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ABSTRACT

A variable order algorithmis proposed for the rini%ization of a function

ff several variables. This algorithmhas an order of convergence *s high as four,

good accuracy, and features a scalar subproblem at each iteration which may be
along curved trajectories in the space of the independent variables

Nunerical results en five standard test problens indicate superior performnce

when conpared with seven other popular algorithns.
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|. Introduction

A new iterative algorithm called the Variable Order (VO algorithm
has been devel oped for finding a local mninum solution to the problem

mnimze f(x), (1)
%S %

where f(x) is a reasonably snooth scalar function of n independent variables,
fE"->E The \O algorithmhas to the authors' know edge several properties and
features not found in any previously published algorithm Anmong the new features
are that the order of éonvergence may be as high as four, and that the scalar
search at each iteration may be along curved trajectories in the space of
the independent variables. Values of the function, and its first two
derivatives (i.e., the gradient and the hessian) are required by the al gorithm
" however these quantities may be approximated using differencing techniques.
. Nunerical results have shown that, in spite of the effort required to conpute
the hessian, for a large class of functions the VO algorithm is considerably
nore efficient than many existing algorithnms which do not require this
conput ati on.

It will be convenient to describe the VO algorithmin terns of the

general iteration given by

U= H(p, x4, k=01, 2 .., (2)

") A" Y

where H is the K" iteration function. This iteration begins from an
0 k

u
initial guess X and a sequence {x } is generated which hopeful ly converges
s
to a solution x* of (1). Two principal steps are inplicit in(2): the
transformation step and the scalar search step. The transformation step

consists of conputing the transformation function given by
h¥(p) = 33p, X (3)




The transformation function renresent. a direction or a traiecteory alnnn

+1 . . )
1 is selected. The transformation steo for the VN

. . k
vwhich the next noint X
alaorithm is described in more detail in the next section. The scalar search

step consists of selectina the next point aiven bv

%k+1 - Qk(”k)e (@)
where the scalar parameter value o = Dy is suitably selected. The scalar
search sten is described in more detail in Section 3. "n examn?e.is aiven in
Section 4 which illustrates the aenerallv curved trajectories . alona which the
scalar search is undertaken. Section 5 offers an outline of the details of
the alaarithm, The naner ends with a cormmarison of the VM alenrithm with
sevan other nonular minimization alanrithms when thev are 311 used to mini-

miza five standard test functicns.

2. The Transformation Step

It is well-krown that a necessary condition for a local miniimum solution

of (1) is that the gradient of f(x) must be zero [1]. In

X
Y
this section we develop a family of transformation functions, bK(P), with an
increasing order of convergence by considering the truncaticn of the infinite
series expansion of the point x* at which the gradient is zero abcut the kt

estimate of the solution %k.

Because it is a necessary condition, we are interestad in solutions to

£

($2])
~

)=g, (

X
v
where il({) is the column vector of first partial derivatives of f(x) (i.e.,

the transpose of the gradient). Consider the change of variables dencted by




where X may be a nonlinear vector function. Using (6), we obtain

£ =1QG) = 9z - (7)

X
4"
Let x* satisfy (5) and define z* such that (6) is satisfied. Then from (7)

g(z*} =0 . (8)

If the above systemof equatjons is sinple to solve then "* nav be readily obtained,

and the point x* may be conmputed from (6) by letting %:%*' (G early specifying
a change of variables which yields a function g for which (8) is sinple

to solve could be difficult. However we can sthart by specifying a suitable
function QUJ and determne the resulting functionq)f froma Taylor series

expansion. One suitable class of functions is!

e 4 9T &

: 2 :
where p is a scalar parameter greater than zero. Mte that for this
function, (8) is sinple to solve; in particular %Z*Z,Q- Consi der the first

two terms of the Taylor series expansion of (6) given by

XEXZY) X (z2-29 (10)

k k
where a 2 may be associated with $ through (7);

Tother functions can also bo used which yield different series exnansinns :
one of these expansions is the n-dinpnsional extension o a nreviousl*' kno"n
scries attributed to Euler, Jinmenez (1976), obtained with p=l in (9).

