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ABSTRACT

A variable order algorithm is proposed for the rini^ization of a function

cff several variables. This algorithm has an order of convergence *.s high as four,

good accuracy, and features a scalar subproblem at each iteration which may be

along curved trajectories in the space of the independent variables.

Numerical results en five standard test problems indicate superior performance

when compared with seven other popular algorithms.
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I. Introduction

A new iterative algorithm, called the Variable Order (VO) algorithm,

has been developed for finding a local minimum solution to the problem

minimize f(x), (1)
x %

where f(x) is a reasonably smooth scalar function of n independent variables,

f:E -> E. The VO algorithm has to the authors' knowledge several properties and

features not found in any previously published algorithm. Among the new features

are that the order of convergence may be as high as four, and that the scalar

search at each iteration may be along curved trajectories in the space of

the independent variables. Values of the function, and its first two

derivatives (i.e., the gradient and the hessian) are required by the algorithm,

however these quantities may be approximated using differencing techniques.

. Numerical results have shown that, in spite of the effort required to compute

the hessian, for a large class of functions the VO algorithm is considerably

more efficient than many existing algorithms which do not require this

computation.

It will be convenient to describe the VO algorithm in terms of the

general iteration given by

xk+1 = Hk(pk, x
k ) , k = 0, 1, 2, ..., (2)

where H is the ku iteration function. This iteration begins from an

0 k

initial guess x and a sequence {x } is generated which hopefully converges

to a solution x* of (1). Two principal steps are implicit in (2): the

transformation step and the scalar search step. The transformation step

consists of computing the transformation function given by

hk(p) = JJk(p, xk) . (3)



The transformation function represent*. a direction or a traiectory alonn

k+1which the next noint x* is selected. The transformation steo ^or the u0

alnorithm is described in more detail in the next section. The scalar search

step consists of selectinq the next point niven by

where the scalar parameter value o = D, is suitably selected. The scalar

search steo is described in more detail in Section 3. An example is niven in

Section 4 which illustrates the Generally curved trajectories alonn which the

scalar search is undertaken. Section 5 offers an outline of the details of

the alnorithm. The oaner ends with a comparison of the VO alnorithm with

sevon other popular minimizetion alcorithms '-'hen they arc all usod to mini-

mize five standard test functions.

2. The Transformation Step

It is well-known that a necessary condition for a local minimum solution

of (1) is that the gradient of f(x) must be zero []]. in

this section we develop a family of transformation functions, hK(p). with an

increasing order of convergence by considering the truncation of the infinite

series expansion of the point x* at which the gradient is zero about the k

estimate of the solution x .

Because it is a necessary condition, we are interested in solutions to

,t'(x) = 0 , (5)

where f'(^) is the column vector of first partial derivatives of f(x) (i.e.,

the transpose of the gradient). Consider the change of variables denoted by



where X may be a nonlinear vector function. Using (6), we obtainX

Let x* satisfy (5) and define z* such that (6) is satisfied. Then from (7)

g(z*} = 0 . (8)

If the above system of equations is simple to solve then ^* mav be readily obtained,

and the point x* may be computed from (6) by letting z=z*. Clearly specifying

a change of variables which yields a function g for which (8) is simple

to solve could be difficult. However we can start by specifying a suitable

function cj and determine the resulting function X from a Taylor series

expansion. One suitable class of functions is

#>•<*?• 4 zS'T • <9>
2

where p is a scalar parameter greater than zero. Mote that for this

function, (8) is simple to solve; in particular z*=0. Consider the first

two terms of the Taylor series expansion of (6) given by

x = X(zk) + X'(zk) (z - zk) , (10)

k k
where a z may be associated with $' throuqh (7);

Other functions can also bo used which yield different series exnansinns :
one of these expansions is the n-dimpnsional extension o^ a nreviousl*' kno^n
scries attributed to Euler, Jimenez (1976), obtained with p=l in (9).

z°- denotes z- raised to the n n nov/er.



