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1. The Hnethod for Stefan Probl ens

The standard description of a solidification process is captured in
the classical Stefan problem[1]. In this context T « T(x,t) denotes
a tenperature field with T* denoting the phase transition tenperature.
In particular, points X in the material ft are in the liquid phase
when T > T,, and conversely, they are in the solid phase when T < TA.
At points ££ft where there is no phase transition, i.e., TCc,t) + TA,

.the following diffusion equation is valid:

(1.1) || - div(D grad T) x £Eft, t >0,  T(xt) + T~

The transition region is defined by

(1.2) f(t) - {x €R: T(x.t) - T*},

and for points in this region
(1.3) Xv + [Drgrad Trvd* - 0,  x £ T(t).

Here X is the latent heat, v the nornmal velocity of F(t), \" the nornal
to F(t), and [-]t denotes the junp across F(t). To conplete the speci--

fication of the problemv» specify initial conditions, e.g.,

(1. 4) T(x,0) » To(x)  x €ft,

for a givemrinitial tenperature field Tqo  and boundary conditions. For

sinplicity we “use Dirichl et type conditions, nanely

(1-5) T(x,t) - Te(x), x £3t, t >0,

where T" is a given tenperature field defined on the boundary 3t of ft.




The Hoethod [2] is areformulation of (1.1), (1.3) in terns of a

single partial differential equation. To do this we introduce an "enthal py"

as foll ows:

u+ X2, u>20
{1.6) : B{u) =

u- A2, u < 0%
where )
(1.7) O-T - Tgu

Then (1.1), (1.3) are formally equivalent to

(1.8) || - div(D grid u).

Since H is discontinuous across the free boundary F(t), (1.8) nust be
interpreted in the weak sense. Perhaps the nost easily'underst ood "weak
version" of this equation is as a bal ance |aw which expresses the conserva-
tion of heat. |Indeed, let C be any closed curve in ft * [0,°°). Then the

bal ance of heat in C gives

(1.9) | (Hv;+ Dgi*du-V,)dC « O,
c -

where V » (v.,v ) is the outer normal to the space-tine curve C

By shrinking G to a point (x,t) one can formally derive (1.7).
N .
Alternately, letting C shrink to a point (x,t), where x. i_F(t), one ob-

tains (1 1). If onthe other hand X £ T(t), we obtain

V[ HE+[ Dgradu*v,£- 0,

which is (1.3).




The nost common finite elenent and finite difference approxi mations
to (1.1), (1.3) can be derived directly from(1.9). For exanple, consider
the case where ft is an interval [a, b]-, and [a,b] x [0,® is subdivided
into rectangl es with nodes at (xj ot o). Let Ax denote the spacing in X
and At denote the space in t wth u® denoting the approximation to
u(xj otn) . Then instead of requiring that (1.8) hold for all closed curves
G we require that it hold only for the rectangular paths shown in Figure

1.1. This along with the use of mdpoint quadrature to evaluate the inte-

grals gives the followi ng difference schene:

H(nr‘l&_H(n)\ ‘nIIAniJ J;‘f,’

(1.10) S U= D>t —h—1 "

AcC

C—>Yy ..4
| \(‘s"w&)

Figure 1.1. Test Qurves C

\

The schene" (1.10) (plus boundary and initial conditions) represents a
set of nonlinear equations for the discrete tenperature field {u‘.’}. Si nce

H is piecewise linear in u this schene is in fact a "piecewise |linear"
systemin the tenperature field Us and as such is easier to solve than

a fully nonlinear diffusicn problem This schenme and its nultidi nmensional




—h-

anal ogs have proven to be quite effective in practice [3] and [10].
Interestingly, - nost of the schenes proposed for solving the Stefan
problemeither directly reduce to (1.9) or to this scheme w th mnor

nodi fi cati onse

2. A Ceneralized Stefan Problem - Supercooling and_Surface Tension

In many applications —mnost notably in crystal growth and the fusion
and joining of material [4] —there are inportant effects not captured in
the classical Stefan problem e is the effec;[ of surface tension. As soli-
dification takes place the nmelting tenperature T" itself will change as
the curvature K of the free surface F(t) changes. This can be expressed
mat hematically by a formula that goes back to G bbs [5], and which takes the

following form
(2.1) T - 1°Cl-11C).

Here TA is amean transition tenperature, and £ i's a capillary Iength.
Wile (2.1) introduces a full nonlinearity (into the otherw se "piece-

wise linear" system (1.1) - (1.3))s it is in fact a benign nonlinearity which

attenpts to stabilize perturbations introduced in the system For exanple,

if we introduce a perturbation in a planar free surface with a positive curva-

ture K>0 as in Figure 2.1, then the transition tenperature is |owered, and

the perturbation tends to liquidify and di sappear.