Zz:- denot es A raised to the n™ novl/er.




and
k k -1 k (ID
X (29 =f"(x9) " g (2) |
Is obtained by differentiating (7) with respect to £ and where L"(&k)_l
is the inverse of the hessian matrix of f evaluated at x;Ek.. If we use
the g function (9), reconnize that Jj ' AV =n(z) =7 (%) and that (10) 1-§

an approxi mation, at %% =% one obtains the iterative nethod

‘k+}_k :l,k_‘1 sk 12
7= -y T £ ) (12)

for sone suitable value p=px- This iteration is Newton's algorithm for
solving (1) [1] and is characterized by the second-order

transformation function given by

S»efopes et

where the second-order correction, g§> Is defined as the solution of the

system of |inear equations given by

) g = (14)

X
u AV

If three terns of the Taylor series expansion of (6), using (9),

are kept, we obtain the third-order transformation given by

k —.\rk ;k - k_l 15)
AR T L S UL (

where the third-order correction, d*, is the solution of the linear system

of equations given by
fi(

and K'"(XS Is the third derivative tensor of f evaluated at x:xk. Fortunately
> A o

&<

9 dl= (U2 £ (x) djdj
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this termneed not be evaluated exactly. It can be shown that by considering
a Taylor series expansion of f'(x-dg) about x=x®, the third-order correction

may be approxi mated by solving the system of equations

£105085 = £ i) = 10 - ) (16)

If four terms of the Taylor series expansion of (6), using (9), are

retained, we obtain the fourth-order transformation given by

k kil 7 Lo L)

v v
4 =7 o TieP e gy P U n e

where the fourth-order correction, EX’ Is the solution of the linear system

of equations given hy

r. [ b 2.

fooCrd = f X dode -t (x)dy dydo
ok ' | k
‘and & (% ) is the fourth derivative tensor of f evaluated at x=xt . As
before the fourth-order correction need not be evaluated exactly, but by

considering a Taylor series expansion of /'(xk-93£ct5 about x:xk can be

approxi mted by solving

iy K
'

s = £ s = £ (g - d

J

(18}

P

Transformation functions of order higher than four may be simlarly
derived. However, it does not seem possible to adequately approximte the
corrections of order higher than four, -and since higher-order derivatives
are conputationally expensive to evaluate and require considerable storage
they should be avoi ded. 3

Before leaving this section there are three points which need to be

di scussed: 1) approximation of the hessian and the gradient, 2) singularity




of the hessian matrix, and 3) selection of the transformation order at
each iteration,

Eval uation of the corrections as dictated by expressions (14), (16)
and (18) requires that both the gradient and the hessian be evaluated. |If
explicit expressions were in fact needed, the usefulness of,the algorithm
woul d be severely limted. - Hovever, good results have been obtained when
one or hoth of these derivatives are approxinmated using differencing techniques.
Unfortunately, the use of ‘a quasi-New on nethod of approximating the hessian
inverse [1] is apparently not sufficiently accurate for the Drooosed
ainorithmas experimental evidence has shown. '

Gven the gradient and the hessian, or their approximtions, the high-
order corrections are conputed by solving the linear systems of equations (14),
(16), and (13). Chserve that these systems of equations have the same
coefficient matrix: the hessian evaluated at x . Thus it is efficient to
conpute the Chol esky factorization [3] of the hessian just once
which allows the conmputation of all the high-order corrections by the pro-
cedure of forward and back substitution. In conputing the Cholesky factori-
zation, one nust consider the possibilities that the hessian may be singul ar
or may be negative definite at &F. If tha hessian is singular, the
factorization of the hessian does not exist. If the hessian is negative
definite, the infinite series expansion of x*, the point at which the gradient
is zero and the point used to derive the transformation fuhctions, is likely
to be a local maxinmumor a saddle point, since the gradient is also zero at
these points. Thus the Chol esky factorization to be used modi -
fies the hessian, whenever it is not positive definite, by in effect

solving dg from

£ () + D7 = £ (x9 (19)




where D* is a diagonal matrix. This nodified factorization is a variation
of the one nronosed by Mirray (1972) by adding a diagonal oivoting strategy
to the procedure which introduces fewer nonzero diaaonal elements to @
than Mirray's orocedure (see Jimenez (1976)).

kth iteration is based on the

The transformation order selected at the
conveni ence of the series expansion of (6), for o=l in (9), and uoon ob-
taining functional descent. That is, if the point obtained fromthe trans-
formation function for p=l yields a function value Iess than the current
val ue of the function, then the next trans'ornation order is considered.

