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ABSTRACTJ

Many large projects are now underway to develop integrated
design databases. These systems support automatic interfaces to a
number of previously independent appIicat Ion programs, such as
analyses, drafting and NC tape preparation. This paper introduces
some conceptual tools for organizing such systems. A structure for
Integrated design databases is proposed that supports a variety of
development sequences. It also allows implementation of automatic
integrity management for a number of design functions.

I. INTRODUCTIONS

A. The Challenge in 1963

The long term goals of
man-machine collaboration in design
were outlined In 1963 (Coons, 1963).
The scenario developed then
extrapolated from the joint
development of computer'graphics and
time-sharing systems to suggest
design development within a
computer, in an interactive
graphical mode. Displays of the
design would be presented on a crt,
which could be directly manipulated
by the user. Upon call, the
computer could undertake analyses or
other tasks, with the results
presented in easily interpreted
formats. Powerful means for
generating alternatives and
evaluating them would be available,
with quick feedback of results. The
designer, however, would have
complete control, fully excercising
his creative abiIities. Uhen the
design was complete, the computer
could generate drawings, part order
lists, and other production
documents, including fabrication
instructions for NC tools. Several

designers could work on the same
design in parallel, calling forth
different sets of application
programs as they proceeded. Each
would receive output in the format
most convenient for the task at
hand.

Uhile the range of possibly
useful applications has greatly
expanded since this scenario was
conceived, the system design
problems for achieving it are only
now being resolved.

B. Two Approaches
Man-Mach i ne
Collaboration

to

There are two basic
approaches for structuring
information flow so as to allow man
and machine to cooperatively develop
a design. The f i rst is to rely on
drawings and other current manual
representational methods, but to
develop techniques for automatic
encoding of the data needed for
computer applications. This
approach rel ies on pattern
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recognition techniques and syntactic
analysis and has not proceeded fan
the syntax of drawings and other
design information seems to be as
varied as human language and
possibly even more difficult to
Interpret automatically. The second
approach is to rely on an
essentially machine readable
encoding of design information,
built up by procedural ly modifying
the representation as decisions are
made. Feedback Is provided by
automatically translating
information into graphical and other
useful formats, which can be
directly manipulated.

It uas this second approach,
I believe, that Coons had in mind.
The difference between the two
approaches is that in the second
case, the computer, not man, defines
the syntax by which communication
takes place. As the facility to
translate between drawings and
machine readable formats improves,
these two approaches are bound to
merge. However, the starting points
for each are quite distinct.

C. Integrated
Databases

Design

The second approach requires
a machine-encoded representation of
the design project, flexible enough
to accept a wide range of
descriptions. In most fields, this
requires millions of words of
storage and thus a large database.
The goal of the second approach
might be called an INTEGRATED DESIGN
DATABASE.

Efforts to develop
integrated design databases are
being undertaken for several
branches of engineering as well as
comprehensive systems to support the
design and production of a class of
complex objects. In the United
States, examples include the COMRADE
ef for t in ship design [Bandurski and
Jefferson,I975a£b), the IPAD effort
by NASA [Mi Her. 1973] to develop a
engineering design system for space
vehicles, an even larger effort by
the Air Force Material Command

cal led ICAM tUisnowsky,1977], the
CAEADS program in bui Iding design
for the Army Corps of Engineers
[Construction Engineering Research
Laboratories,19771, as well as
private efforts in chemical
engineering (Nilda et al,1977), the
automobile industry (Gar th, 1974),
private consortia [CAM-1,1976) and
research groups [Eastman, 1976).
Similar efforts arm also being
undertaken in other countries
[Spur, 1976), [Engel i, 1974), [Okino
et a 1,1973), [Brun,1976). The
principal uses of these databases
are to interface with a number of
analysis programs, to provide
documents and NC data for
fabrication and io act as the
primary representation during design
and construction.

