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Abstract

The tableau formulation of electronic circuit equations has been

shown to be an efficient and useful formulation for circuit optimization.

In this paper a tableau based formulation of the static power-flow equa-

tions for a power system is presented. Because of the explicit appearance

of all quantities of interest the tableau formulation allows the general

statement, and solution, of a variety of power system optimization and

design problems without the need to resort to restrictive assumptions.
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*• Introduction

Due to the increasing interest in the management of energy, the develop-

ment of computer aided design tools for solving power system design problems

is becoming of greater importance. As a result there has been renewed interest

in applying optimization methods which have proven useful for electronic cir-

cuit design to power system problems. " The electronic circuit design

problem is handled by recasting at into an optimization problem by forming an

[41objective function which embodies the design objectives. The designable

parameters are then adjusted iteratively by some suitable nonlinear programing

algorithm (see for example [5]) to minimize the objective function. This

procedure requires the efficient evaluation of the objective function, which

requires a circuit simulation, and the gradient of the objective function with

respect to the designable parameters. Development of the sparse tableau

approach for circuit simulation [6] and the adjoint approach for evaluating

gradients greatly aided the development of optimization procedures for

circuit design.

Much of the work in applying these procedures developed for circuit

design to power system design was hampered by the restrictive assumptions

that were often made. Typical of these assumptions were that the transmission

lines were lossless and voltage profiles were flat, clearly an unrealistic

situation. These assumptions were made so as to alter the equations which

describe a power system, i.e. the load flow equations, usually written in

terms of power and voltage, so that they resemble the equations which describe

an electronic circuit, usually written in terms of current and voltage.

In this paper we develop a tableau based formulation of the load flow

equations for a power system. In addition to being able to take good advantage
r g nl

of highly efficient sparse matrix methods, * this formulation explicitly
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displays all variables of interest in a variety of power system design problems.

Thus an efficient procedure for computing the gradient of any objective func-

tion with respect to the designable parameters can be developed without making

unrealistic assumptions.

In order to facilitate the presentation of the tableau formulation, we

introduce a consistent set of notation in the next section. Explicit develop-

ment of the tableau formulation of the power-flow equations is given in

Section III. In Section IV we present a general model of the power system

design problem and discuss its solution. Specific power system design and

analysis problems are discussed in Section V.

II. Notation

In order to provide a general framework within which to

describe power system design, as well as analysis, we introduce the following,

somewhat unorthodox, notation. However, the use of this notation

will greatly simplify the mathematical development of Sections III and IV.

Let the power system under consideration have a total of b branches

of which there are n source branches (including slack, generator and load

branches ) and t transmission-line element branches? For convenience we will

number these branches in the following order:

slack branch • 1

generator branches : 2,3,...,g

loads : g+l,g+2,...,n

transmission line elements : n+l,n+2,...,b.

4
Further, we assume without loss of generality, that each bus has exactly

one source connected to it so that there are n buses.
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Associated with each branch k (k = l,2,.,.,b) are a complex-valued branch

voltage, V, , and branch current, J,; a real and reactive power which enters the

F E
branch, denoted by P, and Q, , respectively; and a real and reactive power

iC rC

which leaves the branch, denoted by P, and Q, , respectively. We define the

direction of entering power to be the same as the direction of entering

current. Thus if branch k is connected from bus y to bus v

q£ = Im ( VuJk* } (lb)

P^ = Re{ V J, *} (lc)
k v k

Q^ = Im{ V J, * } (Id)
k v K.

Note that the entering and leaving quantities as defined above can be either

positive or negative. If, for example, P. < 0 and P, < 0, the power is

actually entering branch k from bus v and leaving thru bus y. Observe that

F T E

if P < 0 and P =» 0 then branch k is generating power, while if P, > 0 and

P, « 0 then branch k is absorbing power.

In general we will avoid expressing network equations in terms of

complex quantities, preferring to use, when necessary, two equations: one

which describes the real part and one which describes the imaginary part.

Thus, we express the kth branch voltage and current as

and

where e, , f, , c, and <L are real. It is also convenient to make the

following definitions
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V : the b-vector of complex branch voltages

I : the b-vector of complex branch currents

P : the b-vector of entering real branch powers

Q : the b-vector of entering reactive branch powers

P : the b-vector of leaving real branch powers

Q : the b-vector of leaving reactive branch powers

and

e = Re {V}

f E Im {y}

c = Re {1}

d = Im {1}

Because of the branch numbering scheme assumed above, the complex

branch voltage vector can be partitioned as follows

"V

(2a)

(2b)

(2c)

(2d)

where

Yn^ (VV2"-"Vn)T

are complex bus (or source) voltages, and

are complex transmission line voltages. V may be further partitioned as

follows

V =
-n
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where

vs -=

is the complex slack voltage,

•vg£(v2.v3....fvg)

is the complex generator voltage vector, and

is the complex load voltage vector. A similar partitioning will be

used in the sequel for the other vectors defined above.