Figure 1 summari zes this sel ection procedure in a flowchart.

3. The Scalar Search Step

Gven a particular transformation function, the scalar search step
invol ves determnation of a value of the scalar parameter p appearing in

the transformation function such that

w

fNR) <X = (W5(0), r=2,3, or 4 (20)

In many reported minimzation algorithnms this step is very tine consum ng.
The source of the difficulty is the requirement that a value of p be found

whi ch accurately solves the scalar mnimzation problem given by [1]

mnimze f(M(M) . (21)
P N
In fact, several studies have indicated that'the overal | efficiency of many
mnimzation algorithms is quite sensitive to hor accurate the solution

of (21) is comuted (e.g., [4] and [1]). In addition




-

it has been the authors® experience* that choosing a p in this manner tends to

force nost algorithms to follow the bottomof narrow valleys, i* present, with

relatively slow orogress towards the solution. '
Since the VO algorithm docs not require  an accurate solution of

(21) a.new strategy is enployed. This Strategy is based upon determ ning

the "closeness! of the current estimate, ék, to the solution, x*. W define

- x* as beiﬁg ;close" to % if the function has a quadratic behavior at £k,

;hich i's .defined by

kol s e (22)

(For the functions tested, which are not badly scaled, e.’l was reasonable.)
If the current point ék Is close to a local mninum the pc is conputed to
solve (21). n, the other hand if £ s ngL_c|o§e to a local mnimm then
p, is conputed under the heuristic principle that,ﬁ+1 = TjA(HJ be as far
from¥ as possible, as long as f(5k+1) Is less than f ( K). Each of these

possibilities will be described in nore detail next.

If x* is close to x*, the solution of (21) is approximted in a standard
manner by bracketing the mninmum along the trajectory represented by the
transfonnation function and conputing the mninum of the quadratic in p through
three function values. As it mght be expected fromthe relationship of the
proposed al gorithmwth Newton's method, the solution of (21) is p=l for nost
local mnima;. thus solving (21) is not tine consumng when x is close to x*.

Wen (22) is not satisfied, the proposed heuristic principle my be

mat hematical |y described by




maxi m ze IMp) - X (23a)
subject to f("(p)) < f(ék) - G, (23b)

where C, ™ 0 is defined to insure that f@’*‘) is sufficiently less than
f(x").

The technique for approximating a solution to (23) depends on which
transformation order was selected, i.e., the value of r. If the second-
order transformation was selected, (23a) is linear in p and therefore (23a)
I's generally maximzed by the largest value of p which satisfies (23b). The
procedufe consists of fitting and conmputing the i ni-mum of approxi mating poly-
nomal s which attenpts to satisfy (23b). Then attenpting to satisfy (23a), a
constant is added to the conputed mininmum of the approxinéting pol ynomi al .
The function is then evaluated at the resulting value of p, and if (23b) is
satisfied, the search is conplete, otherwise the nrocedure’is'repeated,
This technique is summarized in Fiqure 2

If the third- or the fourth-order transformation is selected, (23a)
is no longer linear in p. Therefore, the solution of (23) is along a curved
trajectory in the space of the independent variables as the illustrative
exanple in the next section shows. For clarity of notation we will drop the
order subscript, r, and the iteration superscript, k, fromthe transformation