These efforts are similar in
some ways to ongoing ones in
electronics design, but are unique
because of their use in custom
design of a single product, the need
to represent three-dimensional
geometries and because of
multifunctional performance
requirements, among others. The
goal, hoeuever, is si ml I an to
development techniques for largely
automating the design and
manufacturing of a class of
Industr ia l products.

The larger implications of
integrated design databases are just
now becoming understood. Currently,
the representation of a design
project is in drawings,
specif icat ions, analysis data and
many other formats. The
introduction of an integrated
database results in the design being
represented in a new medium, with
e n t i r e l y new properties and
c a p a b i l i t i e s . This one medium can
hold a l l the information needed for
design and construction rather than
having it distr ibuted over several
media, providing new opportunities
for augmentation. For example, the
spat ia l aspects of a design can be
stored d i rec t l y in three dimensions,
not as multiple two-dimensional
representations. Various kinds of
information may be linked together
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in ways not possible today, so that
the representation nay faci l i tate
checking, for example, the shape of
some part against the Machining
operations described in Its
specifications. In addition,
automatic procedures for detailing,
based on conventional practices, can
be developed that wil l greatly speed
and reduce the cost of design
development. Much of the checking
of codes and standards can be
integrated into the design process,
eliminating the need for review to
exist as a separate process. These
examples indicate that engineering
design databases wil l create Major
changes In the engineering and
design professions, far beyond those
result ing from previous computer
applicat ions.

II. INTEGRITY ANO CONSISTENCY IN
DESIGN

A. Some Definitions

Central to the new
opportunities is the automation of
integri ty and consistency management
of design data. In computer
science, these two terms have quite
specific meanings. INTEGRITY is the
maintaining of functionally related
information so that the relations
are sat isf ied. CONSISTENCY is a
special case of integrity and
involves maintaining the equivalence
of redundant data. (Date, 1975).
Both have been recognized as
significant Issues in the management
of databases and much research
supposedly addresses them as an
issue (Codd,1978). (In addition.
Integri ty sometimes is used to refer
to consistency issues, when updating
Is done by more than one parallel
user. I u i l l not focus on this
special case.)

The richness and amount of
information used in design makes
integri ty and consistency special
problems. They involve a large
epectrum of considerations. At one
level is simple bookkeeping
operations, such as the guarantee
that redundant information is

consistent, eg. that the same beam
or pipe represented in different
drawings and engineering
calculations is described
consistently. At a different level
is the concern that fixed solid
objects don*t overlap in space.
Also there is the integrity problem
of deriving correct counts of parts
and quantities of materials. At a
more complex level of integrity
management are the dimensional
relat ions among connected items, eg.
the requirement that f i tt ings,
pipes, valves and ducts match with
the equipment they connect. At a
higher and Much broader level is the

. integri ty relation between
performances that are analytically
derived and the components selected
to support them. Examples include
the convecting unit required to heat
a room, having some computed BTU
requirement, or the structural
element required to support some
estimated load or the processes and
piping required to create some
material . At the highest level of
consistency management is the
checking of overall project
objectives, such as cost and global
functional performance against the
design being stored. In each case,
the technical form of the integrity
re la t ion is an equality or
inequality expression over a set of
data describing part of the design.
In some cases, the scope of the
expression is limited to variables
describing a single entity, while In
others major portions of the
database are involved.

