NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



NUMERICAL OPTIMIZATION STUDIES
OF AXISYMMETRIC UNSTEADY SPRAYS

by

George J. Fix, Suresh K. Aggarwal, Dah-nain Lee,
& William A. Sirignano

DRC-21-10-82
April, 1982




NUMERICAL OPTIMIZATION STUDIES OP AXJ3YMMETRIC UNSTEADY SPFRAYS

S. K. Aggarwal, G. J. Fix, D. N. Lée, and W. A. Sirignano

Carnegie-Melion University
Pittsburgh, PA 15213

Abstract

A hybrid nunerical technique is developed for the treatnment
-_of axi symmetric, unsteady spray equations. An Eulerian mesh is
Ienployed for the parabolic gas-phase subsystem of eduations'mhile
a Lagrangi an schene (or method of characteristics) is utilized

for the droplet equations. The integration schemes and the

schene for intekpolation between the two meshes are denonstrated
to be second-order accurate. The approach is shdmn to be especial ly
useful in situations where a multival uedness of the droplet proper-
ties occurs due to the crossing of particle paths. A set of nodel
equati ons are studi ed but t he technique is applicable to a nore
general and nore physically-correct set of equations. The effects
of interesting nunerical paraneters such as nesh-size, nunber of
droplet characteristics, tinme-step, and the injection pulée-tine
are determned via a paraneter study.. In addition to confirm ng
quadrati c convergence; the results indicate slightly nore sensi-

tivity to grid-spacing than to the nunber of characteristics.
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I ntroducti on

Theoreti cal nodeling of the realistic spray coﬁb@stioh pr obl ens
generally leads to a large syéten1of parti al differential equat i ons.
The gas phase properties such as the gas-enthalpy; t he gas species .
densities and the turbulent scales are rebresented by a subsysten1
of parabolic equations. An Eulerian description of the liquid
Iphase properties, i.e., droplet velocity, droplet radius, droplet
surface tenperature and dropl et nunber density leads to a set of
" hyperbolic equations with sonme tendency toward a paraboIiC'
character due to turbul ent dispersion of‘droplets. A Légrangian
description of liquid phase properties will, however, lead to a
subsystem of ordinary differential equations. These two sub-
systens of nonlinear coupled equations are generally so conpl ex
that a nunérical solution with a high speed conputer seens to be
the only practical method. A realistic solution for a nulti-
~di nensi onal unsteady, turbulent; spray combustion shoul d i ncl ude:

A prbper nodel ing of gas and particle tufbulenée, a conplete
cheri cal kinetics schene, a proper accounting of gas dynaﬁits -
conbustion interaction, a realistic description of fhe fnitial ‘
particle sizes and velocities (this wll nafhly be determ ned by
thé injector characteristics), effects of droplet secondary

atom zation and a precise representation of the exchange |aws

bet ween the phases including the effects of transient droplet
heating. - A detailed, conprehensive description of all the above

phenonena nay be an enormously expensive excercise. it may even
be beyond the capabilities of present-day conputers.




An alternative approach could be to start with an idealized
situation, anmenable to a practical treatnent, and then incorporate
nore sophi sticated nodels. . However, every step towards a nore
conprehensive nodel w il vastly increase the nunber of conputations .
requi red. For exanpl e, a nore conpl ete description of chem cal
ki netics may requrre a large nunber of reactions involving a |arge
nunber of species and thus naking the equations highly stiff.
Simlarly, a proper description df t he heat and nass exchange | aws
bet ween the two phases can introduce enornous conplexities. For
exanple, in the study of Seth, AanrMaI and Sirignano [1], the
conduction inside the droplet is the domnant node of heat transfer.
Unsteady transient heating of the droplets occurs with a prevapor- |
| zation period preceedihg the period of significant vaporization
for each droplet. During the prevaporization period the droplet
Is heated wel | above its initial tenperature. Féating still con-
tinues after asignificant vaporization rate begins. Even for this
sinpl e case, as many -as fifteen"additional differential.equafions
were introduced for the case of nono-di spersed droplets. Mre
conpr ehensi ve heat and mass exchange nDdeIs,'mhich nay i ncl'ude t he
internal circulation, polydispéerse nature of droplets, nulticonponent
nature of fuel,, can easily make the conpuration costs -non- af f or d-
able. Therefore, the need for inproved nunerical'nethods, t hr ough

nuneri cal experinentation, cannot be over-enphasi zed.

