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ABSTRACT:

Many
design databases. These
number of previously

large projects are nou underway to develop

integrated

systems support automatic interfaces to a
independent application progranms,
analyses, drafting and NC tape preparation.
some conceptual tools for organizing such systems.

such as
This paper introduces
A structure for

integrated design databases is proposed that supports a variety of

development sequences. |t

also allous implementation of automatic

integrity management for a number of design functions.

I. INTRODUCT 1ON:
A. The Challenge in 1963
The long term goals of

man-machine collaboration in design
were outlined in 1963 (Coons,1963).
The scenario developed then
extrapolated from the joint
development of computer‘°graphics and

time-sharing systems to suggest
design development within a
computer, in an interactive
graphical mode. Displays of the

design would be presented on a crt,
wuhich could be directly manipulated
by the user, Upon call, the
computer could undertake analyses or

other tasks, wuith the results
presented in easily interpreted
formats. Pouer ful means for
generating alternatives and

evaluating them uould be available,
with quick feedback of results. The
designer, houever, would have
complete control, fully excercising
his creative abilities. UWhen the
design was complete, " the computer
could generate drauings, part order

lists, and other production
documents, including fabrication
instructions for NC tools. Several

note:

designers could work on
design in parallel, calling forth
different sets of application
programs as they proceeded. Each
would receive output in the format
most convenient for the task at
hand.

the same

While the range of possibly
applications has greatly

since this scenario uas
conceived, the system design
problems for achieving it are only
nou being resolved.

useful
expanded

B. Tuo Approaches to
Man-Machine
Col laboration

There are tuo basic
approaches for structuring
information flow so as to allow man
and machine to cooperatively develop

this work was supported by the National Science Foundation.

a design. The first is to rely on
drauwings and other current manual
representational methods, but to
develop techniques for automatic
encoding of the data needed for
computer applications. This
approach relies on pattern
UNIVERSIT

Y LIBRARIES

RSITY
ARNEGIE-MELLON UNIVE!
Pncrsauacn, PENNSYLVANIA 15213



CHARLES fi. EASTIIAN

recogni tion techniques and syntactic called ICAM tUisnowsky,1977], the
anal ysis and has not proceeded fan CAEADS program in bui lding design
the syntax of drawings and other for the Army Corps of Engineers
" design information seens to be as [Construction Engineering Research
' varied as human | anguage and Laboratories,19771, as well as
possi bly even nore difficult to private efforts in chemical
Interpret automatically. The second engineering (Nilda et al,1977), the
- approach is to rely on an automobile industry (Gar th, 1974),
essentially nmachi ne readabl e private consortia [CAM-1,1976) and
encodi ng of desi gn i nformati on, research groups [Eastman, 1976).
built up by procedural Iy nodifying Similar efforts arm also being
the representation as decisions are undertaken in  other  countries
made. Feedback Is provided by [Spur, 1976), [Engel i, 1974), [Okino
automatically transl ati ng et al,1973), [Brun,1976). The
information into graphical and other principal uses of these databases
usef ul formats, whi ch can be are to interface with a number of
directly manipul at ed. analysis programs,  to  provide
documents and NC data for
It uas this second approach, fabrication and io act as the
| believe, that Coons had in mnd. primary representation during design
The difference between the two and construction.
approaches is that in the second
case, the conmputer, not man, defines These efforts are similar in
the syntax by which comunication some ways to ongoing ones in
takes place. As the facility to electronics design, but are unique
transl ate bet ween drawi ngs and because of their wuse in custom
machi ne readable formats inproves, design of a single product, the need
these two approaches are bound to to represent three-dimensional
merge. However, the starting points geometries and because of
for each are quite distinct. multifunctional performance
requirements, among others. The
C I ntegrated Design goal, hoeuever, is simllan to
Dat abases development techniques for largely
automating the design and
The second approach requires manufacturing of a class of
a machine-encoded representation of Industrial products.
the design project, flexible enough
to accept a wide range  of The larger implications of
descriptions. In most fields, this integrated design databases are just
requires millions of words  of now becoming understood. Currently,
storage and thus a large database. the representation of a design
The goal of the second approach project is in drawings,
- might be called an INTEGRATED DESIGN specifications, analysis data and
DATABASE. many other formats. The
introduction of an integrated
Efforts to develop database results in the design being
T integrated design databases are represented in a new medium, with
being undertaken for several entire|y new properties and
branches of engineering as well as capabilities. This one medium can
comprehensive systems to support the hold all the information needed for
design and production of a class of design and construction rather than
.complex  objects. In the United having it distributed over several
States, examples include the COVRADE media, providing new opportunities
effort in ship design [Bandurski and for augmentation. For example, the
Jeffel’sor‘l,|975a£b), the IPAD effort Spa“al aspects of a des|gn can be
by NASA [Mi Her.1973] to develop a stored directly in three dimensions,
engineering design system for space not as multiple two-dimensional
vehicles, an even larger effort by representations. Various kinds of

the Air  Force Material Commend jnformation may be linked together
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in ways not possible today, so that
the representation nay facilitate
checking, for example, the shape of
some part against the Machining
operations described in Its
specifications. In addition,
automatic procedures for detailing,
based on conventional practices, can
be developed that will greatly speed
and reduce the cost of design
development. Much of the checking
of -codes and standards can be
integrated into the design process,
eliminating the need for review to
exist as a separate process. These
examples indicate that engineering
design databases will create Major
changes In the engineering and
design professions, far beyond those
resulting from previous computer
applicat ions.

Il. INTEGRITY ANO CONSISTENCY IN

DESIGN
A. Some Definitions
Central to the new

opportunities is the automation of
integrity and consistency management
of design data. In computer
science, these two terms have quite
specific meanings. INTEGRITY is the
maintaining of functionally related
information so that the relations
are satisfied. CONSISTENCY is a
special case of integrity and
involves maintaining the equivalence
of redundant data. (Date, 1975).
Both have been recognized as
significant Issues in the management
of databases and much research
supposedly addresses them as an
issue (Codd,1978). (In addition.
Integrity sometimes is used to refer
to consistency issues, when updating
Is done by more than one parallel
user. I uill not focus on this
special case.)

The richness and amount of
information wused in design makes
integrity and consistency special

problems. They involve a large
epectrum of considerations. At one
level is simple bookkeeping

operations, such as the guarantee
that redundant

. integrity

information is

consistent, eg. that the same beam
or pipe represented in different
drawings and engineering
calculations is described
consistently. At a different level
is the concern that fixed solid
objects don*t overlap in space.
Also there is the integrity problem
of deriving correct counts of parts
and quantities of materials. At a
more complex level of integrity
management are the dimensional
relations among connected items, eg.
the requirement that fittings,
pipes, valves and ducts match with
the equipment they connect. At a
higher and Much broader level is the
relation between
performances that are analytically
derived and the components selected
to support them. Examples include
the convecting unit required to heat
a room, having some computed BTU
requirement, or the structural
element required to support some
estimated load or the processes and
piping required to create some

material. At the highest level of
consistency management is the
checking of overall project

objectives, such as cost and global
functional performance against the

design being stored. In each case,
the technical form of the integrity
relation is an equality or

inequality expression over a set of
data describing part of the design.
In some cases, the scope of the
expression is limited to variables
describing a single entity, while In
others major portions of the
database are involved.