Integrity and consistency,
then, are ubiquitous tasks in design
that include both the most t r iv ia l ,
local concern as well as the most
crucial global objectives. As
designers, we deal with them
constantly. Uith the structuring of
a l l design information into a common
processing environment, it becomes
possible to augment integrity and
consistency management, what was
previously a completely manual
concern.
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B.Relation to Representation
Issues in Proble»solving

Uhen considered More
broadly, the importance of integrity
and consistency in design should not
come as a surprise. Integrity
management is a fundamental
capability of any problemsol ving
representation. In problemsol ving
theory, the choice of representation
is based upon the facility various
representations provide for managing
the relations or structure of
importance to the problem. No
representation is complete; certain
properties are ignored depending
upon the design problems being
solved, because they do not relate
in a knoun, direct and significant
way to the performances of interest.
The goal in choosing a
representation, for either manual or
automated problemsol ving, is to
directly represent in an easily
man ipu I a table form as many of the
relations of interest as possible.
But it is only in the design of
computer systems, using data
structures and operations that are
designed to manage certain integrity
relations, that ue have had the
opportunity to create neu
problemsol ving representations
freely. Until nou, ue have been
limited to selecting from a small,
almost fixed set.

C. Opportunities of
Integrated Databases

It is on the potential for
integrated design databases to deal
ui th the problems of integrity and
consistency that 1 uish to focus.
In the near future, it may be
possible to design completely uithin
a computer, with powerful tools at
ones disposal. Among these are the
capability to define some rather
global goals and contextual
conditions to be satisfied for a
design. Later, during relatively
unstructured design decision
processes, the computer uill
automatically check decisions as
they are made against the earlier
stated goals, warning the user
regarding inconsistencies and

possibly making changes to other
parts of the design so as to correct
them. It should be possible to
specify neu integrity relations
while designing, so that a user can
gain help in any task that can be
adequately described. Examples of
such maintenance include the
definition of utility connections
and material balances, so that they
are monitored during layout stages
of design, uhile still allowing the
designer to add couplings, elbows
etc. interactively. Or the user
may impose functional standards, say
regarding earthquakes or safety that
would result in detailed monitoring
of design decisions for their safety
implications at a detail not
practically implemented otherwise.

Uith this capability as a
goal, I uill present in this paper a
characterization of integrated
design databases and propose a
general conceptual structure that
facilitates several forms of
automatic integrity management. Of
importance to this structure is the
design development sequence, because
the order of decisions and degree of
iteration a Iloued greatly influences
the kind of integrity management
required. The integri ty management
i S9ue uill be examined in detail and
techniques for dealing with it uill
be proposed. In this development,
the problems of design databases are
considered generically, as they
apply to all design fields.
Houever, examples are taken from the
area of physical system design, eg.
the design of ships, buildings, and
other artifacts in which
3-dimensional spatial considerations
play an important role.

The work upon uhich these
ideas are based is a long-term
effort in developing a system
supporting the implementation of
integrated design databases [Eastman
and Henri on, 1977b]. This uork has
focused on the features of
integrated design databases that
require special system support and
the best design of those supports.
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I I I . THE GENERAL ORGANIZATI ON OF
AN INTEGRATED DESIGN DATABASE

A. Project Databases
and Support Databases

In Moat integrated database
systems, a common structure has
emerged of the overall f ac i l i t i es .
The information that describes a
part icular design project resides on
a PROJECT DATABASE. It corresponds
to the information that normally
presides on drawings, specifications
and engineering data. This database
grows signif icant ly over time and
i te atructure must be fa i r ly
dynamic. In order to build it up,
several other supporting f i les are
required. One is a PARTS CATALOG of
conventional design ent i t ies. This
catalog holds complete descriptions
for those ent i t ies l ikely to by used
In projects and saves the user from
having to enter information each
t ime it i a needed.

The project database and
catalog may interact in fa i r ly
dynamic uays. Some information may
not be used often, such as that
required for specialized analyses.
This information may be kept in the
catalog permanently and dynamically
re t r ieved only when it is
spec i f ica l ly needed. In some
database systems this technique is
r e l i e d on exclusively: a l l
information about enti t ies remains
in the catalog f i l e and a project
database consists of pointers and
instances to these separately stored
descriptions. In other cases, a l l
information regarding entit ies used
in 9ome project is passed to the
project database.

The word ENTITY is used here
very broadly to mean a diverse range
of design components, including
purchaaable parts, a generic system
and i ts normative description, a
space or room, the site of a
bui ld ing, a machine or any other
referent whose proporties are part
of the design description.

