
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

IMPLEMENTATION OF A SPARSE MATRIX PACKAGE
FOR SAMSON

by

Demetrios J. Giannopoulos

DRC-01-11-82

April, 1982

Implementation Of A Sparse Matrix Package1

For SAMSON

(System for Activity • directed
Mixed Simulation of Networks)

by
Demetrios J. Giannopoulos

Department of Electrical Engineering

Carnegie-Mellon University

July, 1981

Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science. This work was
supported in part by the U.S. Army Research Office under Grant DAAG/29/79/C/0213

UMIVERSiTY LIBRARIES
CARN&ilE-MELLDN UNIVERSITY

PITTSBURGH, PENNSYLVANIA 15213

TABLE OF CONTENTS

Table of Contents

1. INTRODUCTION 3

1.1. A Brief Description of SAMSON 3
1.2. Formulation of Network Equations - 4
1 .3. Motivation for Modular Simulation 7
1.4. Selection of the Approach to the Solution of Sparse Simultaneous Linear 8

Equations

2. SPARSE MATRIX METHODS 11

2.1. Crout Reduction 11
2.2. Sparse Matrix Storage 12
2.3. Variability Typing 15
2.4. Pivot Selection 17

3. SUBNETWORKS IN CIRCUIT ANALYSIS 21

3.1. Formulation of Network Equations 21
3.2. Solution of Network Equations 23
3.3. Implementation Details and Examples 27

3.3.1. Forward Elimination 30
3.3.2. Propagation of the Outputs 31
3.3.3. Solution of Connection Equations 33
3.3.4. Backward Substitution 39

4. A PRACTICAL EXAMPLE OF MODULAR SIMULATION 41

5. EPILOGUE 45

5.1. Conclusions 45
5.2. Further Research 46

Appendix A. Generated Code for a Subnetwork Analysis 47

UNIVERSITY LIBRARIES
EGKMELLDN UNIVERSITYrARNEGKMELLDN U

TTSBbRGH, PENNSYLVANIA 15213

UST OF FIGURES

List of Figures

Rgu re 1 • 1: Configuration of SAMSON System
Figure 1 -2: Initial Form of Coefficient Matrix
Figu re 1 -3: Reordered Form of Coefficient Matrix
Figure 2 -1 : Crout Reduction
Figure 2-2: LU Decomposition
Figu re 2-3: Example of Dynamic Storage.
Figu re 2-4: Row of Computation of Jacobian Entries
Figu re 3 -1 : Subnetwork
Rgu re 3-2: Structure of Subnetwork Equations
Figure 3-3: ConnectiorvEquations
Rgure 3-4: Structure of Network Equations
Rgu re 3-5: Matrix of Rgure 3-4 after Forward elimination
Figu re 3-6: Examples of Jacobian Structures
Rgure 3-7: Partial Forward Substitution
Rgure 3-8: Correcting Forward Elimination
Figure 3-9: Example of a Network . -
Figu re 3-10: Connection Equations of the Network depicted in.Rgure 3-9
Rgu re 3-11: Example of Elimination of Output Variable
Figure 3-12: Example of Dynamic Change of Connection Matrix
Figu re 4 -1 : Simulated Network in Block Form
Figure 4-2: Simulated Network in Circuit Form
Figu re 4-3: Circuit Representation at Inverter Level
Figu re 4-4: Circuit Representation at Transistor Level

5
7
8
12
13
15
16
22
22
24
25
26
28
32
33
34
35
36
37
41
42
43
44

LIST OF TABLES

List of Tables

Table 2-1 : Example of row pointer/column index Static Storage. 14
Table 2-2: Variability Types 16
Table 3-1: Examples of Jacobian Sparstty * 30
Table 3-2: Examples of Operation Count in Jacobian Decomposition 30
Table 3-3: Examples of Operation Count in Forward Elimination 31

ZTOI/S yorets /IOV, H a w) »cat EXeri)

To my parents, John and Helen

ACKNOWLEDGEMENTS

I am particularly grateful to my advisor Steve Director for the many fruitful discussions and

suggestions which have proved valuable in many ways.

I wish also to thank Karem Sakallah, the writer of SAMSON, for his invaluable help and

patience in explaining his program in detail.

INTRODUCTION

Chapter 1
INTRODUCTION

Simulation of integrated circuits requires the solution of a great number of, in general,

nonlinear algebraic equations. The handling of these equations demands specific techniques

in order to surmount the problems which arise from their bulk. Many circuit simulators have

been developed in the past, aiming to efficiently solve circuit equations. Recently, multi-level

simulators were developed which, in addition to allowing the description and simulation of

electronic networks at various level of detail (e.g. logic-gate and circuit levels), were aimed

at optimizing the simulation process. One such simulator recently developed at CMU is called

SAMSON [Sakallah 81].

The purpose of this work was to develop a sparse matrix package for SAMSON.

Specifically this package is employed in the analysis of networks described at the circuit

level.The development of the package is based upon the concept of modular simulation,

which was motivated by the modular structure of VLSI circuits. This modularity springs from

the use of elementary network configurations, such as logic gates,to build up large-scale

digital systems.

1.1. A Brief Description of SAMSON

SAMSON is essentially composed of two parts: an input phase, called SAM1, and the

simulation part, SAM2. The input phase has a powerful input language permitting mixed level

description of networks, and hierarchical network description. As an example, any network

may be divided into various subnetworks, which, in turn, can be divided into lower order

subnetworks. Usually many subnetworks are similar so that the same description may be

advantageously reused to define all of them. The definition of a subnetwork is quite general, it

may contain a single transistor, a logic gate or even a more complicated structure such as a

Full Adder. The user is free to decide which parts of his circuit will constitute a subnetwork.

INTRODUCTION 4

Another advantage originated from the generality of the subnetwork concept is the

independence of the subnetwork definition from the underlying technology.

The input phase employs our sparse matrix package to analyze all subnetworks included in

the network (Ascription. Processed subnetworks may be stored in a library to be used later for

simulating other networks which include these subnetworks in their description. This is

possible by careful separation of subnetwork modeling and subnetwork interconnection in the

network description. Processed subnetworks and tables describing their interconnection are

employed by the simulation part of SAMSON. The configuration of the SAMSON system is

shown in Figure 1-1.

SAMSON employs the concept of activity-directed circuit simulation in network analysis.

The activity of a subnetwork is connected with the rates of change of its variables. In a

transient simulation it can be measured by the sizes of the integration steps which are taken

to maintain truncation errors within prescribed limits. Therefore, integration steps may serve

as a convenient measure of activity. Whereas tranditional circuit simulation constrains all

subnetwork to use the same step size, necessarily the smallest, an activity-directed approach

allows each subnetwork to follow its own time trajectory. At each instance of time,

subnetworks are divided into an alert and a dormant group, based on the relative magnitutes

of their steps. Only alert subnetworks are simulated, with dormant subnetworks participating

as passive entities whose outputs are extrapolated and propagated to the inputs of alert

subnetworks.

1.2. Formulation of Network Equations

Consider a network consisting of a subnetworks. SAMSON classifies the variables

associated with subnetwork S. as follows

• Internal variables, which, include algebraic variables, x§(t) * col2(v^, i^, v^) ,
where v^, i^, and v^ are the vectors of branch voltages, branch currents and
node voltages respectively; and differential variables q |t the vector of reactive
charges and fluxes.

• External variables, which include inputs u.(t) , i.e, the terminal variables (currents
or voltages) considered independent (externally specified) when the

col stands for column

INTRODUCTION .

Subnetwork
Description

Subnetwork
Processor

•

Processed
Subnetworks
(solve code)

' Subnetwork

Library

•

•
Network. *

- Description

Network
Processor

SAM1

•

Network
Tables

•

Simulation
Part

SAM2

Output
Results

Figu re 1 • 1: Configuration of SAMSON System

INTRODUCTION 6

subnetwork is solved; and outputs y^ t) , i.e., the terminal variables that are
considered dependent, computed when the subnetwork is solved.