Integrity and consistency,
then, are ubiquitous tasks in design
that include both the most trivial,
local concern as well as the most
crucial global objectives. As
designers, we deall with them
constantly. Uith the structuring of
all design information into a common
processing environment, it becomes
possible to augment integrity and
consistency management, what was
previously a completely manual
concern.
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B. Rel ati on to Representation
Issues in Proble»solving

Uhen consi der ed Mor e
broadly, the inportance of integrity
and consistency in design should not

come as a surprise. Integrity
managenent is a f undanent al
capability of any problensol ving
representation. I'n  probl ensol ving

theory, the choice of representation
is based upon the facility various
representations provide for nanagi ng
the relations or structure  of
i nportance to the problem No
representation is conplete; certain
properties are ignored depending
upon the design probl ens bei ng
sol ved, because they do not relate
in a knoun, direct and significant
way to the performances of interest.

The goal in choosi ng a
representation, for either nanual or
aut omat ed probl emsol ving, is to
directly represent in an easily
manipul atable form as many of the
relations of interest as possible.
But it is only in the design of
conput er syst ens, usi ng dat a

structures and operations that are
designed to nanage certain integrity
rel ations, that ue have had the
opportunity to create neu
probl ensol ving representations
freely. Until nou, wue have been
limted to selecting froma snall,
al rost  fixed set.

C Opportunities of
I ntegrated Databases

It is on the potential for
integrated design databases to deal
ui th the problems of integrity and
consistency that 1 uish to focus.
In the near future, it may be
possible to design conpletely uithin
a conputer, with powerful tools at
ones di sposal . Among these are the
capability to define some rather

gl obal goal s and cont ext ual
conditions to be satisfied for a
desi gn. Later, during relatively
unstructured desi gn deci si on
processes, the conput er ui ll

automatical ly check decisions as
they are nmmde against the earlier
stated goals, warning the  user
regardi ng i nconsi stenci es and

possi bly naking changes to other
parts of the design so as to correct
t hem It should be possible to
specify neu integrity rel ati ons
whil e designing, so that a user can
gain help in any task that can be
adequat el y descri bed. Exanpl es of
such mai nt enance i ncl ude the
definition of utility connections
and material balances, so that they
are nmonitored during layout stages

of design, uhile still allowng the
designer to add couplings, elbows
etc. interactively. O the user

may inpose functional standards, say
regardi ng earthquakes or safety that
would result in detailed nonitoring
of design decisions for their safety
implications at a detail not
practically inplenented otherwi se.

Uth this capability as a
goal, | uill present in this paper a
characterization of integrated
desi gn dat abases and propose a
gener al concept ual structure that
facilitates several forms of
automatic integrity nanagement. O
i nportance to this structure is the
desi gn devel opment sequence, because
the order of decisions and degree of
iteration alloued greatly influences
the kind of integrity managenent
required. The integri ty managenent
i Sue uill be exam ned in detail and
techniques for dealing with it uill
be proposed. In this devel oprent,
the problens of design databases are
consi dered generically, as they
apply to all desi gn fields.
Houever, exanples are taken from the
area of physical system design, eg.
the design of ships, buildings, and
ot her artifacts in whi ch
3-di mensi onal spatial considerations
play an inportant role.

The work upon uhich these
ideas are based is a long-term
effort in devel opi ng a  system
supporting the inplenmentation of
integrated design databases [Eastnan
and Henri on, 1977b]. This uork has
f ocused on the features of
i ntegrated design databases that
require special system support and
the best design of those supports.
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. THE GENERAL ORGANIZATION OF
AN INTEGRATED DESIGN DATABASE

A. Project Databases
and Support Databases

In Moat integrated database
systems, a common structure has
emerged of the overall facilities.
The information that describes a
particular design project resides on
a PROJECT DATABASE. It corresponds
to the information that normally
presides on drawings, specifications
and engineering data. This database
grows significantly over time and
ite atructure must be fairly
dynamic. In order to build it up,
several other supporting files are
required. One is a PARTS CATALOG of
conventional design entities. This
catalog holds complete descriptions
for those entities likely to by used
In projects and saves the user from
having to enter information each
time it ia needed.

The project database and
catalog may interact in fairly
dynamic uays. Some information may
not be wused often, such as that
required for specialized analyses.
This information may be kept in the
catalog permanently and dynamically

retrieved only when it is
specifically needed. In some
database systems this technique s
relied on exclusively: all

information about entities remains
in the catalog file and a project
database consists of pointers and
instances to these separately stored
descriptions. In other cases, all
information regarding entities used
in 9ome project is passed to the
project database.

The word ENTITY is used here
very broadly to mean a diverse range
of design components, including
purchaaable parts, a generic system
and its normative description, a
space or room, the site of a
building, a machine or any other
referent whose proporties are part
of the design description.

Another support file needed
is for APPLICATION PROGRAMS.

Application programs are of two
types. The first consists of large
stand-alone programs having heavy
computational costs, such as finite
element analyses or material
balancing programs In process
design. These are efficiently run
on only a few large computers,
probably not the same as the
database host. Thus the interface
to them will be by generating card
or binary image files that can be
sent electronically to a possibly
remote mainframe. The results of
the analysis will be read back into
the project database by another
program that will distribute and
store the output data. The second
form of analysis are those the
require extensive data and are not

compute bound. These applications
can be integrated directly with the
database system. It should be

written in a language that can be
directly linked with the database
structuring facilities. Both are
considered files so as to not
distinguish what processors are
involved.

An important example of this
second type of application are
programs for automatically adding
detail to a design. In every design
field there are conventional means
for treating common situations,
usually described in handbooks. The
details often require some
adaptation to differing conditions.
An example might be the detailing of
windows, doors or stairs in
buildings, or the sizing of
connecting piping and controls to a
simple mechanical component, such as
a condensing unit. Procedures that
take information from the database
and use it to size and configure

other entitiy information is a
significant aid in developing most
designs. ' Example programs  for

automatic detailing are presented in
[Eastman and Henrion, 1977a).

Another important form of
the aecond example are those
application programs that generate
output for production. This may be
in the form of drawings and involve
an interactive segment for
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formatting the information  on
drawings. Alternatively, it mag
consist of the output of numerical
control tapes that generate the
part(s) described [Kakazu  and
OklIno,1976).

B. Systerh Level Support

A number of system level
facilities are normally part of an
integrated database system.  These
include: means for  graphical
interaction with the database, for
extending the available set of
applications, for general file 1-0,
for backup and recovery in case of
crashes, for restricting access or
modifications to those people who
have authority.