and
k k -1 k (ID

X'(zK) = f"(xK) ' g'(z )
k -1

is obtained by differentiating (7) with respect to £, and where f"(x )
k •

is the inverse of the hessian matrix of f evaluated at x=£ . If we use

the g function (9), reconnize that J j ' ^ V = n(zk) = ^'(xk) and that (10) 1-

an approximation, at %*%*=%, one obtains the iterative method

for some suitable value p=pk- This iteration is Newton's algorithm for

solving (1) [1] and is characterized by the second-order

transformation function given by

> > • 4 k - p «* • (13).>>> • 4k - p

orrection d2where the second-order correction, d2> is defined as the solution of the

system of linear equations given by

If three terms of the Taylor series expansion of (6), using (9),

are kept, we obtain the third-order transformation given by

^where the third-order correction, d^, is the solution of the linear system

of equations given by

f;(xk) d]= (1/2) f"'(xk) djdj ,

and f'"(xk) is the third derivative tensor of f evaluated at x=x . Fortunately
\> ^



this term need not be evaluated exactly. It can be shown that by considering

a Taylor series expansion of f'(x -d9) about x=x
K, the third-order correction

may be approximated by solving the system of equations

If four terms of the Taylor series expansion of (6), using (9), are

retained, we obtain the fourth-order transformation given by

k k i l l ' V V 7 L ' L ' I L ' ' }

•,4(p) = Z - T f e P • {^3 - y P - llU - h + 6 ^2)P ' {17)

where the fourth-order correction, d\, is the solution of the linear system

of equations given by

f (x d, = f x do d« - r f (x )do do do ,

"i v/ k k

and f (x ) is the fourth derivative tensor of f evaluated at x=x' . As

before the fourth-order correction need not be evaluated exactly, but by

k k k kconsidering a Taylor series expansion of /'(x -do-cU) about x=xs can be

approximated by solving

Transformation functions of order higher than four may be similarly

derived. However, it does not seem possible to adequately approximate the

corrections of order higher than four, -and since higher-order derivatives

are computationally expensive to evaluate and require considerable storage

they should be avoided.

Before leaving this section there are three points which need to be

discussed: 1) approximation of the hessian and the gradient, 2) singularity



of the hessian matrix, and 3) selection of the transformation order at

each iteration.

Evaluation of the corrections as dictated by expressions (14), (16)

and (18) requires that both the gradient and the hessian be evaluated. If

explicit expressions were in fact needed, the usefulness of,the algorithm

would be severely limited. However, good results have been obtained when

one or both of these derivatives are approximated using differencing techniques.

Unfortunately, the use of a quasi-Newton method of approximating the hessian

inverse [1] is apparently not sufficiently accurate for the Drooosed

ainorithm as experimental evidence has shown.

Given the gradient and the hessian, or their approximations, the high-

order corrections are computed by solving the linear systems of equations (14),

(16), and (13). Observe that these systems of equations have the same

coefficient matrix: the hessian evaluated at x . Thus it is efficient to

compute the Cholesky factorization [3] of the hessian just once

which allows the computation of all the high-order corrections by the pro-

cedure of forward and back substitution. In computing the Cholesky factori-

zation, one must consider the possibilities that the hessian may be singular

or may be negative definite at x . If tha hessian is singular, the

factorization of the hessian does not exist. If the hessian is negative

definite, the infinite series expansion of x*, the point at which the gradient

is zero and the point used to derive the transformation functions, is likely

to be a local maximum or a saddle point, since the gradient is also zero at

these points. Thus the Cholesky factorization to be used modi-

fies the hessian, whenever it is not positive definite, by in effect

solving d« from

[f"(xk) + Dk]d^ = f'(xk) , (19)



where D is a diaoonal matrix. This nodified factorization is a variation

of the one nronosed by Murray (1972) by adding a diagonal oivoting strategy

to the procedure which introduces fewer nonzero diaaonal elements to Q*

than Murray's orocedure (see Jimenez (1976)).

