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Abst r act
The tableau fornmulation of electronic circuit equations has been
shown to be an efficient and useful formulation for circuit optim zation.
In this paper a tableau based formulation of the static power-flow equa-
tions for a power systemis presented. Because of the explicit appearance
of all quantities of interest the tableau fornulation allows the genera
statenment, and solution, of a variety of power systemoptimzation and

design problems without the need to resort to restrictive assunptions.
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*e I ntroduction

Due to the increasing interest in the managenent of energy, the devel op-
ment of conputer aided design tools for solving power system design problens
is becomng of greater inportance. As a result there has been renewed interest
in applying optinization nethods which have proven useful for electronic cir-

[1.3] The electronic circuit design

cuit design to power system probl ens.
problemis handled by recasting at into an optimzation problemby formng an
obj ective function which enbodies the design objectives.[4l The desi gnabl e
parameters are then adjusted iteratively by some suitable nonlinear program ng
algorithm (see for exanple [5]) to minimze the objective function. This
procedure requires the efficient evaluation of the objective function, which
requires a circuit simulation, and the gradient of the objective function with
respect to the designable paraneters. Devel opnent of the sparse tabl eau
approach for circuit sinmulation [6] and the adjoint appfoach for evaluating

[7]

gradients greatly aided the devel opment of optimzation procedures for
circuit design.

Mich of the work in applying these procedures developeq for circuit
design to power systen1deéign was hanpered by the restrictive assunptions
that were often nade. Typi cal of these assunptions were that the transm ssion
lines were |ossless and voltage profiles were flat, clearly an unrealistic
situation. These assunptions were made so as to alter the equations which
describe a power system i.e. the load flow equations, usually witten in
terms of power ahd vol tage, so that they resenble the equati ons which describe
an electronic circuit, usually witten in_terns of current and voltage.

In this paper we develop a tableau based formulation of the load flow
equations for a power system In addition to being able to take good advantage

{98l
of highly efficient sparse matrix nethods, * ! this fornmulation explicitly
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di splays all variables of interest in a variety of power system design problens.
Thus' an efficient procedure for conputing the gradient of any objective func-
tion with respect to the designable parameters can be devel oped w thout naking
unrealistic assunptions.

In order to facilitate the presentation of the tableau formulation, we
introduce a consistent set of notation in the next section. Explicit devel op-
ment of the tableau fornulation of the power-flow equations is given in
Section Ill. In Section IV we present a general nobdel of the power system
design problem and discuss its solution. Specific power system design and

anal ysis problens are discussed in Section V.

I1. Notation
In order to provide a general framework within which to
descri be power systemdesign, as well as analysis, we introduce the foll owi ng,
somewhat unorthodox, notation. However, ‘the use of this notation
will greatly sinplify the mathematical devel opnment of Sections 11l and |V
Let the power systemunder consideration have a total of b branches
of which there are n source branches (including sl ack},“ generator and | oad
branchesz) and t transm ssion-line elenent branches? For colnveni ence we wil |

nunber these branches in the followi ng order:

sl ack branch <~ 1

generat or branches c2,3,...,0

| oads :ogHl,g+2,...,n
transmssion line elements : n+l,n+2,...,b.

4
Further, we assume without |oss of generality, that each bus has exactly

. 5
one source connected to it so that there are n buses.
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Associated with each branch k (k = 1,2,.,.,b) are a conplex-val ued branch

vol t age, Vk, and branch current, 1]: a real and reactive power which enters the
branch, denoted by P,E and QE, respectively; and a real and reactive power
| r
L L
whi ch | eaves the branch, denoted by P,x and Qr, respectively. W define the
direction of entering power to be the same as the direction of entering

current. _Thus if branch k is connected frombus y to bus v

E *

Pl_( = Re { vqu-} | (1a)

gf = Im( VuJi* } (1)

P\ = Re{ V J *} ' (Ic)
k v k

=I{ V] *} (1d)
k ——v=x I

Note that the entering and |eaving quantities as defined above can be either
o . E L .
positive or negative. If, for exanple, P, < 0 and P, < 0, the power is

actually entering branch k frombus v and leaving thru bus y. Chserve that
ET - ' E

it Pk <0 and sz» 0 then branch k is generating power, while if P,K > 0 and
P,K « 0 then branch k is absorbing power.

In general we will avoid expressing network equations in terms of
conpl ex quantities, preferring to use, when necessary, two equations: one
whi ch describes the real part and one which describes the inaginary part.

