The definition of ''semantic constraints" is

somewhat clearer now; we mean that among the major lexical items in the

sentence, there is a "best fit" for the case structure of the verbal item6.

As we mentioned before, Saffran believes that in this area of research,

single case studies are a valid form of data. We would extend this to Cognitive

Science modelling of these patients; it makes little sense to try to "lesion" our

model in one way to describe the behavior of patients who among themselves,

differ wildly. Therefore, as an illustrative example of how our model may used

5As noted in the next chapter, for this "connection" to be operative, a correspondence must be computed
between syntactic constituents and semantic ones. Thus we can't assume a direct connection. Rather, since this
correspondence must be computed, we assume that it is the neural assemblies performing this computation which have
been destroyed.

6We would have to extend this to mean a conceptual frame best fit as well, to account for the Caramazza and
Zurif results. That is, we assume a frame system for concepts: in the apple that the boy is eating is red. red would fill a
slot in the frame for apple more readily than it would in the frame for boy.



as a framework for studying accounts of particular behaviors, we will

concentrate on the study by Schwartz et al. (1980). We will only use the

results of the Active/Passive with normal subjects and objects (the clown

applauds the dancer)1. Table 6.1 (adapted from Schwartz et al. 1980)

summarizes their results, A M + " means that the subject did significantly better

than chance on that test a "--" means the subject did significantly worse than

chance (there is only one instance of this, B.L., in which he consistently

interpreted passive sentences as if they were actives), and a M0#f means chance

performance.

To model these deficits in our framework, it is necessary first to recall the

results of Goodglass & Baker (1976) that the associative structure of the

lexicons of the Broca's aphasics they studied appeared intact with respect to

members of the + [Human] class, but impaired outside of that class. It is not

unreasonable to assume that, given the wide range of behaviors within this

class of aphasics, some patients will be more or less impaired on + [Human].

To model these deficits in our framework, we consider how this might affect

the binding nodes for Agent and Object.

In English, the first + [Human] in a sentence is frequently the Agent. In

the model, this information is reflected in activation from 4-[Human] in the

Table 6.1 Summary of Schwartz et al. (1980) Results (Experiment 1)

Subject Active Voice Passive Voice Proposed Deficit

B.L. + - + Human-is-Agent, -"by"
H.R. + 0 + Human-is-Agent, + "by"
J.R. 0 + -Human-is-Agent, + "by"
V.S. + 0 + Human-is-Agent, +ffbylf

H.T. 0 0 -Human-is-Agent, -"by"

The other pan of the study involved active sentences with "inanimate" subjects and objects (the square applauds
the circle), and prepositional verbal elements, e.g. (he square is above the circle. There were interesting results here, but
we don't know how to account for them.



lexicon to the Agent binders: the Agent binder receives a stronger signal. This

would have two results: The "CONC1 = Agent" binder would begin to

suppress the other binders for C0NC1, as well as other M = Agent" binders,

preventing them from activating. Notice there is no need for the order of the

concepts coming in to be recorded; this is reflected in the Agent binder for the

first concept being activated first, winning over the other C0NC1 binders, and

suppressing other Agent binders. Without this information, the first concept

could fill either the Agent or the Object case equally, so these would compete

until some other information came along, or until a choice was forced, in

which case the assignment would be random. Secondly, although we did not

discuss it here (see Cottrell & Small, 1983), we assume that prepositions such as

"by" have a representation in syntax as PREP, but a separate "meaning"

representation in the semantic side as case signalers. That is, "by" would

prime binders for the Agent, Location, and Method cases. We will assume that

this type of information (case signaling by prepositions), which requires a

different set of connections compared to those for content words, can be

independently disrupted.

We explain the behavior of the five aphasics in the Schwartz et al. study

as a combination of the loss of syntactic constraints on the bindings (the

connections from syntax in Figure 4.16 are gone) and various combinations of

loss of the extra weight for + [Human] to " = Agent" binders, and the extra

input from "by" to " = Agent" nodes for concepts following the "by". Looking

at Table 6.2, we assume that every subject that got active sentences right has

the information that + [Human] is usually the Agent, so the binder for the first

+ [Human] that comes along wins. It is the interaction of this with the "by"

information that is interesting. If they have the "by" information, then when

the second candidate for the Agent comes along, even though the binder for

that to Agent is being suppressed, it gets an extra boost from "by" (besides

being a + [Human]), which activates it enough to cause it to compete on an

equal basis with the " = Agent" binder for the first concept. Then the choice



becomes random, as in the cases of H.R. and V.S.

If they don't have the "by" information, then the first + [Human] still

wins, as in B.L/s case. We assume that if their choices on the Active sentences

are random, then they are missing the + [Human]-is-Agent information. If

they then do have the concept-following-"by"-is-Agent information, they will

get the Passives right, as in the case of J.R. If they have neither of these

abilities, they will choose randomly, as in H.T/s case. Of course, if they had

the constraints from syntax and both of these other information sources, then

they would make the correct interpretations, as normals do.

If it were only possible to make up post-hoc stories, the model would be

an interesting intellectual exercise, but of little scientific use. Fortunately,

given how the model behaved in the sample runs in Chapter 4, we can make

some predictions. We assume that the behavior of the model given in the that

section corresponds to a "lesioned" complete model, since there are no

syntactic constraints. Thus, we would have to predict that agrammatic aphasics

could disambiguate lexical items based on the case structure. Thus if we gave

them a sentence with an ambiguous word disambiguable in this fashion, such

as Fred hosted a ball for his friends, and then asked, "What did Fred host?",

they ought to be able to pick out a picture of a party from a picture of a

baseball. This appears, however, to be a "grandmother result"; one my

grandmother could have told me.

A more interesting claim is based on the apparent disassociation between

the syntactic and semantic interpretation systems. Suppose agrammatics were

given sentences containing noun-verb ambiguities, that were semantically

anomalous given the syntactically correct interpretation, yet contained a

coherent interpretation if the lexical items were interpreted agrammatically.

The model would be confirmed if they formed the "correct" interpretation.

For example, given the sentence, The saw bobbed the rose (or some such) they

should interpret it as Bob saw (he rose.



Unfortunately, another aspect of our model makes this prediction suspect.

The model posits independent access to syntax and semantics from the word

sense buffer. There is also feedback to the word sense buffer from syntax and

semantics. Thus, there is a remaining pathway between the two in the model.

This fact should be reflected by the word sense buffer's disambiguation

function. If information from one system or another selects a particular sense

of the word, this should be reflected in the representation formed by the other

system after the information has had a chance to propagate through the buffer.

Thus if a lexical item is syntactically disambiguable, then that disambiguation

should be reflected in the semantic processing and vice-versa. If the two

systems make opposing selections, then there should be a conflict in the buffer

between the opposing definitions. If the model is correct, we would have a

way of testing the strength of the two systems' contributions to the

disambiguation process. One way which may give the semantic system a

chance to beat this is to use words where the syntactically biased meanings are

of low frequency, and the meanings that MmeshM are of high frequency. This is

a characteristic of "semantic" garden path sentences.

This observation gives rise to a possible test of the existence of this

pathway between the two systems. In a "semantic" garden path sentence, such

as the old man the boats, the conflicting information that "man" is a noun

comes from semantics8. If the connection through the word sense buffer exists,

then either (a) semantics will win and they will judge the sentence

ungrammatical, as normals often do, which would be evidence that there are

still semantic constraints operating or (b) syntax will win, they will judge the

sentence as grammatical, and their behavior on a picture matching task should

reflect the syntactically biased interpretation, showing that at this level, they are

using syntactic constraints in semantic interpretation. Appropriate controls

would be something like the old woman the boats and the sailors man the boats.

8Actually, this is arguable. "Man" is probably most often used syntactically as a noun. There are probably better
examples.



If this connection does not exist or has no effect, the agrammatics should judge

this sentence as grammatical, yet still pick the semanticalty biased picture of an

old man and some boats (rather than the old manning the boats). This would

controvert the model's claim of the existence of a path through the buffer, but

would give rise to an interesting picture of processing in the degraded system:

it implies the existence, "side by side" of two incompatible representations of

the sentence, each of which is acceptable to its particular processor. (It should

be pointed out that it is probably a good idea to use synthesized speech for

this, to avoid contour cues.)

