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Abstract

In this paper we describe \ algorithm for solving sparse n x n sets

of nonlinear algebraic equations. This algorithm is like the Levenberg-

Marquardt algorithm in that at each iteration the step size taken affects

the direction selected to search; this direction lies between the Newton

and gradient directions. Unlike the Levenberg-Marquardt schemes the spar-

sity of the original equations is preserved and thus sparse matrix methods

can be employed for solving the linearized system of equations.
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Scope

This paper presents a detailed description of an algorithm suitable

for solving large sparse sets of nonlinear algebraic equations. The approach

is closely related to the Newton-Raphson (N-R) method, a computational method

which is becoming quite popular in the recent Chemical Engineering litera-

ture for solving large flowsheeting and related problems. The N-R method

linearizes the equations about the current solution point and solves for

the root of the linearized equations to use as the next guess for the solu-

tion. This method sometimes suffers because the predicted step may result

in an estimate of the solution which is poorer than the old estimate guess.

A common strategy used to try and avoid this problem is simply to take a

smaller step in the same N-R direction. However, numerous examples exist

for which this strategy fails.

An alternate procedure for solving nonlinear equations which overcomes

this convergence problem was developed by Levenberg (1944) and Marquardt

(1963). This least squares based method moves the search direction away

from the N-R direction and toward the steepest descent direction of the

function S(x) = ) f (x) if a shorter step size is desired. The L-M method

i
has numerical drawbacks if the equations are nearly singular and usually

results in a much denser set of equations to solve than the N-R method.

Furthermore the step size is controlled only indirectly or else a major

computational effort is required.

We have developed an algorithm for solving large sparse sets of non-

linear equations which has the convergence advantages of the L-M method

but avoids the numerical disadvantages, i.e., the extra fill in. In addi-

tion the step size can be controlled exactly and with little effort. The

algorithm was motivated by the dog-leg algorithm of Powell [1970] .



Conclusions and Significance

An algorithm is presented which is specifically designed to solve

large sets of nonlinear algebraic equations. The step size used at each

iteration is controlled as suggested by Reid [1972] to prevent excursions

far beyond where the current linearization is valid. The convergence

results of the algorithm on several known test problems is excellent.



1. Introduction

The classical approach for solving n nonlinear equations in n

variables

f(x) = 0 (1)

is the Newton-Raphson iteration method. In the most commonly used

modification to this method the (k+l)st iterate for x is given by

(k+1) (k) _, (k)
xN = x ' + a n (2)

(It)where Tp ' is the Newton vector

and

is the Jacobian matrix of first partial derivates

r(k)

'a' is a scalar which is selected to insure that

(4)

< S(x(k)) (5)

where

n
S(x) f(x) (6)



Powell [1970] has presented an example where this algorithm fails by

converging to a point x which is clearly not the solution and where a

step is readily found which will reduce S(x). Moreover, the failure

is not caused by inexact arithmetic.

The usual measure of success for locating a solution to equations

(1) is to find an x which reduces S(x) in (6) to an acceptably small

value.

Min S(x) = f(x)Tf(x)
x

The classical iteration here is a Gaussian step (Powell [I965])which

corresponds to finding g^ / at each step that satisfies

Min {A (§)} (PI)
I

where

\ ( e ) - %||f(x<k>) + j ( k >e | | 2 = %(f(x(k>) + j ( k )e)T(f(x ( k>)+ j<k>e)

Thus

§(k) = x(k+D . x(k> = _ ( J (k)T
j (k ) ) - i j ( k) T

 f ( k )

(k)

which reduces to a Newton step if Jv ' is n x n.