Thus, we express the kth branch voltage and current as
1/ + jf

x - %k k
and
L = o + 34
wher e e,K, fg , ,E andK<L are real. It is also convenient to make the

foll owing definitions




V : the b-vector of conplex branch voltages

I : the b-vector of conplex branch currents

P=: the b-vector of entering real branch powers

CF: the b-vector of entering reactive branch powers
the b-vector of leaving real branch powers

CF: the b-vector of leaving reactive branch powers

and
e = R {V : (2a)
f E Im{y} (2b)
¢ = R {1} (2c)
d = Im{1} (2d)

Because of the branch nunbering schene assuned above, the conpl ex
branch voltage vector can be partitioned as follows
IIV -

-1l

V = —_—

Yo

wher e
YA (V2rat vy T
are conpl ex bus (or source) voltages, and

_ T
Ve F [vn+1,vn+2,...,vb]

are conplex transm ssion |ine voltages. y& may be further partitioned as

foll onws




wher e

is the complex slack voltage,
*Vge(Va. Vs . 1Vyg)
is the conpl ex generator voltage vector, and

¥ = (vg+l’vg+2"

ces¥)

is the conplex load voltage vector. Asimlar partitioning.will be
used in the sequel for the other vectors defined above.

In some cases, we will find it more natural to express bus voltages
in ternms of magnitudes and phases. In such cases we use the following

not ati on

. oy N
v, =E e (3).

where E, is nagnitude and 6, is the phase angle in radians. By defining
K K

the quantities

a, =cosb5, (4a)
k m

and .
& 5sinG | (4b)

and recalling (2), we can express (3) as

k T\ (5a)
and
f. =E Q ( 5b)
k kk
Wi th
2
\ + < 1 ' (6)

In vector notation, (5a) and (5b) can be witten as

e = E*a (7a)

n ad n




and

(7b)
~n ~I1 ~“n

where ''x'" is used to indicate conponentwise nultiplication, i.e., if

X and y ‘are mvectors, then x x y is the mvector whose kth conponent is

Xe Y - Not e that we can express (6) as
N 2 —
+ B‘n ..l (8)

2
where a = a. X a, etc.

- -~ -

, and 1 is a colum vector with all conponents equal

to 1. (In the sequal we will use U to denote the unit matrix. Note that

given an n-vector x, x x u® diag (le X"E.—."xn).)

. Power System Equati ons

The equations which describe a power system can be separated into two

types: those which characterize the elenents or "lines' and those which

characterize the interconnections. W consider the elenent relationships

first. There are basically three types of sources: slacks, generators and

| oads. The slack branch is characterized by

E = E 3 (9)
s s
and
6 =6 (10)
s s
or
a =cos 5 (11)
s s

where E; and 5, are given quantities. (Note 83 is constrained by Eq. (8).)

CGenerator branches are characterized by




E = 12

B, = & (12)
and

PE = pE

..g ..g (13)

E E
where §g and ?g are given and ? < 0. Load branches are characterized by

P =P
~L ~2 (4
and
E E
= Q
91 Q (15)
PE QE . E

where Fy and Yy are given and f > 0. Finally, transmission line
branches are characterized by

I, =Y Ve ' (16)

where Y is a (txt) diagonal complex-valued matrix. Y can be written as

Y=6+ 3B

where G and B are real (txt) diagonal matrices. Therefore (16) can also be

expressed as

1]
Q
(XL

|

=
h

e (18a)

and

dp = Be *+CE, (18b)

In order to describe the equations of interconnection we define the
(nxb) bus incidence matrix % = [auk]
+1 if the current in branch k leaves bus u
ayg = -1 if the current in branch k enters bus
. 0 if branch k does not touch bus u
Similarly we define the entering bus incidence and leaving bus incidence

matrices:




" vhere

+1 if the current in branch k enters bus u

aE =
Ik .
0 ot herw se
and
+1 if the current in branch k |eaves bus u
aL =
rk
0 otherw se
Thus
A=A - A

Note that the colums of A may be partitioned as follows:

|
A=]A |
= -n ! -t

where A contains the first n colums of A and A contains the last b-n
-1l - -

colums of A, or

| ] 1
A= A I'A 1A 1A
- s itg R e

wher e AS contains the first colum of A é\g contains colums 2 through g

of A and & contains colums g+l through n of A Simlar partitioning of
E L
the matrices A and A can be nade and are used in the sequel.