In the present study, the nunerical experinmentation is performed
by considering a systemof nodel equations. I'n sel ecting a nodel
problem it is highly desirable to choose one which is as sinple

as possible, consistent. wth retaining the essential features




whi ch affect the conputational efficiency. Thus the nodel équations,
used in the present study, retain the mathematical character of
‘the parent equations but are considerably sinplified otherwi se.

It rfrust be understood that the intent here is to devel op a net hodo-
- logy for solving spray equations and not to devel op an inproved
nodel of spray phenonena. For that purpose, the use of nodel
equations is very convenient. '

The non-linearity of the parent equations is retained by con- .
si dering non-linéar source ternms in the equations: These source
terns express the exchange rates between the phases. ‘The gas
phase properties are assunmed to be represented by a parabolic
heat - di f f usi on type equation. Thr ee equatibns are consi dered
to represent”“the liquid bhase properties, i.e., the droplet size,

t he dropletr.velbcity and the droplet nunber density. The nuneri cal
experinments on these equationé I ndi cate that for the parabolic
equation, an efficient finite difference approach is the one
based on ah ADI (Alternating D rection-inplicit) schene involving '
the solution of a set of tridiagonal nmatri ces. #or dr opl et |
equations in Eulerian form the existing finite difference tech-
ni ques appear inadequate in certain situations, which are-inportant
in spray Conbustion. For exanple, the droplet radius and Iiquid
~velocities often becorme multi-val ued functions, since dropl et
paths cross as the flowdevelops. This can be treated in a
natural way by the nethod of characteristics, but it is very
difficult to handle by finite differences. Realize that the
droplet or particle path and the characteristic lines for the

hyperbol i ¢ equations are identical.




Not e that mult xval uedness of thé'solutions can al so occur
-whenever the initial droplet size or droplet velocity distribution
i's polydisperse. This type of nmultivaluedness is usually treated.
by consi dering the pol ydi sperse spray to be the sumof a finite
nunber of superixnposed xnonodi sperse sprays. The type of multi -
val uedness that is enphasized herein, however, can occur with a
'nonodisperse spray. In particular, it happens whenever particle
paths cross. The first type of multival uedness appears first in
the inflowboundary condition and therefore is known apriori to
occur allowing it to be treated readily in the above-nenti oned
manner. The second type of multival uedness first appears in the
interior of the calculation donmain and cannot be predicted pridr

to calculation




Governing Equations

The gas phase properties are governed by parabolic partial dif-
ferential equations, whereas the droplet properties are governed by
hyperbolic equations. We treat the latter by the method of charaé-
teristics and reduce it to ordinary differential equations. These
twq sets of equations are non-linearly coupled because of the mass,
momentum and heat transfer between the phases. 1In the present study,
the model system contains five equations: one parabolic equation for
the gas phase scalar 0 (temperature) and four ordinary differential
equations for four unknowns [defined before Equation (3)], n, X, S
and gz. It may be noted that in a real system containing many gas
species, the mass densities of various species will be given by the
similar parabdiic equations. The gas phase veloéity as well as the
droplet surface temperature are assumed to be knowh. Thus the mo-
mentum coupling is neglected for the gas phase; for the liquid phase
it is properly taken into account. The set of model equations is |
non-dimensionalized by-using‘bharacteristic values of length, velocity,

temperature and droplet size. The characteristic values used are-

respectively,
zc = 10 cm
Uc = 100 cm/sec
0 = 500°K and
c
Rc = 100 u

The non-dimensional equation for 6 in axisymmetric coordi-

- nates (r,z) can be written as




| | 2, 2 -
308_-. O a d 0 6. 379 : _ _
3t~ "9z (U0 + e v el 2} g (1)

wher e
.. klh S : ' =
.se=m(1+l(5(e- 9&:\) [1 + K4[S(U - Vzt_')s_

su, 1YY sY20n01 ¢ Kg(e- 8)) (2

the quantity 2TT rAr_Az represents:thé volume of a conputationa
cell in an axisynnetfic cylindrical geonetry, t he subscrfpt £
represents_a Lagrangi an variable associated with any conputationa
'droplet. In the above equations, u and'-az are assumed to be
known constants. Thus the gas velocity is'assyned to be uniform
and in the.axial direction. Conseqﬂently, the radi al convection
term does not appear-rh Equati on 11) . Sa stands for the non-
dinEnsjonaI heat transfer rate between the phases. Kl represents
the heat transfer time constant. K; and Ks axe assuned to be
constants. It should be noted that in physically realistic two

phase situations, K would represent the ratio of specific heat
4

at constant pressure and the |atent heat of vaporization, and
K would be the coefficient of the Reynol ds number- correction,

where the Reynolds nunber is based on the droplet size and
droplet velocity relative to the gas (see Reference [1]) . The

equations for n, S, Uz and |Re  are described next.