, : : ) : ‘ t
function for the remainder of this section. Since x;+LNb«,)> the = "

coordinate of all the possible points that nay becone xk+1 is given by h.(p).
Since hﬁ(p) is not linear in p, the i coordinate initially roves
away fromthe current value as p is increased fromp=0, and it may then

approach the current value after p exceeds some magnitude. That is, the quantity




may have stationary points which nust satisfy
h! (p) =0, (24)

where h1.'(p) is the derivative V\{ith respect to p. Equation (24) is linear in

p for the third-order transformation, and quadratic in p far the fourth-order
transformation. Therefore, these significant values of p may be easily found,
and those which are positive are candidates to satisfy (23). It is proposed
that these significant values of p be computed for all coordinates by the use

of (24), discardinn any which are not positive. Moreover, it was experimentally
found for the tested functions that px is generally not greater than six for
the VO algorithm. The function is then evaluated at each of the significant
values beginning with the largest and proceeding to the smallest and as soon as
the descent contraint (23b) is satisfied, the scalar search is complete. In
case none of these values of p are positive and smaller than six, the function
is evaluated for increasing values of p until (23b) is satisfied for the largest
value of p. For all the functions tested, in most iterations (24) yielded
values within the acceptable range. Furhtermore, in most iterations only one

additional function evaiuation was needed to end the scalar search.

4. Illustrative Exanple

The probl em proposed by Rosenbrock [1] is chosen to illustrate the

VO algorithm features. This problemis given by

mnimze f(x
X
M)

p X[ 10006 - X P4 (L) (25)

0

The usual starting point, X (-1.2, 1) T, will be used. At this point,

the second-order transformation is given by




-1.éw -.024719

1 -.3807

o

—

The third-order transformation is given by

-1.2 -.03708 -.01205

1 .571 . 2483
And Tinally, tne fourth-order transformation is given by

1.2 1 -.08531 | -.0241 ..00358
2 3
ho(p) = -p -p -p . (28)
] -.6975 \ .4566 -.0657

Figure 3 illustrates the Xos Xy plane with equi-contours of Rosenbrock's function
shown as dashed lines. Each of the three curves emanating from %O

corresponds to a trajectory generated by the three transformations

(26), (27), and (28) as p is increased. Clearly, the fourth-order transfor-
mation is the best, and it is the one that the proposed selection procedure
outlined in Fig. 1 chooses. The scalar search, outlined in the preceding
section, computes P = 4.1957 requiring only one additional function

evaluation to yield the next point to be

= 10(4.1957) = (-.3138, .03796)" .

1
X g

5. Algorithm

The VO algorithm can now be surmmarized. (For a detailed listing see [2]).
STEP 1: INITIALIZATION. Set k=0 and obtain a value for 50. Evaluate
Oy ... 1.0 . e
f(x7) and £'(x7) or its apprcximation.
STEP 2: TRANSFORMATIOW. This step may be subdivided as follows:

. k . . .
a. Compute the hessian (“(é ) or its approximation.




h. Conpute the nodified Chol esky factors of the hessian.
c. Conpute the second-order correction, gk, given by (14).
: 1 k gk
d. Conpute f*-dj.S) and f' ((x"-d>).
e If HE"A-dAM-F0" ¢, set "*:ggk-dgk> and exit (we are done).
f.ooIf f(x-di5y-f(x"), set order r=2, and go to STEP 3, otherwise

cont Inue.

k
g. Conpute the approximtion to the third-order correction, ¢s,

given by (16).
h. Conpute f A - A ) and f'(xd2d3
i. IfHF'(;ik-,q;-gléﬂ iim"‘, set ,§*=§k-Q§-g§ v and exit_
' Ik f(,\k_k,\z,lf3,\>f,\k,\. set order r=21 and 9o t0 STEP 3: otherwi se
continue, _
k. Conpute the approximation to the fourth-order correction, g ,
given by (13).
1. Compute f(;ék-g’z‘—gg—g‘;)
m 1 (x84 4 >f (x), set order r=3, else set order r=4.
STEP 3: SCALAR SEARCH If the order r is 2, execute a, else execute b. _
a. If f(E“g)<f(x"), set x**'sx*-¢f . and go to STEP 4. Ctherwise
approxi mte the solution of (23) as described in Section 3 to
obtain pe-  Set &k”:h\f( P,) and go to STEP 4.
b. 1 1f (h"(1))j <1, then conpute the sol ution of the scal ar
mnimzation problem (21), otherw se approximate the solution of
(23) to obtain pr. Set g(ékJrl:Ji;('r(Pk) and go to STEP 4.
STEP 4: CONVERGENCE TEST. Computemf‘&)}(«rl ) if it is not already available.
If j I (x*"")[I-STPEPS, and the hessian is positive de'inite, set
1

x*=>_<"+ . and exit. Otherwise, set k=k+l , and GO to STEP 2.