Terminal facilities usually
Include a graphics display, keyboard
and means of alphanumeric output, a
digitizer for entering custom shape
information, possibly with cursor
control of the display, and a means
for generating hardcopy output. In
addition, direct output may be
generated to other processors, such
as to the controllers of numerical
control machinery.

All  of these facilities may
exist on a single processor or may
be distributed over some sort of
network. For example, a parts
catalog may reside on the same
processor as the database or be
common for a large geographically
disperced company or industry. The
eamo applies to analysis programs.

C. The Project Oatabase

The most convenient general
‘conceptual organization (as versus
physical organization) of a project
database Is as a description of
entities and their  composition.
ENTITIES are characterized in _all
scientific work by enumeration of

their attributes. Here, an
ATTRIBUTE consists of a name that
stands for some measurement

operation and a value resulting from
the measurement. Attributes may be
defined in interval scalar
measurements, such as cost, axial

load or other performance
requirements or nominal text strings
such as manufacturer or function
(structural, acoustical, control

etc.), and more complexely coded

information, such as shape, location
and color. Of course, no set of
attributes  completely defines an
entity. In design, we only consider
those of significance in the context
of the problem at hand.

But design consists of more
than the definition of a set of

entities. The definition of a
SYSTEM is that its COMPOSITION is
such that new attributes or
functions emerge [Jacob,19771.

Different compositions result in
different emergent properties, eg.,
a wall may be structural or
non-structural or possibly transmit
light. Composition may be defined
in at least two ways, spatially or
funct ionally.

SPATIAL COMPOSITION is the -
locating of one or more objects

relative to others. Location
information can involve chains of
relative locations. These are
east ly combined using
transformations to derive the

relative location of any pair in the
chain [Newman and Sproul ,1972).
Location information may be resolved
when  entered OR stored and
transformed on output. The relative
advantage  of different  storage
schemes of location information has
been debated [Braid, 1973). The
emergent  properties created by
spatial compositions include the
space created by the composition of
materials in architecture or the
structural performace of a frame.

FUNCTIONAL COMPOSITION  is
the relating of objects so as to
fulfill some  purpose. Emergent
properties resulting from functional
composition include the performance
of a process plant or a heating
system. It should be noted that
functionality involves more than
connectivity relations: many objects
connected to a building's structural
system are ignored when analyzing
the building's structural behavior.
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A functional relation
identifies in  nominal form an
Interdependency regarding component
behavior. Later, analysis will
define quantitatively the amount and
form of that interdependency. That
Is, in current analysis methods the
designer abstracts from the project
those objects that will functionally
interact and an analysis will thsn
define the value of interaction.
There are no tests in most areas of
functional analysis to determine if
the initial abstraction was
complete.

A design database should be
capable of representing both spatial
and functional compositions.
Functional composition usually
constrains spatial composition and
thus defines an integrity relation
on it. For example, connectivity
partially defines relative location.
Thus the most general form of
composition is spatial. It may be
possible to derive most functional
relations from the spatial
relations. Such a reduction of the
relations that would have to be
explicitly managed would greatly
reduce the integrity, management
task, but this concept has not yet
been tested, to my knowledge.

V. CONVENTIONAL VIEUS OF THE
DES1IGN DEVELOPMENT PROCESS

The detailed structure of

design has been little studied
empirically and not much of a formal
literature exists. In  practice,

design procedures are determined by
personal judgment and conventional
practices, with few actions based on
or derived from formal
considerations. But built into an
integrated CAD system is the set of
application programs and the method
of their interfacing, determining
the one or more design development
sequences allowed. In this way, an
integrated CAD system constrains the
process of design . it can
accommodate.

Like most very large
problems, the goal of integrated

design systems has until recently
resisted direct attacks. Many of
the recent efforts backed into the
concept by responding to short term
practical problems. In many large
scale engineering projects, may
different stand-alone computer
programs are currently in use. Each
application relies on a specialized
representation depicting those
attributes and relations. In almost
every case, the major cost in using
these programs is the cost of coding
the data representing the problem.
In addition, many of the programs
require common data that currently
must be re-entered for each
application. An integrated database
is justifiable to reduce these
coding costs.

A, The Precedent
Ordered Sequence
Based on this line of
reasoning, almost all efforts to

integrate a number of design
functions rely on a PRECEDENCE
ORDERING OF TASKS. The various
stand-alone programs are ordered in
an approximately linear sequence and
related by a "mapping program" that
takes the output data from one and
generates from it input to the next
program. See Figure la. Each
application corresponds to a phase
of design development in which
certain decisions are made, after
which it is mapped into the next
stage.

This precedence ordering of
development corresponds conveniently
with production design processes

within many organizations. It also
provides a "natural" evolutionary
development for moving from
independent applications to an
"integrated system". Only the

development of a common operating
environment and the mapping programs
seem to be needed to integrate'
previously stand-alone systems.
Within this organization, mapping
backwards is not possible, though
iteration, by throwing awvay
information and repeating a stage.
Is.
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LAYQUT _ NECHAN CAL STRUCTURAL
Ol ROULATI ON SCFENATI C BESI G

Z : t
DATABASE #1|- HAP*|DATABASE 02}- MAP- *DATABASE 03

at the precedent ordered devel opMent sequence.

NECHAN CAL
STRUCTURAL GRID BASIC USE PLA SCHEMATI CS *
U SERVI CE CORE-=—3 & CIRCLLATION CONNECTI VI TY

SCHEMATI CS FACADE SCHEMATI CS

bs acceptabl e sequences for a high-rise office project.

BASI C USE PLAN VECHANI CAL STRUCTURAL DUCT LAYOUT
& FUNCTI ON —_——> SCHEMATI CS & ->CRID &
LAYOUT CONNECTIVI TY SERVI CE CORE

PI PING LAYQUT

c: acceptable sequence for a laboratory project.

FIGURE 1i Alternative devel opMent sequences in building design. No single fixed
eequence |s acceptable.

There are several well knoun circunstances. Thus no one sequence
weaknesses of the linear sequence of of devel opment would be acceptable
desi gn devel opnent. The I'i near to all architects, or to even one
sequence i nposes an or der on firm
deci si onmaking for developing a
design and thus uhat decisions can In ot her desi gn fields
constrain ot hers. Thi's is i nvolving yari able condi ti ons and
satisfactory for sone conventional, contexts, similar conditions surely
large volune products, but it does hol d. Different priorities wll
not facilitate unique considerations exi st in different projects and
or tho9e varying in inportance. For these require different devel opnent
exanpl e, the appropriate devel opnent + sequences.

sequence for a high rise office
buil ding mght be the one shown in .
Figure |Ib, whereas an appropriate | ow
sequence for a laboratory building

A related shortconing is the
utility of t he resul ting
dat abase for use within a dynamc

m ght be that shown in Figure |Ic. context. During design, if a new
In a high-rise office, the structure technol ogy or ot her oppor tuni ty
is typically given high priority, ari ses, a linearly or der ed
whereas the routing and flexibility devel opnent sequence usual | y
of mechanical equipnent is likely to requires iteration through Mjor

be nmore inportant in the l|aboratory.

portions of the sequence in order to
Thus the sane devel opnent sequence

incorporate the required changes.

is not likely to be suitable for

both building types. In practice, The linear sequence al so
the pr Obl, em is even nore §eri Ous. predet er m nes what application
In building design, each firm has programs are available during design
Its own  preferred  devel opment devel opnent. The incorporation of a
sequences and these may vary with speci al app Meat i on package
bui | di ng type or particul ar especi al |'y appropri ate for a
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particular situation or in response
to a unique emergent function is
hardly possibie. The response to
epecial wuind conditions around a
building or to the noisé produced by
a unique piece of equipment in a
factory would not be treated by the
system. Integration of new forms of
analysis or altering a design so
that the current analysis won't work
imposes such a high cost that
alternatives requiring these
probably will be abandoned.