Given that the proposed deficit is between attachment constraints, another

test of the model is to see if these have effects in the agrammatics or not

Normals can be biased to make implausible attachments by priming them with

sentences in which ambiguous attachments are all one way, for example where

a final prepositional phrase is always attached to the VP rather than an

adjacent NP. This attachment bias will perseverate when they are given a

sentence that is semantically biased for the other attachment. Agrammatics,

however, according to our model, should show no such effects. They should

always make the semantically most plausible attachment, even if syntactically

primed for another.

6.4 Conclusions

The major finding of this section is that the model can account for recent

unintuitive results in the aphasia literature. The apparent ability of agrammatic

aphasics to compute syntactic information while being unable to use it has a

natural interpretation in our model. Further, the model makes nontrivial

predictions that are direct consequences of the remaining "link" between

syntactic and semantic representations through the representation of word

definitions in the word sense buffer.

While any of these predictions are empirically testable, and particular

aspects of our model may be proven or disproves the claim remains that this
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type of model is a suitable framework for testing theories about aphasia. We

may suppose certain information sources are there or not, run the model and

derive predictions. This argues for the continued use of such models for

fruitful interaction between the various disciplines of Cognitive Science.



CHAPTER 7

A FORMAL BASIS FOR CONNECTIONIST INHERITANCE HIERARCHIES

7.1. Introduction

In Chapter 4, the model of the lexicon and the case system use a

hierarchical structure to organize the information, and make use of the

property of inheritance that such hierarchies enjoy. One problem with such

hierarchies is that they can contain exceptions to inheritance; often a more

specific concept will have a value of some rote that is different from its

superordinates. In this chapter, an attempt is made to put such hierarchies on

a firm formal foundation. Reiter's (1980) Default Logic is used as a basis for

the semantics o? such hierarchies. The resulting implementation appears

successful, and suggests further uses of Default Logic as a specification

language for connectionist networks,

7.2. Background

In a recent paper, Etherington & Reiter (1983) (hereafter E&R)

formalized a simple version of semantic networks (known as inheritance

hierarchies) with exceptions in terms of Reiter's (1980) Default Logic. With

this approach they were able to formally characterize the correctness of an

inference algorithm in terms of Default Logic, and exhibited an algorithm that

was correct in this sense. Finally, they concluded that massively parallel

architectures for semantic networks, such as NETL (Fahlman, 1979),

apparently cannot implement this algorithm. In this chapter, we show that a

connectionist implementation of the simplified semantic networks outlined in

their paper avoids the objections to NETL. We also present some results of



simulations in this framework of the examples presented in E&R.

7.2.1. The Problem

Semantic networks have been found to be an efficient and useful

representation of knowledge by AI researchers for many years. One principal

advantage is the ability to store information about objects at appropriate levels

of abstraction in the IS-A hierarchy, so that the fact that dogs, elephants, and

people nurse their young, for example, can be stored once at the MAMMAL

node. Retrieving all of the properties associated with an instance of some class

is done by an inference procedure that is particularly simple in these systems,

known as inheritance.

As Hayes (1977) points out, there is an obvious correspondence between

IS-A hierarchies and simple collections of FOPC formulas. For example,

"Clyde is an instance of an Elephant" corresponds to the assertion

Elephant(Clyde). Statements about classes, such as "Elephants are Gray",

correspond to first-order formulae, in this case, (x).Elephant(x)-*Gray(x).

Inheritance can then be seen as a repeated application of modus ponens. One

nice property of inheritance hierarchies is that, since they are acyclic, modus

ponens can only be applied a finite number of times, no more than the depth

of the hierarchy. Also, as pointed out by E&R, the node labels in such

hierarchies are unary predicates, e.g. MAMMAL(x). Finally, no exceptions are

permitted to inheritance. A dog is a mammal, no matter what

Unfortunately, the real world is not as simple as a taxonomic hierarchy.

Often it is useful to abandon the tree structure in favor of multiple inheritance

hierarchies, and to allow exceptions to inheritance relations. This introduces

non-monotonicity into the representation, as well as ambiguity. An common

example of a non-monotonic rule is: "assume a particular Elephant is Gray

unless proven otherwise." This is often known as default reasoning and has

been formalized by Reiter (1980). When combined with multiple inheritance,

default reasoning can lead to ambiguity. A well-known example is:



(1) Nixon is a Quaker.

(2) Nixon is a Republican.

(3) Republicans are normally non-pacifists.

(4) Quakers are normally pacifists.

Reiter's formalization of the above facts would be (assuming, for

convenience, that Nixon is a type):

(1) (x).Nixon(x)-*Quaker(x)

(2) (x).Nixon(x)-* Republican(x)

,~ Republican(x):~Pacifist(x)
1 } ^Pacifist(x)

r4v Quaker(x):Pacifist(x)
W Pacifist(x)

(1) and (2) are just the first order rules corresponding to (1) and (2) above.

(3) is an example of a default rule. The formula to the left of the colon is

called the prerequisite of the default If this is known, and the part to the right

of the colon, (the justification) can be consistently assumed (i.e., its negation

isn't provable from what we know), then we can infer ^Pacifist(x), the

consequent. The above rules, where the justification is the same as the

consequent, are called normal defaults. Often, the justification contains all of

the exceptions to the rule we know about. In this case, we might add

"~NRAmember(x)M to the justification of (4). When such exceptions are

included, the rule is called a semi-normal default. E&R point out that their

correspondence between inheritance hierarchies with exceptions and default

logic require semi-normal defaults (due to the identification of exceptions with

clauses in the justification.)

Is an individual b for which Nixon(b) holds a pacifist or not? In Reiter's

terminology, there are two extensions consistent with our knowledge. An

extension contains the first order facts and is closed under the default rules as

well as first order theorem-hood. One contains Pacifist(b), the other



^Pacifist(b). In general, the problem we want to solve is: Given an individual

b, and a predicate P known to be true of b, we want to compute

Pl(b), • • • ,Pn(b) such that the Pj's all lie within a single extension. As noted by

E&R, we can ignore the predicate arguments here, and the default theory is

purely propositional.

7.2,2. Correctness, Defaults, and Hierarchies

Before we discuss E&R's algorithm and our implementation of it, we need

to provide a wider context than the system described in their paper to motivate

some of the later discussion of our implementation. It has been an open

problem for several years to define a correct inference algorithm for semantic

network languages that allow multiple inheritance and exceptions. For

example, Fahlman et al (1981) showed that their "shortest path" heuristic for

NETL gave anomalous results. There now exist at least two formal systems

which claim to provide the "correct" semantics for inheritance hierarchies. The

problem is that they don't agree as to what constitutes "correctness".

Following Hayes' example, E&R provided a semantics for such networks in

terms of Reiter's Default Logic. Touretzky (1984) provides a mathematical

semantics based on predicate lattices of a 3-valued logic. Both of them

produced a correct inference algorithm for their theory.

Without going too much into the formal details, I will try to point out the

major differences between their systems, and mention a third strategy. First,

E&R's algorithm randomly chooses an extension when there are multiple ones.

If there is only one, it will find it. Touretzky's system reports an ambiguity

when it finds more than one extension. A more important difference, however,

is that built into the heart of Touretzky's semantics is the inferential distance

principle, which says: if A inherits P from B, and "P from C, then "if A has an

inheritance path via B to C and not vice versa, then conclude P; if A has an

inheritance path via C to B and not vice versa, then conclude *̂P; otherwise

report an ambiguity." (Touretzky (1984) p.204) This captures our intuitions



about inheritance hierarchies, if we believe that subclasses' properties should

override superclasses' properties. NETL tried to capture this preference by the

"shortest path" heuristic to try to get a single preferred extension. Such

heuristics have been shown to be incorrect, in that they can lead to "facts" that

are not in any extension (Etherington, 1982). Touretzky's work was motivated

by this problem, and when applied to NETL, shows that it is possible to have

NETL operate correctly with respect to Touretzky's semantics, but only after

the network has been "conditioned" in advance, which is an expensive

operation.