6. MNunerical Results

Five widely used test problens were selected to test and conpare the
VO algorithmwith other popular algorithms. Ve briefly illustrated the
al gorithmwith Rosenbrock's problemin Section 4. In Table 1 we give the
entire history of the iterations required to conpute the mninmumof this
problem Mte that even with only function values supplied, the algorithm
Is able to obtain the mninumvery accurately. Fi gure 4 shows the trajectory
fromthe initial point to the neighborhood of the mininum

The other test problens are the following. Powell's singular hessian

at the solution, [12], given by
H(N) = (XMOKG) # (ke xa) P (X 2x) ¢+ 10(xexa) L (29)

with initial point x°=(3, -1, 0, 1)T. Fletcher and Powell's (1963) helical

valley probLem given by

f(x) - 100[(xs-10 6)* + (R - 1)?] + x§ (30)
where

-TT/2 < 21O = tarf’\Xg/x]) < 3TT/2

R = (%" + %)

with initial point >g\‘0=(-1, 0, O)T. Wood's saddle point problem,

[13], given by

f(y) = 100(x2-xf)2 + (1-x))2% + 90(x4-x32)2 + (1-x3)2

+ 10.1[(x2-1)% + (Xx4-1)%] + 19.8(x2-1)(x4-1) , (31)

with initial point AQ(—S, -1, -3, —1)T. Cragg and Levy's singular

hessian at the solution [14] given by




F(x) = (&7-xJ%+ 100(x.-x )& + tan'(x -x ) + x° o (X 51)2, (32)

with intial point x%(1, 2, 2, 2)".

Table 2 summarizes the terminating counters and the convergence data
for the VO algorithmfor the five test problenms. Published results can be
used to conpare seven popular algorithms with the VO algorithm The existing
algorithns which are 'used in the conparisons include the follow ng:

FR - Fletcher and Reeves conjugate gradients algorifhm [15].

« DFP - Davidon--Fletcher and Powel | quasi-Newton with a rank 2 update

[16] and [17]..

B - Broyden quasi-Newton with a rank 1 update [18].

F - Fletcher quasi-Newton with a conbination of rank 1 and
rank 2 updates [19]. |

P - Powell conjugate directions with functions only [12].

S - Stewart DFP with function values only [20].

C - Cullun{ Bwith function values only [21] and [22].

Alnost all the results for the‘above algorithns an the five test probléns are
obtained froma conparative study published by Hmelblau [5] and [6j. The
excepzions are the following. The C-algorithmwas not conpared by H mmel bl au
and thus Qullums results are used for the three problems reported by her
the results for Rosenbrock's problemwere not tabulated by Hmmelblau, and
therefore the original publication results are used, or the results published
by Sargent and Sebastian [4] are used, whichever were nost favorable to
the al gorithms.

‘In order to make a fair conparison amongst various algorithns, a simlar
final convergence accuracy should be obtained. This is especially so here,

since the VO algorithmhas a higher order of convergence than nreviously




proposed algorithms. In addition, thi availability of the hessian is used to
detect saddles and local maxima. It was estimated that the results given for
the existing algorithms were for a termination with maximmnormof the gra-

dient less than 10'4.

Table 3 summarizes the results of the comparisons. The table shows the
nunber of iterations, the nunmber of function eval uations, and the number of

gradient evaluations for each algorithm including the VO algorithm  Except

for the helical valley problem (30), the proposed algorithmis considerably
better than the F algorithm the algorithn1judgéd by H mel bl au
to be the best of all algorithms in the study. The helical valley function
Is not defined at the points x:(O,O-,xQ-T, for any value of x7, and therefore
it is felt that these discontinuities affected the performance of the VO
al gorithm

A second test on Wod's function (31) revealed another potential advantage
of the VO algorithm- Inplenentations of the FR algorithmand of the DFP
algorithn1converged to the saddle point of this function when the initia
guess was in a small neighborhood of the saddle point. The VO al gorithm
converged to the mninumpoint fromthe sane initial guess. Thus, the VO
al gorithmmay be nore efficient in avoiding'convergence to these troublesonme

poi nts.