B. Yarying the develop-
ment sequence

The reason wuhy it may seem
possible to determine a single fixed
design sequence |8 because of the
data requirements of the different
application programs., Each program
requires certain data and generates
other data. By matching inputs with
outputs, it is possible to define a
partial ordering of programs.

This ordering is not
complete, houever. In ship design,
pouer trains and hull designs are

functionally interdependent because
of pouwer requirements. Non-ordered
conditions may be the result of
independently determined variables
being required by the same analysis
or by areas of design that jointly
determine each other.

It is possible to circumvent
the partial ordering. Previous
projects of similar design allowu
estimation of normative values
describing part of the project.
This data may be inserted in the
database to change the ordering in
which applications are applied.
After oactions are taken on these
estimated values, more exact values

can be generated on a later
iteration. This technique is
commonliy applied in resolving

simul taneous relations also. Many
simul taneous relations are resolved
by making informed estimates of the
values determining one aspect, then
using these estimates for solving
the other, then iterating.

The |inear sequence database
generally ignores the flexibility

. offered by normative data. Instead,

it incorporates whatever normative
data that is needed for its fixed
sequence and ignores the rest.

¢ normative information can
be used to circumvent the precedent
seqguence based on information
availability, then what is the
logical basis upon uhich design
development ought to proceed? The
sequence of design development is
certainly influenced by many
practical issues, including workload
scheduling of different designers
with specialized skiils, client
priorities and the sequence of
fabrication (especially in
development sequences where
construction begins prior to the
completion of design). The only
logical principle that has been
proposed thus far is that the
functional relations to be satisfied
can be considered as binary
constraints, a total design as a
conjunctive set of binary
constraints (Suther | and, 1963;
Eastman,1973).

Good practice has long
followed the dictum "solve the hard
parts first”. More precisely, the
most efficient sequential resolving
of binary constraints, has been
shoun to be based on the functions
(Stagle, 1964):

COST OF EVALUATING CONSTRAINT

----------------------------- (1a)
PROBABILITY THAT CONSTRAINT

WILL FAIL

COST OF EVALUATING CONSTRAINT
----------------------------- (1b)

PROBABILITY THAT CONSTRAINT
WILL PASS

Conjunctive boolean tests should be
considered in ascending order of Eq.
(1a) and disjunctive tests in
ascending order of (lb).

In practice, however, ue do
not commonly evaluate the costs and
probability of failure of different
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design  operations in order to
determine the appropriate sequence.
Ue DO evaluate their difficulty or
the amount of work required to
resolve them and this information
can be used as an approximation for
equations (la) and (Ib). However, a

larger Influence applies. Using
normative data requires that
different levels of aggregation

already be defined and that ue have
some insight into the range of
values that characterize classes of
solutions. Usually ue have
normative data for only a feu of the
possible solutions. Thus ue tend to
follow design development seguences
that utilize information available
from previous projects. This is, of
course, a conservative influence on
the alternatives that can be
explored.

there seems to
principles that
design development

In summary,
be at least four
guide the
sequence:

1. different application
or design operations
input certain

programs
require as
information  and
generate  other information as a
result. The relation among
operations is a partial ordering.

2. the partial ordering can be
circumvented by using normative data
from past projects to approximate
the data needed to execute some

operation.

3. the satisfaction of design
functions can be treated as
sequential binary tests. In this

framework, an optimal sequence can

each test and its
failure.

probability of

4. in practice, normative data
is available for only a feu design
alternative. These involve similar
development sequences and problem
contexts to those solved previously.
The lack of normative data forces
the designer to rely on more

detailed analysis and restricts the
sequence of activities he can
undertake.

Uithin the frameuork imposed

by the availability of normative
information and information
avai labi li ty, most competent
designers still have many degrees of
freedom. The choice left is a
personal one that allows "style" to
emerge (Churchman, 1968;Simon, 1975).
Given that no general mechanism
seems available for logically

delimiting the development sequence,
it seems very desirable that CAD
systems support a uide range so as
to not arbitrarily delimit potential
design results.

"V. CONCEPTUAL MOOH. FOR STRUCTURING
DESIGN INFORMATION

Uhen design is primarily a
manual activity involving only a feu
people, there is little impetus to
structure it in a formal uay (though
there may be important benefits in
doing so). Small organizations can
organize design in response to
personality and motivation factors.

& But in a computer environment, the
machine must manage design
information and programmers are
forced to impose some form of

be defined, based on the cost of structure on the uay design
information is organized. -«
PROBLEM CONCEPTUAL PHYSI CAL MACHINE
DOMAIN -5 SCHEVA =» | MPLEMENTATI ON =3 | ENVIRONMENT

(user oriented)

(dat abase system

oriented)

FIGURE Hi Tuo level model for the design of databases.
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The design of busi ness
ori ented conputer databases is faced
with a simlar problem to capture
certain aspects of reality within an
Information structure. One view of
dat abase design Is that it involves
two distinct nodels, as shown in
Figure lit a CONCEPTUAL HOCEL that
provi des a logical structure to
reality and a PHYSI CAL
| MPLEMENTATION  which is a nmachine
translation of the conceptual nodel
(COOASYL, 1971). * The value of
considering a database in these two
steps is that the conceptual nodel
explicates the capabilities of the
system separately from its
i mpl ement ati on. In a database
managenent system the choice of
concept ual nmodel is based on the
richness of the probl em domain that
it 'captures', its ease of physical
I mpl enentation and its conceptual
clar ity.