Another support f i l e needed
is for APPLICATION PROGRAMS.

Application programs are of two
types. The f i r s t consists of large
stand-alone programs having heavy
computational costs, such as f in i te
element analyses or material
balancing programs In process
design. These are ef f ic ient ly run
on only a few large computers,
probably not the same as the
database host. Thus the interface
to them wi l l be by generating card
or binary image f i les that can be
sent electronical ly to a possibly
remote mainframe. The results of
the analysis wi l l be read back into
the project database by another
program that wi l l distribute and
store the output data. The second
form of analysis are those the
require extensive data and are not
compute bound. These applications
can be integrated directly with the
database system. It should be
wr i t ten in a language that can be
d i r e c t l y linked with the database
structuring f a c i l i t i e s . Both are
considered f i l es so as to not
dist inguish what processors are
involved.

An important example of this
second type of application are
programs for automatically adding
deta i l to a design. In every design
f i e l d there are conventional means
for treating common situations,
usually described in handbooks. The
de ta i l s often require some
adaptation to dif fer ing conditions.
An example might be the detailing of
windows, doors or stairs in
buildings, or the sizing of
connecting piping and controls to a
simple mechanical component, such as
a condensing unit . Procedures that
take information from the database
and use it to size and configure
other e n t i t i y information is a
signi f icant aid in developing most
designs. ' Example programs for
automatic detai l ing are presented in
[Eastman and Henri on, 1977a).

Another important form of
the aecond example are those
applicat ion programs that generate
output for production. This may be
in the form of drawings and involve
an interactive segment for
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formatting the information on
drawings. Alternatively, it mag
consist of the output of numerical
control tapes that generate the
part(s) described [Kakazu and
Ok I no,1976).

B. System Level Support

A number of system level
f a c i l i t i e s are normally part of an
integrated database system. These
include: means for graphical
interaction with the database, for
extending the available set of
applications, for general f i le 1-0,
for backup and recovery in case of
crashes, for restricting access or
modifications to those people who
have authority.

Terminal faci l i t ies usually
Include a graphics display, keyboard
and means of alphanumeric output, a
d ig i t i zer for entering custom shape
information, possibly with cursor
control of the display, and a means
for generating hardcopy output. In
addition, direct output may be
generated to other processors, such
as to the controllers of numerical
control machinery.

All of these faci l i t ies may
exist on a single processor or may
be distributed over some sort of
network. For example, a parts
catalog may reside on the same
processor as the database or be
common for a large geographically
disperced company or industry. The
eamo applies to analysis programs.

C. The Project Oatabase

The most convenient general
conceptual organization (as versus
physical organization) of a project
database Is as a description of
ent i t ies and their composition.
ENTITIES are characterized in all
sc ient i f ic work by enumeration of
their attributes. Here, an
ATTRIBUTE consists of a name that
stands for some measurement
operation and a value resulting from
the measurement. Attributes may be
defined in interval scalar
measurements, such as cost, axial

load or other performance
requirements or nominal text strings
such as manufacturer or function
(structural , acoustical, control
e t c . ) , and more complexely coded
information, such as shape, location
and color. Of course, no set of
attr ibutes completely defines an
ent i ty . In design, we only consider
those of significance in the context
of the problem at hand.

But design consists of more
than the definition of a set of
ent i t ies . The definition of a
SYSTEM is t ha t i t s COMPOSITION is
such that new attributes or
functions emerge [Jacob,19771.
Different compositions result in
different emergent properties, eg.,
a wall may be structural or
non-structural or possibly transmit
l ight . Composition may be defined
in at least two ways, spatially or
funct ionally.