Selecting the parameter faf in (2) suggests we usually wish to

take a smaller step than a full Newton step if we are far from the solu-

tion. The Newton step is based on a local linearization which is likely

to be valid only in the immediate vicinity of x. There is no £ priori

reason to assume the Newton direction 1\ is the best if we are going

to limit our step size. Levenberg [1944] and Marquardt [1963] thus



proposed finding the step ^v ' which solves the problem

Min (P2)

The Levenberg-Marquardt step is found by solving the linear system of

equations

(J(k>T J<k> + X - J ( k ) Tf ( k ) (8)

x(k) + (k)

where X > 0 is selected such that

o if ||n(k)||2 < «2

0 otherwise

In principle X should be selected such that ||y(X)||2 = (S2 if ||n(k)||2

= TJ^ ̂  iMarquardt [1963] noted in his papier that the direction p, =

(k)
X = 0 and it moves towards the direction of steepest descent, y > where

_ J ( k )
T
 f(k) (9)

as X ->• °°. Also the vector length is a continuous decreasing function

of X, tending to a length of zero as the vector moves toward the direc-



tion of steepest descent. Powell [1970] developed his so-called "dog-leg11

algorithm based on this observation. The dog-leg algorithm was developed

Ck) (k)
to solve n equations in n unknowns and involves finding Tp ' and y •

Powellfs step, n ( k ) , is the Newton step Tl(k) if ||T] ( k )|! 2 ̂  f>2. Otherwise

(10it is along y until a minimum in that direction is predicted in fJ(TT) .

(k)Then it is along the straight line joining this minimum point in the y

(1O (1O
direction to the tip of Tp ' . This path, along yv ' to the minimum point

(10and then on a straight line to the end of T|v , is a dog-leg path.

The dog-leg algorithm is computationally more attractive than the

Levenberg-Marquardt algorithm for several reasons. First the Leveriberg-

(1OMarquardt algorithm can have difficulties. If Jv y is illconditioned with
T

(k) (k)
condition number p, then 3 3 is much more illconditioned with condi-

tion number p (Steinberg [1974]). When the Levenberg-Marquardt iteration

approaches convergence, X tends to zero and the coefficient matrix in (8)

(k)
thus becomes potentially illconditioned. Also, if 3 ' is a sparse matrix,

the matrix (Jv ' 3 + X I) will usually be dense thus precluding the use

of sparse matrix methods for solving (8). In contrast, for the dog-leg

(k)
algorithm, one needs to find the Newton direction Tp ' (which corresponds

(Wto solving a set of sparse linear equations with 3 being the coefficient
T

(k) OO
matrix) and the gradient direction yv J (which involves using 3 only
in a matrix-vector multiplication) . One thus avoids dealing with a matrix

(k)
denser and/or more illconditioned than J J .

Other investigators (for example, Steen and Byrne [1973] and Jones [1970])

have provided algorithms for solving the general least squares problem where the

permitted steps are restricted in length and must lie in the subspace spanned

(k) (k)
by the Gaussian step § and the steepest descent direction yx . Our main

T
emphasis here is to avoid dealing directly with the coefficient matrix J J,



which Powell did and we do because we limit our attention to the case

when the Jacobian matrix J is n x n. By a similar limitation, these

(It) (k)

algorithms could also deal with Tp ' rather than §v . The principal

difference is that we find the direction for the specified step size

which should yield the greatest decrease in 0. As with other methods

this direction is based on a local linearization about the current value

of x.

In this paper we present an algorithm which has the computational

attractiveness of the dog-leg algorithm combined with the convergence

properties of the Levenberg.-Marquardt algorithm. The paper is divided

as follows. In Section 2 we develop the equations needed for selecting

the iteration step given a prescribed step size. The step is calculated

without the introduction of the computational difficulties possible in

the Levenberg-Marquardt algorithm. Section 3 proves the step selected

has similar characteristics to the Marquardt step. Section 4 gives a

complete algorithm, where the step size is updated at each iteration

to reflect one's confidence in the accuracy of the linearization of
(k)

f(x) about the current point xv and is identical to the approach in
Reid [1972]. Section 5 presents several numerical examples.

2. The Iteration Step

Motivated by the best qualities of both Levenberg-Marquardt algo-

rithm and Powell's "dog-leg11 algorithm, we wish to select a step of

prescribed maximum length but which lies in the subspace spanned by

(k)
the gradient vector, - 2y> and the Newton vector, T|. The step U)

will then be the step u> which solves the following problem.



