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Abst r act

In this paper we describe :\ algorithmfor solving sparse n x n sets
of nonlinear algebraic equations. This algorithmis |ike the Levenberg-
Marquardt algorithmin that at each iteration the step size taken affects
the direction selected to search; this direction |lies between the New on
and gradient directions. Unlike the Levenberg-Marquardt schenes the spar-
sity of the original equations is preserved and thus sparse matrix nethods

can be enployed for solving the linearized systemof equations.
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Scoge

This paper presents a detailed description of an al gorithmsuitable

for solving large sparse sets of nonlinear algebraic equations. The approach
is closely related to the Newt on- Raphson (NR) method, a conputational method
which is beconming quite popular in the recent Chemcal Engineering litera-
ture for solving large flowsheeting and related problens. The N R nethod
linearizes the equations about the current solution point and sol ves for
the root of the linearized equations to use as the next guess for the sol u-
tion. This nethod sonetines suffers because the predicted step may result
in an estimate of the solution which is poorer than the old estimate guess.
A common strategy used to try and avoid this problemis sinply to take a
snmaller step in the same NNR direction. However, numerous exanpl es exist
for which this strategy fails.

| An alternate procedure for solving nonlinear equations which overcones
thi s convergence probl emwas devel oped by Levenberg (1944) and Marquar dt
(1963). This least squares based met hod noves the seérch di rection away
fromthe NNR direction and toward the steepest descent direction of the

function §(x) =L sz_(x) if a shorter step size is desired. The L-Mnethod

[
has nurerical drawbacks if the equations are nearly singular and usually

results in a much denser set of equations to solve than the NR et hod.
Furthernore the step size is controlled only indirectly or else a major
conputational effort is required.

VW have devel oped an algorithmfor solving |large sparse sets of non-
i near equations which has the convergence advantages of the L-Mmet hod
but avoi ds the nunerical disadvantages, i.e.; the extra fill in. In addi-
fion the step size can be controlled exactly and with little effort. The

al gorithmwas notivated by the dog-leg al gorithmof' Powel | [1970] .




Concl usi ons and Significance

An algorithmis presented which is specifically designed to solve

| arge sets of nonlinear algebraic equations. The step size used at each

iteration is controlled as suggested by Reid [1972] to prevent excursions

far beyond where the current linearization is valid. The convergence

results of the algorithmon several known test problens is excellent.




1. Introduction

-~

The classical approach for solving n nonlinear equations in n

variables

f(x) =0

(1)

is the Newton-Raphson iteration method. In the most commonly used

modification to this method the (k+l)st iterate for x is given by

LHD) () (k)

+an

where ﬂ(k) is the Newton vector

(k)

A I TR

_[J
and

J(k) is the Jacobian matrix of first partial derivates

'a' is a scalar vwhich is selected to insure that

S(x(k+1)) < S(x(k))

where

f
1

S(x) = i(x) = £T(x) £(x) -
i

I o~13

(k) -1 ¢ (k)

(2)

»  (3)

(4)

(5)

(6)




Powel | - [ 1970] has presented an exanple where this algorithm fails by
converging to a point X which is cl early not the solution and where a
step is readily found which will reduce S()?). Mor eover, the failure
is not caused by inexact arithnetic.

The usual neasure of success for locating a solution to equations
(1) is to find an x which reduces S(x) in (6) to an acceptably snall

val ue.

Mn S(x) = f(x)'f(x)
X

The classical iteration here is a Gaussian step (Powell [1965])which

corréspo_nds to -i"i_ndi ng g"kl ) at-meach _éf_ep_ __t'-h_'at __éat_i sfies

Mn _{‘A (8)} (P1)
|

-V\here

\(e) - %f(x<>) +jk>el|? = % Fx*>) +jMe)T(f(x(k>). <>

Thus

sk) = x(k+D . x(k> = _ (k) Tjckyy-i (k)T 1 (i) (7

(k)
whi ch reduces to a Newton step if JY ' is n x n.
Sel ecting the paraneter ‘a’ in (2) suggests we usually wish to
take a snaller step than a full Newton step if we are far from the sol u-
tion. The.Nevvton step is based on a local linearization which is Iikely'
to be valid only in the imrediate vicinity of x. There is no £ priori
reason to assume the Newton direction 1\ is the best if we are going