Liquid Phase Eguations '_ ' e

_ Hie |iquid phase probegties of ihteresf are Qf; t he- | tiid'
2 .
velocity,:S =R, where R is the dropl et radius, and finally_
N which is the nunber density of the droplets. The governing 2
equati ons are of .the hyperbolic type, and'areiusually_mxjtten '

'|nthefolhwmn orm
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observe that
n « NV, | _ oo c ; .-_'
where -n is the nunber of droplets associated with a di ven mass -
of liquid arid v is total volume of gas and liquid per unit :
mass of liquid» A standard conservation argunent shows — *u
g R '
2t e ZH =0 i
Hence (5) reduces to
3n _ ' e :
3+ Uy 9n = 0. - | : C . (6)
These equations will* be integrated using a Lagr angi an
- formul ati on or equXvalently, the nethod of characteristicse In .

particul ar, each Lagrangian_varfable at tinme t is given as




P = P(xo,to;t) where xO and t, are the space and timé cooxdinates

at the point of injection. The position of a computational
particle at time t is denoted by X = x(xo,to:t).'AWith this
convention the above equations are formally equivalent to thé

following:
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Actuaiiy, Eqﬁations (3) through (5) are not the most generél
reprééentation of the'droplet behavior; Equations (7) through
(10) are preferred in that multivalued solutions cani be treated
systematically, . These multivalued solutions are common in two
phase flows sinée droplet trajectories often intersecé. ‘Not¢
therefore that Equations (7) through (10) are actualiy the
primitive form and ofher restricted forms such as Equations (3)

through (5) are special cases.




Boundary and Initial Conditions.

At the inflow (z = 0), the adiabatic boundary'c_ondition

for 9 is prescribed as

s = Y
Yo Poo Cpln = YoPoCpl AMaz) z=0

“which, In the non;di nmensi onal formreduces to'
= 8 - o8

8o % afadp + a = _‘%—z""
pCP c e

wher e Bm I S prescri bed.

An outfl ow boundary condition is needed to nmake the conpu--
t ati onal dor;ai n fi ni.te. W use now the standard outfl ow condi--

tions at these points [2] . Mathematically, it takes the form '
-2 '
24 =0 a z=1

At the - r boundary/ the b(;undsry conditions are:

d6_ : _
o O for r =20 Iand r» X

Initially at time =0, 9 is assuned to be the sane as"9w#

The dropI. et flowis assuned to'be initial I.y coni cal and
fl.ovvi ng froma point source at a point on the axis of symetry
where z < 0. Initiallyg all the characteristics are positioned
at z ss 0. The initial values of S and‘ n are assuned to

be uniform U is obtained fromthe assunption of a conical flow,
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Though the above initial conditions are highly idealized
for the present study, the conputer code has the flexibility to
allow for nore conplicated initial conditions. The inflow
boundary conditions in our exanp[e have been chosen to be single-
val ued (nonodi sperse spray) because we wish to study only nulti-
val uedness due to the crossing of'particle paths (or equivalently -
characteristics) . Such multival uedness wll occur in sone of the

cases studi ed.
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Numerical Aspects and SOIution Procedure

For the parabolic equation, an ADI (Alternating direction
implicit) scheme is used. Thus a full time advancement takes
place in two steps. Pirét, time is advanced by a half step in .
z-orientation. and then it is advanced by another half step

in the r-orientation. The difference equations are:

In the z-orientation

n+l/2 n
LQ_.=_.§_(U eﬂ+1/2) + a 2. en
At z' "z r Jdr
2
- - 2 2 ..
4+ a5+ o 2 P2
_ ar” az
- (se)n ’
and then the r-orientation
n+l _n+l/2
8 -9 - n+1/2 o 3 antl
> .
52 n+l 32 n+l/2
+ a - 2 e +a 2 e
or . oz
n+l
- (Sg)

n+l
0

being nonlinear needs to be evaluated either by an iterative or

which is second order accurate in Ar, Az, and At. S

quasi-linearization procedure. One crude approximation is to
take Sg+l to be the same as sg . Then the results are less

than second order accurate in time. To obtain second order
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accuracy in tinme, an iterative schene is used, where S* is
: -9

used as the initial approximtion and is updated until the desired

accuracy is obtgined. In another nethod involving quasi-linearized
procedure, . S is witten as

-+l _n . as*Yen+l _ o,
In the first approxination g+l is assumed to be t he sane as

9", Duelto coupling fromliquid phase equations; it is updated
by iteration until desired accuracy is achieved.