* In this section, | describe
a concept ual nodel for design. For
desi gn, the conceptual nodel should
be capabl e of depi cting the
rel ati ons of inportance in designing
and facilitate their autonatic
mai nt enance (the integrity issue).
It should aid but not restrict the

user in his conceptualization of

desi gn. A190, it should allow a

vari ety of devel opnent sequences. .
A. Abstraction

Hierarchies

. It is obvious that as a
design project evolves, its
description grows. Two forms of
growth can be identified. First,
entity descriptions are enrichened
with additional attributes.
Examples are the adding of
performance data, as they become
known, or manufacturer or delivery
data, as these are determined. The

second way in which a design
description grows is by the
decomposition of aggregated entities
into their consitiuents. Thus a

building might initially be defined
in terms of enclosure and spaces.
The enclosure later will be
decomposed into walls, floors, and

ceilings, and still later, the walls
into structure and surface
materials, etc. The top node in the
hierarchy is the initial problem

definition, eg. a general
description of a building and site
or a ship and its functions. The
bottom level entities are the
multitude of parts that the
fabricator uses to construct the
project. Design development may
proceed by sequentially adding
detai | to the hierarchy in a
top-down manner, or aggregating
objects in a bottom-up sequence
(corresponding to the design of
general purpose modules). The

levels of detail correspond roughly
to the phases of design and provide
data for analyses programs. -«

This hierarchy of entity
descriptions is an integral part of
the scientific view of the universe
(Jacob, 1977). It has also received
much attention in different areas of
design (Simon, 1969); Alexander,
1364) and software engineering
(Uirth, 1971). The name now
associated with this hierarchy is
ABSTRACTION HERARCHY (Smith and
Smith, 1977). The various nodes,
except at the bottom level, do not
describe literal objects, but rather
conceptual classes of entities.
Here they will be called ABSIRACT
OBJECTS. Throughout the rest of
this paper, the word "objects" shall
refer to abstract objects and
entities as well as to literal ones.

Appli cati on programs
interface with the hierarchy through
MAPPING PROGRAMS, one to generate
input data, and if needed, a second
to store the results back into the
database. The application can be
called at any time, so long as the
needed data has been entered. A
set-up program can be called first
to 9ee that the needed data is
there. For each data item needed by
the application and not yet
computed, it will assign a normative
value from previous projects.
Fenves has developed some means for
maintaining permanency flags on
design data (Yang and Fenves, 1974)
allowing the distinction to be made
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betueen normative data, analytically
derived data and invalidated data.
Thus new applications way be added
without considering their effect on
other analyses. Uith this database
organization, the same system could
be used to design buildings
according to varied prigrities, such
as starting wuith circulation and
activities or the structure or the
extéerior form. Ships could be
designed by
hull

(cargo,
plant.

design, its Major function
arMaMents) or its power

B. The Structure of
Abstraction
Hierarchies

The detail organization of
an abstraction hierarchy for design
can be defined in several
alternative wuays. The choice has
serious implications for the
physical implementation.

It is generallg agreed that
the hierarchy is roughly
set-theoretic. That is, after an
initial problem is defined, for each
entity X¢, Xie X. (This definition
is oriented toward top-down design.)
In this discussion, the term
"parent” will be used to refer to
the entity Xa and the terM
"children" will be used to refer to
the emmber9 X, . This condition is
certainly an inclusive one and
without restrictions imposes feu
limitations on the overall structure
of design. Most often, the
restriction imposed is the
traditional set-theoretic one, eg.

if X,e X, , then X:* X,, for all n,
n/m. (3]
That is, any entity May have at Most

one parent.

This condition is too
restrictive, however, as the
examples below demonstrate. The
strict set-theoretic condition must

be broadened in at least two ways:

initially focussing on.

1. multi-functional components
require that an object be a member
of more than one set. Consider the
design of an automobile. Early
design may consider two systems,
each uith a distinct function and

required performance, eg. the power
and structural systems, Normally, an
engine is considered part of the
power systeM and uould be one of the
children of this parent. However,
engine blocks can are also be used
as a frame Member, particularly in
racing cars. Thus they should
belong to this hierarchy also. In
general, any entity having More than
one function is likely to belong to
multiple sets, eg. have More than
one parent.

2. functional and spatial
composition each require their own
structure. Consider an electrical

distribution box on the 4th floor of
an apartment building, possibly in
someone*s apartment. Is the box
part of the apartment entity, the
electrical system entity, or the 4th
floor "entity'*? Both the 4th floor
entity and the apartment entity are
defined by LOCATION; the apartment
may even be defined as "part of the

4th floor. On the other hand, the
electrical system "entity" is
defined by function. It would be

desirable not to have to make an
either-or choice, but allow accesses
to the electrical box to be made by
both location AND function. Uith
multiple functions, this means one
entity may be "part of? MANY higher
level entities. It is reasonable to
conclude that entities are children
of other entities AS DETERMINED BY
THEIR ATTRIBUTES, of which location
and function are at least two.
Formally, this is denoted

Cby g wWe. Wil = Xy wpe Xn (3)

where up
entity X(.

is an attribute describing

These tuo examples suggest
richer set of relations s
needed in design than those provided
by the conventional set-theoretic
hierarchy. The hierarchical
organization is an overlapping set

that a
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attributes of a higher level
abstract object. Uhereas analysis

generates information upuard in the
abstraction hierarchy, synthesis
generates information downward.

Uhen synthesis is found to be
difficult for one subtask, synthesis

is often iterated at a higher level
In order to reframe the lower level
problem.

Synthesis is often a
nondeterministic process and
involves a "search" for an

acceptable solution. However, some
synthesis processes do not involve
search, but are procedural methods
for detailing. Ue normally think of
most design synthesis steps as large
application programs, such as an

linear program. In most design
areas, however, a good portion of
component selection is done
procedural ly; they are derived from
a few simple deterministic
relations. Examples include pipe
fittings, window and stair
detailing, many joint details, etc.
Thus synthesis is possible without
analyst 8.

This form of process can be
executed within the abstraction
hierarchy by taking each functional
attribute of a designated entity k

and prescribing for it a
configuration of entities | that
realize it. Integrity relations
that apply downward are numerous,
such as code and regulatory
requirements. Examples include

required joints in a structure or
the control system for some chemical
process. In general, synthesis
oriented integrity relations impose
one or a small class of "solutions",
based on the requirements of some
"critical" performance.

Both analysis and synthesis
processes rely on relations within
the abstraction hierarchy.
Synthesis takes information from one
level and adds information at a
lower level. Analysis takes
information from some level and adds
more at the same or higher level.
In some cases, the breadth of

EASTMAN
relation in the hierarchy
encompassed by one analysis
encompasses many entity
descriptions, such as material

balance and spatial location. Many,
however, involve only a feu.

C. Knowledge  About
Abstract Objects

The third major form of
design knowledge is of entities that
incorporate particular combinations
of functions or attributes. This
knowledge does not only consist of
directly realizable objects
purchasable in the marketplace (this
set is constantly changing), but
more importantly, abstract objects
and the range or attributes that are
realizable for them. Thus an
architect knows if a  2-bedroom
apartment with 488 sq. feet of
space is likely to be realizable and
a chemical engineer if an 9BX to 18%
mix of gasoline to fuel oil is
realizable from a particular crude.
These estimates are used throughout
the intermediate levels of design to
define a general configuration with
the attributes required. Host
technical breakthroughs do not
consist of a new realizable object
(primitive) but rather an abstract
object resulting from a new
technology allowing mixes of
attributes that could not be jointly
realized previously. That is, it
consists of a class of new
configurations.

Designers also occasionally
search this knowledge of abstract
objects. They ask the question:
what can this abstract object be
used for? It is an attempt to
identify a group of attributes from
a configuragion that would be of
value. It may be wused in deriving
possible uses of a new plastic or in
determining the best use of a given
building site.