to limt our step size. Levenberg [1944] and Marquardt [1963] thus




proposed finding the step A ' which solves the problem

Mn 8w | |el1? = wT s s 6% (P2)
B

The Levenberg-Marquardt step is found by solving the |inear system of

equati ons
(JST gk + X I)u(k) = - JUTs () (8)
x(k+1) = x(k) + u(k)

wher e X > 0 is selected such that

o if |InM]]%<
20 ot herw se

2
In principle X should be selected such that ||y(X)|]2 = ($if || n®]|22 8.

Marquardt [1963] noted in his papier that the direction p, =T g
(k)

X =0 and it noves towards the direction of steepest descent, y > where

.
-] O 9

Y& % [a_s]
L

as X > °°, Also the vector length is a continuous decreasing function

of X, tending to a length of zero as the vector noves toward the direc--




tion of steepest descent. Powell [1970] devel oped his so-called "dog-Ieg"
al gorithmbased on this observation. The dog-leg algorithmwas devel oped
to solve n equa'ti.ons in n unknowns and invol ves finding Tbck) and y (k),

Powel | s step, n(¥), is the Newton step TI(® if || T](|12A £52  Qherwise

it is along y(1Q until amnimumin that direction is predicted in fJTI) .

Then it is along the straight line joining this mninumpoint in the y(k)
.(10 (10
direction to the tip of Tp ' . This path, along y' ' to the m ni numpoint

and then on a straight line to the end of -|-|v(10’ is a dog-leg path.
The dog-leg algorithmis conputationally nore attractive than the
Levenberg-Marquardt al gorithmfor several reasons. First the Leveriberg-

Mar quardt al gorithmcan have difficulties. |If Jclpis illconditioned with
RRT
condition nunber p, then 3*"7 3 is much nore illconditioned with condi -

tion nunber p‘ (Steinberg [1974]). V\hen the Levenberg-Marquardt iteration
app;roaches convergence, X tends to zero and the coefficient matrix in (8)
thus becones potentially illconditioned. Also, if 3(k')_ is a sparse matri X,
the matrix (J'™ T3‘“’ + X I) will usually be dense thus precluding the use
of sparse matrix methods for solving (8). |In contrast, for the dog-Ieg
algorithm one needs to find the Newton direction Tp( k) (which corresponds

to solving a set of sparse linear equations wth B(Wbei ng the coefficient

(k) 00
matrix) and the gradient directiony’ ? (which involves using 3 only
inamtrix-vector multiplication) . One thus avoids dealing with a matrix
denser and/or nore illconditioned than J('Ig).

Q her investigators (for exanple, Steen and Byrne [1973] and Jones [1970])
have provided algorithnms for solving the general |east squares problemwhere the

permtted steps are restricted in length and nust lie in the subspace spanned

- (k) (k)

by the Gaussian step § and the steepest descent directiony* . Qur main
. T

enphasi s here is to avoid dealing directly with the coefficient matrix J J,




whi ch Powel|l did and we do because we limt our attention to the case

when the Jacobian matrix J is nx n. By a sinilar limtation, these
A(It) (k)

algorithns could also deal with Tp ' rather than 8 . The principa
difference is that we find the direction for the specified step size

whi ch should yield the greatest decrease in 0. As with other nethods
this direction is based on a local linearization about the current val ue
of x.

In this paper we present an algorithmwhich has the conputationa
attractiveness of the dog-leg algorithm conbined with the convergence
properties of the Levenberg.-Mrquardt algorithm The paper is divided
as follows. In Section 2 we develop the equations needed for selecting
the iteration step given a prescribed step size. The step is calcul ated
wi thout the introduction of the conputational difficulties possible in
the Levenberg-Marquardt algorithm  Section 3 proves the step sel ected
has simlar characteristics to the Marquardt step. Section 4 gives a
compl ete algorithm where the step size is updated at each iteration

to reflect one's confidence in the accuracy of the linearization of

f(x) about the current point x( and is identical to the approach in
Reid [1972]. Section 5 presents several nunerical exanples.