The ordinary differential equations (7)-(10) are infégratéd.
over the sane -time step by a standard second order predictor-corrector
schema [5] . "The | ocal values of tenperature for equation (9) at eadh
| point on the trajectory are.obtained fromlinear interpolation of the
f our surroundi ng. val ues of the gas-phase solution in the conputation

cell through which the droplet is passing.

Thelenergy i nt erchanges: occurring as the droplets traverse
each grid cell are evaluated by super-inposing to the four
surrounding‘grid points as shown in Figure 1. <

Ther ef or e

Volume I

Se(1,Jd) :'Se(Char.) ?ﬁﬁ?ﬁ‘EETT‘VUFUﬂE‘

‘and  So(1+1,J), S.(1+1,J+1),

and S (1,J+l) are readily determ ned in anal ogous fashion
Due to the linear interpolation, this nmaintains the second order
accuracy in our finite difference schene, as opposed to the first
order accuracy that would result by assumng that the coefficients

are constant in each cell [3,4].
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In the iteration cycle, the sol utions for the l'iquid pro-
perties are first advanced one full tine-step via Lagrangian
calculations and then the 6 solution is advanced two hal f time--

steps in the ADI éub-cycle*
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Nunerical Results

In this section we discués the results from sel ected nuneri cal
experinents, as well as the specific integration schenes used in
t hese sinulations. As noted above,.tmo ways were considered for
treating the nonlinearity Sg in the 9-equation, nanely.itefation
with respect to the source term Sg and quasilinearization* .The
former has the‘advantage'that the distribution schene discuésed
above for the source term &g _is physically clear* We found,‘
however, that-the nunber of iterations grewvery rapidly with At,
and the time step restrictions were far nore seVere than those
reqUired for reasonabl e engi neering accuracy. The distribution
schenme used in quasilinearization distributed Sg énd &9— in
exactly the same way Sg was distributed in the iterative schene.
From a physicallpoint of viewthis is sonmewhat ad hoc; however,
in those cases where thé iteration converged, the Qiffefence in
t he answers between the two approxi mations océured in the fourth or
fifth deci mal place. 'NbreoJer,'the CPU tine requiréd for the interative
schene was considerably-higher than that required for the quasi-

| i nearization. Thus all of the results pfesented bel ow used t he

| atter schene.

The conputer code devel oped-for these sinulafions can use a
variety of schemes for integrating the ordinary differential eqﬂa-
tions (7) - (10) arising fromthe Légrangian appr oach. To mai ntai n
a second order approxination In our schene, a predictor-corrector

second order Runge-Kutta nethod was used to integrate (7)_- (10).
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| Three grids were usedinthe calculations* The paraneters
vari ed were the nunber of characteristics N,'the time step At,
the grid spacings Ar and Az, and finally the injection pulse
time Tp- . (The physical ly continuous injection process is repre-
sented in discretized féshion by éonsidering I njection pulses with

a period Tp). Data for the individual grids is |isted bel ow

coarse grid: N=3, A?=Q, A=Az=, TP:' 04
base grid:  HN6, A ?=01, Ar=Az=. C5, t =02
fine grid: N=24, At= 005 Ar=Az=. (25, T =01

To get a rough idea of the order of accuracy of our approxi-
mations to the tenperaturée field 9, we neasured the di screte 1,
error at stgady state, assumng that the fine grid approxination
was exact. More precisely, Ietting. 81 denote the val ue of '

approxi mate tenperature at the j th grid point (as conputed |

on the coarse or base grid) , and letting EBE denot e t he anal ogous

value for the fine grid, we then defined
. 1 .
E= (E |8 -ef |* AzAr)’
| X X

as the nmeasure of error where the sum +is over all grid points.