Kirchhofffs current law can now be expressed as

Al=0 (19)
or, ina formnore suitable for our purposes, as

A~n G +~'[°\ ok =0 (20a)
and

0 dn 8 gt =0 (20D)
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Ki rchhoff's voltage |aw can be expressed as

Y, - & Y, = g (21)

or, in terns of real and imaginary parts

T
€ "% 8 "0 (22a)
and
T
oA =0 . (220)

The entering and |eaving bus incidence matrices may be used to
describe the rel ationship between entering and |eaving branch powers, branch

currents and bus voltages (see Eq. 1) as foll ows:

4 h' r !

r A
E E1T EiT
P = Stx Lét, $n -t X [ét gnJ (232)
E (( =R [( EIT
Q = d¢ > h’ét‘ 24| T & x f}t] fn (23b)
o . 4
L (¢ L|T \ (( LT
e S X Lét, Snl T S X ﬁt] t~n (23¢c)
and . ). \ J
E ¢ LT 1 (¢ LT ]
a + .
9!: Lt x LétJ %nJ Ceox L}}l:] ~nJ (23d)
9 L9

The final set of equations we need to conplete the tableau fornulation are a
formof the static power-flow equations (SPFE) called the m smatch equations. These
equat i ons expr ess the fact that the sumof all the powers entering a bus mnus the
sum of all the powers leaving a bus nmust equal zero. These equations are

conveniently witten as

E E, EE . ELE .L.L (24a)
AP  + AP + AP" + - =
-85 g -!..I.’E AtPt AcPt ,0
and
E . EE EE ,L.L
Qe ¥ AQ A + AL - ATQ = 0 (24b)




V\lnere we have recognized that P,

one ter m nal

generator is grounded.

of each
én Ch * A G
~n -n +§ gt
AG =0
T, _
__f:c tfn__q
't EIT
Sp X [ﬁj n
E!
t X [’-’J‘?n
- _
LIT
St ['9&] &
= 07
o[ (4],
AEPE + A PE +
-s's . _gg
E.E E_E
Agls + A0, +
- E x a
=n -n " -a
f - E x B
~-Nn ~-N ~-N
a? +B?- 1=
) it
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(£ fq (£ P and g\ are all zero because

In summary, we have
(25a)

2n KCL equations (see (20))

2(b-n) KVL equations (see (22)) | (25b)

Yo
+~tx &EJ-Q{I -gf=9
:‘ | 4(b-n)branch power equations”™ (25c
(AL1Ten] _ oL (see (23))
- (_l: x - J] jﬂJ e 0
LIT =
+t Cp X ﬁ‘t]tg -« _QJ
E_E E_E L L
AﬁP!‘ + tpt - Atpt =0
T T T - 2n mismatch equations (25d)
EE, EE LL_ (see (24))
Ay * AR AL 7T
=0 3n bus vol tage equations
(see (7) and (8)) (25,
=0
0
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E - E =0
S s -
a_ - éos 5 =0

(S
E - E -0 : ’
-9 -g - _ _

2n source rel ationships ¥25f)

pE - 05 =0 (see (9), (11), (12), (13), -
2 -g - (14) and (15))
E E
By~ P =0
E E _
g - % =0
e, - Ge, + Bft -0
-t - i b 2(b-n) transm ssion

G =o line equations (259)
d, ~Be. -G =0 (see (18)) .

Usi ng vector notation the 8b+n equations, Eq. (25) can be conveniently

expressed as foll ows:

wx.p) =0 (26)

where x is the (8b+n) dependent state vector:

- Tt

ST

p is the independent parameter vector:

T _, T 71, T, T T 1T, T,T, . E {,E\T E\T EAT
x = ‘fn’ft’?ﬂ’? ’en’ft’fn’ft’ns’f'g’ffl’us’?g’?£’as’§g’§£;rs’(Pg) '(E!-) ’(I:t) )

T L L E

. EE E (28)
E (ES’Fg.uS’fg'?l'gﬁ_'E)




where the vectors g and b contain the diagonal elenents of G and B,
respectively, i.e., G=gx U and B =Db x U
bserve that while the power systemitself contains only linear elenents,

the equations which describe it, (25), are nonlinear because

power enters nonlinearly.