The transformation order selected at the k iteration is based on the

convenience of the series expansion of (6), for o=l in (9), and uoon ob-

taining functional descent. That is, if the point obtained from the trans-

formation function for p=l yields a function value less than the current

value of the function, then the next transfornation order is considered.

Figure 1 summarizes this selection procedure in a flowchart.

3. The Scalar Search Step

Given a particular transformation function, the scalar search step

involves determination of a value of the scalar parameter p appearing in

the transformation function such that

f(h^(p)) < f(xK) = f(hJ;(O)), r = 2,3, or 4. (20)

In many reported minimization algorithms this step is very time consuming.

The source of the difficulty is the requirement that a value of p be found

which accurately solves the scalar minimization problem given by [1]

minimize f(hk(p)) . (21)
P ^

In fact, several studies have indicated that the overall efficiency of many

minimization algorithms is quite sensitive to hovr accurate the solution

of (21) is comnuted (e.g., [4] and [1]). In addition,



it has been the authors1 experience4 that choosing a p in this manner tends to

force most algorithms to follow the bottom of narrow valleys, i* present, with

relatively slow oroqress towards the solution.

Since the VO algorithm docs not require an accurate solution of

(21) a new strategy is employed. This strategy is based upon determining

the "closeness11 of the current estimate, xk, to the solution, x*. We define

xk as being "close" to %* if the function has a quadratic behavior at £ ,

which is defined by

(For the functions tested, which are not badly scaled, ec
sl was reasonable.)

If the current point xk is close to a local minimum, the pk is computed to

solve (21). nn the other hand if £
k is not close to a local minimum, then

p is computed under the heuristic principle that x = lj^(Pk)
 be as far

from^k as possible, as long as f(xk+1) is less than f ( ^ ) . Each of these

possibilities will be described in more detail next.

If xk is close to x*, the solution of (21) is approximated in a standard

manner by bracketing the minimum along the trajectory represented by the

transfonnation function and computing the minimum of the quadratic in p through

three function values. As it might be expected from the relationship of the

proposed algorithm with Newton's method, the solution of (21) is p=l for most

local minima; thus solving (21) is not time consuming when x is close to x*.

When (22) is not satisfied, the proposed heuristic principle may be

mathematically described by



maximize | |^(p) - xk| | , (23a)
p

subject to f(^(p)) < f(xk) - Ck , (23b)

where C, - 0 is defined to insure that f(x v ) is sufficiently less than
IN \J

f(xk).

The technique for approximating a solution to (23) depends on which

transformation order was selected, i.e., the value of r. If the second-

order transformation was selected, (23a) is linear in p and therefore (23a)

is generally maximized by the largest value of p which satisfies (23b). The

procedure consists of fitting and computing the minimum of approximating poly-

nomials which attempts to satisfy (23b). Then attempting to satisfy (23a), a

constant is added to the computed minimum of the approximating polynomial.

The function is then evaluated at the resulting value of p, and if (23b) is

satisfied, the search is complete, otherwise the nrocedure is repeated.

This technique is summarized in Fiqure 2.

If the third- or the fourth-order transformation is selected, (23a)

is no longer linear in p. Therefore, the solution of (23) is along a curved

trajectory in the space of the independent variables as the illustrative

example in the next section shows. For clarity of notation we will drop the

order subscript, r, and the iteration superscript, k, from the transformation

function for the remainder of this section. Since xx sMp«,)> the "*'
'\t *J IN

k+1coordinate of all the possible points that may become x is given by h.(p).