—2 whil e on the base

On the coarse grid this error was 3.6x10
grid it was 4x10"3# This denonstrates a quadratic convergence
in our scheme in the sense that E is reduced by at |east a factor
of four'(in this case it is nine) when the grid is cut in half.
W selected the results obtained from the base grid to
illustrate various features of the flow The results of that

calculation are portrayed in Figures 2,3,4, and 5 for gas tenpera-
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ture,'droplet trajectories, and droplet size. The phenonenon
nodel ed i s unsteady but reaches a steady-state after an initial
transient period. At t=5 (50 time steps), for exanple, the
solution is in the mdst of the transient while by t=3 (300 tine
steps), a steady-state has been wel | - est abl i shed. - Figure 2 dis-

pl ays the gas tenmperature 9 during the transient period (fC:*S);
Note that the gas tenperature initially (at fc=0) Was equal to

2.0; the effect of the vaporizing dropleté is to cool the gas

since energy |s required for vaporization. The néighborhood of .
the originis where injection occurs (see Figures 4 and 5):. dr opl et
nunber is greatest, and the cooling effect is greatest. n accouht ..
of large gradients in space and tinme in this neighbo}hood, sensi -
tivity to mesh-size and tine-step are nost_severe-in this regionf
The gas.tenperature in this nei ghborhood decreases with tine,

so that the cooling effect becones |ess severe as tiné broceeds“
I'There'seens to be potential for benefit fron1nonunifornwgrid and
variable tinme-step but this'possibility has not yet_beeh expl ored.

Figure 3 denonstrates the steady-state (b=3) gas tenperature
profile. The coldest region is along the axis of swramﬁry which'_'
Is essentially the center of the spray cone. Again, evén inthe.
' steady-state,'the | argest gradients occur in the neighborhood-of
the origin. |
Figures 4 and 5 show steady-state results for droplet-size

and droplet trajectories. Note that in Figure4, the circle

32 1/ 2
radii represent droplet volume S’ and not droplet radius S

Since a conmputer plots those circles with sone degree of di scretization

-
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of dianeters, only the roughest inferences shoul d bé made from
such graphs. The droplet size is definitely seen to decrease
substantially as it noves through the hot gasg O course,
the droplets at the edge of the spray vaporize nuch nore rapidly
than the droplets in the spray center. The gas veldcity I's
greater than the axial conponent of the initial droplet velocity
SO fhat drag causes the droplets to‘accelerate downstream The
trajectories are clearly seen to involve.a turning of the droplets -
in that direction. _

Note that the cell Reynolds nunber varied between 1.25 and
5.0 for all cases considered and, in pérticular,_mas 2.5 for
20x20 nesh base case. _

The nekxt set of results is given in Figures 6 and 7f-and-
di splay the sensitivity of the approximation to.change§ inthe |
number N of characteristics used and to the grid épacing Az
and Ar. in these figures conparisons are made with the results
obt ai ned fromthe base grid.by‘varying oné or nore of these
paraneteré. Figure 6 deals with the case where phe nuﬁber of
characteristics on the base grid has been changed from N=6

to . N=3. Plotted are contours of constant val ues of

e(6) _o3)
g6 °
wher e 8;6x Is the tenperature field obtained fromthe base
grid, and 8(3) -is the tenperature field obtained from the base

grid except where N has been reduced to 3.
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Figure 7 has anal ogous contours exéept where the nmesh spacing -
in the base grid has been changed from Ar=Az=. (5 td_ Ar=Az=.1.
Theée figures tend to indicate that the two-phase flow is satis-
factorily resolved on the base grid, and in fact for nost purposes,
even the coarse grid may be satisfactory. They also show that the
approxination is slightly nore sensitive to the grid spacing then |
to the nunber of characteristics used. | _

Changes in the tinme step produce nore deliéate effects. First
of all, the nature of the initial condition used places definite
restrictions on the size of At at least for small times t..

The reason for this is that the sharp gradi ents produced near t=0
may cause the cal cul ated tenperature to go negativé if At

is too large. At this point, the calculations nust be term nat ed
due to the hature of the source terns. This, for exanple, was
‘the case when At was i ncreased in base grid from »02 to .O05.

It is to be enphasized that this restriction is far |ess severe

than the restriction on At found in the iterative schene.