7. Concl usi ons

Ve have developed a new algorithmwith a sound theoretical foundation

for the mnimzation of a function of several variables. This algorithm performed

wel | when conpared with other popular algorithms. It has a novel scalar search

which is in general along curved trajectories in the space of the independent

variables. In addition, the algorithmhas a high order of convergence, as

high as four. The extension of the algorithm-to the case when only function
values, or function and gradient values can be supplied was entirely successful

The algorithmis nore efficient however if the values of the hessian can also
be supplied.

The conputer programused in this research and a more detailed

derivation with extensions of the proposed algorithmis given in [2].




REFERENCES

[I] DG Luenberger, Introduction to Linear and Nonlinear Progranmng,

Readi ng, Mass., Addison-\esley Publishing Co., 1973.

[2] AJ. Jimenez, "A Variable-Oder Nonlinear Progranmng Algorithm for
Use in Conputer-Aided Grcuit Design and Analysis," Ph.D. Dissertation,
University of Florida, Gainesville, Florida, June 1976.

[3] W Mirray, "Second Derivative Methods," in Nunerical Methods for

Unconstrained Optimzation, W Mirray (ed.), New York, Academc Press,
57-71, 1972.

[4] RWH Sargent, and DJ. Sebastian, "Nunerical Experience with Agorithnms
for Unconstrained Mnimzation*" in Numerical Methods for Non-Iinear
Optimzation, F.A Lootsma (ed.), New York, Academc Press, 45-68, 1972. |

[5] DM Hmelblau, Applied Nonlinear Programmng, Mw York, MGawH I
Book Co., 1972.

[ 6] ,"A Uni form Eval uation of Unconstrained Optimzation

in Numerical Methods for Non-linear Optimization, F.A Lootsm
(ed.), New York, Academc Press, 69-97, 1972.
[7] HH Rosenbrock, "An Automatic Method for Finding the Geatest or the

Techni ques,

Least Value of a Function," Conp. J., 3, 175-184, 19%-0.
[8] WI. Zangwi ll, Nonlinear Programmng: A Unified Approach, Englewood Cliffs,
N.J., Prentice-Hall, Inc., 1969.

[9] OL. l\/hngasarian, Nonl i near Programm ng, Mew York, MGawH Il Book Co.,
1969. _
[10] J.F. Traub, Iterative Methods for the Solution of Equations, Englewood
~ diffs, NJ., Prentice Hall, Inc., 1964,
[I1] J.M Otega, and WC. Rheinboldt, Iterative Solution of Nonlinear Equations

in Several Variables, New York, Academc Press, 1970.




REFERENCES

C.G Broyden, "Quasi-Newton Methods," in Numerical Methods for Unconstrained
Optimzation, U Mirray (ed.), flewYork, Academc Press, 87-106, 1972.

AR Colvi 11e "A Conparative Study on Nonlinear Program ng Codes,"
IBM N.Y. Sci. Center, Report 320-2949, 1963.

E.E Cragg, and A V. Levy, "Study on a Supennenory Gradient Method for the
M nim zation of Functions," J. Qptim Theory Appins., 4, 191-205, 1969.

J. Cullum  "Unconstrained Mninmzation of Functions without Explicit Use of
Their Derivatives," IBM Research Report RC 3600, T.J. Watson Research Center,
Yorktcwn Heights, N. Y., 1971.

, "An Algorithm for Mnimzing a -Differentiate Function that Uses
Only Function Values," in Techniques of Optimization, A V. fialakrishnan (ed.),
New York, Academc Press 117-127, 1972.

1J. Qavidon, "Variable Metric Methods for Mnimization," A E.C. Research and
Devel opment Rept. ANL-5990, Argonne National Lab., Argonne, 111., 1959.

, "Variance Algorithmfor Mnimzation " Conputer j., 10, 406-411,

1967. )
R Fletcher, "A New Approach to Variable Metric Algorithms," Conn. J., 13,
No. 13, 317-322, 1970.