Since h.(p) is not linear in p, the i coordinate initially roves

away from the current value as p is increased from p=0, and it may then

approach the current value after p exceeds some magnitude. That is, the quantity



may have stationary points which must satisfy

h!(p) = 0, (24)

where h.'(p) is the derivative with respect to p. Equation (24) is linear in

p for the third-order transformation, and quadratic in p for the fourth-order

transformation. Therefore, these significant values of p may be easily found,

and those which are positive are candidates to satisfy (23). It is proposed

that these significant values of p be computed for al l coordinates by the use

of (24), discardinn any which are not positive. Moreover, it was experimentally

found for the tested functions that pk is generally not greater than six for

the V0 algorithm. The function is then evaluated at each of the significant

values beginning with the largest and proceeding to the smallest and as soon as

the descent contraint (23b) is sat isf ied, the scalar search is complete. In

case none of these values of p are positive and smaller than s ix , the function

is evaluated for increasing values of p unti l (23b) is satisfied for the largest

value of p. For al l the functions tested, in most iterations (24) yielded

values within the acceptable range. Furhtermore, in most iterations only one

additional function evaluation was needed to end the scalar search.

4. IIlustrative Example

The problem proposed by Rosenbrock [1] is chosen to illustrate the

V0 algorithm features. This problem is given by

minimize f(x , xj = 100(x2 - x
2 ) 2 + (1 - X ] ) 2 . (25)

x

The usual starting point, x = (-1.2, 1) , will be used. At this point,

the second-order transformation is given by



-1 .2

1

. - P

-.024719

-.3807

The third-order transformation is given by

(26)

h°(p) - -P

-.03708

,571

-P

-.01205

.2483

(27)

And finally, the fourth-order transformation is given by

" - 1 . 2

1

-P

- .0453

-.6979

-P2

1

- .0241

.4966

-P

- .00368

-.0657J

(28)

Figure 3 illustrates the x^, x-, plane with equi-ccntours of Rosenbrock's function

shown as dashed lines. Each of the three curves emanating from x

corresponds to a trajectory generated by the three transformations

(26), (27), and (28) as p is increased. Clearly, the fourth-order transfor-

mation is the best, and it is the one that the proposed selection procedure

outlined in Fig. 1 chooses. The scalar search, outlined in the preceding

section, computes p. = 4.1957 requiring only one additional function

evaluation to yield the next point to be

x1 = h?(4.1957) = (-.3138, .03796)T .

5. Algorithm

The VO algorithm can now be summarized. (For a detailed listing see [2]).

STEP 1: INITIALIZATION. Set k=0 and obtain a value for x°. Evaluate
• > J

f(x ) and f'(x ) or its approximation.

STEP 2: TRANSFORMATION. This step may be subdivided as follows:
k

a. Compute the hessian f"(x ) or its approximation.



b. Compute the modified Cholesky factors of the hessian.

c. Compute the second-order correction, c^, given by (14).

d. Compute f^-djS) and f'(xk-dk).(

e. if H f ' ^ - d ^ M - l O "
4 , set ^*=xk-d2> and exit (we are done).

f. If f(xk-d!5)-f(xk), set order r=2, and go to STEP 3, otherwise

continue.
k

g. Compute the approximation to the third-order correction, cj3,

given by (16).

h. Compute f ^ - ^ ) and f'(xk-dk-dk) .

' a n d exit-

j. If f(^ k-^2^3^ > f^ k^' set order r==2' and 9° t0 STEP 3' otherwise

continue,

k. Compute the approximation to the fourth-order correction, d^ ,

given by (13).

1. Compute

m. If f(.xk-dk-dk-dk)>f(xk), set order r=3, else set order r=4.

STEP 3: SCALAR SEARCH. If the order r is 2, execute a, else execute b.

a. If f(£k-dk)<f(xk), set xk+1=xk-dk , and go to STEP 4. Otherwise

approximate the solution of (23) as described in Section 3 to

obtain pk- Set xk+1=h2(Pk) and go to STEP 4.

b. If I|f'(h^(l))j !<1, then compute the solution of the scalar

minimization problem (21), otherwise approximate the solution of
k+1 k

(23) to obtain pR. Set x =J;r(Pk) and go to STEP 4.
k+1

STEP 4: CONVERGENCE TEST. Compute f ' ( x ) if it is not already avai lable.