SPATIAL COMPOSITION is the
locating of one or more objects
re la t ive to others. Location
information can involve chains of
re la t ive locations. These are
east ly combined using
transformations to derive the
re la t ive location of any pair in the
chain [Newman and Sproul ,1972).
Location information may be resolved
when entered OR stored and
transformed on output. The relative
advantage of different storage
schemes of location information has
been debated [Braid, 1973). The
emergent properties created by
spatial compositions include the
space created by the composition of
materials in architecture or the
structural performace of a frame.

FUNCTIONAL COMPOSITION is
the relat ing of objects so as to
f u l f i l l some purpose. Emergent
properties resulting from functional
composition include the performance
of a process plant or a heating
system. It should be noted that
functionality involves more than
connectivity relations: many objects
connected to a building's structural
system are ignored when analyzing
the building's structural behavior.
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A functional relation
identi f ies in nominal form an
Interdependency regarding component
behavior. Later, analysis will
define quantitatively the amount and
form of that interdependency. That
Is , in current analysis methods the
designer abstracts from the project
those objects that will functionally
interact and an analysis will thsn
define the value of interaction.
There are no tests in most areas of
functional analysis to determine if
the in i t i a l abstraction was
complete.

A design database should be
capable of representing both spatial
and functional compositions.
Functional composition usually
constrains spatial composition and
thus defines an integrity relation
on i t . For example, connectivity
par t i a l l y defines relative location.
Thus the most general form of
composition is spatial. It may be
possible to derive most functional
relations from the spatial
relat ions. Such a reduction of the
relations that would have to be
exp l ic i t l y managed would greatly
reduce the integrity, management
task, but this concept has not yet
been tested, to my knowledge.

IV. CONVENTIONAL V1EUS OF THE
DES1GN DEVELOPMENT PROCESS

The de ta i led structure of
design has been l i t t l e studied
e m p i r i c a l l y and not much of a formal
l i terature exists. In practice,
design procedures are determined by
personal judgment and conventional
practices, with few actions based on
or derived from formal
considerations. But built into an
integrated CAD system is the set of
application programs and the method
of their interfacing, determining
the one or more design development
sequences allowed. In this way, an
integrated CAD system constrains the
process of design it can
accommodate.

Like most very large
problems, the goal of integrated

design systems has until recently
resisted direct attacks. Many of
the recent efforts backed into the
concept by responding to short term
practical problems. In many large
scale engineering projects, many
different stand-alone computer
programs are currently in use. Each
application rel ies on a specialized
representation depicting those
attr ibutes and relations. In almost
every case, the major cost in using
these programs is the cost of coding
the data representing the problem.
In addition, many of the programs
require common data that currently
must be re-entered for each
application. An integrated database
is just i f iable to reduce these
coding costs.

A, The Precedent
Ordered Sequence

Based on this line of
reasoning, almost al l efforts to
integrate a number of design
functions rely on a PRECEDENCE
ORDERING OF TASKS. The various
stand-alone programs are ordered in
an approximately linear sequence and
related by a "mapping program" that
takes the output data from one and
generates from it input to the next
program. See Figure la. Each
application corresponds to a phase
of design development in which
certain decisions are made, after
which it is mapped into the next
stage.

This precedence ordering of
development corresponds conveniently
with production design processes
within many organizations. It also
provides a "natural" evolutionary
development for moving from
independent applications to an
"integrated system". Only the
development of a common operating
environment and the mapping programs
seem to be needed to f integrate'
previously stand-alone systems.
Within this organization, mapping
backwards is not possible, though
iteration, by throwing away
information and repeating a stage.
Is.
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LAYOUT
CIRCULATION

Z
MECHANICAL
SCHEMATIC

STRUCTURAL
DESIGN

t
DATABASE -HAP* DATABASE 02 -MAP-* DATABASE 03

at the precedent ordered developMent sequence.

STRUCTURAL GRID
U/ SERVICE CORE-
SCHEMATICS

MECHANICAL

<SCHEMATICS *

CONNECTIVITY

FACADE SCHEMATICS
bs acceptable sequences for a high-rise office project.