R Fletcher, and MJ.D. Powell, "A Rapidly Convergent Descent Method for
Mn|mzat|on " Camp. _J., 6, 163-168, 1963. Reprinted in Conputer-Ai ded

Circui't De5|gn_ SW Director (ed.), Stroudsburg, Perm, Dowden, Hutchinson
and Ross, Inc., 361-366, 1973.

R. Fletcher, and CM. Reeves, "Function Mnimzation by Conjugate Gradients,"
Qm,. J., 7, 149-154, 1964. Reprinted in Conputer-Aided Circuit Design,

SW Direcfor (ed.), Stroudsburg, Penn., Dowden, Hutchinson and Ross, Tnc.,
367-372, 1973.

DM Krringl blau, Applied Nonlinear Programmng, Nev; York, MG awHill Book
Co., 1972.

. , "A Uniform Eval uation of Unconstrained Optim zation Techniques,"
in Numerical Methods for Non-linear Optinmization, F.A Lootsm (ed.),
Mew York, Academc Press, 69-97, 1972.

A.J. Jimenez, "A Variable-Order Nonlinear Programmng Algorithm for Use in
Conputer-Aided Circuit Design and Analysis," Ph.D. Dissertation, University
of Florida, Gainesville, Florida, June 1976.

D.G Luenberger, Introduction to Linear and Nonlinear Programming, Reading,
Mass., Addi son-\Wesley Publishing Co., 1973.




0.L. Mangasarian, Nonlinear Programinyg, New York, icGraw-itill Look Co.,
1969.

W, Murray, "Second Derivative Methods," in Numerical Methods for Unconstrained
Optimization, W. Murray (ed.), New York, Academic Press, 57-71, 1972.

J.M. Ortega, and W.C. Rheinboldt, [terative Solution of Nonlinear Lquations
in Several Variables, New York, Academic Press, 1970.

M.J.D. Powell, "An Efficient Method for Finding tie Minimum of a Function
of Several Variables ithout Calculating Derivatives,” Comput. J., 7,
155-162, 1964.

d.H. Rosenbrock, "An Automatic Method for Finding the Greatest or the Least
Value of a Function," Comp. J., 3, 175-184, 1960.

R.UW.H. Sargent, and D.J. Sebastian, "Mumerical Exnerience with Algorithms
for Unconstrained Minimization," in Numerical “ethods for !lon-linear
Optimization, F.A. Lootsma (ed.), New York, Academic Press, 45-6C, 1972.

G.4. Stewart, "A Modification of Davidon's Minimization iMethod to Accept
Difference Approximations of Derivatives," J. ACM, 14, 72-33, 1867.

J.F. Traub, [terative Methods for the Solution of Equations, Englewood
Cliffs, N.J., Prentice-ilall, Inc., 19€4.

W.1. Zangwill, Honlinear Programming: A Unified Approach, Englewood Cliffs,
N.J., Prengice-Hall, Inc., 1969.




TABLE 1

Results for Rosenbrock's problemwith (a) the function,

the gradient, and the hessian values supplied, (b) the
function and the gradient values supplied, and (c) only .
the function values supplied. Note that the zero given for
the eighth iteration in (a) was actually a printed result.
The conputer times required were .04 seconds for (a),

.04 seconds for (b), and .053 seconds for (c) in an |BM 370
Mbdel 165.

(a)

--—ounters-+=--- ok K

No, no. No. XX f(x-f(x*) T F (x )
kK FUN GRAD HESS ORDER a a °° v v A
o 1 1 0 — 2.2 24.2 215. 6
1 6 4 1 4 1. 314 2.0921 12.1
2 u 7 2 4 . 9343 1.55 15. 25
3 18 10 3 4 . 3961 ~.333 17.14
4 20 12 4 2 . 3024 . 0663 6. 727
5 25 15 5 4 5x1 O3 S 7.£x10°3 3. 545
6 30 18 6 4 | x| O3 2.6x1 07 1.3x1 03
7 33 2 7 4 IxlO° 7.3x1 0% l.1xl03
5 34 22 : 2 0 0 0




2

TABLE 1 (continued)
(b)