SAMSON employs the Tableau formulation [Hachtel 71] of the network equations.

According to this approach, the equations describing subnetwork S. may be written as follows

Qi(*,(t). Q|(t), t) » 0 (Branch Constitutive Relations) (1.1)

h,(Xjfl), fyt)) » Ej x.(t) • qfi) » 0 (Reactive Branch Definitions) (1.2)

fs(<ij(t), x,(t), y,(t)) » 0 (KVL and KCL Constrains) (1.3)

u. and y. are n.-dimension vectors where IX is the number of S^s terminals excluding the.

reference node.

For a complete network description, in addition to the equations describing each

subnetwork, we need the connection equations which define the interconnection pattern

between different subnetworks. Since subnetworks are connected at their terminals,

connection equations involve only input and output variables. We can reduce equations (1.1)

-(1.3) to:

G(z(t) ,g(t) , t)«O <1.4)

H(z (t) ,5 (t))»Ez(t) .5 (t)»O (1.5)

where z(t) « cd(x(t), y(t), u(t)).

In transient circuit analysts the approximations z. and q. to z(t) and g(t) at a sequence of

time points ^ < t, < ... are to be found. At time instant tn we replace the time derivative with a

stiff integration formula [Brayton 72] of order k

w h e r e h n » t n . t n . r

Substituting of (1.6) into equations (1.4) and (1.5) yields

where «n » col(zn> Qn).
n>

In general (1.7) constitutes a set of nonlinear algebraic equations. Upon application of the

Newton-Raphson scheme to (1.7) we obtain the coefficient matrix of the linearized system.

This coefficient matrix, which will be considered more fully later, has the structure shown in

Figure 1-2. Observe that the coefficient matrix will be very sparse, and that many elements

are constants of value either +1 or - 1 , which are called topological elements. The other

nonzero entries are called unique entries.

INTRODUCTION

Figure 1 -2: Initial Form of Coefficient Matrix

1.3. Motivation for Modular Simulation

Integrated circuits, especially those used to build digital systems,are composed of a large

number of a few basic types of subnetworks. Instances of such types most commonly used

are the logic gates OR,AND,NOT and the FLIP-FLOP . As a result there is an inherent

modularity in the structure of integrated circuits. This modularity implies that several parts of

the coefficient matrix are kJentical,corresponding to basic networks of the same type. We can

employ this feature of the coefficient matrix, as well as its sparse structure, to obtain a very

efficient solution procedure.

Initially the coefficient matrix has the form shown in Figure 1-2. By reordering the variables

of the system we can obtain the doubly bordered block diagonal form shown in Figure 1-3.

This form is particularly well suited for programming and solving each block separately.

Observfe that since each of the blocks on the diagonal of the coefficient matrix corresponds to

a. subnetwork, and since a given subnetwork may appear more than once in a network,

PRODUCTION

several diagonal blocks possess the same structure. Thus we need only produce solution

code once for each unique subnetwork, and employ the same code for each instantiation of

the subnetwork.

Figure 1 -3 : Reordered Form of Coefficient Matrix

1.4. Selection of the Approach to the Solution of Sparse
Simultaneous Linear Equations

We now consider three aproaches which can be employed for solving the sparse matrix

structure resulting from SAMSON's formulation of the network equations.

In the first approach, called the compiled code approach, loop-free code is generated

which can rapidly solve all sets of equations that have the same underiying structure. The

main advantage of this approach is extremely fast execution of the code. A disadvantage of

this technique js that the generated code is often so long as to require out-of-core storage,

thereby slowing execution. Furthermore, implementation of this approach in a high level

language is difficult.

INTRODUCTION 9

The second approach is known as the looping indexed approach. This approach actually

performs all of the operations (LU decomposition, forward and backward substitution) on the

coefficient matrix while analyzing its structure, and generates a sequence of ordering arrays

and indexing vectors which can then be used to process matrices of the same structure. The

advantages of this approach are that the decomposition is less time-consuming than that in

the compiled code approach, and that the information generated requires much less storage.

However, the use of indirect addressing results in slower execution, and use of this method

precludes the use of variability typing (see below).

The last approach, known as the interpretable code approach, differs from the compiled

code approach in that operation codes and addresses replace the specific code. That is, a

table of operation codes and coefficient addresses are generated, which later, interpreted by

a program, actually perform the solution. This approach is superior to the compiled code

formulation in the amount of storage required, although the storage needed often

considerably exceeds that required by the looping indexed approch. Its execution speed lies

between the other methods, as does the time for the initial analysis of the structure.

The compiled code approach is considered to be the best if the size of the coefficient

matrix does not require out-of-core storage. Modular simulation, however, reduces the

amount of the solve code, since only the subnetworks, instead of the whole coefficient matrix,

are processed. Thus overcoming the critical problem of space. Also, use of the same code to

analyze more than one diagonal block reduces the time needed for the initial analysis of the

structure. Evidently, modular simulation in circuit analysis favors the adoption of the

compiled code approach.

SPARSE MATRIX METHODS 10

SPARSE MATRIX METHODS , 11

Chapter 2
SPARSE MATRIX METHODS

In the previous chapter we came to the conclusion that the application of modular

simulation reduces the analysis of a simulated circuit to the solution of several sparse systems

of linear equations, each of them describing a part of the circuit defined as a subnetwork. We

devote this chapter to the techniques applied to solving sets of sparse equations. Storage

requirements, the ordering of variables and equations in conjuction with variability typing, and

the reduced Crout algorithm used in matrix decomposition are subjects of interest

2 .1 . Crout Reduction
*

This section deals with the solution of a system of N linear algebraic equations in N

unknowns

Ax=b (2.1)

based on the Crout method [Duff 77], which consists of factoring A into a

product (Figure 2-2)

A « L U (2.2)

where L is a lower triangular matrix and a is an upper unit triangular matrix. Crout reduction

is nothing more than a scheme for Gaussian elimination which provides a considerable

savings in accessing memory. After factorization, system (2.1) can be easily solved by first

performing forward elimination

Ly*b (2.3)

followed by a backward substitution

Ux*y. (2.4)

Specifically if we denote by a«, L and u~ the components of A, L and Uy respectively, where

1 < i, j\ N, then the elements of the factors L and U can be computed for any given m,

1< m < N from the formulae

SPARSE MATRIX METHODS 12

(2 '6)

In forward elimination, (2.3), we compute

(», . i-1.2,...,N, , f ^ , ! (2.7)
and then in backward substitution, (2.4),

* , « V 2 > « U 1 % V l - N . N . 1 , - ^ 1 . (2.8)

In order to reduce computation time, only the operations in equations (2.5)-(2.8) which involve

nontopological components of L and U are performed, the effect of elements equal +1 is

included during code generation. •

1

U 2

3

L

4

5

6

7

8

\

A

\

Figure 2-1: Crout Reduction

2.2. Sparse Matrix Storage

The structure of a sparse matrix is particularly favourable for the development of an

efficient storage scheme since we need to store only the nonzero elements. We expect a good

storage scheme to fulfill two objectives:

• The matrix entries should be readily accessible

• the merory space required should be kept low.

SPARSE MATRIX METHODS 13

L

U

\(k)

Figure 2-2: LU Decomposition

In general, schemes which result in minimum storage requirements usuatfy lack accessibility.

Therefore, there is no optimal scheme for all cases. Storage schemes can be classified into

two categories. In static schemes,the matrix entries are merely accessed while the sparsity

structure is not allowed to change. In dynamic schemes, the matrix structure is permitted to

grow (or shrink) during the course of a computation.