In some cases, we will find it more natural to express bus voltages

in terms of magnitudes and phases. In such cases we use the following

notation

j 6k

where E, is magnitude and 6, is the phase angle in radians. By defining
K. K

the quantities

a, = cos 5, (4a)
k m

and
8, 5 sin 6, (4b)

and recalling (2), we can express (3) as

\

and

\\ (5a)

f. = E. Q. (5b)
k k k

with

\ + < ' 1 (6)

In vector notation, (5a) and (5b) can be written as

e = E x a (7a)
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and

f = E x U (7b)

where !fxIf is used to indicate componentwise multiplication, i.e., if

x and y are m vectors, then x x y is the m vector whose kth component is

x, y. . Note that we can express (6) as

^ + B2 = 1 (8)

2
where a = a. x a, etc. , and 1 is a column vector with all components equal

to 1. (In the sequal we will use U to denote the unit matrix. Note that

given an n-vector x, x x u s diag (x,jX^.-.^x ).)

III. Power System Equations

The equations which describe a power system can be separated into two

types: those which characterize the elements or "lines11 and those which

characterize the interconnections. We consider the element relationships

first. There are basically three types of sources: slacks, generators and

loads. The slack branch is characterized by

E = E • (9)
s s

and

6 = 6 (10)
s s

or

a = cos 5
s s

where Eg and 5g are given quantities. (Note 8 is constrained by Eq. (8).)

Generator branches are characterized by
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E = E (12)
-g ~g

PE = pE (13)
-g ~g

where Eg and P| are given and P^ < 0. Load branches are characterized by

?* * ?£ (14)

and

where P^ and g£ are given and P^ > 0. Finally, transmission line

branches are characterized by

It - Y Vt • (16)

where Y is a (txt) diagonal complex-valued matrix. Y can be written as

Y = G + jB

where G and B are real (txt) diagonal matrices. Therefore (16) can also be

expressed as

c = G e - Bf (18a)

and

d = B e + Gf (18b)
-t - ~t — t

In order to describe the equations of interconnection we define the

(nxb) bus incidence matrix A = [a ,]

+1 if the current in branch k leaves bus y

lyk -1 if the current in branch k enters bus y

0 if branch k does not touch bus y

Similarly we define the entering bus incidence and leaving bus incidence

matrices:
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E I E ! , AL i ^ i uA = |a I and A = |a , | where

Ilk

and

+1 if the current in branch k enters bus u

0 otherwise

+1 if the current in branch k leaves bus u

0 otherwise

Thus

A = AL - AE

Note that the columns of A may be partitioned as follows:

-n ! -t

where A contains the first n columns of A and At contains the last b-n

columns of A, or

A = A I A
-s i ~g

where A contains the first column of A, A contains columns 2 through g
-s " ~g

of A, and A contains columns g+1 through n of A. Similar partitioning of

the matrices A and A can be made and are used in the sequel.

Kirchhofffs current law can now be expressed as

A 1 = 0

or, in a form more suitable for our purposes, as

A c • + A c = 0
~n **n ~t **t

and

(19)

(20a)

A d 4-
n n

d = 0 (20b)
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Kirchhoff's voltage law can be expressed as

Yt - o

or, in terms of real and imaginary parts

.T
0

and

f - A f
~t -t -n

(21)

(22a)

(22b)

The entering and leaving bus incidence matrices may be used to

describe the relationship between entering and leaving branch powers, branch

currents and bus voltages (see Eq. 1) as follows:

S t
 x

and

* t *

AE T
At ?r

L T,

~n

•f
~n

(23a)

(23b)

(23c)

(23d)

The final set of equations we need to complete the tableau formulation are a

form of the static power-flow equations (SPFE) called the mismatch equations. These

equations express the fact that the sum of all the powers entering a bus minus the

sum of all the powers leaving a bus must equal zero. These equations are

conveniently written as

0
(24a)

and

(24b)
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where we have recognized that P^, (£, fg, (£, P^, and q\ are all zero because

one terminal of each generator is grounded. In summary, we have

A c +
n n

A d + A d
~n -n ~t ~

= 0

2n KCL equations (see (20)) (25a)

e_-t
- A e = 0tn 2(b-n) KVL equations (see (22)) (25b)

St

"f" ElT "A- e[-tj -n

A E Te-t -n

L T

A E T ft -n

A" et --n

L TA" et

- (L

+ c x

AL ]T f"-tj ~n

A L T f
t - «

4(b-n)branch power equations^ (25c
(see (23))

2n mismatch equations
(see (24))