If j | f ' (x k + 1 ) | I -STPEPS, and the hessian is posi t ive d e r i n i t e , set

x*=x k + 1 , and e x i t . Otherwise, set k=k+l , and GO to STEP 2.



6. Numerical Results

Five widely used test problems were selected to test and compare the

VO algorithm with other popular algorithms. We briefly illustrated the

algorithm with Rosenbrock's problem in Section 4. In Table 1 we give the

entire history of the iterations required to compute the minimum of this

problem. Mote that even with only function values supplied, the algorithm

is able to obtain the minimum very accurately. Figure 4 shows the trajectory

from the initial point to the neighborhood of the minimum.

The other test problems are the following. Powell's singular hessian

at the solution, [12], given by

f(x) = (x^lOxg)2 + 5(x3-x4)
2 + (x2-2x3)

4 + 10(x rx 4)
4 , (29)

wi th i n i t i a l po in t x °= (3 , - 1 , 0 , 1 ) T . F le tcher and Powel l ' s (1963) h e l i c a l

v a l l e y problem given by

f ( x ) - 100[ (x 3 -10 6 ) 2 + (R - I ) 2 ] + x2 (30)

where

-TT/2 < 2TTO = t a r f ^ X g / x ) < 3TT/2 ,

R = (x 2 + x 2 ) ,

w i th i n i t i a l po in t x = ( - 1 , 0, 0) . Wood's saddle po in t problem,

[ 1 3 ] , given by

f ( x ) = 1 0 0 ( x 2 - x 2 ) 2 + ( 1 - X l )
2 + 9 0 ( x 4 - x 2 ) 2 + ( l - x 3 ) 2

+ 1 0 . 1 [ ( x 2 - l ) 2 + ( x 4 - ! ) 2 ] + 1 9 . 8 ( x 2 - l ) ( x 4 - l ) , (31)

w i th i n i t i a l po in t ^ = ( - 3 , - 1 , - 3 , -1) . Cragg and Levy's s ingu la r

hessian at the so lu t i on [14 ] given by



f(x) = (e ] - x J 4 + 100(x.-x )6 + tan4(x -x ) + x° + (x - I ) 2 , (32)

with initial point x =(1, 2, 2, 2,) .

Table 2 summarizes the terminating counters and the convergence data

for the VO algorithm for the five test problems. Published results can be

used to compare seven popular algorithms with the VO algorithm. The existing

algorithms which are used in the comparisons include the following:

FR - Fletcher and Reeves conjugate gradients algorithm [15].

• DFP - Davidon--Fletcher and Powell quasi-Newton with a rank 2 update

[16] and [17]..

B - Broyden quasi-Newton with a rank 1 update [18].

F - Fletcher quasi-Newton with a combination of rank 1 and

rank 2 updates [19].

P - Powell conjugate directions with functions only [12].

S - Stewart DFP with function values only [20].

C - Cullum B with function values only [21] and [22].

Almost all the results for the above algorithms an the five test problems are

obtained from a comparative study published by Himmelblau [5] and [6j. The

exceptions are the following. The C -algorithm was not compared by Himmelblau,

and thus Cullum's results are used for the three problems reported by her;

the results for Rosenbrock's problem were not tabulated by Himmelblau, and

therefore the original publication results are used, or the results published

by Sargent and Sebastian [4] are used, whichever were most favorable to

the algorithms.

In order to make a fair comparison amonqst various algorithms, a similar

final convergence accuracy should be obtained. This is especially so here,

since the VO algorithm has a higher order of convergence than nreviously



proposed algorithms. In addition, thi availability of the hessian is used to

detect saddles and local maxima. It was estimated that the results given for

the existing algorithms were for a termination with maximum norm of the gra-

-4
dient less than 10 .

Table 3 summarizes the results of the comparisons. The table shows the

number of iterations, the number of function evaluations, and the number of

gradient evaluations for each algorithm including the VO algorithm. Except

for the helical valley problem (30), the proposed algorithm is considerably

better than the F algorithm, the algorithm judged by Himmelblau

to be the best of all algorithms in the study. The helical valley function

is not defined at the points x=(0,0-,x3) , for any value of x~, and therefore

it is felt that these discontinuities affected the performance of the VO

algorithm.