A common static method requires three arrays for the representation of a sparse matrix

1)a row pointer array, denoted PA, which is used to identify the column indices that belong to

a given row

2)a column index array, denoted IA, which holds the column indices of the stored entries and

3)a real array, called Value, which is employed to store the values of the nonzero elements.

This scheme is called a row pointer/column index method and we illustrate it with an example

in Tabte 2-1. There is a similar static scheme called column pointer/row index method.These

storage schemes are particularly useful for storing sparse matrix information in a file, or when

doing operations like matrix-vector multiplication which do not change the sparsity structure.

SPARSE MATRIX METHODS 14

•3.0

10.0

1.0

3.0

1.0

2.0

3.0

• -2.0

Value • (-3 .0 . 1.0. 2.0. 10.0. 3.0. 3.0. 1.0. -2.0)
t * t t t t t t

IA . • (1. 2. 4. 1. 4. 3. 3. 4)
t * . . t t

PA - (1 . 4 . 6 . 7 . 9)

Table 2 - 1 : Example of row pointer/column index Static Storage.

In our program we employ this storage scheme in the input phase to store the jacobian of

each network, while processing the subnetworks included in network description. A row

pointer/ column index static scheme is also used for storing the elements of the factors L and

U of the initial matrix.

An important class of dynamic schemes employ linked data structures. Linking is one of the

most flexible representational schemes, it is easy to insert or delete elements and to reutilize

any free space caused by such a deletion. With each nonzero entry is associated a data

element of the linked list comprising

1)row index .

2)column index

3)reference to the next element in the row

4)reference to the next element in the column.

K the sparsity structure is altered all we need is an adjustment of the references. This possibity

renders the dynamic storage schemes very attractive for storing a sparse matrix when

pivoting is being performed. In fact, this scheme is adopted for ordering the subnetwork

SPARSE MATRIX METHODS 15

jacobians in our program. Figure 2-3 ilustrates this class of storage scheme using the same

matrix we employed in Table 2-1.

row column

oown

value

right

Figure 2-3: Example of Dynamic Storage.

2.3. Variability Typing

The introduction of variability typing has been proven to significantly improve efficiency in

the solution of sparse systems. This concept is based on the fact that some of the entries of L

and U computed by (2.5) and (2.6) depend on the values of circuit elements,some depend on

time and the others are functions of system variables. Since some entries need to be

computed more often than others, we classify elements into groups. Each group of entries

may be computed separately. As a result the operations needed by LU decomposition may be

performed in nested loops. The outer loop will include the computation of those elements

defined to be of C-type, i.e., these which depend only on circuit elements. The first inner loop

will calculate the matrix entries of P-type, with values changing with design parameters. The

next inner loop will contain elements of 7-type altered when time increases. The innermost

loop will include entries of X-type, computed at each Newton step.which depend on

unknowns. In Figure 2-4 we show the flow of computation of the jacobian entries. T-type

SPARSE MATRIX METHODS 16

entries arise from the discretization of partial differential equations while X-type elements

come into existence from the linearization of nonlinear equations. Finally, in order to

efficiently handle the large number of topological elements which arise from the tableau

formulation we define the plusone and minusone types. The introduction of topological

elements increases the process time of a subnetwork, but the saving in simulation time is

considerable since only operations involving nontopological elements are performed.

BEGIN { Interact ive Loop }
Compute C-type entries ;
WHILE design parameters, change DO

BEGIN { Optimization Loop }
Compute P-type entr ies;
WHILE t < T DO { t is time and T is interval of simulation }

BEGIN { Time Loop }
Compute T-type entr ies;
WHILE solution of equations does not converge DO

BEGIN { Newton Loop }
Compute X-type entries

END { Newton Loop }
END { Time Loop }

END { Optimization Loop }
END; { Interact ive Loop }

Figure 2-4: Row of Computation of Jacobian Entries

We are interested, when generating code, in reducing the number of operations performed

in the Newton loop. So the pivoting strategy we shall choose , (see next section) must

discourage a pivot selection resulting in many operations needed to be performed in inner

loops. Therefore, it is necessary to associate with each operation a variability type to indentify

where this operation must be done, and then to allocate a weight to each type. This weight will

constitute a measure of cost for performing an operation of a specific type. We can also use

the allocated weights to order variability types in the sense that a higher order type possesses

a greater weight. Each operation then is characterized by the highest involved variability

type.The various types are listed in Table 2-2 in increasing order.

Type Plusone : topological entries of value + 1 .
Type Minusone : topological entries of value - 1 .
Type C : constant entr ies .
Type P : entries changing with design parameters.
Type T : entries changing with time.
Type X : entries depending on the unknowns.

Table 2-2: Variability Types

•*
In the input phase, we use two different structures to store the initial matrix describing a

SPARSE MATRIX METHODS 17

subnetwork, and its factors L and U% because decomposition may change the variability type

of an entry. In this case the loading of the entry should be done in an iteration level different

from the loop where operations for the decomposition, referred to that entry, are performed.

Furthermore, we do not store topdogical entries and we keep only one value for all the T-type

entries.

Since we use variability typing, we need three more arrays to completely represent the

structure of a sparse structure employing a static scheme. We will need: 1)An array .denoted

VType, parallel to the Value array holds the variability types of the stored elements. 2) Another

array, denoted EntryLocation, parallel to the index array points to the Value array. 3)An array,

called Nominal array/is also employed. It is particularly useful in ordering because it holds the

nominal values the user assign to entries(X type) depending on the unknowns so that we can

compute the roundoff error factor from (2.11) when pivoting.

2.4. Pivot Selection

The principle objective of pivoting strategies is to find an ordering of the rows and columns

that keeps the number of arithmetic operations required for solution at a minimum. Another

objective is minimizing the number of nonzero elements added to the matrix structure during

solution. A third objective in pivoting is to ensure numerical stability.

It would be desirable to find the best ordering (among (n!)2 possible orderings for a full nxn

matrix)in some well defined sense. However, in practice, this is impossible. Pivoting

strategies can be classified into a priori and local methods. The first category includes

methods which order columns (or rows) before the elimination process takes place. In local

strategies, at each step in the factorization procedure, the pivot is selected from among all the

nonzeros in the reduced submatrix,which has been updated during previous elimination

A priori strategies yield results inferior to local methods. A common a priori pivoting

technique is to order the columns in increasing number of nonzeros in each column, or to

order them in increasing total number of nonzero elements in rows having a nonzero entry in

the given column. We choose the pivot within each column, to be the nonzero entry of the

pivotal column that is located on the row with minimal row count (number of nonzeros in the

row). Although a priori methods are not the best ones, their adoption in pivoting to preserve

sparsity results in great improvement over not ordering at all.

SPARSE MATRIX METHODS 18

Among local pivoting techniques the most popular is that suggested by Markowitz

[Markowitz 57]. At each stage of elimination, this ordering selects as pivot the nonzero

element that minimizes the product of the number of other nonzeros in the candidates row

and column. Markowitz strategy has proven to be very effective. In general, there is a trade-

off between the time spent in choosing a pivoting strategy and the resulting fill-in, local

orderings are computationally more expensive than a priori methods because they require

simulation of the elimination process for all candidate pivots.

Markowitz strategy can be significantly improved if we incorporate in it variability typing of

nonzero entries [Gustavson 70]. We expect that variability typing, as well as the* distinction'

between topological and unique elements, will require extra processing time. If we recall that

we can use subnetworks from a library,which have already been processed.the added

overhead is rather unimportant. Next, we describe the ordering we follow in our

implementation based upon the Markowitz selection criterion, in conjuction with variability

typing. The context of modular simulation imposes a few modifications on the basic algorithm.