BASIC USE PLAN
& FUNCTION
LAYOUT

MECHANICAL
SCHEMATICS &•
CONNECTIVITY

STRUCTURAL
->GRID &

SERVICE CORE

DUCT LAYOUT

PIPING LAYOUT
c: acceptable sequence for a laboratory project.

FIGURE Ii Alternative developMent sequences in building design. No single fixed
eequence Is acceptable.

There are several well knoun
weaknesses of the linear sequence of
design development. The linear
sequence imposes an order on
dec i si onmaking for developing a
design and thus uhat decisions can
constrain others. This is
satisfactory for some conventional,
large volume products, but it does
not facilitate unique considerations
or tho9e varying in importance. For
example, the appropriate development
sequence for a high rise office
building might be the one shown in
Figure Ib, whereas an appropriate
sequence for a laboratory building
might be that shown in Figure Ic.
In a high-rise office, the structure
is typically given high priority,
whereas the routing and flexibility
of mechanical equipment is likely to
be more important in the laboratory.
Thus the same development sequence
is not likely to be suitable for
both building types. In practice,
the problem is even more serious.
In building design, each firm has
its own preferred development
sequences and these may vary with
building type or particular

circumstances. Thus no one sequence
of development would be acceptable
to all architects, or to even one
firm.

In other design fields
i nvo Iv i ng yari abIe cond i t i ons and
contexts, similar conditions surely
hold. Different priorities will
exist in different projects and
these require different development
sequences.

A related shortcoming is the
low utility of the resulting
database for use within a dynamic
context. During design, if a new
technology or other opportunity
arises, a linearly ordered
development sequence usually
requires iteration through Major
portions of the sequence in order to
incorporate the required changes.

The linear sequence also
predetermines what application
programs are available during design
development. The incorporation of a
spec i a I app Meat i on package
espec i a I I y appropr i ate for a
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particular situation or in response
to a unique emergent function is
hardly possible. The response to
special Mind conditions around a
building or to the noise produced by
a unique piece of equipment in a
factory would not be treated by the
system. Integration of new forms of
analysis or altering a design so
that the current analysis won't work
imposes such a high cost that
alternatives requiring these
probably Mill be abandoned.

B. Varying the develop-
ment sequence

The reason why i t may seem
possible to determine a single fixed
design sequence is because of the
data requirements of the different
application programs. Each program
requires certain data and generates
other data. By matching inputs with
outputs, it is possible to define a
partial ordering of programs.

Th'19 ordering is not
complete, however. In ship design,
power trains and hull designs are
functionally interdependent because
of power requirements. Non-ordered
conditions may be the result of
independently determined variables
being required by the same analysis
or by areas of design that jointly
determine each other.

It is possible to circumvent
the partial ordering. Previous
projects of similar design allow
estimation of normative values
describing part of the project.
This data may be inserted in the
database to change the ordering in
uhich applications are applied.
After actions are taken on these
estimated values, more exact values
can be generated on a later
iteration. This technique is
commonly applied in resolving
simultaneous relations also. Many
simultaneous relations are resolved
by making informed estimates of the
values determining one aspect, then
using these estimates for solving
the other, then iterating.

The linear sequence database
generally ignores the flexibility
offered by normative data. Instead,
it incorporates whatever normative
data that is needed for its fixed
sequence and ignores the rest.

If normative information can
be used to circumvent the precedent
sequence based on information
availability, then what is the
logical basis upon which design
development ought to proceed? The
sequence of design development is
certainly influenced by many
practical issues, including workload
scheduling of different designers
with specialized skills, client
pr i or i t i es and the sequence of
fabrication (especially in
development sequences where
construction begins prior to the
completion of design). The only
logical principle that has been
proposed thus far is that the
functional relations to be satisfied
can be considered as binary
constraints, a total design as a
conjunctive set of binary
constraints (Sutherland, 1963;
Eastman,1973).