A second test on Wood's function (31) revealed another potential advantage

of the VO algorithm. Implementations of the FR algorithm and of the DFP

algorithm converged to the saddle point of this function when the initial

guess was in a small neighborhood of the saddle point. The VO algorithm

converged to the minimum point from the same initial guess. Thus, the VO

algorithm may be more efficient in avoiding convergence to these troublesome

points.
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7. Conclusions

We have developed a new algorithm with a sound theoretical foundation

for the minimization of a function of several variables. This algorithm performed

well when compared with other popular algorithms. It has a novel scalar search

which is in general along curved trajectories in the space of the independent

variables. In addition, the algorithm has a high order of convergence, as

high as four. The extension of the algorithm to the case when only function

values, or function and gradient values can be supplied was entirely successful.

The algorithm is more efficient however if the values of the hessian can also

be supplied.

The computer program used in this research and a more detailed

derivation with extensions of the proposed algorithm is given in [2].
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TABLE 1 Results for Rosenbrock's problem with (a) the function,
the gradient, and the hessian values supplied, (b) the
function and the gradient values supplied, and (c) only
the function values supplied. Note that the zero given for
the eighth iteration in (a) was actually a printed result.
The computer times required were .04 seconds for (a),
.04 seconds for (b), and .053 seconds for (c) in an IBM/370
Model 165.

(a)

k

0

1

2

3

4

5

6

7

0

—Counters-
No, no.
FUN GRAD

1

6

11

18

20

25

30

33

34

1

4

7

10

12

15

18

21

22

No.
HESS

0

1

2

3

4

5

6

7

j

ORDER

—

4

4

4

2

4

4

4

2

X '-X*
a. a, °°

2.2

1.314

.9343

.3961

. 3024

5xlO"3

IxlO"3

IxlO'9

0

f(xk)-f(x*)

24.2

2.0921

1.55

.333

.0663

7.£xlO"3

2.6xlO"7

7.3xlO"2C

0

215.6

12.1

15.25

17.14

6.727

3.545

1.3xlO"3

l.lxlO"3

0



TABLE 1 (continued)

(b)

- - C o u n t e r s —
No. No.

k FUN GRAD

0

1

2

3

4

5

6

7

1

3

15

24

28

36

43

47

1

6

11

16

20

25

33

34

ORDER

—

4

4

4

2

4

4

3

|xk-x*H
1 \; % ' l OO

2.2

1.314

.9845

.4091

.3152

.0102

4x10"3

_q
4x10

f(x k ) - f (x*)

24.2

2.092

1.549

.36

.06698

7.3xlO"3

4.2xlO"8

3xlO"18

\> 'X/ oo

215.6

12.1

15.23

16.29

6.504

3.411

3.6xlO~4

3.9xlO"9

(c)

Counters
No.

k FUN

0

1

2

3

4

6

7

8

3

17

31

45

59

73

88

102

108

ORDER

—

4

4

4

4

4

4

4

2

' KJ % ' ' CO

2.2

1.313

.9304

.1932

.1219

.02

ix lO" 3

7xlO"7

2xlO"9

24.2

2.095

1.565

.5985

1.3xlO"2

5.2xlO'4

3.6xlO"7

S.6x lO" U

4.8xlO"19

i tf' (xk ) j |

215.6

12.16

15.54

26.27-

3.591

.4573

.0155

1.6xlO"8

5.5x in- 1 0



TABLE 2 Summary of results for trie VO algorithm with STPEPS set to
TO"4. The setting of MAXAV indicates, that the function,
the gradient and the hessian values are supplied, if equal
to 3; the function and the gradient values are supplied, if
equal to 2; and only the function values are supplied if
equal to 1. The point £ is the convergence point.

Counters
Mo. f!o. No. Me.