Since the task of ordering is to minimize fill-in and operation count while retaining

accuracy, we allocate to each candidate pivot a weigthed pivot cost, denoted PC. The cost for

selecting the candidate pivot in i"1 row and jm column is defined as

PC[i, j] « f i M f U] • * « [U] + OH (2.9)

where jiv w > 0 are input parameters, M is a weighted operation count, R is a roundoff error

factor and OH is an overhead cost. We also define

where vwk stands for the weight associated with the variability type assigned to the km of the

m.. multiplications(divisions) in eliminating the im row and jm column. Moreover

«[U]»(2||A[i,l]|)/(nzi|4[i,j]|), l«{ci/A[i,ciH0} (2.11)

with I running over the nz. nonzero column indices in row i and A[i, i] standing for the

numerical value of the entry in Ith row and jm column.

The need for the overhead cost, denoted by OH in (2.9), originated from the application of

modular simulation in circuit analysis, which requires the solution of the connection equations

describing the interaction between different subnetwork, in the Newton loop. Therefore, we

are interested In reducing the the number of the operations involved in the solution of the

connection equations. Among the variables describing a subnetwork there are some

representing a voltage or a current referred to a terminal node. These variables can be either

SPARSE MATRIX METHODS , 19

an input or an output. A specific subnetwork accepts the action of other subnetwork through

its input variables while it acts upon the other parts of the network through its output

variables. The purpose of introducing the overhead cost is to impose on the ordering strategy

to pivot at the end on columns corresponding to output variables and on rows which involve

an input variable. So we assign to OH a very large value for nonzero elements in such a row or

column, whereas it takes on a zero value for all the other entries. The large value of OH in

(2.9) increases significantly the total pivot cost for the specific entries discouraging their early

selection as pivots. It will become clear in the next chapter, where we give a detailed

description of a Subnetwork, that this arrangement will considerably reduce the operation

count in computing the coefficients of connection equations.
.

Next we describe the k* of N identical stages needed in the process of pivoting on an N x N

matrix. At the end of the (k - 1) * stage, k - 1 eliminations have been made and the reduced

matrix Aw (Figure 2-2) has been updated at the previous stage of elimination. So in the km

step the structure of Aw is known, comprising nonzero locations, variability types and values

of the matrix entries. We compute from (2.11) the roundoff-error factor for all the nonzero

elements of Aw and consider as candidate pivots only those entries for which

TOL fl[i,j]<1 . (2.12)

where 0 < TOL < 1 is a threshold factor. The remaining elements are rejected because their

small magnitude may cause numerical stability problems. Then we simulate the execution of

the operations involved in the elimination process for each candidate pivot. We consider as

nontrivial only the operations (multiplications and divisions) involving nonzero elements of a

type other than plusone or minusone. The weighted operation count M increases for each

nontrivial operation by the weight corresponding to the type of the specific operation. After

computing the weighted operation count for each candidate pivot from (2.9) we choose as

pivot the entry in Ith row and 7th column for which

where [i, j] refers to the location of a candidate pivot satisfying (2.12). The next step is the

execution of the numerical Gaussian elimination of row / and column J, creating the reduced

(k-1)x(k-1) matrix A f r+1) . At this point the k* stage of elimination has been completed.

SUBNETWORKS IN CIRCUIT ANALYSIS 20

SUBNETWORKS W CIRCUIT ANALYSIS 21

Chapter 3
SUBNETWORKS IN CIRCUIT ANALYSIS

The purpose of this chapter is to describe, in detail, the use of subnetworks in circuit

analysis. As mentioned in Chapter 1, a network is considered to consist of a number of

interconnected subnetworks. By carefully studing the interconnection some interesting

results can be obtained regarding the solution of connection equations.

3 .1 . Formulation of Network Equations

We consider first the formulation of the equations which describe a network consisting of a

subnetworks. From Chapter 1, subnetwork is completely described by the set of equations of

the form (1.1) -(1.3). Let w.% » col(x i9q.) the /^-dimensional vector of the internal

variables.After the pivoting process has been done (1.1)-(1.3) can be written as follows

DjMfj + tfj * 0 . (3.1)

where A. is a nonsingular p. x p. matrix,B. is a ft. x I I . topological matrix, D. is a I I . x p. matrix

and a. is a ̂ .-dimensional vector.

Separation of w.% and yl in (3.1) has been made in order to pivot on the columns

corresponding to output' variables at the end. We can combine vv. and y. into the a-

dimensional vector z. = col(wv yl), where n. * p. + n. and then (3.1) may be expressed as

J-Zj + TjU.-rj (3.2)

where J. is a nonsigular n.xn. Jacobian matrix, r. is an n.dimensionaJ vector whose lower I I .

components are zero and T. is an n. x n. matrix which is zero in the top p. rows while the lower

I I . rows include topological elements of value zero or one. A subnetwork is shown in Figure

3-1 while Figure 3-2 illustrates the structure of (3.1).

While individual subnetworks can be completely described by equation of the form (3.2), we

SUBNETWORKS IN CIRCUIT ANALYSIS 22

Figure 3-1: Subnetwork

a.

Figu re 3-2: Structure of Subnetwork Equations

need an additional set of equations* to completely characterize the whole network. These

SUBNETWORKS IN CIRCUIT ANALYSIS 23

equations define the interconnection pattern of the various subnetworks comprising the

network. Subnetworks are connected at their terminals, so connection equations involve only

input and output variables. Each input variable is expressed in terms of the output variables

of other subnetworks [Sakallah 80]. This implies that exactly one current-activated terminal

and one or more voltage-activated terminals can be involved in a connection equation. A

terminal is current-activated or voltage-activated when the corresponding input is,

respectively, a current source or voltage source. An interconnection of three subnetworks is

depicted in Figure 3-3. The input vector of the S. subnetwork can be expressed as

u, • Z ^ - 1 A | | z | - n, (3.3)

where A is a Il.xn. augmented topdogical fan-in matrix defining the interconnection structure

between S§ and SJf and n, is a n.-dimensional vector of primary (external)

excitation/Therefore, the network is completely described by the following set of equations -

JjZj + T, u§ « r,, I • 1,2,.... a (3.4)

2*. < A.. Z, • U; « / I , , I » 1, £^ . . . , O • W.O)
I « 1 II I I I

Equations (3.4) and (3.5) written in matrix form for the network in Figure 3-3 are depicted in

Figure 3-4.

3.2. Solution of Network Equations

LU factorization is employed to solve the system of linear equations (3.4) and (3.5). The

structure of the coefficient matrix after forward elimination is shown in Figure 3-5. It can be

easily seen that it is possible to carry out the forward elimination as well as the backward

substitution step for each block on the diagonal separately in any order). Each diagonal

block(except that at the lower left corner which is referred to as the subnetwork

interconnection block) constitutes the Jacobian matrix of a subnetwork processed during the

input phase. Equation (3.4) may be written as .

z. • JT1 (r. - r. fij) I • 1 , . . . , a (3.6)

where J. can be factored as

Assuming the input vectors u., i * 1 , . . . , a are available, (3.6) provides us with the values of

internal and output variables for all subnetworks. When (3.6) is substituted in (3.5) we get

2 f s j A.. • u.% m n§ • 2?m 1 4§ j i « 1 , a (3.7)

where * •

and

A.. - A - . ^ r . t FpixfM (3.8)

SUBNETWORKS IN CIRCUIT ANALYSIS 24

V
UK.f
Ui.r •

y. =0

Figure 3-3: Connection Equations

SUBNETWORKS IN CIRCUIT ANALYSIS 25

Figure 3-4: Structure of Network Equations

' * (3.9)
I i m * i j Ji r. i R i

The system of linear equations (3.7) involves only the input vectors uy Therefore we can solve

(3.7) to obtain the values of u.. Matrix A.. in (3.8) and vector 6.. in (3.9) represent the action of

subnetwork S. on subnetwork S,.