Min (P3)

We replace <u directly by

u> (10)

and write the Lagrange function

j(k)Ga)T(f(x(l°)+

- 62)] (11)

The solution to (P3) is at a stationary point of L(a,X); we set

— = 0 and obtain
OCtf

GT(J(k)Tj(k) = _ GT j (k)T f ( (12)

or

n ( k ) T j ( k ) T j ( k V k ) , n
( k ) T J ( k ) T J ( k ) Y ( k )

Y(k)T
J(k)T

J(k)n(k) ^ y(k)T
J(k)T

J(k)Y(k)

j(k)T
f(k)

n(k)T
n(k) > n (k)T

Y (k)

Y(k)T
n(k) f Y(k)T

Y(k)

X

a l

a 2
ss —

T

n<k>
T

( If J
YV

X > 0 (13)

It is convenient to define

R(k) _ T(k)v(k)P - - J y (14)



and note the relationships

10

n(k)
T
y(k) = f(k)

T
f(k)

f(k)
T
B(k) = Y(k)

T
y(k)

(15)

(16)

Equation (13) becomes

l l f ( k ) l l
M Y 0 0 I I

2 | , Y ( k ) | , 2

2 | | B < k ) , , 2 +
l l n ( W l

JU(k)l

|2

I2
l l f ( k ) l
l lY ( k ) |

I2

I2 X
IX

Mf(k)i

JlY(k)|

(17)

I 2

|2_

Given a value for X, X > 0, we can find CL. and cu by first finding the

vectors f(k), y ( k ) (equation (9)), r/k) (equation (3)) and 3 ( k ) (equation

(k)
(14)). y is calculated by a matrix-vector multiplication involving

(k)T (k)
J , r| is obtained from the solution of a set of linear equations

(k) (k)
using J as the coefficient matrix and 3 is found by a matrix-vector

(k)
multiplication involving J .

The final value of X can be selected such that ||or ^|| = 6 if

I I T / ^ M > 6. Otherwise X = 0 is selected and u/k^ = r/^ results.

It should be noted that (11) (alternatively (17)) can be written

(A + BX)a = e (18)

where A, B and e are fixed. Thus finding X such that | |u) | | = 6 can be

solved numerically (for example, using a secant-based method) as follows:
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1. Guess X > 0.

2. Find Of- and Of solving (18).

3. Evaluate | |u)| | .

4. If | | CJL3| | ^ 6, adjust X and iterate from 2. Otherwise, exit.

Step 2 involves solving two linear equations in the unknowns or and a and

is trivial to perform.

3. Properties of the Step CD

Assume problem (P3) is not singular; i.e., J has full rank for

all x. We note initially then that ||Y(k)||t l l ^ l l a"d l|P(k)||

are zero if and only if ||f^ ^|| is zero because of their definitions.

We shall also observe that A and B in (18) are symmetric and at least

positive semi-definite because each is formed by the product of a matrix

with its transpose. We now prove the following lemma and theorems.

(k) (k)
Lemma 1: If and only if Tp is colinear with y , then A and B are

positive semi-definite. Otherwise they are positive definite.

Proof: Using the definitions of A and B in (12), the proof is obvious.

Theorem 1: Assume ||f^ '|| > 0. Let a(X) be a solution to (18) for a

given value of X £ 0. Let

= (n(k),Y(k))a(X) .

Then 6 = ||a)(X)|| is a continuous, decreasing function of X £ 0 such

2
that as X -> «>, 6 -* 0.

(k) (k)
Proof: We consider two cases: Case 1) n and Y a^e colinear,

(\r) (lr\

Case 2) n and Y are not colinear.
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Case 1) If Y ^ k ) and ffi^ are colinear then

,00 = . j(k)T£(k) = aT1(k) m a J(k)-l f(k)

or

(J<
k>

- a

where fw ^ 0 is an eigenvector of R = Jv ' j v ' and a is the corresponding

eigenvalue, a > 0. We find then that

nTn = f(k)
f ( k ) = f ( k ) T f(k)/a

and similarly Y<k>Vk> = a f « V k ) , fo = a2 f « V k \ Thus (9)

becomes

1 a

a a

I/a

1

a l
=

1

a

which are clearly two dependent equations with all solutions satisfying

(Ctl , a > 0 , A > 0 .