G ven values for p, Eg.(26) .ay be sol ved using a Newt on- Raphson

iteration scheme described by

L-4-1 \c te
X =X + Ax- (29)

wher e A%k is the solution of the linear system

FA = -4 pd * (30)

th
where the (ji,v ) element of the ((8b+n) x (8b-hi)) Jacobian matrix is

gi ven by
aNu
Juv="—axv K (31)
X = % . _ -
k is the k» estimate of the sol ution.

and x

The general formof the jacobian is shown in Fig. 1. (Note - only the non-

zero partitions of J are ghowm).

observe that (30). is a highly sparse set of equations thus making its solution
anenable to the application of sparse matrix nethods including optimal ordering
and code generation [8,9]. It should be enphasized that there is evidence to
support the conjecture that when sparse nmatrix nethods are enployed, it is
preferable to use themto solve a large sparse set of equations such as (25)

[6,9] rather than enploying a predeterm ned pivot order to obtain a denser

reduced set of equations.
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I V. Power System Desi gn

It will be shown in the next section that many power network design

probl ens can be recast into a nonlinear progranm ng problem of the form

mn$ = $(x,p) (32)
p oo
subject to
N(x,p) =0

where * is a performance function which reflects the design objectives and is

a function of x, given by (27), and the parameters p , and hi (x,p) is defined

by (25). The typical approach to solving such a problemis to enploy a ninimi--

zation algorithmsuch as the Fletcher-Powel|l method [5]. However, to such

an algorithmwe need the gradient

- dp

An efficient procedure for conputing this gradient is now derived.

W begin by forming the Lagrangian, i.e., by appending via Lagrange

multipliers the network equations (26) to the objective function (32):
&p) =*(xp) +ANXP) (33)

where the language multiplier vector 'is partitioned as follows

T LT T T T T T T T T T ,T ,T .T
A= Do B A A A 324 A s At dse hat s he A

, x A B . kT T T,
A

si' 52 Aglt Ag2r A1 A e 27 Arg

where the first subscript is used to indicate the nunber of elenents in

each partition.
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A necessary condition for $ to be at amininumis that its first variation

be zero:

. f3« T 3 gm on AN
6¢(E) = L"—+ X"é- sx + 5 =t =0 (34)

where the structure of 3W 3p is shown in Fig. 2.

By choosing the Lagrange multipliers to satisfy the adjoint-Eul er equations

Ta@_ 3d

o2 (35)
~ 3x 3‘{.
(34) becomes
ad T °%
= - 36
82 (p) {39 3 6P (36)
fromwhi ch we concl ude that
aN
ad T "~
= == — 37
YQ(E) a +§ ap (37)

td

Thus to eval uate the gradient \{_*(E), we proceed as follows:
i) Solve the original systemof equations (25) using the
Newt on- Raphson approach, eq. (30). (Sparse matrix nethods
shoul d be enpl oyed here.)
ii) Upon convergence of the Newton-Raphson iteration in step (i),

the adjoint-Euler equations can be solved for X  Cbserve

that these equations are a transposed version of (30) with
a different right-hand side. Thus given the L U factors
of J obtained in step (i), all that is required here is a

singl e forward-backward substitution [10]. Thus little

additional conputational effort is required to obtain X
and x has been found,
iii) Once X is obtained, (37) can be evaluated to deternine

7o)
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oserve that in the above derivation no restrictions were placed upon

what constitutes $ or p. Hence we can use this procedure to conveniently

-

conpute the sensitivities of such quantities as power lost in at |ine,

EL E
Pt = (Pt - P.)> with respect to a generator voltage Ee or power Pe.
. . - - - . . © ©

nx Application of the Tabl eau Approach

In power system analysis and design a variety of problens nust be
addressed which involve analyzing and synthesizing power networks. The
tabl eau approach presented in the last two sections can be effectively
enployed to solve many of these practical problens principally because all
the variables of interest are explicitly displayed. In this section a

representative collection of such problens will be discussed.

Opti mal Power Fl ow Anal ysi s

The so-called optinmal power-flow problem [11] can be stated as foll ows:

Determne P_ which mninizes the cost of serving the real power |oads at the

—©

system busses (2,3,...,9)« Mathematically, the problemcan be stated as

-in »(P8E,PQB>' =« [Pf] +§ PR+ . 4 [PE} |
. _

~8
subject to
Wx.p) =0
where each of the $.J's are polynomals in F"\J , i.e.,

= Ez i '.'
o kl+k2P§:+k3[Pj} + oo i."1,2,3,....,9
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From (37) and (25) we see that the terms of the gradient if this objective

function is

.n3 -8 gzk

where AE is the (k-1)SC column of A and A , 1is the k? element of A -
~8) -8 82, -8

Minimum-Loss Compensation Problem

The minimum loss problem [12] generally refers to the problem of

determining where to add reactive power support in a system to minimize

the real power losses. Mathematically, the problem is

t
E L)2
min@(Pf,PI;,b)= ) {P - P ]
b ~t~t~ k=1 k

subject to

N(x,p) = O

~ o~ o~

The difference between Pf and PE is the real power loss in the kth
k k

transmission line element. In this case b is the shunt susceptance vector

containing the shunt compensation to be used in minimizing system losses.