An example that illustrates the inferential distance rule is shown in Figure

7.1, using the E&R network notation. The corresponding default theory is:

{(x).Ciyde(x)-^Elephant(x)(x).Ciyde(x)-^Albino(x)(x).Albino(x)-^Elephant(

Albino(x)rGray(x) Elephant(x):Gray(x),
'Gray(x) Gray(x)

E&R's system allows two possible extensions, one of which claims Clyde is

gray. In other words, their formalism doesn't make use of the hierarchical

Strict IS-A

Strict ISNT-A

Default IS-A

Default ISN'T-A

Exception Link

Figure 7.1. Clyde the Elephant, in E&R's notation. Gray or not?



nature of inheritance hierarchies. This counter-intuitive result is blocked in

Touretzky's system by the inferential distance rule, which finds only one

consistent extension: Clyde is not gray. To capture this preference in default

logic, exceptions must be made explicit. An exception must be added to the

justification of the last default rule:

Elephant(x): Gray(x) & ~Albino(x)
Gray(x)

This has the disadvantage that whenever a new exception is discovered, (for

example, Albino Elephants) the default rules must change (see McCarthy,

1984) for a system that could be viewed as a different style of using default

logic that only requires new rules to be added). The E&R formulation can

lead to other counterintuitive results discussed in the simulation section.

A third approach which is enabled by this rare brush between the interests

of formal logic and cognitive modelling, is to use an inference procedure which

chooses an extension as part of the inferencing, based on some representation

of belief strengths, in an attempt to model what people do. This could involve

relaxing constraints that ensure consistency or completeness or both, and would

require empirical verification. This approach may lead to less formal inference

procedures, probably ones which are formally incorrect, yet may lead to

important insights into everyday commonsense reasoning. One motivation for

such an approach is based on the observation that one rarely "reports an

ambiguity", as in Touretzky's system, when queried about ones' beliefs. One

usually professes a belief. It also seems unlikely that on different occasions

one would report "Nixon is a pacifist" and on another "Nixon is a hawk", as

in E&R's, unless one's beliefs had changed in the interval. Also people may

come up with inferences that aren't in any extension, analogously to the way

they can make speech errors by blending parts of words, resulting in words

that aren't in any lexicon. Considerations tike these are the motivation behind

systems such as that reported in Shastri & Feldman (1984) and Feldman &



Shastri (1984), where weights on arcs in &n active network encode belief

strengths, .and help choose extensions (not their terminology, however).

7.23. Etherington and Reiter's Algorithm

With these caveats in mind, we briefly review E&R's inference algorithm

in intuitive terms. Those interested in the formal details may refer to their

paper. The purpose of the algorithm is to "derive conclusions all of which lie

within a single extension of the underlying default theory." When faced with

multiple extensions, the algorithm randomly chooses one. The algorithm

operates by successive approximations to an extension. Starting with the first

order facts as a first approximation to an extension, it successively chooses

(randomly) default rules which are not blocked by the current approximation

or the previous approximation, and adds their consequents to the current

approximation, until all of them are used The constraints derived in previous

approximations thus propagate to the current approximation. It iterates on

this, starting with the first order facts again, until two successive

approximations are the same (convergence). Etherington (1983) has proved

that this algorithm will always converge on an extension. The randomness is

essential to the algorithm's ability to derive any possible extension, if it is run
MenoughM times. A deterministic algorithm could be devised that simply

considered all possible orderings of the applications of the defaults, if one

wanted all extensions, and were willing to wait long enough! An important

point about the algorithm as given is that it can be viewed as a relaxation-style

constraint propagation technique.

Unfortunately, NETL is unable to capture such algorithms due to the
tfone-shotM nature of marker-passing. Markers are propagated through the

network to find properties. The very existence of cancellation links in the

version of NETL discussed in E&R (equivalent to exceptions; these were

discarded in Touretzky's system) defeats marker passing because a link can be

crossed before it is cancelled from a longer path. See Figures 7.2(a) and 7.2(b),
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reproduced from E&R. In Figure 7.2(a), F must be reached before B in order

to generate the extension properly, and vice-versa in 7.2(b). It is clear from

this that the problem with NETL is not that it is a parallel machine. Rather,

the problem is that is a single pass marker passing machine.

7.3. An Alternate Parallel Approach

7.3.1. Introduction

An obvious answer to these objections is to relax the "one-shot" nature of

the parallel network. Connectionist networks, being iterative, have no such

restriction. The obvious direction to take is to use a NETL-like network, with

connectionist units and activation-passing instead of marker passing. This is

the basic idea of the implementation described below. An "extra" that is

derived from this model is a small step in the direction of answering the

(a) (b)

Figure 7.2. Networks which defeat the shortest path heuristic.



following question: What constraints on the functions used in connectionist

networks can be reasonably .assumed without losing computational ability? In

the following model, we show that even with strong constraints on the

functions computed, we can still get fairly powerful results. Also, the

specification of the network is extremely simple, the network is generated by a

LISP program from simple commands such as (isa 'Clyde 'Elephant), The bit

of network generated from this is specified by a simple mapping from Default

Logic to units and links. This and other considerations lead to the idea of

using Default Logic as a specification of more complex networks, if the

mapping can be "raised" from the propositional to the FOPC level. This will

be discussed in more detail at the end of this chapter.

In the definition of connectionist networks in Chapter 2, there is no

mention of time. That is, in simulating such networks, the units could be

scheduled for updating in various ways: They could be kept in lock step

(synchronous) or they could be updated in random order, with some units

perhaps being updated several times before another gets a chance to be

updated (simulating asynchrony). In all of the other simulations described in

this thesis, synchronous updating has been used For technical reasons, we use

asynchronous updating in the following model Whether the other networks

described in the thesis could be run asynchronously is an open question.

In the following, we present a connectionist model of semantic networks

of the kind discussed in E&R. It should be kept in mind that these have a

particularly simple form. Properties are not distinguished from type nodes,

and there are no two place predicates. For a different formulation of semantic

networks in connectionist terms which overcomes these objections, see

(Feldman & Shastri, 1984).

7,3.2. A Connectionist Inheritance Model

In E&R, a correspondence was made between the five link types of a

semantic network (Strict IS-A and ISNT-A, Default IS-A and ISNT-A, and



exception links) and formulae in Default Logic. Since our purpose here is to

show that a connectionist network can mimic their inference algorithm, we start

with formulae from Default Logic that correspond to inheritance axioms and

display the corresponding bits of network. The first step, however, is to choose

a representation of the predicates. Following the unit/value principle, we will

start with two units for every predicate P, called +P and "P, representing the

two different possible assignments of truth values to those predicates. When

computing an extension, a node that is firing (after convergence) represents

that it is part of the extension. There is an immediate consistency constraint

between these two nodes, i.e., they should not both be on in any stable state.

Thus we should make them mutually inhibitory. An immediate observation we

can make at this point is that if the two nodes were to both remain on at a low

level without a clear winner, due to equal evidence, then we have either an

ambiguity (if they are on due to competing default inferences) or an

inconsistency, if they are on due to first order inferences. A method for

detecting such conflicts is given in Shastri & Feldman (1984). A problem with

this formulation of predicates is: How should the inhibitory evidence be

weighed by the evidence function? If we make one unit being on prevent the

other from ever coming on ("eager" inhibition), we would duplicate the

shortest path heuristic (whoever got inferred first would stay on), which we

know to be incorrect. Thus we have to make it "fair" in some sense. A unit

that has evidence should be allowed to propagate that evidence before being

inhibited. This is essential if we are to consider all possibilities in parallel.

Thus we introduce a third unit, #P, (to use Touretzky1s notation, if not his

semantics), which represents "inconsistency." This node inhibits +P and "P if

both of them are firing. Thus this introduces a delay in the inhibition between

+ P and "P. See Figure 7.3. There is a conjunctive connection from + P and

"P to #P to encode the semantics that both have to be on for #P to come on.

Then it outputs the maximum of the two, inhibiting both +P and ^P1. We

can now, if we wish, monitor the #P unit to detect inconsistencies or



o Inhibitory connection

Conjunctive connection

Figure 7.3. The Spock representation of the predicate P.

ambiguities.

We make the following correspondence between the four formulae

defined in E&R, and networks in the connectionist framework. All links

shown have weight 1.