Good practice has long
folloued the dictum "solve the hard
parts first". More precisely, the
mo9t efficient sequential resolving
of binary constraints, has been
shown to be based on the functions
(Slagle, 1964):

COST OF EVALUATING CONSTRAINT

PROBABILITY THAT CONSTRAINT
UILL FAIL

COST OF EVALUATING CONSTRAINT

PROBABILITY THAT CONSTRAINT
UILL PASS

(la)

(lb)

Conjunctive boolean tests should be
considered in ascending order of Eq.
(la) and disjunctive tests in
ascending order of ( lb) .

In practice, however, we do
not commonly evaluate the costs and
probability of failure of different
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design operations in order to
determine the appropriate sequence.
Ue DO evaluate their diff iculty or
the amount of work required to
resolve them and this information
can be used as an approximation for
equations (la) and ( lb) . However, a
larger Influence applies. Using
normative data requires that
different levels of aggregation
already be defined and that ue have
some insight into the range of
values that characterize classes of
solutions. Usually ue have
normative data for only a feu of the
possible solutions. Thus ue tend to
follow design development sequences
that u t i l i z e information available
from previous projects. This is, of
course, a conservative influence on
the alternatives that can be
explored.

In summary, there seems to
be at least four principles that
guide the design development
sequence:

1. different application programs
or design operations require as
input certain information and
generate other information as a
resul t . The relation among
operations is a partial ordering.

2. the partial ordering can be
circumvented by using normative data
from past projects to approximate
the data needed to execute some
operat ion.

3. the satisfaction of design
functions can be treated as
sequential binary tests. In this
framework, an optimal sequence can
be defined, based on the cost of

each test and
fa i lure .

its probability of

4. in practice, normative data
is avai lable for only a feu design
a l t e r n a t i v e . These involve similar
development sequences and problem
contexts to those solved previously.
The lack of normative data forces
the designer to rely on more
deta i led analysis and restr icts the
sequence of ac t iv i t i es he can
undertake.

Ui th in the frameuork imposed
by the a v a i l a b i l i t y of normative
information and information
avai labi I i ty, most competent
designers s t i l l have many degrees of
freedom. The choice left is a
personal one that allows "style" to
emerge (Churchman, 1968;Simon, 1975).
Given that no general mechanism
seems avai lable for logically
de l imi t ing the development sequence,
it seems very desirable that CAD
systems support a uide range so as
to not a r b i t r a r i l y delimit potential
design resu l ts .

' V. CONCEPTUAL MOOEL FOR STRUCTURING
DESIGN INFORMATION

Uhen design is primarily a
manual a c t i v i t y involving only a feu
people, there is l i t t l e impetus to
structure it in a formal uay (though
there may be important benefits in
doing so). Small organizations can
organize design in response to
personal i ty and motivation factors.

* But in a computer environment, the
machine must manage design
information and programmers are
forced to impose some form of
structure on the uay design
information is organized. •

PROBLEM
DOMAIN

CONCEPTUAL
SCHEMA

(user oriented)

PHYSICAL
IMPLEMENTATION
(database system

oriented)

MACHINE
ENVIRONMENT

FIGURE Hi Tuo level model for the design of databases.
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The design of business
oriented computer databases is faced
with a similar problem to capture
certain aspects of reality within an
Information structure. One view of
database design Is that it involves
two distinct models, as shown in
Figure lit a CONCEPTUAL HOOEL that
provides a logical structure to
reality and a PHYSICAL
IMPLEMENTATION which is a machine
translation of the conceptual model
(COOASYL,1971). * The value of'
considering a database in these two
steps is that the conceptual model
explicates the capabilities of the
system separately from its
implementation. In a database
management system, the choice of
conceptual model is based on the
richness of the problem domain that
it 'captures', its ease of physical
Implementation and its conceptual
clar ity.