\ f T>T,- Ty (liquid)

K>o0 Tox T 5 Tx

T<Tx x Tx (g0lid)

"

Figure 2.1. HEfect of Surface Tension




The second effect of inportance is supercooling. It is possible, for
exanple, for a material to be in the liquid phase with its tenperature bel ow
the transition tenperature, or converse{y, in the solid phase with its tem
perature above the transition tenperature. This situation can be captured
mat hematically by permtting the enthalpy H* H(u) to be multivalued (as

inFigure 2.2).

(0,—A/2)

Figure 2.2. The Miltival ued Enthal phy

This clearly is an unstable force In solidification. That is, supercooling
tends to anplify any perturbation introduced in the systemsuch as shown in
Figure 2.1. Wthout surface tension the influence of supercooling would |ead
to atotally unstable system |In real physical systens, however, where super-.
cooling is present, local instabilities —often called dendrites —can

occur but they are counter bal anced by the nonlinear stabilizing effects of

surface tension.




One can still use the Hnethod for problens where surface tension is
'present (i.e., T™ is given by (2.1)), although it is far nore tedious to
apply than wi th standard étefan probl ens. The nost significant problemis
the need to accurately approximate the free surface F(t) so that reasonable
approximations to that curvature K of F(t) can be obtained. This unfor-
tunatel y works against one of the fost attractive features of the H method
when applied to standard Stefan problens; i.e., the ability to get reasonable
tenperature fields without having to sharply resolve the free boundary [6].

The effects of supercooling, on the other hand, cannot directly be intro-
duced into the Hnethod. Additional information is needed to resolve the
anbi guity created by a nultivalued enthalpy H(u). Smth [7] has offered
‘one method for doing this by introducing a local criteria for determ ning
whi ch branch of H(u) should be used. |In particular, Smth subdivided space-
time into cells and used (1.9) to derive a finite difference approxi.nmation
He let a spatial cell change phase only when a "majority" of its neighbors
were in the opposite phase.” Smth's nunerical resu;ts seemquite realistic,
and fromthe point of viewof statistical nechanics, his local criteria
seens intuitive. However, a nunber of inportant questions can be raised.
First, his local criteriais tied to the nunerical discretization. How does
one interpret his condition as the mesh spacing goes to zero? Secondly, if
there is a "limt condition" is it independent of the grids used in the
nunerical approxinmation? In short, can one view Smth's schene as the approxi-
mati on to an appropriate continuum nodel ?

In the next section we introduce an alternate nodel which possibly ﬁay
be of value - in answering these questions. |In addition, this nodel itself
can al so be used for nunerical approximtion when supercooling and surface

tension is present.




3. Phase Fi el d Model s

In this nodel ve introduce a phase variable 4 * $(x,t) whichis to
be determned by an appropriate field equation. Ildeally ve should have

el inthe liquid region and ¢ " <~ in the solid region. Thus the

enthal py is given by

(3.1) M- u+de.

As above a bal ance of heat gives

(3.2) |_|-di\'/[Dg<Z|'d ny xXEQ "t >0

and ve recall that this equation is equivalent to (1.1) and (1.3).

The phase field $, on the other hand, satisfies
(3.3) Thg & sk 4o (xo %9

for appropriate constants T >0, A > 0 and £. This equation can be
derived by introducing the Helmholtz free energy, which follow ng [8]
takes the form
| r@¢) - -fle? 79-99+ 167 - 393 + 2t

e requires that 0 relax intime T >0 to acritical point of this

functional; i.e.

3.4 % _ 4F

(3.4) TS "%

Here we shall choose a different way of justifying (3.3). In particular,
\

we showthat in a suitable sense it'reduces to the surface tension rel ation

(2.1) which we rewite as
(3.5) u- -TAK on T(t).
To do this we view T as a snall relaxation tine, i.e.,

{3 68} : PR




The diffusion scale £ is also small, but not as small as T:

(3.7) E « g /8 « 1

i.e., the relaxation to equilibriumtakes place at faster rate than the
diffusion of the phase. ‘

To study (3.3) under the conditions (3.6) - (3.7) we use the method of.
mat ched asynptotic expansions. To take a concrete case consider the situa--

tion illustrated in Figure 3.1 where

y = z(x,t)

describes the free surface

Figure 3.1. The free surface z * £.




The outer solution (to first order) is obtained by setting & = T = 0.

This gives

(3.8) 3(-¢3) + u=o.
For small u this has three real solutioms
(3.9) ¢=0, 21, ¢ =0, ¢ =9¢_z-1.
It is easy to check that only the first and third are stable orbits of
t 3. 306-00.
Thus away from the free surface we have
=9,  or ¢=¢_

Near the free surface we obtain a boundary layer of order 0(£).