Currently, in manual design
the only knowledge that is
explicitly integrated into a design
solution is the description of the

bottom level objects utilized.
Abstract objects and especially the
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of trees, resulting in a
semi-lattice. One way of treating
relations betueen entities is to
define relations betueen entities
and the attributes of other
entities. This form allows an
entltiy to be part of Many sets.

An implication is that
database systems that rely on set
theoretic relations will not in
general be suitable for design
applications. Rather network
capabilities will be required

[Taylor and Frank, 1976].

An additional point emerges
from these discussions of the

abstraction hierarchy as . a
conceptual model for design
information. Both emergent

properties and articulation by the
addition of attributes point to the
need for entity descriptions with
varying, extensible attributes. One
fixed entity record format would be

too cumbersome (if all possible
attribute fields were defined
initially) or limited for an

Integrated design database.

VI. DESIGNING IN AN ABSTRACTION
HIERARCHY

In this section, it will be
shown hou the abstraction hierarchy,
as defined above, supports different
design operations. Again, such an
excercise is frought with
difficulties, because there is no
agreed upon taxonomy  of design

operations. At a more aggregate
level, however, there are the
conventions of ANALYSIS and

SYNTHESIS and these shall be relied
on to organize the discussion.

A. Analysis

The best understood of
design operations is ANALYSIS.
Analysis consists of deriving new
attributes for an entity by applying
a model to either other attributes
of the same entity or to to
attributes of others that comprise
the entity. Conventionally, this is
to predict one of the performances

of the design. Actually, the
performance is of one or more
abstract objects. Examples include
modeling the overall material
balances of a chemical plant from
the known behavior of its
constituent processes or of a
structure from the behavior of its
members. Analysis, then, is the
generation of information from lower
levels to higher levels in the
abstraction hierarchy (the opposite
flow of information from that
commonly assumed).

The analysis model
incorporates the detail form of
relation betueen the entities
defined in the structure it s
applied to. The structure
identifies betueen uhat entities

these relations apply." The general
form of this relation may be
characterized as:

for all children a associted with
attribute (9) b of entity c, apply
the expression d to derive the value
V. v may be compared with earlier
estimates or simply assigned as the
value of b.

The expression d is most
conveniently tied to the TYPE of
attribute b. Thus a single cost
function could be applied to the
components of any abstract object,
or a single function could be
applied to sizing of pipes or
structural members or in determining
the acoustic properties of walls.

B. Synthesia

The second form of operation
traditionally associated uith design
is SYNTHESIS. Synthesis might be
defined as the generating of neu
configurations so as to satisfy
earlier defined functions. Examples
include laying out spaces in a
building, defining a structure or
piping destribution system, or
laying out equipment in a chemical
plant.

Synthesis can be interpreted
as defining constituents that
satisfy one or more  of the
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relations involved are only dealt
uith in the designer's head or on
paper used tenporarily during early
st ages of the process. The
abstraction hi erar chy explicitly
includes both abstract objects and
the anal ysis and synthesis relations

uithin its structure. The
abstraction hi erarchy provides a
usef ul concept ual frame for

organi zi ng desi gn know edge.

An i nport ant cl ass of
information relied on heavily during
design pertains to the contextual
conditions in wuhich the design is
i mhedded. This includes any special
envi ronnent al condi tions to be
encountered by nechanical equipnent.
It also involves the production and
mai ntenance infornmation relevant to
the entity being designed. Most
importantly, it involves the human
factors i nformation regar di ng
operators of the equi prrent or
occupants of the facility of ship*

Some of this information is
sinply coded and can be stored as
part of the initial probl em
definition in the upper levels of
the hierarchy. Exanples are the
nunber of occupants of different
rooms or the envi ronrrent al
condi tions to be encountered by

equi pnent . In addition, much design
i nformation is encoded in
application prograns. Exanpl es
i ncl ude el-evat or sel ection and
sizing prograns in building design,,
cl earance requirenents in pi pe
.layout programs. |In addition, it is

easy to imagine the many such
relations can be added to an

i ntegrated desi gn dat abase as
integrity relations. These coul d
i ncl ude cl earance and spaci ng
standards, for exanple, applied to
passage sizes in buildings and
shi ps, based on naxi mum circul ation
flou. O t hey coul d noni t or

conditions based on
so that any workstation
" requiring particular lighting or
acousti cal condi tions coul d be
constantly nonitored, resulting in
the designer being warned uhen the
condi tions are not being met*

envi ronment al
activities,

VIT. | MPLEMENTATI ON

In order to denonstrate the

feasibility of abstraction
hi erarchies and their use in
integrity nmanagenent , a snall
exanple wui | | be developed. But in

order to follou it, some conventions
regardi ng database organization have
to be introduced first. Those used
here are the physical inplementation
concepts used in G.IDE [Eastnman and
Henri on, 1977al developed by a team
| ed by t he aut hor. These
conventions are generally consistent
uith the COOASYL reconmmendations

[ COOASYL. 197D. Q her
representations could have  been
used, such as the Rel at i onal
t Codd. 1978) .
GLI DE is a | anguage
especially devel oped for
i mpl enenting i ntegrated desi gn

dat abases. Beside the data types,
operators and control structures of
conventi onal bl ock structured
| anguages, GLIDE includes record
types for defining conplex entities
and the relations between them In
GLIDE, record formats are provided
by a FORM uhich specifies the
Attributes of interest for a class
of entities. It also provides
direct access to each entity within
the class it defines. Attributes
may be defined to store boolean,
real or integer scalars or vectors,
text strings or pointers to other
records. A COPY is an instance of a
Form record. Each Copy also has a
feu system defined Attribute type9
available for defining it; the nost
inportant are SHAPE and LOCATI O\
Shape is a closed bounded pol yhedron
stored as a separate record (for
uhich an extensive set of shape
definition and nanipul ation routines
are provided). Location is a vector
of six real nunmbers corresponding to
the three translations and three
rotations needed to define any
location within a globdl coordinate
system Uith these system defined
Attributes, GLI DE i ncl udes
capabilities for graphically
di spl ayi ng and nanipul ating object
| ocations and shapes, in perspective
or orthographic formats.
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Rel ati ons between entities
that are related one-to-one can be
handl ed by Attribute pointers. For
one-t o- many rel ations, G.l DE
incorporates a SET RECORO, which is
a non-ordered collection of pointers
to other records. These may poi nt
to Fonts, Copies or other Sets.
These facilities are Mre fully
defined in [Henrion, 1977; Eastnan
and Henri on, 1977a], but this
description should be adequate for
the exanple to be devel oped.

A Exanpl e abstraction
hi erar chy

The exanple problem to be
devel oped is a sinple building. The
integrated design database is to
support all desi gn activities,
i ncl udi ng archi tectural and
engi neering considerations.