In order to describe analytically the computational steps required to solve (3.4) and (3.5) we

introduce the connection matrix C t ft2! * 1 ni x fl2i » 1 ni and the vectors u and c e

Fri « 1 " i f where u * col(uv u2%.. >, uQ) is the composite input of the network. The index in

u of the first component of u. is denoted by £.. We define the fan-out list of yx r> the r^ output

variable of S., as

FO. r » { 1 < j < Z^ s 1 1 I k | j is the index in the composite input vector u of
an output variable affected by y. f}

We also introduce the n.-dimensional vector X. r, which is zero except for the (p. + r)m

component which is +1 if y^ r is a current, and -1 if it is a voltage. Note that FO. r and X. r

SUBNETWORKS IN CIRCUIT ANALYSIS 26

MM

• • • • •

V

>

N
v -

V
\N mmmm

* \

mmmmm

•MM

mmmmk

MM

MB

H,

Illllll

Figure 3-5: Matrix of Figure 3-4 after Forward elimination

contain the same connection information in a different representation for all the output

variables in the network.

The following steps are to solve the network equations

Step 0: [Initialize]

C * l,c « co l (n v n 2 , . . . , ^ 1

Step 1: [Factorize] i * 1 , 2 , . . . , a

Step t. [Forward Elimination] i • 1 ,2 , . . . , a

L.J. = r.

SUBNETWORKS IN CIRCUIT ANALYSIS 27

Step 3: [Propagate Outputs] i « 1 , a, r « 1t ...f n , j e

cQ] » cO] + zfa • r j (+ if yu is a voltage,-if it is a current)

Step 4: [Solve Connection Equations]

Cu » c

Step 5: [Back Substitute] i » 1,2,.... a

u i 2 i * T\

The algorithm above is a direct translation of (3.6) • (3.9). Implementation details are given

in next section.

3.3. Implementation Details and Examples

When the simulation part of SAMSON employs the code, which is generated during the

input phase, to solve the simulated network any information about the sparsity of the matrices

describing the subnetworks is redundant. Therefore for the representation of each

subnetwork matrix in SAM2 we need only a vector holding the values of the unique entries.

Figure 3-6 depicts the jacobian matrices of three subnetworks.

We can save a considerable amount of memory space by storing only the values of the

unique entries (see Table 3-1). But more impressive is the reduced operation count as a

result of the execution of operations involving only nontopological elements. Recall that the

effect til operations involving topological elements has been taken into consideration during

the code generation. Table 3-2 is indicative of the number of operations which do are not

carried out. Factorization of the jacobian constitutes the first step of our algorithm for the

solution of network equations.

SUBNETWORKS IN CIRCUIT ANALYSIS 26

•

•

12345678901234
1- + + 1
2-+ f f+ 2

. 3 ++ + 3 •
4 - • + 4
6 +5
6 + C 6
7 + C 7
8 + Tf t f 8
9 - ff+ 9
10 +f T ftttt 10
11 XXxXxx 11
12 -f ff 12
13 - f f fxxxl3
14- f fftxxxl4
12345678901234

Subnetwork 2
12345678901234567890123
1+
2+
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

1
2

•- + 3
+ 4

• + 6
+ + + 6
+ C 7
+ C 8 .
+ C 9
+ C 10

T +t 11
-+ f + 12

T + t 13
T +t 14 .
f + f 15

+- f ff + 1 6
f f+ 17
f ff +18

XxX xl9
XxX Xx x20

+ T f ttt ttt21
fff ftt22

+t-+t tt-+xxx23

Orderina Parameters

M '
9 «

' 0.01
< 0.01

TOL « 0.0
vw.- ^ • 5.0

' * 6.0

Z**~ « S'.O

Notation
• :
- ;

f :
C :
c :
P :
P '•
T :
t !

x :

: topological entry +1
: topological entry -1
: fill-in +1 or -1
C type entry

: C type fill-in
: P type entry
: P type fill-in
: T type entry
:. T type fill-in
: X type entry
: X type fill-in

•

*

12345678901234567890123

Figure 3-6: Examples of Jacobian Structures

SUBNETWORKS IN CIRCUIT ANALYSIS 29

Subnetwork 3
1234567890123456789012345678901234567890123
1+
2+-
3 +-
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 -+
21
22
23
24
25 -
26 +-'
27 -
28 -
29 -
30 -
31 • -
32 •
33
34
35
36
37
38
39
40
41
42
43

•
-

+ •
+ •
+ +
• c

+
+
+ • "
+

T +t
f

T +
T +
T +
T
f
f
f
f
f
f
f
f

+ T f
+ T f
+ T f

-

•

+

C

C

c
c
+

+t
+ f
ff
f+
ff+
fff+
ffff
fffff
ffff f
Xxxx
XxXxx

XxX
X X

ttttt
t
t

fffff
f
f

+ t — + t tttt

1
2
3
4
5
6

+ 7
+ 8
• 9
+ 10
11
12

C 13
14

C 15
16

C 17
18
19
20

t 21
t 22
t 23

24
25

+ 26
27
28
29
+30

+ f31
• f32

X x33
X x x34
X x x36
X x x36
t t t37
t t t38
t tt39

f t t40
f t t41
f tt42

-+++xxxxxxx43
1234567890123456789012345678901234567890123

Figure 3-6, concluded

SUBNETWORKS IN CIRCUIT ANALYSIS 30

Subnetwork Subnet wo rk2 . Subnetworks

Dimension of

. Nonzero entries

before decomposition

Uniqueentrles

before decomposition

Nonzero entrie.

after decomposition

Unique entries

after decomposition

3Q

g

22

23

40

-JQ

92

36

43

83

19

201

80

Subnetworks depicted in Figure 3-6

Table 3-1 : Examples of Jacobian Sparsity

Operations*

nonzero entries

Operations in

unique entries

Subnetwork!

39

-,3

Subnetwork2

46

1 3

Subnetworks

100

Subnetworks depicted in Figure 3-6

Table 3-2: Examples of Operation Count in Jacobian Decomposition

3.3.1 • Forward Elimination

In the second step, the forward elimination, we also take advantage of the execution of

nontrivial operations (as they have been already defined). Table 3-3 shows to the operation

count of the forward elimination for the three subnetworks in Figure 3-6. We may reduce the

number of operations even more if we also treat the right-hand side r as a sparse vector. In a

SUBNETWORKS IN CIRCUIT ANALYSIS 31

tableau formulation the sparsity of the right-hand side is particulariy significant making its

exploitation worthwhile. Moreover, we need less space to store only the nonzero elements of

r.. Notice that we can employ the vector of unknowns z. to store temporarily ry

• • • •

Subnetwork Subnet wo rk2 Subnetwork3

Operations* 4Q • . 57 -\QQ
nonzero entries

Operations in - j ^ 23 52

unique entries

Subnetworks depicted in Figure 3-6

Table 3-3: Examples of Operation Count in Forward Elimination

3.3.2. Propagation of the Outputs

The next step, specified in the algorithm description as "propagation of .the output

variables", consists of the elimination of output variables from the connection equations.

Observe that the LU factorization of the diagonal blocks causes fill-in in the connection matrix

C. To compute this fill-in in matrix C we need a partial forward substitution (L I\ « I\)

followed by another partial forward elimination (X^ f I/. • X7 f). At this point it becomes clear

why we pivoted at the end on columns corresponding to output variables and on rows

containing an input variable. The applied ordering reduces the number of nonzero

components of F and X. to a minimum. As a result, less operations are to be performed in

partial eliminations and the number of multiplications involved in loading the connection

matrix decreases.

T. and XTr are not implemented as a matrix and a vector, respectively. We represent them

as a set of variables, created in code generation. Each variable corresponds to a nonzero

entry of T. and X/ f. So we reserve space only for the nonzero elements. Furthermore, we

employ the same variables to hold the values of all vectors XT f , r * 1 , I I . . The variables

representing I\ and XT f are sparse when the Jacobian of the subnetwork is of large

dimension (greater than 50).