(1) (x).A(x) -* B(x): This corresponds to two links:

(2) (x).A(x) -* ^B(x): This corresponds to two links:

—>CA

LAn alternate formulation would have been to use two of these units so that the stronger unit would not receive
its own inhibition, but the opposing unit's. We intend to explore this option in the future.



A(x): B(x) & *Ci(x) &...& ~Cn(x)
(3) — - L - L l _1LJ! 21_i (Where n is possibly 0):

b(x)

(4)
A(x): ~B(x) & &...& Xn(x)

B(x)
(where n is possibly 0):

+ A

Our encoding of an inference rule is thus just to put a positive link from the

antecedent to the consequent. This is the first link in the encodings of (1) and

(2), and it guarantees that if +A comes on, eventually +B (or "B, as

appropriate) will come on as well. Since these correspond to first order facts,

we don't allow any exceptions to these (i.e., modifier links - see below). In an

attempt at some semblance of completeness, we encode the contrapositive as

well (remember we have no interpreter to deduce these consequences). This is



the motivation for the second link in the encodings of (1) and (2). We are

explicitly adding the rule 1 -> "A (or B -^ "A, in (2)). In E&R's

formulation, extensions are closed under first order inference. This has some

odd consequences, which we will see in the Cephalopod example.

In the encodings of (3) and (4), there are no "backwards" links like these,

because the contrapositive doesn't hold for default inferences. However, "B in

(3) (as well as any of the -fQ's) for example, should block the inference of + B

if it is on, so we use a modifier link from "B to the link between + A and + B.

If there is any evidence at all for "B, it should not have to compete with + B,

if +B was inferred by default The modifier link blocks activation from

crossing this link if "B has any output at all. Thus it seems a good choice for

encoding the semantics.

An inference, then, corresponds to, e.g., +A activating +B. This

inference may be retracted later if "B is inferred by some (necessarily first

order) rule. The retraction is accomplished by using activation functions that

cause a unit's potential to go to 0 if its evidence goes to 0. An extension will

then correspond to a stable state of the network.

Due to the limitation that modifier links have not been implemented in

our simulator for connectionist networks, ISCON (Small et al, 1982), we have

taken the liberty of introducing an extra node on all links (an "isa" node) to

provide a site for the modification. Thus a modifier link is realized as an

inhibitory link to the link node, and the link node has a special activation

function that sets the activation to 0 if there is any inhibitory input, to

duplicate the semantics of a modifier link. This encoding has the effect of

delaying propagation uniformly throughout the network. The IS-A units are

useful sites for control, however, and are necessary in a more fully specified

model (see Shastri & Feldman, 1984). Unfortunately, it also has the effect that

if, for example, + B is inferred by a default rule, and ~B is inferred in some

way, then + B and "B end up competing more than they "should", in pan due



to the asynchrony. + B may get updated several times before the "isa" feeding

it gets updated and turned off. This causes longer settling times for the

network.

Finally, we specify what the units compute. An evidence function which

appears reasonable for our purposes is to take the maximum of all positive

input (from subtypes) and add the minimum of all inhibitory inputs. The

motivation for this rule is that we will use one "source" for the network's

activation, namely the predicate whose extension we are seeking, and so it does

not seem appropriate to use more evidence than the maximum from that

source. However, there are arguments against this. In a non-demonstration

system, one would want an alternate way to combine evidence, for example

Dempster-Shafer rules (see Ginsberg, 1984), for some extensions of Dempster-

Shafer rules for semantic networks). This is especially important for default

rules. If someone is a Republican and an NRA member and a veteran then we

would be more inclined to assume they are not a pacifist, even if they are a

Quaker. See Feldman and Shastri (1984) for more discussion on this. In any

event, for the examples we will be discussing, the max and min rule appears

sufficient

The result of the evidence function is passed to the activation function.

We have implemented two activation functions in this system. One uses table

lookup and looks almost like iterative marker passing (it only uses three

values), and the other is more continuous-valued. The first function appears in

Table 7.1. The basic idea is to move towards the value of your input. This

version of the system we call Spock because it doesn't allow intermediate

interpretations. A unit is on, or it isn't. The second uses the activation

function in Table 7.2 (due to McClelland & Rumelhart, 1981). In this

function, E is the result of the evidence function, p is the potential and d is a

decay constant (we used 2 in the simulations). We call this version Dr. Spock

because it is more permissive, allowing intermediate values. If one had no

decay, then starting the system with a 1 on the assumed unit, and only using



Table 7.1. The Spock activation Function

Evidence
0
0
0
1
1
1

-1
-1
-1

Current Pot.
0
1

-1
0
1

-1
0
1

-1

New Pot.
0
0
0
1
1
0

-1
0

-1

Table 7.2: The Dr. Spock activation function

p <- p + [if E < 0 then E*p else E»(l - p)] - d*p

weights of 1 or -1 on links, then the result is that units only take on the values

0 or 1. The problem with this is that if a unit is at 1, then it will stay there if it

is not inhibited, causing false inferences to stay around. The desire to try to

have a system with no decay led to the table lookup function above.

The goal is to solve the same problem as E&R, that is, given an individual

b, for which P(b) holds, determine all predicates Pi • • • Pn such that P(b),

Pl(b), • • • Pn(b) belong to a common extension. We do this inference by

clamping on node + P. After convergence the nodes that are "on" are in an

extension.

We should state at this point that there is a major difference between

E&R's algorithm and the following implementation. We claim here, without

proof, that if the network only encodes a consistent set of first order

(inheritance) rules, we can allow all first order rules to fire in parallel and the

network converges. An interesting question is whether we can allow all

inferences to proceed in parallel, including the default inferences, while relying

on our predicate networks to guarantee consistency. While at this stage we

have no proof of convergence or correctness, experimental results with the

system support the conjecture. E&R's algorithm stipulates introducing one



default rule at a time, generating all inferences, and then trying another, so we

depart from their algorithm in this. The difference is that we don't wait for

first order consequences to propagate before we try another default We use a

random update order (simulating asynchrony) to allow one default to run

before another, as in E&R's algorithm. If they are "competing" defaults (as in

the Nixon example), this ensures one will block the other, so this is basically a

tie-breaking strategy. In a synchronous network, one could use noise to break

ties.

Here is a rough sketch of how to mimic their algorithm exactly. The

control issues in the following have not been worked out, but there is nothing

inherently hard about them. The following would be done synchronously, that

is, the units are updated in lock step. The entire network would have to be

duplicated once. An approximation to an extension is generated in one

network as follows: Clamp on +P, using enable links (control links) to the

strict IS-A nodes to allow only first order inferences. As claimed above, if the

first order knowledge is consistent, there is no problem in doing all first order

inferences in parallel. It would take two times the depth of the network

iterations for all inferences to propagate (besides upward inferences, there are

the contrapositive inferences that come back down). Then, randomly enable

one default IS-A link (along with the strict IS-A's), and wait the same length of

time. Repeat this process until all default IS-A's have been enabled once.

Then send a signal to all nodes to "clamp on" their state. The next

approximation to an extension is generated in the other network, using the

knowledge inferred in the first network to block default inferences (modifier

links are to the default IS-A's in both networks). Then the original network is

reset and the operation continues until two successive states are identical.

Again, the difference between this and our simulation is that we try to see how

far we can get by just using one network and letting all inferences proceed in

parallel, including the default inferences, while relying on our predicate

networks to guarantee consistency.
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7.4. Simulation Results

We present the results of simulating several of the networks from E&R.

In the following, the results are from the Spock version except where noted-

This is because in almost all cases, the results from the two systems were

similar. We use asynchronous updating of units to simulate the randomness of

E&R's algorithm2. That is, units are all equally likely to be simulated at any

point. An "iteration" consists of doing as many updates as there are units in

the network. Note that this doesn't mean that all units have been updated;

some may have been updated more than once, others not at all.

We begin with the Cephalopod example from E&R, shown in Figure 7.4.

The source of this example is (Fahlman et al, 1981). In English, it's:

Figure 7.4. E&R's network representation of Cephalopod facts.