--Counters—
No. No. | [x“-x*H f(x)-fO¢) K (,‘Xx,k)i o
k FUN GRAD ORDER = % % ''®@
o 1 1 — 2.2 24.2 215.6
1 3 6 4 1.314 2.092 12.1
2 15 1 4 9845 1.549 15.23
3 24 16 4 4091 .36 16.29
4 28 20 2 3152 06698 6.504
5 36 25 4 .0102 7.3x10"3 3.411
6 43 33 4 4x10"° 4.2x10"® 3.6xI0~*
7471 34 3 4107 - 3xio"® 3.9x10"°
(c)
Counters
No. Uk K : ky: g -
k FUN  ORDER ™ -xxi! = F(x7)-f(x*)  itf"(x9)j]
0 3 — 2.2 24.2 215.6
1 17 4 1.313 2.095 12.16
2 31 4 9304 1.565 15.54
3 45 4 1932 5985  26.27-
4 59 4 1219 1.3xI0"? 3.591
5 73 4 .02 5.2x10" 4573
6 88 4 ixlo"3 3.6x10"’ .0155
7 102 4 7x10"’ s.6xl0"Y 1.6x10"®

8 108 2 2x10"° 4.8x10"*° 5.5xin-1°




TABLE 2 Summary of results for trie VO algorithmwth STPEPS set to
TO'*. " The setting of MAXAV indicates, that the function,
the gradient and the hessian values are supplied, if equal
to 3; the function and the gradient values are sui)phed, | f

equal to 2; and only the function values are supplied if
equal to 1. The point £ is the convergence point.
Count ers—_ _ 3 .
. Mb. flo. No. Me. [ x-x 1, f(x)-f(x*) PE OO

Function  MAXAV |TN FUN GRAD HESS v
"(25) 3 7 32 20 7 5x10"> 7x10"16 7x10°8
2 7 4 33 1x107"  2x10713 2x10™°
1 7 94 6x100 2x10 11 9x10™°
(29) 3 3 15 8 3 1x10°  8x10® 3x10™°
2 3 21 20 X102 8x10”® 3x10™°
1 3 80 X102 7x107S 3x107°
(30) 3 9 46 26 9 5107 s5x10% ox10®
6 11 o<

2 10 75 57 5x10 3x10 6x10
1 10 202 - 1x10®  2x071? 2x107°
(3D 3 5 26 14 5 x107  2a0*  ixior®
2 5 46 3 w0’ a0t IxI0""
1 5 13 ex10”’  1xa0tt 9x10"®
' 2 7 5

(32) 3 6 2 16 € 5X10 2x10 3x10
> 4 3 28 31072  5x10°8 1x10™°
1 4 11 5x102  6x10" 9x10™>




TABLE 3 Resul ts of conparisons of the VO algorithmwith seven other
existing algorithms for the minimzation of five standard
test problens.

Algorithms with supplied A gorithnms with only
functions and gradients functions supplied

Function  Counter R 0P B F \O p S C W
(25) No. |TN 29 H N 7 37 B 5 7

W, FIN 15 9' 5 47 4 5 152 U5 %
la GRD B D ¥ 4 R |

(29) No. ITN ™ % B 60 3 % 4 18 3
| No. FWN 64 434 374 7 . 96 62 U &
No. GRAD % 37 P 8 XN '

8

(30) M. TN N A B W 40 B W0
.. FUN W oW MW 2B T R v/ A 1
No. GRAD ¥ A 2 RN

(31) No. ITN 1% 5 & 60 5 % B 5
No. FIN 3288 4% 310 6 4 MW 15 132
M. GRAD 10 58 43 6 A

(32) No. TN ¥ % ¥ 8 4 % 18 4
No. FWN P 4 30 9O B 3480 1662 m
No. GRAD 0 9 8 9 B
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FOOTNOTES

Qther functions can also be used which yield different series expansions,

one of which is the n-dimensional extension of a previously known series
attributed to Euler, [2].

zE denot es z, raised to the pth pover .

In addition it was experinentally found that for one function tested,
transformation functions of order greater than four did not increase
efficiency.

See also [5] and [6].