SUBNETWORKS IN CIRCUIT ANALYSIS 32

¥

x

h

X
xx

I, '

0

Figure 3-7: Partial Forward Substitution

SUBNETWORKS IN CIRCUIT ANALYSIS 33

Vx
xxxxxx

Figure 3-8: Correcting Forward Elimination

3.3.3. Solution of Connection Equations

The fourth step in the algorithm for solving network equations is the solution of connection

equations (C u » c) . SAMSON employs the concept of activity-directed circuit simulation,

making possible an efficient solution of connection equations. This is because when we solve

for the connection equations, we do not have to eliminate the output variables of dormant

subnetworks, since they can be extrapolated. Therefore the structure of the connection

matrix C is dynamically altered depending on the status, at that time instant, of the various

interconnected subnetworks. Consider the network shown in Rgure 3-9, consisting of three

subnetworks Sy S2 and S3. The connection equations are shown in Rgure 3-10. Observe that

the connection matrix C, i.e., the coefficient matrix of the vector of output variables

u » (uv uT a3) is a unit matrix before elimination of the output variables. Assume that

subnetwork S« is alert, and consider the elimination of the output variable y. o. It causes fill-in

in the rows involving this variable, and the matrix C takes the form shown in Rgure 3-11. The

fill-in is exactly.the same in each row, and equal to X1 2Ty it is also independent of the

SUBNETWORKS IN CIRCUIT ANALYSIS

Figure 3-9: Example of a Network

interconnection of the subnetworks. Therefore, it is convenient to associate with each output

variable an interaction vector holding the values of fill-in resulting from the elimination of this

variable. Interaction vectors are then employed to load the connection matrix. Notice that we

generate code, separately for each subnetwork, to compute entries of the connection matrix

caused by the elimination of the output variables, independently of the interconnection

pattern of the network.As a result, we can use a processed subnetwork from a library to solve

any network whose description includes this subnetwork , without regard for the

interconnection of the subnetworks. Except for the connection matrix, the right-hand side

vector c also needs to be loaded.The required values are stored as the last components in

interaction vectors. Figure 3-12 illustrates the dynamic change of the connection matrix of

our example.

While we shall solve the connection equations using Crout reduction, the special form of

the connection matrix requires a new pivoting technique, since traditional orderings cannot

be applied. Since the pivoting sequence is determined only once, at the beginning of

SUBNETWORKS IN CIRCUIT ANALYSIS 35

- n , + Uvi * 0

Y3.1
n2 +U2.1

"3.1

0
0
0
0

Figu re 3-10: Connection Equations of the Network depicted in Figure 3-9

SUBNETWORKS IN CIRCUIT ANALYSIS 36

r l

X

X

L -

X

X

X

• • • • • •

X

X

X

X

I

w a s

I

[7

stands for the interaction vector of y, 0

Figure 3-11: Example of Elimination of Output Variable

simulation, we are restricted to pivoting only on diagonal elements of the unit submatrices ,

which are independent of the status of subnetworks. All other entries may become zero if the

subnetwork is dormant Block pivoting is another feature of the applied pivoting., we pivot

consecutively on the elements of each unit submatrix on the diagonal of the connection

matrix C. Block ordering enables us to employ the dormancy of subnetworks in the solution of

the connection equations. Row and column order is not changed inside each unit block.

Otherwise we need to update for any change the data structure of the network, which is time

consuming. Furthermore, we have to reorder the components of the interaction vectors since

the code for computing these vectors has been generated under the assumption of a certain

order for the input variables of each subnetwork. So when we order the connection matrix, in

fact, we decide for the order of the diagonal unit blocks without altering internally the order of

rows and columns.

The selection strategy we follow is Markowitz criterion adjusted to our requirements. We

compute the operation count for eliminating each one nonzero entry of all diagonal unit

SUBNETWORKS IN CIRCUIT ANALYSIS 37

(a)

(b)

(c)

1
1
1

X X X
X X X
X X X

1
1
1

•

1
1
•1

1
1
1

X X X
X X X
X X X

X X X

1
1
1

X X X

X X X
X X X

X X X

1
1
1

1
1
1

x x x
X X X

x x x

1
1
1

x x x
x x x

x x x

1
1
1

(a) Subnetwork 1 alert

Subnetworks 2,3 dormant

(b) All subnetworks alert

(c) Subnetworks 1,3 alert

Subnetwork 2 dormant

x stands for changing entries

Figure 3-12: Example of Dynamic Change of Connection Matrix

SUBNETWORKS IN CIRCUIT ANALYSIS 38

blocks assuming all subnetworks to be active. Let us denote ocu the operation count for

pivoting on the nonzero element in I th row of J m block. We define the block operation count

for J * block as

BOC, - 2ft , ocu

We select as a piovotal block the PJm one whith minimal block operation count

8 0 C P J « i W U B O C J

Then we update the reduced matrix taking under consideration produced by the elimination

of the pivotal block. This procedure is repeated a times to order all blocks.

Among the existing approaches to the solution of a sparse system of linear equations we

select to follow the looping indexed approach to solve the connection equations. This

approach requires much less storage Jthan the compiled code and the interpretable code

approaches. Its choice is also favored by the fact that the solution of connection equations

does not demand use of variability typing. The other two formulations have a faster execution

speed but they require more work in performing the decomposition. This overhead in

processing the sparse matrix can be balanced by their fast execution only for large matrices.

The connection matrix is frequently a matrix of small dimension.

After ordering we use the Crout algorithm to compute, the entries of factors LQ and UQ of

the connection matrix. Unfortunately, for reasons explained below, the data representation of

the interconnection pattern does not favor the employment of dormancy in the solution of

interconnection equations. Specifically, we associate with each output variable a fan-out list

and an interaction vector. The elements of an interaction vector constitute consecutive

entries in a row of the connection matrix C. A fast loading of the matrix C requires the

components of each interaction vector to be successively stored, that is a row

pointer/column index storage scheme. On the other hand, when we perform the Crout

reduction we need to compute only entries in columns corresponding to alert subnetworks,

since no fill-in is caused in columns of the dormant subnetworks. Therefore elements in a

column should be consecutively stored by the applied storage scheme. The column

pointer/row index scheme fulfills this requirement. This brief analysis resulted in a

contradiction for the storage scheme. A solution would be a different implementation of the

interaction vectors in which the components of a vector would constitute elements of a

column. In ourvimplementation we employed a row pointer / column index storage scheme

and we solved the connection equations loading the connection matrix with zeros in the place

of the interaction vectors of the dormant sunetworks.

SUBNETWORKS IN CIRCUIT ANALYSIS 39

3.3.4. Backward Substitution

Backward substitution (U{ z§ * r) is the last step we implemented. Before executing this

elimination, we have to incorporate in rj the effect of the input vector ux on the unknowns z.,

solving the equation L, ?| • r{ • I\ u}. This is very efficiently carried out by loading the negative

of the calculated a. in the bottom part of r. and then repeating the forward substitution on the

bottom part only as shown in Figure 3-8. We perform, again, only nontrivial operations saving

computational time. In the partial elimination we recompute only the bottom components of r.

since we pivoted at the end on rows comprising an input variable.

A PRACTICAL EXAMPLE '
O F MODULAR SIMULATION . . 4 0

A PRACTICAL EXAMPLE

OF MODULAR SIMULATION 41

Chapter 4
A PRACTICAL EXAMPLE

OF MODULAR SIMULATION

This chapter is devoted to the modular simulation of a circuit. Our aim is to demonstrate

the advantages of modular simulation , such as hierarchical design and computation

efficiency. Furthermore, it is particularly well suited to an activity-directed circuit simulation

scheme.