2We implemented a synchronous version as well. Based on simple examples, it appeared that if there was a
unique extension it would find it, and oscillate on examples with more chan one, allowing us to report an ambiguity.
We discarded it upon finding it didn't converge on the "hard" example discussed at the end of this section, even
though it had only one extension. The fixes for the asynchronous version discussed at die end of the chapter would
probably help here as well.



Molluscs are normally she 11-bearers.

Cephalopods must be Molluscs but normally are not shell-bearers.

Nautili must be Cephalopods and must be shell-bearers.

The default theory corresponding to this (as given in E&R) is:

The connectionist implementation of these rules is given in Figure 7.5.

For this example we spread activation from the +Cephalopod node in

order to find the extension of Cephalopod. To shorten the tables, only

Figure 7.5. The Spock implementation of the knowledge in Figure 7.4.



iterations where one of the units in the table changed are shown. This is a

"typical" execution, although of course they are rarely the same. We simulated

this network about ten times, and it never took longer than 15 iterations to

converge. As the results in Table 7,3 show, activation spreads from

+Cephalopod and activates "Shell-Bearer, which blocks the IS-A link from

+ Mollusc to + Shell-Bearer.

An interesting result here is that "Nautilus is inferred! Since E&R require

that "an extension ... is closed under the Defaults of D as well as first order

theoremhood", then they will have to live with this. The inference came about

because "Nautilus was consistent, allowing us to infer "Shell-Bearer from

+Cephalopoda However, since Nautilus-»Shell-Bearer, first order, then

"Shell-Bearer-»"Nautilus, and we get the result that we prove "Nautilus from

assuming it to be consistent. This is not unintuitive, since if Cephalopods are

usually not Shell-Bearers, then they are usually not Nautili. This is just not

what we expect from an inheritance hierarchy. Not including such

"downward" inferences would eliminate completeness, but would also

eliminate a problem with the final example.

[f we activate + Nautilus instead, activation spreads to +Cephalopod and

+ Shell- Bearer, and + Nautilus cancels the IS-A from +Cephalopod to

"Shell-Bearer, resulting in the correct extension.

Table 7.3. Trace of Unit Outputs from Example 1

Iteration

+ Nautilus
"Nautilus

-i-Cephalopod
4- Mollusc

+ Shell-Bearer
"Shell-Bearer

2

0
0
1
0
0
0

Activating
3

0
0
1
0
0
1

Cephalopod
4

0
1
1
0
0
1

5

0
1
1
1
0
1

3

1
0
0
0
0
0

Activating
6

1
0
0
0
0
0

8

1
0
1
0
1
0

Nautilus
9

1
0
1
1
1
0
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If we use the default theory relating to the NETL version of this hierarchy

given in E&R (see Figure 7.6), we get an ambiguity with respect to whether a

given Cephalopod has a shell or not, since the default IS-A from + Mollusc to

+ Shell-Bearer is not cancelled. Also, in this version all inferences are defaults,

so "Nautilus is never inferred. Our network shows a marked preference for

shortest paths in this case. In 20 runs, we got "Shell-Bearer 18 times and

+ Shell-Bearer only twice. This is not surprising, given that the activation is

most likely to follow the shorter path first. (In simulations of the Nixon

example described earlier, where the paths are of equal length, the the results

were 50-50 between the two extensions.) In one run, the end of which is shown

in Table 7.4, both + Shell-Bearer and "Shell-Bearer were inferred at the same

time. This is an implementation artifact, since a true modifier link would have

prevented this from happening. However, it illustrates the robustness of the

system. The ambiguity resolution of the # Shell- Bearer node saves us from the

Figure 7.6. The NETL version of the Cephalopod example.
All inferences are defaults.



ZU1

implementation. (In all other cases, the network converged in 10 iterations). It

comes on only when both of its + and " nodes do, and inhibits them. Because

of the asynchrony, eventually one of the nodes comes on without the other.

In example 3 (see Figure 7.7) we duplicate E&R's network that illustrated

their inference algorithm. As Table 7.5 shows, at iteration 12 unit + D gets

activated by unit +B. Because + C has blocked the IS-A link from +B to "D,

it doesn't have to compete with ~D. Sometimes we get the behavior their

algorithm exhibited In Table 7.5, we also show a run where "D gets inferred

first. The fact that it gets inferred even though +C has already been inferred

is again, an artifact of our implementation: The IS-A node from + B to "D was

already on before +C was inferred, and "D ran before the IS-A node which

supported it was able to run again and be blocked.

Table 7.4. Ambiguity Resolution at Work in Example 2

Iteration 10 12 14 16

+ Shell- Bearer . 1 0 0 0
^Shell-Bearer 1 1 0 1
#Sheil-Bearer 0 1 0 0

Figure 7.7. From E&R's example of their procedure behavior.
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Table 7.5. Trace of Unit Outputs from Example 3

Iteration

+ A
+ B
+ C
+ D
"D

0

0
0
0
0
0

Activating
4

1
0
1
0
0

9

1
1
1
0
0

A
12

I
1
I
1
0

5

1
1
0
0
0

A run
6

1
1
1
0
0

where
7

1
1
1
0
1

"D gets
9

1
1
1
0
0

inferred
12

1
1

• 1

1
0

In example 4 we show that we overcome the fixed radius problems of

NETL, The networks in Figure 7.2 defeat any shortest path heuristic. As

Table 7.6 shows (left hand side), since activation is computed continually, the

effects of node + F are felt when it gets activated, and the IS-A from +B to

X is cancelled, allowing +C to become active. Note that, because this is all

default inferences, +C can't be inferred until X goes off, because "C blocks

the inference of + C Table 7.6 shows that the network of Figure 7.2(b) works

as well. In this case, it is practically impossible for "C to come on, since + B is

almost always inferred early, blocking the inference of "C If it "C did come

on, the network would still converge as it did for the network of Figure 7.2(a).

In this case, the Dr. Spock version was a little slower, because "C took several

Table 7.6. Trace of Unit Outputs from Example 4

Iteration

+ A
+ B
+ C
~c
+ D
+ E
+ F

2

1
0
0
0
0
0
0

5

1
0
0
0
1
0
0

Figure
7

1
1
0
0
1
0
0

11

1
1
0
1
1
1
0

7.2(a)
14

1
1
0
1
I
1
1

16

1
1
0
0
1
1
1

25

1
1
1
0
1
1
1

2

1
0
0
0
0
0
0

4

1
1
0
0
0
0
0

Figure
5

1
1
0
0
1
0
0

7.2(b)
6

1
1
1
0
1
0
0

8

1
1
1
0
1
1
0

11

1
1
1
0
1
1
1



iterations to decay to 0. The modifier links are strict, so that any output from

X stops default inference of +C.

Example 5 illustrates that our networks, like the algorithm they imitate,

don't subscribe to Touretzky's inferential distance rule. The network in Figure

7.1 has two extensions according to default logic, one in which Clyde is Gray,

and another in which he is not This is isomorphic to the Nixon example,

except that there is an IS-A link between the two intermediate nodes. This

does not cause the network to behave any differently, however. A sample run

is given in Table 7.7. It is interesting to note that since there is no criterion to

choose between the two extensions in this case (both "Gray and +Gray block

the inference of the other, and are equidistant from the source of activation),

the ambiguity resolution takes considerably longer. The network has to find a

stable bit pattern of activation, and the search appears random. The pattern

involves more than the nodes shown, due to the extra link nodes between each

node shown. However, because of the randomness of execution, we can be

assured that it will find it. (Also, if some of the units' behavior seems

anomalous, it is helpful to recall that we only see the result of what may have

been several changes to each unit in a single iteration.)