The initial i nformation
provided is a very rough description
of the project. It wll include the
bui | di ng type, its site, its

construction budget , appr oxi mat e
floor area and other such neasures.
If thought to be inportant, this

initial description may i ncl ude
esti mat es on t he bui I ding' s
performance, such as its annual
ener gy consunpti on. This

information can be entered and
stored in a Formw th only one Copy.
Each of the functions and neasures
are stored as Attributes. The site
is stored as a Form and sihgle Copy
with a conpl ex shape.

At this time or soon after,
information will be gathered about

the areas the building is to
encl ose. Each area includes a
certain anmount of area for
functional use, an unassigned area
for circulation and public

activities, an estimated cost, etc.
These areas nmay or nmay not later
correspond to control zones for the
heati ng equi pnent. This information
is easily structured as entities and
Attributes, of Formtype 'Area', as

shown in Figure |11l1. An Attribute
in the 'Building' points to the
"Area* Form and thus to all its

Copi es. Already there is at |east
one integrity issue, that between
the area estimates for each 'Area*
and the total for 'Building*. This
is just the beginning.

After a rmuch longer period
of tinme, the rest of the Forns and
Sets shown in Figure IIl wll becone
defined. Sets often occur without
being explicitly named and in these
cases, they are shown with a nane in
per ent heses. They are accessed
through the Attribute poi nters;
« AREAS OF BUI LDING returns the Form
"Area' and all its Copies; 'BAYS OF
FRAME* returns the Set (in this case
a vector of Sets) wth the joints
and menmbers for each of the building
frame's bays. (In addition, it is
possi bl e in GLIDE to add back
pointers that go upward in the
hi erarchy, but since these were not
needed for the exanple, they were
omtted.) The Menbers of a Set are
accessed by the | oop control
statenent:

FOR MEM <tenp. var> OF <set> DO
wher e the t enpor ary variabl e
incrementally points to each nenber
of the <set>.

1. spatial
hierarchy

Design information can be

added in many sequences, but
eventually certain structures must
be provided to allow needed
relations. For general types of
accessing, drafting and the
Implementation of construction

details, the building information
should be organized according to a
spatial hierarchy. The spatial
hierarchy covers all points in space
within the project and decomposes it
into disjoint point sets
recursively, resulting in a tree
hierarchy. At the top level, the
spatial hierarchy consists of the
whole building, then of its floor

levels, defined by the Form
'Floor levels'. These are broken
into three classes of entities;
'Spaces’, ‘Interiorwal Is’ and
'Exteriorwal Is'. These correspond

to rooms, interior partitions and
building shell, respectively, and
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are each defined as Forms. At a
tower level of detail, each of these
are decomposed into their
components, to the point that
interior walls will get detailed
into a set of wood or metal studs,
concrete blocks or other
construction method chosen by the
designer. The entities in the
spatial hierarchy are flagged uith
the Attribute °‘spatial’.

2. functional
hierarchies

. In addition -to the spatial

hierarchy, cer tain functional
hierarchies are necessary for
effective designing. First, the

building's structural system must be
defined and organized so that it may
be analyzed. The general definition
of the structure is given in the
Form 'Frame’. Its one:Copy defines
bay and aisle spacing and, along
with the floor heights in
'Floorlevel’, dimensions the
structural grid. ‘Frame’ points to
a Form of ‘lInitial Members’ and
another one of ‘'Joints'. The
initial members are all simple spans
without Intermediate joints and thus
may be combined in fabrication. The
initial members and joints have the
necessary information for running a
preliminary structural analysis,
using a standard package such as
STRESS [Fenves,Logcher and HMauch,
1965]). The initial members are
given only an approximate shape,
possibly a rectalinear solid or a
line. Later, when other issues have
been identified, each initial member
will point to one detail member that
has a specific shape, end cuts to go
around flanges and detailing needed
for fabrication. Rough steel
estimates may be derived from the
description of *Initiaimembers’; the
detail members can serve as shop
drauings. Several initial members
may point to a single detail member,
where a continuous member picks up
loads from several joints wuith
secondary members.

For drafting, the
'Floorlievel’ Copies point to the
many entities needed to drau each

plan; a standard floorplan can be
generated from the 'Wallsurfaces’
end 'Exterior walls'. To these can
be added the equipment pointed to by
each 'Workstation’ or alternatively,
the detail structural members can be
depicted. The elevations of the
facade can be generated by drawing
the entities in the Set pointed to
by °OETAIL OF FACADE(n], wuhere
‘Facade’ is a Form with as many
Copies as there are separate faces
of the facade. Interior elevations
also can be draun, from the
*SURFACES OF' each ‘'Space’. HWith
this information, each space can be
draun in perspective, if desired.

This abstraction hierarchy
need not have been sequentially
defined in a top-to-bottom order.
One set of branches could be
detailed and others filled in later.
The structural frame, for example,
could have been defined early, with
the ualls placed later.
Alternatively, the exterior and
interior walls could have been
placed first and the spaces detailed
before and structural decisions
made. As the bhierarchy is
developed, houever, the relatione
betueen members must be entered, so
that needed access paths and
relations are defined.

The hierarchy presented is
not complete, of course, and covers
only most areas in the schematic
stages of design development. The
mechanical system is not developed
at all, nor is the site and its
interaction with the building, eg.
the foundation. But these would
have a similar type of structure to
that uwhich is shoun. It is not
suggested that this is the only
appropriate abstraction hierarchy
for buildings; indeed, there are
probably many. Different designs
will justify different hierarchies;
a concrete frame will have
reinforcing as an entity but a steel
frame will not. Different walls and
facades are made up of different
kinds and numbers of components.
The point to be made from this
example is that the austraction
hierarchy allous various sequences
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of design  development. It can
accomodate varied kinds of emergent
functions and can still accept
various application programs.
B -+ Exogenous
information

The abstraction  hierarchy
presented focuses primarily on the
relations between information that
describes the design project itself.
That is, it stores information that
is the result of desi gn
deci si onmaking. O significant if

not equal importance is the

i nformation about the  problem
EXT

Some cont ext ual i nformation

is included in Figure Ill. There is

a Form called 'Site', which is

assumed to have a conplex shape
representing the ground contours.
The information about the site could
be expanded to include traffic data*
soil conditions and other site
related information. The 'Building*
record also could point to a 'User'
record, with information about human
factors, organizational i nformation
and other relevant social data.

Clearly, the above coments
are only suggestive and nuch nore
detailed development is required to
useful l'y integrate user and
cont ext ual i nformation into an
abstraction hierarchy.

C. Integrity Management

This hierarchy can support
several | kinds of integrity
management. At one level are the
relations betueen different drawings
of the same building part, such as a
beam. Since different projections
of a single polyhedron wuill start
from the same data, these are
automatically consistent. But shape
and location information is stored
at multiple levels in the hierarchy.
Thus it is required that if a part
euch as a beam is moved, all other
descriptions of that beam must be
moved also. Updating all versions
is the responsibility of the
operation that is used to mowe the

part, and involves three kinds of
checkst (1) all entitiies lower in
the hierarchy and spatially related
must  be moved by the same
transformation; (2) to eliminate
spatial overlaps, all spatial
entities belonging to the same
spatial ‘'parent’ higher in the
hierarchy must be disjoint.  Since
both  solids and spaces may be
defined, this can require that some
shape is altered. Thus spatial
integrity and the detail definition
of space shapes should be held off
until fairly late in the design
process; (3) also, it is necessary
to check that any moved entity is
subjoint to the higher level entity
that it is part of. The important
recognition is that the access paths
exist to automate such updating
processes.