2. The Iteration Step
Mtivated by the best qualities of both Levenberg-Marquardt al go-
rithmand Powell's "dog-1eg algorithm we wish to select a step of

prescribed maxi mum | ength but which lies in the subspace spanned by

(k)
the gradient vector, - 2y> and the Newton vector, T. The step U

will then be the step u> which solves the follow ng problem




Min {#(w) | w'w < 8, o= aln(k) + azy(k)]
We replace <u directly by
o= Tl(k), Y(k)]a = Go
and wite the Lagrange function
L) = 36y + ] 0G) T(F(x) + 1M g
+ A[(a’c e - 62)]

The solution to (P3) is at a stationary point of L(a,X); we set

oL = 0 and obtain

(P3)

(10)

(11)

(12)

Ty (k)

octf

or
n(OTjEOTjyK) ()T JOT 3(K)y (k) . n(K)Th(k) sn(k) \
v(K)T5(K) T5(K)n(k) A y(k)TJ(k)TJ(k)Y(k) v(K)Ta(k) 1 v(K)Tv(Kk)
— — - I_—
2 : n<k> . T

X s — I &'ith J(k) f(k) X_>O

an Y

It is convenient to define

pk) _ o 3 (K)y(k)

(13)

(14
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and note the relationships

()T (K) =1 (K) T (K) (15)
(k) Te(k) = v(k)Ty(k) (16)
Equation (13) becones
Thetop e nz| etz petop 2 ] v E
+ X ' =
wyer 2 He<onz | gy 2 ey )2 IO
(17)

Gven a value for X, X > 0, we can find 01 and CE by first finding the
vectors f(¥ y(K) (equation (9)), r/* (equation (3)) and 3(¥) (equation
(14)). y(k) is calculated by a matrix-vector nmultiplication involving

T
J( k), rfk) is obtained fromthe solution of a set of |inear equations

(k) (k)
using J as the coefficient matrix and 3 is found by a matrix-vector

nmul tiplication involving J(k).

The final value of X can be selected such that ||o#k“H =6 if
11 T/~M>6. Oherwise X =0 is selected and u/** =r/ " results.

It should be noted that (11) (alternatively (17)) can be witten

(A+tBX)a=¢e (18)

)

where A, B and e are fixed. Thus finding X such that | |u) = 6 can be

sol ved nunerically (for exanple, using a secant-based method) as follows:
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1. GQuess X > 0.
2. Find (D-L and sz solving (18).

3. Evaluate | |u)] | .

4. If | | Q3 | ~ 6, adjust X and iterate from2. Oherw se, exit.
Step 2 involves solving two linear equations in the unknowns or1 and a, and
is trivial to perform
3. Properties of the Step CD

Assume problem (P3) is not singular; i.e., J has full rank for

all x. e note initially then that ||Y |t (1A &¢ |pM|
_are zero if and only if ||f* 7|| is zero because of their definitions.
W shall also observe that A and B in (18) are symetric and at | east

positive sem -definite because each is forned by the product of a matrix

-with its transpose. W now prove the following |lema and theorens.

(k) (k)

Lemma 1: If and only if Tp is colinear with y , then A and B are

positive sem -definite. Oherwise they are positive definite.

Pr oof : Usi'ng the definitions of A and B in (12), the broof i s obvious.

LT
Theorem 1: Assune ||f"k"|| > 0. Let a(X) be a solution to (18) for a

given value of X £ 0. Let

wd) = (n(W YW)a(x)

Then 6“= [|a)(X)||“ is a continuous, decreasing function of X £ 0 such

2
that as X->«, 6 -* 0.

k)

Proof: W consider two cases: Case 1) n( and Y(k) ane colinear,

(\L) (LY
Case 2) n and Y are not colinear.
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Case 1) If % and ffi* are colinear then
y00 = - J(K)Te(k) = ana(K) m as(k)-11(k)

or

T.
0> 3 ne® -0

.T
where f% ~ 0 is an eigenvector of R=J" "j"V "' and a is the corresponding

ei genvalue, a > 0. W find then that

T T
nn o= f0 @Rt (J(k))_1 fOO = (T f) g

cad similarly <>V = af«V, fo =& f«V*\ Ths (9

[ ] RN

which are clearly two dependent equations with all solutions satisfying

becomes

(Ct|_+af12)=— a>o0, A>0
For this case
2 2 @2 - [a)? 1.2
6% o |1? = |1ty +a apn® (|2 = 217 a0

Thus 62is a continuous, decreasing function of X such that as X -*+ °°,

62> 0.