It appears that our networks behave rather well. The final example shows

that this is not always the case. The example is given in Figure 7.8. It is

nearly identical to the example in Figure 7.2(a), except that the inferences are

Table 7.7. Trace of Unit Outputs from Albino Elephant Example

Iteration

Clyde
Elephant

Albino-El.
+Gray
"Gray
#Gray

11

1
1
1
1
0
0

12

1
1
1
1
1
0

13

1
1
1
1
0
0

14

"l
1
1
0
0
0

16

1
1
1
0
1
0

17

1
1
1
1
1
0

18

1
1
1
0
1
0

19

1
1
1
0
0
1

20

1
1
1
0
1
1

21

1
1
1
0
1
0

22

1
1
1

-1
0
0

24

1
1
1
0
1
0

25

1
1
1
1
1
0

27

1
1
1
0
1
0



Figure 7.8. This one causes Spock some trouble (but not the Dr.).

all first order in the left hand chain. This example looks harmless because it

has a unique extension. Unfortunately, it takes Spock over 1000 iterations to

converge on that extension (but Dr. Spock was an order of magnitude faster:

see below). To see why, recall that first order IS-A's allow downward inference

of "P's. (Both A-*B and A-*"B result in contrapositives with negative

consequents). Secondly, the delay in inhibition between a " + " node and a

"~" node induced by the " # " node allows inference chains to "pass" each

other. What happens in this case is that the default inference of "G starts a

downward chain of "not" inferences. This meets an upward chain of positive

inferences. They pass each other, then the consistency constraints begin
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turning off both + and " predicate nodes in the middle of the chain. The

inference chains then meet rather incorrigible resistance at both ends. + G has

a hard time blocking the inference of "G because by the time it gets there, its

support is falling apart behind it. If it fails, "G is inferred again straightaway.

+ A is clamped on, and +P follows from that. Then the process starts over

again. The ambiguity resolution search of example 5 is multiplied by the

fading in and out of the bottom up support.

The problem is, of course, that we didn't wait for the results of our first

order knowledge before applying a default rule, and it took a while getting to

the point of disagreement In all of the other examples, the ambiguity was

very localized. Local ambiguities are not hard for connectionist networks to

handle. It is ones that depend on global properties of the network that are hard

to deal with and still maintain a small radius of communication (an unspoken

assumption in most connectionist models). There are several ways this

problem could be avoided. One is to introduce a more continuous activation

function. This is one place where there is a big difference between the two

activation functions. The Dr. Spock version converges in somewhat over one

hundred iterations, an order of magnitude better, and more in line with the

time taken in the other examples. The reason appears to be that the units are

less "all or none". Because 4-G decays slowly, it is more likely to be on when

+ P tries to infer "G, since any nonzero output from +G blocks the inference.

The search for a stable bit pattern, on the other hand, can take a lot longer.

A second way which could augment the first is to make default inferences

literally less strong than first order ones. If a default inference link is weighted

by .5 instead of 1, then a first order inference could more easily overcome it.

In this case, we need a activation function that converges to its evidence, to

propagate the .5 value, (unfortunately, this is not a property the McClelland &

Rumelhart function (called Dr. Spock here), enjoys). The function:



p <- p*(l-d) + E*d

achieves this3. Experiments with this scheme have been encouraging. The

table lookup function could also be altered to reflect this other value. First

order inferences which had a default at their source would then reflect that fact

in their potential. In this way information that was non-local could be encoded

in the signal. This still doesn't avoid the problem altogether. There is no

reason why a default inference could not be at the base of each chain. It

appears that a different consistency "gadget" may be required, perhaps one

that randomly selects one of + P or ^P to inhibit and waits until the depth of

the network updates to stop inhibiting, allowing first order consequences to

propagate.

A third way which avoids the pitfalls of the others is to disallow

downward inferences altogether, by going the way of NETL, and assuming that

everything is a default inference. (Or by foregoing our attempt at

completeness; hence not encoding the contrapositive.) This does avoid the

problem of two default inferences being at the bottom of competing chains.

The competition at the top is a local one, since either outcome is consistent.

Adding weights reflecting belief strengths, as in Shastri & Feldman (1984), and

advocated by Rich (1983), might make such a system a possible cognitive

model.

7.5. Future Work

7.5.1. Correctness

The examples are an informal (engineer's) argument for correctness.

What is missing from this presentation is a formal proof of correctness. A first

cut would be to show that if the network is in a stable state, then the predicate

units that are firing represent an extension, and leave the problem of

convergence for another time. One point that is clear that the subnetwork of

3It turns out (unbeknownst to us when we derived it) that this is the function used by McClelland in his (1979)



three units representing a predicate has only three stable states:

(1) They are all off.

(2) + Pis on.

(3) ^P is on.

Any other configuration of activation will cause changes in some unit's

activation. If only # P is on, it will go off. If only one of the others are on as

well, then # P will also go off. If both are on, then # P will inhibit them until

one goes off. If # P is off and both of the others are on, # P will come on.

Using this we hope to come up with an inductive argument that if the network

is in a stable state then it is consistent.

7.5.2. A Specification Language for Connectionist Networks?

An interesting observation about this implementation of Default Logic is

that the consequents of default rules, even if inconsistent, are often

"entertained" at the same time. There is an obvious correspondence between

this and the usual method of "search" in a connectionist network: let all

possible hypotheses activate, and then let the network "relax" to a consistent

interpretation. If enough constraints are encoded, unique solutions are often

found. If a mapping from general default rules, not just the prepositional ones

relating to inheritance axioms used here, could be found, then specifying major

portions of a connectionist network could be reduced to writing axioms in

Default Logic. Examples relevant to this thesis are given below. Of course,

there are many control problems that may not be amenable to this treatment.

Also, assuming this was used for cognitive modelling, weights on links are

assuredly necessary; this would have to be expressed as annotations to the

default rules.

The main technical problem with this proposal is keeping track of variable

bindings. For example, in a rule such as.

Cascade model.
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(x):Quaker(x) & ~NRA-member(x) & ^Veteran(x): Pacifist(x)
Pacifist(x)

unlike the propositional case, the network generated has to somehow enforce

that the same "x" that is a Quaker is the one that is not an NRA member, etc.

One scheme that may work for this is given in (Feldman & Shastri, 1984),

where arguments to schemata are bound through Feldman's (1982) dynamic

binding mechanism. More investigation is necessary.

Given such a specification language, networks implementing a parser such

as the one described in this thesis could be specified using default rules. For

example, noun-verb ambiguous could be specified by such rules as:

{(x)Noun(x)-^Verb(x) r o s e ( x ) : N o u n ( x ) rose(x):Uxj.iNounw verow, F L 0 W ER(x) ' STA
F L 0 W ER(x) ' STAND(x) *

which would generate something like the network in Figure 7.9. Notice that

disambiguation "falls out" of this representation; if the Verb node gets

.feedback, it supports "Noun, which blocks the input to FLOWER. An

Figure 7.9. Network representing the meanings of "flower".
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interesting consequence of the mapping is the explicit representation of such

concepts as ""Noun", which then are used to block the inference of meanings

which are not Nouns. Parsing rules can also be represented. A bottom-up rule

is:

{Det(x) & Noun(y) & Adjacent(x,y) & cons(x,y,z) -* NP(z)}

Technical problems here involve not only variable binding, but creating

instances of concepts, which crept in as "cons(x,y,z)"; a mechanism for labeling

the pair "x" and My" as "z" is necessary. The first orderhood of this rule

makes feedback possible, but only negative feedback if a competitor of the NP

wins. Then ""NP(z) would imply "Det(x) or "Noun(y), etc. It is left as an

exercise to the reader to devise a network which will enforce this in the

propositional case (for example, if cons(x,y,z), Adjacent (x,y) and Noun(y) are

all true, then the network should force "Det(x)).

Another possibility is to view the default logic specification as a schema

for the network, and to use machinery outside the logic for handling the

bookkeeping problems of instantiation, labeling and coordination. For

example, rules such as these could be the knowledge stored in a connection

information source (McClelland, 1985), and the programmable buffer

mechanism could keep track of the variable binding, instance generation, and

coordination of bindings.

If the technical problems with this approach turn out to be tractable, this

would be a great step forward in the ability to specify connectionist networks

for language processing. In vision, the problems are often expressible

analytically, allowing mathematical specification of the networks (Ballard,

1984). The non-analytic nature of natural language makes a mathematical

approach problematic at best. Logical specifications are at least in the right

ballpark, thus this seems a promising avenue for future research.



1.6. Conclusion

We have seen how a connectionist model of inheritance mimics E&R's

inference algorithm, avoiding the problems of NETL So, a massively parallel

inheritance scheme can work. Two caveats should be mentioned. First, this is

within the context of a very simple characterization of semantic networks.