For this case

Thus 6 is a continuous, decreasing function of X such that as X -*• °°,

62-> 0.
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(k) (k)
Case 2) Y and r\ are not colinear. A and B are symmetric and,

by Lemma 1, positive definite. Thus we can find a (nonsingular) matrix

M such that

MTAM = D

MTBM = I

where D is a positive definite diagonal matrix [10]• Equation (18)

thus gives

a(X) = M(D + XI)" 1 MT8

We note that

62= | |o)| |2 = aTBa = aT(MT) 1 (M)""^

which, using the above, becomes

7 T —? T
6 = exM(D + XI) z Me

T
Letting v = M e this becomes

A ' ui
> 0 , X > 0

which is a continuous, decreasing function of A > 0 such that as

X -> ~, 62+ Q.I 11
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(k)
Theorem 2: Let £ be the angle between a) and y . Then ^ is a monotone,

decreasing function of A > 0 such that as A -> °°, C "** 0.

Proof: The proof is exactly that given for Theorem (3) in Marquardt [4].

It will not be repeated here.

Clearly then, as with the Marquardt direction, the direction moves

(k) (k)

from the Newton direction n to the steepest descent direction y as

A moves from zero to °°. The step length decreases from \\r\ \ \ to zero

at the same time.
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4. The Algorithm

The algorithm presented here is a merging of appropriate steps

from the algorithms by Reid [1972] and Powell [1970], modified by our

results.

1. Initialize 6, E ln, E, . ,1 and p; estimate x ; set

' small' big' max v* '

i = j = k = 0.

2. Evaluate f(k) = f(x(k)), S ( k ) = ||f(k)||2 = f ( k ) V k ) and set

i - i + 1.

3. If ||f(k)||2 < E2 „ or i + pj > I , exit.
11 " small VJ max

4. If i + p(j+l) * I m a x, exit.
5. Evaluate J(k) - ( & \ . Set j - J + 1.

6. Evaluate Y
( k ) = - (J<k>)T f<k> and ||Y

(k)||2.

7. If ||f ( k )|| 2*E 2
i g|| Y<

k>|| 2, exit.

8. Solve J < k V k ) = - f(k) for n 0 0 . Evaluate | |n(k) | |2.

9. If ||n(k)||2 ^ 62, set co(k) = n(k)and set 62 = ||n(k)||2 and go to step 13.

10. If 3 ( k ) not evaluated yet, evaluate B ( k ) = - J(k)y(k) and

llB<k)H2.
11. A. Guess X > 0.

B. Solve equations (17) for OL. and a^. If these equations are

(essentially) singular, go to step 12.

2C. Evaluate a) = a ^ ^ + a2y
(k) and | |a)| |

D. If | |co| | ^ 6 , adjust X and repeat from step B, otherwise

continue.

E. Set 0)v ' = a) and go to step 13.
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(k) (k)
12. (n and y must be (essentially) colinear.) Set

o)(k)=6n(k)/||n(k)||.

13.

14. Evaluate f(k+1), S ( k + 1 ) = ||f ( k + 1 )|| 2 and set i = i + 1.

15. If ||f ( k + 1 )|| 2 < E^ or i + P j > 1 ^ , exit.

16. If ||f ( k + 1 )|| 2 > ||f(k)||2, set 6 = 6/2 and repeat from step 10.

(k)
17. Predict change in S (called AS .) based on linear model.

pred

A. Af<k> = J < k V k \

B . b ( k > = ( f ( k > ) T A f ( k > ,

C. AS(k> = 2 b ( k ) + | | A f ( k ) | | 2 .
pred ' ' ' '

18. Evaluate ratio of actual change in S to predicted change in S:

A. AS<k> = S ( k + 1> - S ( k ) ,act

R r - AS(k)/A<?(k)