(25d)

e - E x a = 0
n n

f - E x B = 0
n n n

a 2 + B2 - 1 = 0

3n bus voltage equations
(see (7) and (8)) (25,
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E - E = 0
s s

a - cos 5 = 0
s s

E - E - 0
-g -g

- J* = 0

9t
E -

2n source relationships
(see (9), (11), (12), (13),
(14) and (15))

d

Gefc

Bet

- 0

Gft = 0

2(b-n) transmission
line equations
(see (18))

Using vector notation the 8b+n equations, Eq. (25) can be conveniently

expressed as follows:

W(x,p) = 0 (26)

where x is the (8b+n) dependent state vector:

T , T T ,T ,T T T ,.T ,.T „ „ „ _E

(25g)

(27)

p is the independent parameter vector:

(28)
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where the vectors g and b contain the diagonal elements of G and B,

respectively, i.e., G = g x U and B = b x U.

Observe that while the power system itself contains only linear elements,

the equations which describe it, (25), are nonlinear because

power enters nonlinearly.

Given values for p, Eq.(26) may be solved using a Newton-Raphson

iteration scheme described by

L-4-1 \c te
x = x + Ax (29)

where Ax is the solution of the linear system

JkAxk = -4xk,pJ * (30)

where the (ji,v ) element of the ((8b+n) x (8b-hi)) Jacobian matrix is

given by

k ( 3 1 )

x = x

and x is the k^ estimate of the solution.

The general form of the jacobian is shown in Fig. 1. (Note - only the non-

zero partitions of J are shown).

Observe that (30) is a highly sparse set of equations thus making its solution

amenable to the application of sparse matrix methods including optimal ordering

and code generation [8,9]. It should be emphasized that there is evidence to

support the conjecture that when sparse matrix methods are employed, it is

preferable to use them to solve a large sparse set of equations such as (25)

[6,9] rather than employing a predetermined pivot order to obtain a denser

reduced set of equations.
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IV. Power System Design

It will be shown in the next section that many power network design

problems can be recast into a nonlinear programming problem of the form:

min $ = $(x,p) (32)
p - -

subject to

N(x,p) = 0

where * is a performance function which reflects the design objectives and is

a function of x, given by (27), and the parameters p , and hi (x,p) is defined

by (25). The typical approach to solving such a problem is to employ a minimi-

zation algorithm such as the Fletcher-Powell method [5]. However, to such

an algorithm we need the gradient

dp

An efficient procedure for computing this gradient is now derived.

We begin by forming the Lagrangian, i.e., by appending via Lagrange

multipliers the network equations (26) to the objective function (32):

«(p) = *(x,p) + ATN(x,p) (33)

where the language multiplier vector is partitioned as follows

,T r,T .T ,T .T .T .T T T T T T T T
= [.nl'.n2'.tl'.t2'.t3>-t4i.t5'.t6I.n3>_n4'.n5'.n6'.n7'

, x ,T T T T T T ,
si' s2'.gl'.g2>.ill'.£2'.t7'.t8J

where the first subscript is used to indicate the number of elements in

each partition.
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A necessary condition for $ to be at a minimum is that its first variation

be zero:

f3« T 3W 8 . m u l l

8p - 3p <5p = 0 (34)

where the structure of 3W/3p is shown in Fig. 2.

By choosing the Lagrange multipliers to satisfy the adjoint-Euler equations

(34) becomes

(35)

3p - 3p

from which we conclude that

6P (36)

(37)

Thus to evaluate the gradient V*(p), we proceed as follows:

i) Solve the original system of equations (25) using the

Newton-Raphson approach, eq. (30). (Sparse matrix methods

should be employed here.)

ii) Upon convergence of the Newton-Raphson iteration in step (i),

the adjoint-Euler equations can be solved for X. Observe

that these equations are a transposed version of (30) with

a different right-hand side. Thus given the L U factors

of J obtained in step (i), all that is required here is a

single forward-backward substitution [10]. Thus little

additional computational effort is required to obtain X

and x has been found,

iii) Once X is obtained, (37) can be evaluated to determine
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Observe that in the above derivation no restrictions were placed upon

what constitutes $ or p. Hence we can use this procedure to conveniently

compute the sensitivities of such quantities as power lost in at line,

EL F
P = (P - Pt)> with respect to a generator voltage E or power P .

© ©

^* Application of the Tableau Approach

In power system analysis and design a variety of problems must be

addressed which involve analyzing and synthesizing power networks. The

tableau approach presented in the last two sections can be effectively

employed to solve many of these practical problems principally because all

the variables of interest are explicitly displayed. In this section a

representative collection of such problems will be discussed.