Since our program is still in the experimental stage, we chose to simulate the circuit shown

in block form in Figure 4-1. This circuit, although simple, shows the benefits derived from the

adoption of modular simulation.

Figure 4 - 1 : Simulated Network in Block Form

Figure 4-2 shows the structure of the network at the circuit level. It consists of six

interconnected inverters, each built with n-channel MOSFETS's. We need to define the

boundary for each subnetwork which will constitute the basic unit to be simulated separately

from other subnetworks. We can consider different levels of subnetworks. For instance, we

A PRACTICAL EXAMPLE
OF MODULAR SIMULATION 42

OUT

Figure 4-2: Simulated Network in circuit form

A PRACTICAL EXAMPLE
OF MODULAR SIMULATION 43

may define each inverter to be a subnetwork. We can also consider an inverter to consist of

two subnetworks of lower level, each composed of a transistor. This hierarchy is very

convenient for describing the whole network. Rrst we define a transistor subnetwork, which

describes a transistor in detail (topology, values of elements). Then we only need the

interconnection pattern between transistor subnetworks to define an inverter subnetwork.

Finally, we may consider the whole structure as a subnetwork in order to emloy it in building

more complex networks. The simulated circuit is shown at different levels of subnetwork

representation in Figures 4-3 and 4-4.

Subnetwork

Inverter

•

Subnetwork

Inverter

Subnetwork

Inverter

mmmt

• • • •

Subnetwork

Inverter

Subnetwork

Inverter

Subnetwork

Inverter

Figure 4-3: Circuit Representation at Inverter Level

We can also take advantage of modular simulation in network solution by employing a

processed subnetwork to analyze all subnetworks defined to be this kind of subnetwork. For

instance, if we consider the given circuit to consist of inverter subnetworks possessing the

same structure, we may generate code (see Appendix A) for solving one of the six inverters,

and use it to analyze all inverters of the network. Notice that, in this case, the lower level

subnetwork representation employing transistor as basic unit has been used only for circuit

description, while it has been ignored in code generation.

A PRACTICAL EXAMPLE

OF MODULAR SIMULATION
44

oo

d Subnetwork

nMOS

Subnetwork

nMOS

co DO

F1 Subnetwork

nMOS
Subnetwork

nMOS

Subnetwork

nMOS
Subnetwork

nMOS

DO

^
Subnetwork

nMOS

Subnetwork
nMOS

d
J>

Subnetwork

nMOS

Subnetwork

nMOS

r Subnetwork

nMOS

Subnetwork

nMOS

VOut

Figure 4-4: Circuit Representation at Transistor Level

EPILOGUE 45

Chapter 5
EPILOGUE

5 .1 . Conclusions

Our work has been the development of a sparse matrix package, which could be efficiently

employed in an activity directed simulation program at the efficient solution of equations

describing a network. We took advantage of ttie inherent repetitiveness of a limited number of

elementary network configurations in the structure of integrated electronics, and applied the

principle of modular simulation.

Adoption of modular simulation makes it possible to describe a network in terms of a few

subnetworks, the analysts of a network then will requires only the solution of the submatrices

describing the subnetworks. Therefore, we only need to generate solve code only for the

subnetworks, instead of the whole coefficient matrix. This arrangement significantly reduces

storage space requirements and permits the analysis of very large systems without storage

problems. An important convenience we provide the user is the possibility of employing

previously processed subnetworks from a library, which further decreases processing time.

The user has absolute control over subnetwork definition and can define elements described

by any nonlinear relation. Hence, subnetworks can be used for network analysis

independently of the underlying technology.

Another advantage of modular simulation is the possibility of employing the latency

(inactivity) exhibited by most subnetworks in the analysis of integrated circuits.

EPILOGUE 46

5.2. Further Research

The solution of the connection equations remains open to further research. There are

alternatives for solving this problem that would allow fast loading of the connection matrix C

and efficient employment of subnetwork latency. The first alternative is to seek another

representation describing the interaction between different subnetworks. A second

alternative would be a different storage scheme for the connection matrix. The last approach

is to generate solve code for the connection equations.

A subject for further investigation is the pivoting parameters. In our implementation they

were assigned constant values. It would be interesting to find out how these parameters could

vary, according to the structure of the subnetworks, to yield a more efficient pivoting strategy.

Finally, our implementation may be improved if the sparsity of the right-hand side vector

and the vector of unknowns is employed in the analysis of a subnetwork.

GENERATED CODE FOR A SUBNETWORK ANALYSIS 47

Appendix A
Generated Code for a Subnetwork Analysis

Procedure nMOSIl(Var R.JVGS,JVDS:Real ;Var JIDS:Real;VGS:Real;-
Var VOS:Real;IDS.PL.PW.PVTO.PCox.PLMod:Real); Extern Pascal;

Procedure CINVl(Var S :. PSubnet; A : Action; L : CodeLevel);
PROCEDURE LoadJ; { Load Jacobian }
VAR
TrReal; {Temporary} ••

BEGIN
WITH St.JMatrixt DO
CASE L OF
InteractiveLoop:
BEGIN
Rt.V[l] :« Ramp * (5.000000);
V[10] :* -0.5 • Pt.V[6] • Pt.V[2] • Pt.V[2] • Pt.V[3] • P+.V[4];
V[9] :» -0.5 • Pt.V[12] • Pt.V[8] • Pt.V[8] • Pt.V[9] • Pt.V[10];
V[2] :« -0.5 • Pt.V[12] • Pt.V[8] • Pt.V[8] • Pt.V[9] • P+
V[5] :« -Pt.V[l]

END;
OptimizeLoop:
BEGIN
END;

TimeLoop:
BEGIN
V[l]:»-Beta;
Rt.V[ll] := -Gammat.V[l];
Rt.V[13] :« -Gammat.V[3];
Rt.V[14] :« -Gammat.V[4]; . /
Rt.V[21] :« -Gammat.V[2]

END;
NewtonLoop:
BEGIN
nMOSIl(Rt.V[19].T.V[6].V[7], 0.0000000 ,Xt.V[17],Xt.V[19],

Pt.V[3],Pt.V[4],Pt.V[5].Pt.VC6].Pt.V[7]);
nMOSIl(Rt.V[20].V[8],V[4].V[3].Xt.V[16].Xt.V[18].Xt.V[20].

Pt.V[9].Pt.V[10].Pt.V[ll].Pt.V[12],Pt.V[13])
END .

END v {CASE}
END; {LoadJ}
PROCEDURE Factor; { LU Decomposition of Jacobian } .
BEGIN
WITH St.JMatrixt DO

GENERATED CODE FOR A SUBNETWORK ANALYSIS 48

BEGIN
CASE L OF
InteractiveLoop:
BEGIN

• LUt.V[16]:«V[10];
LUt.V[18]:«V[9];
LUt.V[20]:«V[2];
LUt.V[22]:«V[5]

END;
OptimizeLoop:
BEGIN
END;

TimeLoop:
BEGIN
LUt.V[23]
LUt.V[ll]
LUt.V[30]
LUt.V[33]
LUt.V[24]
LUt.V[27]
LUt.V[31]
LUt.V[35]:
LUt.V[26]:
LUt.V[12]:
LUt.V[13]:
LU*.V[28]:
LUt.V[14]:
LUt.V[29]:
LUt.V[15]:
LUt.V[17]:
LU*.V[19]:
LUt.V[21]:
LUt.V[25]:

END;
NewtonLoop:
BEGIN
LU+.V[4]
LUt.V[l]
LUt.V[6]

-LUt.V[23]»LUt.V[16];
-LUt.V[24];
-LUt.V[30]*LUt.V[20];
-LUt.V[33]*LUt.V[22]; .
-LUt.V[35];
-LUt.V[ll]*LUt.V[18];
-LUt.V[12];
-LUt.V[27]-LUt.V[26];
-LUt.V[13];
-LUt.V[28];
+LUt.V[31]+LUt.V[12];
(-1.0)/LUt.V[15];
(+LUt.V[14])/LUt.V[15];
+LUt.V[17];
(-1.0+LUt.V[19])/LUt.V[21]