To get the first order contribution we set T = 0. and obtain the following

balance
2 3
(3.10) 0=E8"Ad + 2(d-9¢") + Au.

The appropriate boundary layer variables are

(3.11) xv = x
(3.12) v
. y = [y-C(xot)]/E .
This gives
a3 228 e 2% o a% ae (1;_)2 320 L 16-63 + ra
9 v2 3xv 3xv3yv axvz 3yv axv ayvz

OG
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Noting that u is snall near the free surface yU - 0, the 0(1)

bal ance is

ALY 2o -4 =
(3.14) (axv vz * 30-¢7) = 0.

Iy
Solution of this equation are approxi nately
tanh(yY) - tanh ([y- 5(x,t}1/E).

The next bal ance gives the desired G bbs-Thonpson rel ationg nanely

2 _

(3.15) o @dX) (1Mo 1 (1),

\ 3y7\ 3x~

Noting that the curvature K of F(t) is given by
2
3%
K=~ f
3X

we conclude from (3.15) that u is proportional to curvature K of-fhe

free surface on T(t); i.e., (3.5) holds.

It is interesting to note that this analysis predicts for positve
£>0 and T >0 a boundary layer of thickness O(£) where 4> rapidly
changes from $ to 4>. Thus it is inportant when this nodel is being
used to keep £ sufficiently small so that the free surface is not sneared.,
In addition, the relaxation tine x nust also be snall - so that the nodel is

descri bi ng phenonena near a thernmodynam c equilibrium




.
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4, Nuneri cal Exanpl es

In this section we present two nunerical exanples. In the first
exanpl e supercooling is not present so in effect it is equivalent to a
classical Stefan problem W use this exanple to illustrate the type of
approxi mati ons that can be obtained in a setting where one can be reasona-
bly confident about how the solution should behave (although no closed
formsolution is known). [In the second exanple we display a situation
where dendrites appear and then restabili ze.

In each exanpl e, the diffusion equation (3.2) was integrated by an
A.D. I, using afixed time step AT. The equation (3.3) for the phase <t>

used the tinme step
At - T/H

The nunber M was chosen so the front velocity was the same order of

magni tude as A/At, where A is the smallest nmesh length in the grid for
$ This is illustrated in Figure 4.1 for one spacé dinension. In addition
the grid for $ was noved by nonitoring values of the second differences

in $.

mesh length for tenp, grid
time difference for tenp

time difference for phase
nodal points in phase grid
nodal points in tenp, grid

{nt1)AT | AX

“
\S

]
o
oxEEZ

} AL

X

X XXXXX X X
4

Front Position

Figure 4. 1. Space-time @id
)
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The calculation started by first marching the phase equation M
steps to time AT. In this calculation the value of the temperature
u was frozen at its previous value, namely at nAt = 0. Then one time
step of length AT was used to compute u at time AT. This process
was repeated moving from AT to 2AT, etc. In some cases where there
were extreme variations in both u and ¢ it became necessary to ite-
rate this process; i.e., recompute the phase based on updated values of
u .

The first example is shown in Figure 4.2. It is a classical solidifi-
cation problem where supercooling is not present. The interior of the
rectangular domain is initially in the liquid state at the melting tempera-
. ture ;h-ﬂ 0, while the boundary temperature up is held below Gh. As
time progresses a fropt moves and the interior starts to solidify. 1In
Figure 4.3 we show sample temperature and phase profiles for t = 0 to
t = .5. The plots represent functions of x for the fixed value y = .5.
Note that the position of the fromnt is blurred in the temperature plot on

the right in Figure 4.3, but is quite sharp in the plot of ¢ on the left.

u--nl

¢ =-.1 -—
. ¢ = +1.

u=0

& X

Figure 4.2. Initial Conditions - First Example

<.
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In the second exanple we have a solidification problemthat is driven
by seed of solid at u « 0 in a background of supercooled liquied at
ue -1. (See Figure 4.4). As in the previous exanple the nean nelting
tenperature EE: Is 0. Two cases were considered. 1In the first a
rather large value for the surface tension was chosen. This tended to act
as a strong stabilizing force overriding the tendency of supercooling to
pronote dendritic growth. The front contours in tine are plotted in X-Y
geometry in Figure 4.5, The progresssion of the front |ooks |ike one that
woul d arise froma standard Stefan probl em except for the bunps in the
free surface at the final time when the front neared the boundary. The

[atter are numerical artifacts.
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Tenperature and phase profiles for y -

Figure 4.3.
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) |

u=0

r‘ ¢ = +1.
¥

u- -1

¢=4. T T L,

(0,0)

Figure 4.4. Initial conditions - second exanple.
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