13
Case 2) Y(k) and r\(k) are not colinear. A and B are symmetric and,

by Lemma 1, positive definite. Thus we can find a (nonsingular) matrix

M such that

M AM

1
O

MBM = |

where D is a positive definite diagonal matrix [10]+ Equation (18)

thus gives

a(X) =MD+ XI)"* M8
W\ note that

62= | |o)| [*=a’Ba=a"(M)* (M"""
whi ch, using the above, becones

61: eIMD+ XI)—?Z |\§L\

Letting v = Nﬁé this becones

which is a continuous, decreasing function of A > 0 such that as

X >~ 62+ Ql11
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(k)

Theorem 2: Let 7 be the angle between w and Y . Then f is a monotone,

decreasing function of A 2 0 such that as A > =, T > 0.

Proof: The proof is exactly that given for Theorem (3) in Marquardt [4].

It will not be repeated here.

Clearly then, as with the Marquardt direction, the direction moves
. k
from the Newton direction n(k) to the steepest descent direction Y( ) as

A moves from zero to ©. The step length decreases from lln(k)ll to zero

at the same time.
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4. The A gorithm
The al gorithmpresented here is a nerging of appropriate steps

fromthe algorithnms by Reid [1972] and Powel | [1970], nodified by our

results.
1. Initialize 6, E 4, E . ,1 and p; estinate x(o); set
" small' big" nmax Vx _ '

i = =k =0
2. Bvaluate f(0) = f(x(V), s = || ]2=f)vk) and set

-0+ 1
3. If [fM) 2 <E , ori +p >1 , exit,

11 n Smi|| VJ max
4. 1f 0 +p(jH) * | ey, exit.
5. Evaluate J(® - ( &\ . Set j - J + 1.
‘ x

6. Bvaluate (¥} = - (J<*>)T < and || (¥]] 2.
7. If ||f<">||2*EZHg||Y<k>||2, exit.
8. Solve J<kvK) =. (9 for n°°  Evaluate | | nt® | |2
9. If || nt®]]2%2~ 62 set co® =nMand set 62 = || n®||2? and go to step 13.
10. 1f 3(% not evaluated yet, evaluate B(®) = . J(Ky(K) gnd

|1 BYH, .
11. A Qess X > 0.

B. Solve equations (17) for Q4 and a*. |If these equations are
(essenti élly) singular, go to step 12.

C. Evaluatea) =a "~ +a,y® and | |8)] | 2.

D If | | T ~ 6, adjust X and repeat fromstep B, otherwi se

conti nue.

E Set ‘O)" ' =a) and go to step 13.




12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

15.

if

wi ||
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(k) (k)

(n and y

nmust be (essentially) colinear.) Set

0) W=en/ || n|.

Set x(k+1) = x(k) + m(k).
Eval uate f (k"D =~ glk+1) = || ¢(k+*1)1 | 2 gnd set i =i + 1.
Lf [ JFC*Y 12 < EM or 0 +p 217, exit.
Lf D12 > | 1f0)]]12, set 6 =6/2 and repeat fromstep 10.
Predi ct change in S (called Aséféd) based on |inear nodel.
A, AR>S = J<kvi
B. bls= (flks)Taflks,

c. Asts = 2p) 4+ A2,
pred LI § LI
Eval uate ratio of actual change in S to predicted change in S

ks = alk+ly _ (k)
A. Asé<ct> S > S ,

R r - AS(K/ A<2(K)
B_ ro_ ”emiMSpred *

12
If r >0.75 set 6 = 6-MN(2,[0.25/(l-r)] ' and go to step 22.
If r <0.25 set 6 = 6/ MX(2,MND.Q 2 + AS(kJ/ pb(K))y) |

act

Set k = k + 1 and repeat fromstep 4.