Another type of integrity
management  supported by this
hierarchy is automatic cost
estimation. Initially, the building
cost will have a budget that will be
entered as an Attribute of
'Building' at the top of the
hierarchy. Later, the building ui 11
be broken into more detail entities.
In this case, we have relied on the
spatial hierarchy to provide the, one
tree of entities guaranteed to be
disjoint at each level and
non-redundant. Thus, as the costs
for exterior and interior walls and
spaces are estimated, these can be
automatically summed and checked
against the whole building, telling
the designer how much over or under
budget he or she is. As lower
levels of the  hierarchy are
developed, they are compared with
previously defined higher levels so
that it is known, for instance, when
the structural or mechanical
equipment goes over initial
estimates. This summation process
is from the bottom up, and can
monitor all stages of design with
the aid of a single subroutine for
summing and checking against the
higher level estimate. If this
leads to a change in the higher
level estimate, then the checking
routine will automatically be.
invoked for the next higher level.
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etc.

This sane Maintenance of
information can be applied to other
aspects of the design, such as
thermal heat load analysis. With
automatic data preparation, it mil
be possible to run a heat load
analysis early in design development
and iteratively if necessary. Uhen
to iterate the analysis can be
identified by integrity management.
In the early runs of such a program,
estimates will be made regarding the
conductance of ualls and the BTU
loads generated uithin “different
spaces. As detail design decisions
are made, the thermal implications
of these decisions can be compared
ui th the earlier assumptions. For
example, the window areas and number
of doors and detailing of a
YInteriorwall* can be compared with
its earlier estimated conductance
and warn the user when the earlier
assumptions are grossly wrong. Uith
this knowledge, the designer can
clearly tell if another iteration of
the analysis is necessary.

The invocation of these
checking routines can be controlled
in a variety of ways. It is not
practical to use any global control,
such as the GOAL statement found in

PLANNER systems [Bobrow and
Raphael ,1974]. The pattern matching
overhead imposed on all operations

makes such an approach impractical
on targe databases. Invocation can
be initiated by associating a
procedure with Attribute
declarations, in the way that user

defined checking of Attribute values’

against a predefined domain can be
invoked [Hammer and ticLoed, 19761.
Thus the check is made when a new
attribute value is written. This
procedure then accesses information
regarding the current Copy's parent,
other siblings, etc. as defined by
the hierarchical relations.

EASTVAN

D. Comparison to the
COOASYL
Recommendstions

The database organization
described here is generally
consistent with the standards set
forth by COOASYL Systems Committee.
The network relations proposed there
support the general organization of
entity relations presented in Figure
I1l.  They support the one-to- many
and the many-to-many relations.
Database procedures and FUNCTION
attributes, both part of the COOASYL
recommendations, provide the basic

tools needed for integrity
managment. In particular,
procedures of type ACTUAL are

invoked whenever a variable imbedded
in a function is altered. This
corresponds precisely to updating at
the time of writing values.

Like many problem areas,
design applications would benefit
from recursive pointers, a relation
not allowed by the OCOOASYL Report.
For example, in many building
designs, a space may be made up of
other spaces (which also may be made
up of spaces). Using the same
entity type for all spaces would be
much more convenient for the user.

The most significant
shortcoming of the COOASYL
organization is in the area of
geometric modeling [ Shu and Oyake,
1976). The definition and
manipulation of possibly complex
shapes requires record structures
that must be manipulated
dynamically, preferably during
execution. These operations
probably can be implemented within a
standard i.e.* COOASYL, database
system (see [Lafue, 1977]), but
without special facilities wi 1l be
too slow to support real-time
interaction. It is this problem,
plus the embedding of special
operations wuseful in design, that
design databases such as GLIDE
uniquely resolve.
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VI11. CONCLUSION

It should be clear that the
resolution of all integrity and
consistency issues is not likely to
be possible for meaningful design
problems. Indeed, for problems
where this is possible, design is
reduced to a triviality. Rather, it
seems possible that responsibility
for some subset of integrity issues
can be assumed by an integrated
design database, relieving the
designer to focus on others.

It Is not suggested that the
abstraction hierarchy is the
inherent organization of design
information. Given enough effort,
many different organizations of data
or the current ad hoc organizations
can be wused for designing. Rather,
the abstraction hierarchy is a
heuristic, to be judged by its
sufficiency in representing
different kinds of relations, its
its clarity of conceptual
organization and its efficiency of
implementation. The abstraction
hierarchy concept in design is
certainly not new, yet it has not
been Incorporated except as tree
graphs into design databases thus
far. This uork  will hopefully
provide the specification for a more
useful hierarchical structure for
design.

Integrated design databases
offer the potential of significantly
reducing many of the heretofore
intrinsically expensive aspects of
designing. Uhen implemented using
abstraction hierarchies, they offer
a flexible design environment
allowing diverse development
sequences. Yet at the same time,
they provide automatic interfacing
with computerized applications as
well as powerful tools for integrity
management. Integrity  managment
will allow a new partitioning of
responsibilities between maen and
machine, freeing the designer from
many forms of tedious bookkeeping.
The power of integrity managment to
manage many design reldtionships
will become known only after some

major system designs ate attempted
and further theory is developed
regarding their implementation and
the control of their execution.

The potential benefits of
integrity managment as a technique
in CAD is better understood in the
context of problemsolving theory
[Newell and Simon, 1975). Integrity
management supports the
problemsolvtng method of
generate-and-test, one of the most
general and common methods known.
It is wused constantly in manua
design, but it is a weak method that
searches a solution space not very
efficiently. To date. Most CAD
systems have appraoched problem
solving by relying on much more
powerful generative approaches.
That is, the methods generate a
solution guaranteed to have resolved
the relations programmed into it.
This is possible because the
dependency among variables, eg.
which variables determine the values
of others, is fixed. The problem
with this appraoch, however, is that
these powerful methods are too
specialized. They do not allow
incorporation of special "or ad hoc
relations and in many applications
the formulations they allow are not
complete. Thus they solve one set
of relations well, but this is not
the 6ame problem that the designer
ie faced with. Ad hoc adaptations
fill the gap. Adding to CAD systems
the capability to support more
general problemsolving methods, such
as automatic constraint management

and its support of
generate-and-test, may greatly
increase the capabilities of

man-machine collaboration in design.

Note: The notions of abstraction
hierarchies developed here owe much
to the continuing discussions with
my associates, Gilles Lafue Steven
Fenves and especially flax Henrion.
However, they did not see a final
draft in time to correct any errors.
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