Function MAXAV ITN FUN GRAD HESS
x-x* | ! f ( x ) - f ( x * )

' ( 2 5 ) 3

2

1

3

2

1

7

7

7

3

3

3

32

46

94

15

27

80

20

33

8

20

5x10

1x10

-S

-7

7x10

2x10

-16

-13

6x10 -6 2x10
-11

7x10

2x10

-8

-5

9x10
-5

(29) 1x10

1x10

-2

1x10

-2

-2

8x10

8x10

-8

-6

7x10-S

3x10

3x10

-5

-5

3x10-5

(30) 3 9 46 26

2 10 75 57

1 10 202

5x10-7

5x10-6

1x10-6

5x10-13

3x10

2x10

-11

-12

9x10-6

6x10"
_ K

2x10-5

[3D 3 5 26 14

2 5 46 34

1 5 132

1x10

1x10

-7

-7

6x10-7

2x10-14

1x10-14

1x10
-11

ix lO" 6

l x lO" n

9xlO"5

(32) 3 6 26 16

2 4 38 28

1 4 111

5x10-2

3x10-2

5x10-2

2x10-7

5x10-8

6x10-7

3x10"

1x10-5

9x10
-5



TABLE 3 Results of comparisons of the VO algorithm with seven other
existing algorithms for the minimization of five standard
test problems.

Algorithms with supplied Algorithms with only
functions and gradients functions supplied

Function

(25)

(29)

(30)

(31)

(32)

Counter

No. ITN

Mo. FUN

i'lo. GRAD

No. ITN

No. FUN

No. GRAD

Mo. ITN

Ho.. FUN

No. GRAD

No. ITN.

No. FUN

Mo. GRAD

No. ITN

No. FUN

No. GRAD

FR

27

155

28

104

624

105

36

202

37

139

3288

190

39

221

40

DFP

19

96 '

20

36

434

37

20

141

21

57

475

58

96

424

97

B

35

51

36

38

374

39

21

140

22

42

310

43

84

350

85

F

39

47

47

60

68

68

35

42

42

60

61

61

82

91

91

VO

7

46

33

3

27

20

10

75

57

5

46

34

4

38

28

p

37

153

25

. 966

4

48

25

276

36

3480

S

23

152

41

622

21

191

38

715

128

1662

C

25

145

18

148

26

177

VO

7

94

3

80

10

202

5

132

4

111



Figure 1. Flowchart of the strategy for selecting the
transformation function order Tor the proposec
alciori thin.



Compute Minimum, p ,
of quadratic through
function and derivative
at p=0, and function
at p=p . _

i
[ SET pc=rnaxtpcj;pc/^

I Evaluate f(h"(p )

Figure 2. Scalar Search of the Algorithm when x is far from
solution and when the second-order transformation
is selected.



Fiyure 3 Trajectories for the second-, the third-, and the
fourth-order transformation, (a) projected onto the
x?,x^ plane, (b) a three-dimensional view with "eye"

at x] = -1 .3, x2 = -.5, f=0.
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Figure 4 The First Five Iteration Trajectories for the
Miniuization of Rosenbrock1s Functions.



FIGURE CAPTIONS

Figure 1. Flowchart of the strategy for selecting the transformation

function order for the proposed algorithm.

Figure 2. Scalar search of the algorithm when xk is far from solution

and when the second-order transformation is selected.

Figure 3. Trajectories for the second-, the third-, and the fourth-order

transformation, (a) projected onto the x2?x " plane, (b) a three-

dimensional view with "eye" at x-j = -1.3, x~ = -.5, f=0.

Figure 4. The first five iteration trajectories for the mnimization of

Rosenbrock's functions.
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FOOTNOTES

1. Other functions can also be used which yield different series expansions,

one of which is the n-dimensional extension of a previously known series

attributed to Euler, [2].

2. zP denotes z. raised to the p power.

3. In addition it was experimentally found that for one function tested,

transformation functions of order greater than four did not increase

efficiency.

4. See also [5] and [6].