Simlar considerations show that the ratio ™+ /"' nust
be sufficiently small. For exanble, if inthe base grid (where
At =. 01, Tb:.OZ) t he pulse time. tp wer e increaséd to .05, then
negative tenperatures woul d occur.
' Probably the nost inpoftant feature of the Lagrangi an fornul a-
tion is denonstrated in Figures 8 and 9. :In this axisymetric |
case, injection is considered to occur froma circular |ine source

at z=0. This may be viewed as the limt of a ring of injection

orifices whereby both distance between orifices and orifice dianeter
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go to zero. |Inthis case, many intersections of droplet trajec-

tories wll occur (see ngure 8) so that solutions for al

dropl et properties are nultivaluéd. Note that the gas tenpera-

ture, as shown in Figure 9, is still single-valued. Any finite

di fference schene based upon a continuum fornul ation enpl oyi ng

Equations (3) through (5) could not represent this type of

phenonenon. The crossing of the qharacteristic would not be-

allowed by a finite-difference schenes. Nuneri cal diffusion

woul d "nergeJ and "snear" the characteristics. In the case

of a conpressive wave in a gasdynamc field, such nerging

coul d gi ve respectabl e gl obal representation to Shockwave fbrna-

tion; however, in the present droplet study, such -a result woul d '

be nonsensical. Again, Wit h typi cal nunber densities,, a negligibly

énall-fracfrbn of intersecting droplets will actually collide.
Finally, a conpariéon was nmade between the second order

distrfbution schene discussed in this paper with the first order

schene proposed by Gosman and thns [3] and Dukowi cz [4].

To do this, we retained all features of our discretization

(A.-D. 1., method of characteristics, etc.) except for the

repl acenment of the second order distribution scheme with
the first order version. It is enphasized therefore our conparison

is with their proposed interpolation scheme applied to our nodel
~equations. It is not a conparison between their cal cul ati ons and
our calculations since different equations were enployed. The
|atter had” Lj errors (using the fine grid as exact) 3.6x10

and 1x10 = for coarse grid and base grid respectively. This con-

vergence is superlinear due to the fact that everything but the
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source term se is treated with second order accuracy, and that the
coupling through Se is rather weak in this particular model.
However, this convergence is definitely subquadratic, and theore-
tically should actually become linear as the grid spacings approach

zero due to the first order treatment of S Further, it is worth

8
mentioning that Crowe, et al (7] have used a source distribution
scheme, which is similar to that of Gosman and Johns [3], to solve
steady state spray equations. Since they are solving the steady
state two-diménsional planar equations as compared to the time-

dependent axisymmetric equations used here, the present results

cannot be compéred with those of reference [7].
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Concl usi ons

A systemof nodel equations, which retain the essential
mat henati cal and numerical character of the parent equations
for treating a typical two phase spray flowis enployede Through
numeri cal experinmentation on these equations, it is recomended |

that an Eul eri an represehtation for the gas phase properties

and a Lagrangi an representaﬁioh for the liquid phaée properties
be used .wth any spray nodel. See, for exanple, the nodel by

Aggarwal , et at [6]. Indeed, for certain flow situations involving

mul tival ued droplet properties, this seens to be the only appropriate

approach. Follow ng this approach, an efficient nunerfcal

al gorithmis devel oped, which is consistently second-order
accurate. -In this algorithm the unsteady axisyioznetric gas
phase equations are solved by using a second order accurate
'ianiCit ADI schene, whereas the Lagrangi an equati ons ére

sol ved by a second order Ruﬁge;Kutté scheme. The treat nent

of exchange | aws between the phases is al so nade second order
accurate by using two-dinensional -linear interpolation and

vol unme-wei ghted di stri buti on. The results of two different
.nunerical experiﬁents:are presented. In the first éxperinent,
the sensitivity of those results to the chahges in tinme step,
droplet pulse tinme, grid size and nunber of groups of droplet
characteristics used to describe the droplet injector is exam ned.
Al these results confirma quadrati c convergence as the grid
size or the time step is varied. It nmay also be indicated that
the results are slightly nore sensitive with respect to the grid

‘spacing than to the nunber of characteristics.
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The purpose of t he second experinment was to denonstrate a
physi cal situation which has nulti-val ued droplet properties.
For this case, a finite-difference solution of droplet equations
based on an Eulerian description is inadequate. On the other
hand, the Lagrangi an description becomnes é nat ural nethod for this'
type of flow In addition, a conparison has been nade bet ween
the interpol ati on schene presented in this paper and the inter-
pol ati on schene proposed by Gosman -and John [3] and Dukowicz [4] .
The latter schenme, which gives superlinear (but subquadfatié) conver --
gent results are slightly inferior to fhose presented in this paper.
Future conputations of nore realistic flows with relatively stronger
two phase coupling m ght reveal nnfe prom nent differences between
~ first and second order source function distribution. |
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