Second, our algorithm takes an inordinately long time to converge using the

Spock activation function in the final example. This raises serious questions

about its effectiveness in real domains, even on a parallel machine. However,

the Dr. Spock version did converge in a reasonable amount of time, and by

foregoing completeness, either system would converge reasonably. There is

obviously much left to be done. For example, a correctness proof. Also, an

interesting avenue for exploration now is using weights on the links to encode

default strengths. This could have a speed-up effect on convergence, and could

possibly be an interesting cognitive model. Also, specifying an evidence

function that would better reflect the contribution of multiple sources of

evidence is left for future research. Finally, this approach, if augmented to

handle more than propositions, holds promise as a way of specifying

connectionist networks in a formal language.



CHAPTER 8

CONCLUSION

8.1. Conclusion Introduction

Cognitive Science is a discipline that attempts to apply the insights of

Computer Science, Psychology, Neurophysiology, Philosophy and Linguistics

to the problem of human cognition. It is a field that will stand or fall on the

basis of whether this interdisciplinary approach continues to generate new ideas

that did not grow out of any of the various disciplines alone. To be successful,

it will have to prove-its worthiness by converging on one or more shared

paradigms, that focus research in the parent fields on shared questions that

flesh out a coherent picture of cognitive processing.

The model presented in this thesis has many implications for sentence

processing within the various sister disciplines of Cognitive Science, and as a

result, exemplifies the possibilities of Cognitive Science itself as a discipline.

This work also adds to a growing body of literature that argues for the use of

connectionist models as the paradigm for Cognitive Science. B\ virtue of che

roots of the approach as an abstraction of the information processing

capabilities of neural networks, it focuses on "the brain" as the central object

of interest in forming cognitive models. The fundamental question becomes:

How could one possibly walk, talk, see, hear, and plan, given that all one has

to direct all this activity is a mass of highly connected, simple processing units?

This thesis has been an attempt at answering part of this question.

A major premise underlying this work is that it is fruitful to apply-

constraints currently available from the various disciplines when designing



models. Many of the design decisions were directly motivated by empirical

data. The end result is a model which feeds back to the constraining

disciplines, generating new hypotheses that are empirically testable. As in the

usual scientific cycle, data generated by these tests will no doubt cause

refinements in future models and continue the interaction. The primary

contribution of this work is the initialization of the cycle, illustrating by

example the possibility of a connectionist model of sentence processing. The

next section summarizes the major implications of the model.

8.2* Summary of the Implications of the Model

Lexical Access

Two models of lexical access were presented here. The one in Chapter 3

satisfied constraints from recent data on lexical access and explained that data.

Given four-way ambiguous words such as "deck" (two noun and two verb

meanings) in a lexically biasing context, the model predicts that the

inappropriate meaning that is within the class of the biased meaning will be

deactivated first, followed by the other two meanings. Using this as a timing

argument, it claims the selective access results of Seidenberg et al. (1982) were

the result of testing the activation of the inappropriate meaning after it had

been resolved. The model waffles on this claim, providing an alternate

explanation that does produce selective access based on different model

parameters.

The lexical access mechanism used in the syntactic processor of Chapter 5

makes the opposite claim. Given that model, the inappropriate class meanings

would fade first. This makes it an unrealistic model, given the Seidenberg at al.

results. Again, a shift in model parameters could maintain the original

prediction. It may be desirable to try to "save" the mechanism this way, since

it has the appealing feature of allowing alternate within-class definitions to

remain viable, but "hidden11 from the rest of the network. This predicts that

recovery from within class inappropriate meaning selection is easier than



recovering from selecting the wrong class altogether for an ambiguous word

Of course, this prediction is dependent on other factors in higher level syntactic

processing as well

Semantic Priming

Chapter four unifies disparate results from the semantic priming literature

regarding the two tasks most commonly used (lexical decision and naming) in

terms of the timing of activation spread through the levels of the language

processor The explanation hinges on the levels assumed to be accessed by the

two tasks, and claims that the results seen can be entirely explained by the time

course of activation spread between those levels inherent in the structure of the

system. Levels farther away from the level accessed by the task have no effect

at short delays, but have increasing effect as the duration of the prime and the

delay between the prime and target increase.

Agrammatic Aphasia

The model explains the observed behavior of agrammatic aphasics in

terms of a loss of the constraints between syntax and semantics. This

explanation is similar to the one given by Linebarger et al. (1983), where the

deficit is explained as one of the loss of the ability to use the syntactic

information to make functional role assignments. However, the explanation

given here is more specific, stated in terms of a parsing system where the

interaction of syntax and semantics is limited to (a) interactions at the lexical

level in the word sense buffer, and (b) constraints between the bindings of

constituents to their roles in the two systems. It is the loss of the latter that is

the proposed deficit. Specifically, the lesion is to the binding system which

dynamically forms the correspondences between constituents in the two

systems, enabling the constraint information to be communicated.

The explanation gives rise to specific predictions about aphasic behavior.

These are that patients will not be responsive to syntactic attachment biases in



their semantic representation of sentences such as the cop saw the burglar with

the gun. If they have been biased towards attaching the PP to the VP, the

prediction is that they will still make the semantically more plausible

attachment, unlike normals. Also, as a test of the theory's prediction that there

is still a connection through the word sense buffer, agrammatics should either

pick the syntactically biased interpretation of such sentences as cast iron

quickly choosing the syntactically biased interpretation on a picture matching

task (someone throwing an iron) or judge it as ungrammatical and choose a

picture of a cast iron pan. If not, then the model is wrong about the word

sense connection. In this case, a revised model would predict that such

sentences as the old man the boats would be interpreted by the agrammatics as

syntactically correct, while their semantic interpretation would be the

semantically biased one that the sentence refers to an "old manM and "boats".

Finally, this model is a useful testbed for predictions about agrammatism

in general. Sources of knowledge about attachment information and lexical

information can be deleted from the model, and the model will then produce

testable predictions, without the reprogramming that would be necessary in

other AI approaches to language understanding.

Computer Models of Parsing

One of the obvious implications of this work for parsing models is that

parallelism can be at a much finer grain than has been the case in most

models. This is especially pertinent at a time when massively parallel machines

are being developed for AI purposes (Fahlman, 1980; Hillis 1981). Whether or

not the methods used here for combining evidence for grammar rules and

word meanings prove to be useful in a larger grammar, the model at least

provides a framework for studying highly distributed control algorithms for

parsing and semantic interpretation.

Second the model provides a new explanation of the Minimal Attachment

Principle (Frazier, 1979) in terms of the timing of the spread of activation



through rules. This seems a much more natural explanation than the one

given by Frazier and Fodor (1978) where the parser is broken up into a

preprocessor with a small window on the input, and a more powerful second

stage that can view the whole tree. The explanation given there depends on

this separate first stage being limited in its view of the tree. Here, it falls out

of the mechanism of spreading activation through rules1.

Third, the work here proposes a new way of representing the interaction

of syntax and semantics as an interaction between attachment preferences,

combined with interaction through the representation of the lexical items

themselves in the word sense buffer. In spirit this is similar to the work in

Lexical Functional Grammar (Bresnan, 1982). Future work will investigate this

relationship more closely.

Finally, the model adds to the growing body of literature on lexical

disambiguation. The sources of disambiguating information used here are not

new, being similar to those used by Hirst (1984). Also, spreading activation

and lateral inhibition have also been proposed before (Pollack & Waltz, 1982;

Small et al. 1982). However, this system has a more modular design than

previous attempts at spreading activation parsing, and doesn't require an

interpreter to build the network. By taking a cognitive modelling approach,

this parser can claim to have achieved a degree of psychological reality

unattained by Hirst, and by using a fixed network, attains more neurological

plausibility than Pollack & Waltz.

Inheritance in Semantic Networks

Contrary to the position taken by Etherington and Reiter (1983), we can

tentatively conclude from the model described in Chapter 7 that inheritance

hierarchies with exceptions can be dealt with by a massively parallel

architecture. We avoided the problems uncovered by their formalization of

LNon-minimal attachment preferences appear to be possible based on lexical preferences associated with dif-
ferent verbs (Fodor. 1973). Although not elaborated here, there is a natural way to represent lexical preferences in our
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NETL by using iterative activation spread rather than a single pass marking

strategy suggested by the NETL architecture. Improvements to NETL

suggested by Touretzky's thesis (1984) also overcome the problems, but require

conditioning of the NETL network first, which can be as expensive as solving

the original problem. However, more work is necessary to determine what the

expected convergence time of our networks is before we can be certain that we

have a useful approach. As was seen in Chapter 7, the choice of activation

function can have dramatic effects on convergence time.