V[8];
V[6];
-LUt.V[4];

LUt.V[3]:«-LUt.V[l];
LUt.V[7]:»V[4]-LUt.V[6];
LUt.V[2]:«V[7];
LUt.V[5]:*(+LUt.V[3])/LUt.V[2];
LUt.V[8]:«V[3];
LUt.V[9]:«(+LUt.V[4])/LUt.vt8];
LUt.V[10 y. «(+LUt.V[7])/LUt.V[8];
LUt.V[32]:*+LUt.V[31]-LU*.V[9];
LUt.V[34]:—LUt.V[32]»LUt.V[17];
LUt.V[36]:»+LUt.V[29]+LUt.V[5]-LUt.V[10]-LUt.V[32]*LUt.V[19]

-LUt.V[34]*LUt.V[25]
END

END {CASE}
END {WITH}

END; t

GENERATED CODE FOR A SUBNETWORK ANALYSIS 49

PROCEDURE FwdSubstituteCvar X.R:Vector);
BEGIN
WITH St.Xt DO • •
BEGIN

V[2]:»-Rt.V[2]+V[l]:
V[3]:«-Rt.V[3]+V[2];
V[4]:»-Rt.V[4];
V[5]:«Rt.V[6];
V[6]:«Rt.V[6];
V[7]:=Rt.V[7];
V[8]:»Rt.V[8];
V[9]:=Rt.V[9];
V[10]:«Rt.V[10];
V[ll]:»Rt.V[ll]-LUt.V[23]»V[7]:
V[12]:«Rt.V[12]+V[2]-V[3];
V[13]:»Rt.V[13]-LUt.V[30]«V[9]:
V[14]:»Rt.V[14]-LUt.V[33]»V[10];
V[15]:«Rt.V[15]+V[3]+V[12];
V[16]:*-Rt.V[16]+V[3]-V[4]+V[12];
V[17]:»Rt.V[17]+V[3]+V[12];
V[18]:»-Rt.V[18]-V[3]-V[12]+V[17];
V[19]:»(Rt.V[19]-LUt.V[l]*V[17]-LUt.V[3]«V[18])/LUt.V[2];
V[20]:»(Rt.V[20]-LUt.V[4]*V[16]-LUt.V[6J*V[17]

-LUt.V[7]*V[18])/LUt.V[8];
V[21]:«(Rt.V[21]-V[6]-LUt.V[U]*V[8]+V[13]-LUt.V[12]»V[16]

-LUt.V[13]*V[17]-LUt.V[14]»V[18]) /LUt.V[15];
V[22]:«(Rt.V[22]+V[4]+V[16]-V[17]+V[18]+V[21])/LUt.V[21];
V[23]:«(Rt.V[23]-V[l l] -LUt.V[27]"V[12]+V[13]-V[14]-LUt.V[26]*V[15]

-LUt.V[28]*V[17]-LUt.V[29]*V[18]+V[19]-V[20]
-LUt.V[32]*V[21]-LUt.V[34]*V[22]) /LUt.V[36]

END {WITH}
END; {FwdSubstitute}
PROCEDURE FwdPass;
VAR
G122.G123.G223.L23:real;
BEGIN
WITH St DO
BEGIN
FwdSubstitute(X.R);
G122:»(1.0)/LUt.V[21];
G123:»(-LUt.V[34]*G122)/LUt.V[36];
G223:«(1.0)/LUt.V[36]:
L23:»-LUt.V[25];
InteractionVect.V[l]t.V[l]:«-G122-L23«G123;
InteractionVect.V[l]t.V[2]:=-L23*G223;
InteractionVect.V[l]t.V[3]:=-Xt.V[22]-L23*Xt.V[23];
InteractionVect.V[2]t.V[l]:«+G123;
InteractionVect.V[2]t.v[2]:*+G223;
InteractionVect.v[2]t.v[3]:»+Xt.v[23]

END {WITH}
END; {FwdPass}

PROCEDURE BwdSubstitute(var X:Vector);
BEGIN

GENERATED CODE FOR A SUBNETWORK ANALYSIS SO

WITH St.Xt DO
BEGIN
V[23]:«V[23];
V[22]:=V[22]-LUt.V[25]*V[23]:
V[21]:«V[21]-LUt.V[19]*V[23]-LUt.V[17]*V[22];
V[20]:»V[20]-LUt.V[10]*V[23]-LUt.V[9]»V[21];
V[19]:»V[19]-LUt.V[5]*V[23];
V[18]:=V[18]+V[23];

[]]

V[15]:*V[15]-V[17];
V[14]:=V[14]-LUt.V[35]*V[16];
V[13]:»V[13]-LUt.V[31]*V[21];
V[12]:*V[12]-V[17];
V[ll]:«V[ll]-LUt.V[24]*V[12];
V[10]:*V[10]-LUt.V[22]-V[15];
V[9]:«V[9]-LUt.V[20]*V[21]:
V[8]:«V[8]-LUt.V[18]*V[16]:
V[7]:«V[7]-LUt.V[16]*V[12]:
V[6]:«V[6]-V[22]-V[13];

V[4]:«V[4]+V[16];
V[3]:«V[3]+V[12];

[]

END {WITH}
END; {BwdSubstitute}
PROCEDURE BwdPass;
BEGIN
WITH St.Xt DO
BEGIN
V[22]:»(Rt.V[22]+V[4]+V[16]-V[17]+V[18]+V[21])/LUt.V[21];
V[23]:»(Rt.V[23]-V[ll]-LUt.V[27]*V[12]+V[13]-V[14]-tUt.V[26]»V[15]

-LUt.V[28]*V[17]-LUt.V[29]»V[18]+V[19]-V[20]
-LUt.V[32]*V[21]-LUt.V[34]*V[22])/LUt.V[36];

BwdSubstitute(X)
END {WITH}

END; {BwdPass}
Begin { CINV1 }
Case A Of
LoadJacobian : LoadJ;
LoadRHS : { For time being — no action };
LUFactor : Factor;
ForwardPass : FwdPass;
BackwardPass : BwdPass
End { Case }

End. { CINV1 }

GENERATED CODE FOR A SUBNETWORK ANALYSIS 51

[Duff 77]

[Gustavson 70]

References

[Brayton 72] Brayton, R. K., Gustavson, F. G., and Hachtel, G. D.
A New Implicit Algorithm for Solving Differential- Algebraic Systems Using

Implicit Backward Differentiation Formulas.
Proceedings of IEEE 60(1)^8-108, January, 1972.

Duff, I. S.
A Survey of Sparse Matrix Research.
Proceeding of IEEE 65(4): 182-193, April, 1977.

Gustavson, F. G., Liniger, W. and Willoughby, R.
Symbolic Generation of an Optimal Crout Algorithm for Sparse Systems of

Linear Equations.
Journal of the ACM (17):87-109,1970.

G. D. Hachtel, R. K. Brayton, and F. G. Gustavson.
The Sparse Tableau Approach to Network Analysis and Design.
IEEE Transactions on Circuit Theory, January, 1971.

Markowitz, H. M.
The elimination form of the inverse and its application to Linear

Programming.
Management Science (3):255-269,1957.

[SakallahSO] Sakallah, K. and Director, S. W.
An Activity-Directed Circuit Simulation Algorithm.
In Proc. of the 1980 IEEE International Cont on Circuit and Computers.

IEEE, 1980.

[Sakallah 81] Sakallah, K.
Mixed Simulation of Electronic Integrated Circuit.
PhD thesis, Carnegie-Mellon University, 1981.

[Hachtel 71]

[Markowitz 57]