B- r - tfactMSpred *

19. If r > 1, reset r = 2 - r.

1/2
20. If r > 0.75, set 6 = 6-MIN(2,[0.25/(l-r)] ' and go to step 22.
21. If r < 0.25, set 6 = 6/MAX(2,MIN0.Q, 2 + AS(kJ/b(k))) .

act

22. Set k = k + 1 and repeat from step 4.

The number E is used to check for convergence in steps 3 and

15. E is used in a check in step 7 and causes the algorithm to exit

if it appears the smallest step size possible to reduce the functions
(k)

f to zero will be much too large. This test was devised by Powell [1970],

E should be set to the magnitude of a step in x which the user feels

will move x too far from the vicinity of x .
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Index i counts function evaluations and j counts Jacobian matrix

evaluations, p is a factor which relates the relative effort required

(k) (k)

to evaluate the Jacobian matrix J to evaluating the functions f

If T is the number of nonzero elements in J and n the number of functions,

p might be set to x/n. If J is evaluated numerically, p could be set

to the number of function evaluations which would be required (which

could be considerably fewer than n (see Curtis, Powell and Reid [1974]).

I is then used in a check in steps 3, 5 and 15 causing the algorithm

to exit if the number of equivalent function evaluations exceeds I
max

The initial value of 6 bounds the initial step taken for x. It is
adjusted by the algorithm and should probably be estimated on the high

(k)
side, particularly if the evaluation of J in step (4) is time consuming

relative to the evaluation of f

Neglecting the test limiting the number of function evaluations, this

algorithm uses the same tests for terminating as Powell [1970]. Powell also

(k) (k) (k)
restricts his step TTV ' to be in the subspace defined by n and Y •

Thus his theorems on convergence will hold for our algorithm too. We

simply state his theorem 2 as applied to our algorithm.

Theorem 3 (Theorem 2—Powell): If the functions f(x) have continuous,

bounded, first derivatives, and if the algorithm in this paper is applied

to solve the system of nonlinear equations f(x) = 0, then the algorithm

will finish after a finite number of iterations, due either to the test

in Step 3, Step 15 or the one in Step 7 being satisfied.
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5. Examples

In order to illustrate the effectiveness of the algorithm described

in Section 4, we apply it to the following well-known test problems:

1) Rosenbrock's banana shaped valley (Rosenbrock [I960]):

f± = 10(x2 - x
2) = 0

f2 - 1 - Xl

a) with the initial starting point x = (-1.2,1.0) and

b) with the initial starting point x = (-0.86,1.14). The solution

is x = (lfl)•

2) Powell's quartic function (Powell [1962]):

f1 = Xl + 1 O x2

f2

fo = (xo - 2x o)
2

f4

with the initial starting point x = (3,-1,0,1). The solution is x = 0.

3) Powell's problem (Brown [1973]):

f± = 10000 x^ - 1

f « exp(-x1) + exp (-x2) - 1.0001
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with the initial starting point x = (0,1). the solution is

x - ( 1099xlCf4, 9.096).

4) Brown's almost linear function (More and Cosnard [1976])

n

Jf Y

for n=10 with the initial starting point x - (.5, .5 ,.5) The solution

is x = <lfl,----fl).

The results of application of the algorithm of Section 4 to this prob-

lem are summarized in Table 1. We feel that these results indicate that

the algorithm is robust and represents, at least in many if not all cases,

an improvement over the results of other reported algorithms because of its

ability to achieve at each iteration a computed desired step size. We have

omitted direct comparisons with results reported for other algorithms be-

cause of the myriad and sometimes inconsistent figures of merit given for

these algorithms.

Note, in each of the above examples we have started the algorithm with

a large desired step size so that the first iteration is a Newton step.

If this step size is too large, the algorithm reduces it quickly.



20

Problem
No.

la

lb

2

3

4

U2

< 10

< 10

< 10~"

< ID"14

No. Func.
(f) Eval.

9

21

13

50

8

No. Jacobian
(J) Eval.

6

13

12

43

4

No.
Iterations

5

12

11

42

3

Table 1
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