Connectionist Models

The contribution of this work to connectionist modelling has been

somewhat hidden throughout the exposition. It could be characterized as a

case study of the use of the unit/value principle for solving control problems.

In Chapter 4, we showed that by specifying the behavior desired from the case

hierarchy in terms of logical predicates on the cases, and encoding those

predicates as units, The problem can be reduced to one of encoding the control

between those units. This is trivial given the logical specification, since

connectionist units can compute any logical combination of their inputs. This

suggests circuit design would be a good prerequisite for a neophyte

connectionist. However, the future of connectionist modelling critically

depends on not having to specify networks at this level of detail; see below.

Also, we can point to the parallel discrimination network in Chapter 3 as a

useful tool for future connectionist models requiring standardized decisions

among alternatives.

Perhaps more important is the possibility of a specification language for

connectionist networks where the problem can be defined in terms of default

rules (Reiter, 1980). While the mapping from arbitrary default rules to

connectionist networks has not been developed, it is suggested by the work in

Chapter 7, where inheritance axioms expressed in default logic were mapped

model. This is a debt to be paid in future *ork



into network fragments. Given a hierarchy expressed as default and first order

inheritance rules, a network can be automatically generated which embodies

those rules. Future work will have to determine whether such an approach can

be generalized to default rules with quantified variables.

8.3. Future Work

Although various references to " future work" have already been made,

there are still many unanswered questions that have not been mentioned. As

usual with "future work" sections, many of these are weaknesses in the current

work.

Numbers

First the number of units involved in the model presented here is cause

for some concern. There are standard techniques for reducing these numbers

in connectionist models, given in Feldman & Ballard (1982). It has yet to be

shown that these techniques can be gracefully applied to the model presented

here. One of the sources of the large number of units is the duplication of the

word sense buffer for every position. This also introduces the implausibility of

duplication of connection information at every point in the buffer. This is one

area^ where the programmable buffers of McClelland (1985) have a ready

application. They are designed for storing the connection information for the

mapping of input features to their aggregates at the next higher level of

representation. McClelland's application is letter to word mappings. The

model's word sense buffer corresponds to a dictionary lookup, and as such, is a

perfect candidate for McCleiland's system. The connection information is

represented only once in such a system, making it considerably more plausible.

A second approach to reducing the numbers is to switch to a distributed

representation as is often used in neural network learning models (Hinton &

Sejnowski, 1984; Kawamoto & Anderson, 1984). In this approach, rather than

using a unit for every value, each unit is part of many representations.



Through the concerted action of many units, patterns of activation at one level

of the system representing a word, for example, activate patterns at the next

level representing its meanings. There is a limit to the number of

representations that can be stored this way without crosstalk arising between

them, but it appears that more information can be stored for a given number

of units using this approach. One question that is yet to be answered is how

control can be represented in these systems.

Control and Evidence

For localist connectionist networks, the "central1' activity that units engage

in is computing the evidence for their value. This is the essential problem: an

evidence theory that relies on purely local information needs to be developed.

Such theories exist for some domains (Shastri, forthcoming), but the most

general evidence theories (Shafer, 1976) use global normalizations that are

unsuitable for a connectionist network. Once this is pinned down, the next

problem is constructing a mathematical model of the conceited action of units

using this evidence theory that specifies conditions for convergence. So far, the

best results known for networks with very simple mathematical

characterizations do not guarantee convergence to a globally coherent state

(Hinton & Sejnowski, 1983b). However, this may not be necessary for a

cognitive model, since it is doubtful that humans ever achieve global

coherence. On the other hand, they do achieve a certain amount of coherence

concerning the interpretation of day-to-day perceptual inputs.

Cooperative Computation

A final hurdle that has not been tackled in this system is getting the

syntactic and semantic components to work together. This involves building

the binding space between them that will form the bridge between syntactic

and semantic components, and considering timing issues. On the first point,

the work of Hirst (1984) is of interest because his use of the constraint from

Vtontague semantics of a one-to-one correspondence between syntactic and



semantic objects. This should simplify the problem of computing

correspondences. On the second point, it is probably unnecessary to

synchronize the two systems (in fact one would expect they operate at different

rates in different situations), however, their relative speeds must be somewhat

in line with one another, else information will arrive too late to be useful in

one system or the other. Adjusting them to one another will be undoubtedly a

non-trivial task.

8A Conclusion Conclusion

Clearly, much work remains to be done. However, as a first step towards

a neural network model of language comprehension, the model presented in

this thesis represents a goal that seemed perhaps premature when the research

began three years ago. The effort has been rewarded by a model of sentence

comprehension that has many implications within the various fields that form

Cognitive Science.
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APPENDIX 1

Unit Rules for Example in Chapter 4

A.I.I Notation
The following is pseudocode for each node types' output For simplicity,

we use integer inputs and outputs. Most of the variable names are self-
explanatory, but here aree a few hints:
window = = a "competition window", as in Chapter 5's rule competition
networks. Assumed to be 2 in the example,
bottom_up input = = maximum of bottom-up input (from buffer nodes for
s.n. leaves). When from outside the example network, as in the case of buffer
nodes, assumed to be 4.
inhibition = = the maximum of the evidence for competitiors (not their
output, as in the rule evidence networks of Ch. 5)
my_evidence = = this nodes* supportive input (sum of evidence)

A. 1.2 Noun Concept Buffer Nodes

These are the nodes in the word sense buffer that are connected into the
semantic network and to the binding nodes. MALE-HUMAN/C0NC1 is one
of these, for example. They threshold their feedback from the semantic
network and from the binder nodes.

if (activated by bottom-up input) then
{ /* Threshold feedback from semantic net V

sem_net_feedback = sem_net_feedback - 4;
/* Ditto for binders */
binder_feedback = binder_feedback - 4;
my_evidence = bottom_up + sem_net_feedback 4- binder_feedback:

return (decision (inhibition,my_evidence);
}

return(O);

The following decision function is used by several nodes.
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integer function decision(inhibition, support)

diff =• inhibition - support;

/* The difference between my */
/* evidence and my competitors' */

if (diff < 0) then return (support);

/* Ignore competitors' evidence */
/* unless it is > mine V

if (inhibition < window) then return (support - diff);

/* Still within competition V
/* window? keep going, but */
/* lower output by competitor's advantage */

return(0)f /* All other cases: give up */

A. 1.3 Verb Concept Buffer Nodes

These are the word sense buffer nodes corresponding to a verb. Their
support depends crucially on the presence of an Object filler.

if activated by bottom-up input then
{my_evidence = bottom_up input;
if (feedback from the Agent hier.) then /* Add one for Agent V

my_evidence = my_evidence + 1;
if (feedback from an Object) then /* Add one for Object
else my_evtdence = my_evtdence - 1; /* Penalize by one if no Object

return (decision(my_evidence, inhibition));
}

return(O);

A.1.4 Semantic Network Nodes



if (activated by bottom-up input) then
{superordinate = superordinate - 4; /• Threshold feedback from sup. */
my_evidence = superordinate + bottom-up input;
if (feedback from case hierarchy) then my_evidence = my_evidence + 1;

/* This means a case was satisfied */

return (my_evidence);
i

return(O); /* All other cases */

A. 1.5 Case Nodes
These are as in the description in the text. The ffprM in the table just

means that a predicate (verb) attached to this case is firing. This does not
cause any output from the case nodes (by itself).

A.i.6 Binder Nodes
if (activated by buffer node) then

{
bottom_up = max(0, buffer_node_output - 5)

/* if buffer_node_puput > 5, must be */
/* due to semantic network feedback V
/* to buffer node, rather than from me */

my_evidence = 4 + bottomjjp; /* Arbitrary working amount */

if (the root of the attached case hierarchy is satisfied + ) then
my_evidence = my_evidence + 1:

return (decision (my_evidence, inhibition));

}
return(O); /* All other cases: give up */