Optimal Power Flow Analysis

The so-called optimal power-flow problem [11] can be stated as follows:

Determine P which minimizes the cost of serving the real power loads at the
— ©

system busses (2,3,...,g)« Mathematically, the problem can be stated as

- i n »(P8
E,Pg

B> = «x [P f ] + $2 [pEJ + ... «g [PE

subject to

W(x,p) = 0

where each of the $.'s are polynomials in P^ , i.e.,

+ ••- j." 1,2,3,... ,g
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From (37) and (25) we see that the terms of the gradient if this objective

function is

where A E is the (k-l) S t column of A and X 0 is the k t element of X
•-8k ~S * k

Minimum-Loss Compensation Problem

The minimum loss problem [12] generally refers to the problem of

determining where to add reactive power support in a system to minimize

the real power losses. Mathematically, the problem is

t
min $(P ,P ,b) = £
b r-t ~ c - k=l

subject to

N(x,p) = 0

E L
The difference between P and P is the real power loss in the kth

" tk tk

transmission line element. In this case b is the shunt susceptance vector

containing the shunt compensation to be used in minimizing system losses.

If desired, the performance index 0 can be augmented by the addition of a term

associated with the cost of compensation to obtain the minimum cost compen-

sation design to achieve the minimum loss objective. From (37) and (25) the

gradient is seen to be

Bb
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Automated Network Design Problem

An important area of power system design involves minimizing a performance

index which reflects line overloads or deteriorated bus voltages or both by

adding new elements to the power network. The design problem can be stated

mathematically as follows:

min $ (c ,d ,e ,f ,g,b)
g.b -C ~C ~ n - n ~ ~ •f

t
I

k=l

or

t

I
k=l

1/2

"

\ +

"k;

,1/2

if current overload
is of concern

if voltage profile
degradation is of
concern

subject to

W(x,p) = 0

where W = 0 if c + d < I? and 1 otherwise, 1° and E? are desired
k Ck \ k k k

quantities, and g and b are the conductances and susceptances of new elements

that are added to the original system in order to minimize • . Since in

practice g and b are functions of element type, size, etc., they obviously

cannot assume arbitrary values, thus penalty functions must generally be

added to $ to insure a feasible solution. Furthermore, prior to initiating

T T*

the design step the bus incidence matrices A and At must be updated to

account for the newly added bus interconnections. The gradient expression

is seen to be
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Contingency Analysis

The area of contingency analysis is concerned with testing a given

design to insure that selected line outages do not result in component

overloads or voltage profile problems. Strictly speaking, this problem has

traditionally not been viewed as an optimization problem, but one of

sensitivity analysis. Unfortunately, most of the methods currently in use

involve either cumbersome perturbation methods where lines are actually

removed, and the new set of equations W(x,p) resolved or simplifying

assumptions are made to transform the nonlinear equations into a linear

subset [9]. Such equations are generally called the DC power-flow equations.

Using the tableau approach, the resulting equations (see Eq. (25)) are

explicit functions of line loads, P and Q ; bus voltages, e and f ; and

<%» t -«t ~n ~n

line admittances, g and b. Thus a change in g and b can be easily related

to changes in the line loadings and bus voltages, i.e.,

0 = N(x + Ax, p + Ap) = M(x,p) + -r^ Ax + ^ Ap
-N OX HO

But, W(x,p) = 0, therefore

aw aw
ir- Ax = - ^ Ap
dX dp -

or

9x

This is similar to Eq. (35) in Section IV except for the right-hand-side,

Thus, in the course of solving any of the problems described earlier in

this section, the relative impact that line outages may have on the voltages

and power-flows can easily be obtained.
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VI. Conclusion

In the paper, we have proposed a tableau formulation of the power-flow

equations, and have shown how any one of a general class of problems encountered

in power system analysis and design can be easily specified feasible due to the

existence of highly efficient sparse matrix techniques. It should be noted

that with this formulation, it is now possible to develop a generic computer

code which can solve a variety of power system design problems. Such a code

should reduce both the human and computer resources required in maintaining

and using computer design tools.
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Footnotes

1. A slack branch is a generator branch whose real and reactive powers

are dependent variables, i.e., its power will be determined by the

network.

2. A load branch is a power consuming branch.

3. A transmission line can be modeled, for our purposes, as a pi network

containing complex-valued impedances. t represents the total number

of elements used to model all transmission lines.

4. A bus is point of interconnection of two or more elements, i.e., a

node.

5. If there is more than one source connected to a bus, they can be

combined to form a single source.



Figure Captions

1. The structure of the Jacobian in equation (30). Only nonzero partitions

are shown. All other partitions contain zeros. Note that the columns

of T correspond to the variables indicated on top. The superscript k

means that all variables are evaluated,at the k iteration.

2. The structure of the matrix 3 N^ p in equation (34). Only nonzero

partitions are shown. Note that the rows corresponding to equations

(25e) have been separated into equations which correspond to the slack

bus, the generator buses and the load buses.
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