The nunber ES®ALlLl g ysed to check for convergence in steps 3 and

18 i s used in a check in step 7 and causes the algorithmto exit

it appears the snmallest step size possible to reduce the functions
(k)
f

Ebig

to zero will be much too large. This test was devised by Powel |

[1970] »

shoul d be set to the magnitude of a step in x which the user feels

(o)

nmove X too far fromthe vicinity of x
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Index i counts function evaluations and j counts Jacobian matrix

evaluations, p is a factor which relates the relative effort required

(k) (k)

to evaluate the Jacobian matrix J to evaluating the functions f

If Tis the nuﬁber of nonzero elements in J and n the nunber of functions,
p mght be set to x/n. If J is evaluated nunerically; p could be set

to the nunber of function evaluations which would be required (which

could be considerably fewer than n (see Curtis, Powell and Reid [1974]).

max
I is then used in a check in steps 3, 5 and 15 causing the al gorithm

to exit if the nunber of equivalent function evaluations exceeds |

max
. The initial value of 6 bounds the initial step taken for x. It is
adjusted by the algorithm and should probably be estimated on the high

side, particularly if the evaluation of J(k) in step (4) is time consuning

relative to the eval uation of f(k).

Neglecting the test limting the nunber of function evaluations, this

al gorithmuses the same tests for terminating as Powell [1970]. Powell also
. . (5 . | (k) (k)
restricts his step TT' ' to be in the subspace defined by n and Y e
Thus his theorems on convergence will hold for our algorithmtoo. W ?

sinply state his theorem 2 as applied to our algorithm

Theorem 3 (Theorem 2—Powel | ): If the functions f(x) have continuous,
bounded, first derivatives, and if the algorithmin this paper is applied
to solve the system of nonlinear equations f(x) = 0, then the algorithm
Will finish after a finite nunber of iterations, due either to the test

in Step 3, Step 15 or the one in Step 7 being satisfied.
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5. Exanpl es

In order to illustrate the effectiveness of the algorithm described

in Section 4, we apply it to the following well-known test problens:

1) Rosenbrock's banana shaped vall ey (Rosenbrock [1960]):

fo = 10(x, - xi) =0

f2_1_X|

a) with the initial starting point x0 = (-1.2,1.0) and

b) "~ with the initial starting point xO: (-0.86,1.14). The solution

is x = (Ifl)e

2) Powell's quartic function (Powell .[1962]):

2
f,= /i_ﬁ(xl - x[')

with the initial starting point x~0: (3,-1,0,1). The solutionis x =

3). Povell"s problem (Brown [1973]):

f. = 10000 x" - 1

f2 « exp(-x1) + exp (-xp - 1.0001
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with the initial starting point );_'Oz (0,1). the solutionis

x - ( 1099xI G4, 9.096).

4) Brown's alnost linear function (Mre and Cosnard [1976]):

n
fk(x)-xk-i-ij—(n—l-l) sy 1= ksn-l ,
j=1

wo-C] Y2

i=1

for n=10 with the initial st_a{rting poi nt 250 = (.5 .5—,.5 The sol ution

is x = <l¢l,----41).

The results of application of the algorithmof Section 4 to this prob-
lemare summarized in Table 1. W feel that these results indicate that
the algorithmis robust and represents, at least innmany if not all cases,

an inprovenent over the results of other reported al gorithns because of its

ability to achieve at each iteration a conputed desired step size. W have

omtted direct conparisons with results reported for other algorithns be-
cause of the nyriad and soretimes inconsistent figures of merit given f.or
these al gorithns.

Note, in each of the above exanples we have started the al gorithmwith
a large desired step size so that the first iterationis a Newon step.

If this step size is too large, the algorithmreduces it quickly.




Pr obl em No. Func. No. Jacobi an No.
—No. U2 (_f') Eval . (;]) Eval . Iterations
la < 10712 9 6 5
b <1072 21 13 12
2 < 1012 13 12 11
3 < 10710 50 43 42
4 <D 8 4 3

Table 1

20
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