If desired, the performance index ¢ can be augmented by the addition of a term

associated with the cost of compensation to obtain the minimum cost compen-

sation design to achieve the minimum loss objective. From (37) and (25) the

gradient is seen to be

T
%g = (5t8 X ft)
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Aut omat ed Net wor k Design Probl em

An inportant area of power system design involves mnimzing a performance
i ndex which reflects line overloads or deteriorated bus voltages or both by
addi ng new el enents to the power network. The design problem can be stated

mat hematically as foll ows:

r 2 2 1112 o 2 if current overl oad
g‘g $ (?c’fc'fn’_fn ’~9’E’) B L Wi [[ctk+ di:,k; " k] i§ of concern
T or
r 2 fZ '1/2_50 2 if voltage profile
\ tk k degradation is of
k= concern
subject to
wxp =9

2 c
where W = 0 if ¢ +d <1? and 1 otherwise, 1° and E? are desired
k Ck \ k k k

quantities, and 9 and b are the conductances and susceptances of new el enents
that are added to the original systemin order to ninimze « . Since in
practice g and b are functions of elenent type, size, etc., they obviously
cannot assune arbitrary values, thus penalty functions nust generally be

added to $ to insure a feasible solution. Furthernore, prior to initiating
I L

t
the design step the bus incidence matrices A and A nust be updated to

account for the newly added bus interconnections. The gradient expression

is seen to be

LK T 3¢ T
3a “(Rep X80 ad = * fp)
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Contingency Analysis

The area of contingency analysis is concerned with testing a given
design to insure that selected line outages do not result in conponent
overloads or voltage profile problens. Strictly speaking, this problem has
traditionally not been viewed as an optim zation problem but one of
sensitivity analysis. Unfortunately, nost of the methods currently in use
invol ve either cumbersome perturbation methods where lines are actually
removed, and the new set of equations YKX’E) resolved or sinmplifying
assunptions are made to transform the nonlinear equations into a linear
subset [9]. Such equations are generally called the DC power-flow equations..

Using the tableau approach, the resulting equations (see Eq. (25)) are

explicit functions of line |oads, PL and Qlj bus voltages, e and f ; and
8t -« ~N ~Nn

line admittances, § and B. Thus a change in g and b can be easily related
to changes in the line |oadings and bus voltages, i.e.,

0 = N(x + Ax, p + Ap) "= Mx,p) +,-r* Ax +" Ap
-~ - N ex, -

- LTI ~HO

But, YVX'E) = 0, therefore

aw aw
ir- Ax = - N Ap
dX -

or
9& aNy -1 3N
N

This is simlar to Eg. (35) in Section IV except for the right-hand-side,
Thus, in the course of solving any of the problems described earlier in
this section, the relative inpact that line outages may have on the voltages

and power-flows can easily be obtained.
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V[. Concl usi on

In the paper, we have proposed a tableau fornul ation of the power-flow
equations, and have shown how any one of a general class of problens encountered
in power system analysis and design can be easily specified feasible due to the
exi stence of highly efficient sparse matrix techniques. It should be noted
that with this forrmulation, it is now possible to develop a generic conputer
code which can solve a variety of power systemdesign problens. Such a code
shoul d reduce both the human and computer resources required in maintaining

and using conputer design tools.
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Foot not es

A slack branch is a generator branch whose real and reactive powers
are dependent vari abl es, i:e., its power will be determ ned by the
net wor k.

A load branch is a power consum ng branch.

A transnmission |ine can be nodel ed, for our purposes, as a pi network
cont ai ni ng conpl ex-val ued inpedances. t represents the total nunber
of elenents used to nmodel all transm ssion |ines.

A bus is point of interconnection of two or nore elenents, i.e., a
node.

If there is nmore than one source connected to a bus, they can be

conbined to forma single source




Fi gure Captions

The structure of the Jacobian in equation (30). Only nonzero partitions
are shown. All other partitions contain zeros. Note that the col ums
of T correspond to the variables indicated on top. The superscript k

nmeans that all variables are evaluated, at the kth iteration.

The structure of the matrix 3N p in equation (34). Only nonzero
partitions are shown. Note that the rows corresponding to equations
(25e) have been separated into equations which correspond to the slack

bus, the generator buses and the |oad buses.
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Rows corre-
spond to
equati on
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