* In this section, I describe
a conceptual model for design. For
design, the conceptual model should
be capable of depicting the
relations of importance in designing
and facilitate their automatic
maintenance (the integrity issue).
It should aid but not restrict the
user in his conceptualization of
design. A190, it should allow a
variety of development sequences. •

A. Abstraction
Hierarchies

• It is obvious that as a
design project evolves, its
description grows. Two forms of
growth can be identif ied. First ,
en t i ty descriptions are enrichened
with additional attributes.
Examples are the adding of
performance data, as they become
known, or manufacturer or delivery
data, as these are determined. The
second way in which a design
description grows is by the
decomposition of aggregated entit ies
into their consitiuents. Thus a
building might i n i t i a l l y be defined
in terms of enclosure and spaces.
The enclosure later wil l be
decomposed into walls, floors, and

ce i l ings , and s t i l l later, the walls
into structure and surface
materials, etc. The top node in the
hierarchy is the in i t i a l problem
d e f i n i t i o n , eg. a general
description of a building and site
or a ship and i ts functions. The
bottom level enti t ies are the
multitude of parts that the
fabricator uses to construct the
project . Design development may
proceed by sequentially adding
detai I to the hierarchy in a
top-down manner, or aggregating
objects in a bottom-up sequence
(corresponding to the design of
general purpose modules). The
levels of detai l correspond roughly
to the phases of design and provide
data for analyses programs. •

This hierarchy of entity
descriptions is an integral part of
the sc ient i f i c view of the universe
(Jacob, 1977). It has also received
much attention in different areas of
design (Simon, 1969); Alexander,
1364) and software engineering
(Ui r th , 1971). The name now
associated with this hierarchy is
ABSTRACTION HIERARCHY (Smith and
Smith, 1977). The various nodes,
except at the bottom level, do not
describe l i t e ra l objects, but rather
conceptual classes of entities.
Here they wi l l be called ABSTRACT
OBJECTS. Throughout the rest of
this paper, the word "objects" shall
re fer to abstract objects and
e n t i t i e s as well as to l i teral ones.

AppIi ca ti on programs
interface with the hierarchy through
MAPPING PROGRAMS, one to generate
input data, and if needed, a second
to store the results back into the
database. The application can be
cal led at any time, so long as the
needed data has been entered. A
set-up program can be called f irst
to 9ee that the needed data is
there. For each data item needed by
the application and not yet
computed, it wi l l assign a normative
value from previous projects.
Fenves has developed some means for
maintaining permanency flags on
design data (Yang and Fenves, 1974)
allowing the distinction to be made
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betueen normative data, analytically
derived data and invalidated data.
Thus new applications way be added
without considering their effect on
other analyses. Uith this database
organization, the same system could
be used to design buildings
according to varied priorit ies, such
as starting uith circulation and
act iv i t ies or the structure or the
exterior form. Ships could be
designed by in i t ia l ly focussing on.
hull design, its Major function
(cargo, arMaMents) or its power
plant.

B. The Structure
Abstraction
Hierarchies

of

The detail organization of
an abstraction hierarchy for design
can be defined in several
alternative uays. The choice has
serious implications for the
physical implementation.

It is generalIg agreed that
the hierarchy is roughly
set-theoretic. That is, after an
i n i t i a l problem is defined, for each
ent i ty Xt , Xt e Xn. (This definition
is oriented toward top-down design.)
In this discussion, the term
"parent" wi I I be used to refer to
the entity Xa , and the terM
"children" wil l be used to refer to
the emmber9 XL. This condition is
certainly an inclusive one and
without restrictions imposes feu
limitations on the overall structure
of design. Most often, the
restr ict ion imposed is the
traditional set-theoretic one, eg.

if XLe Xn , then X t* Xw for all n,

n/m. (2)

That is, any entity May have at Most
one parent.

Th is cond i t i on is too
rest r ic t ive , however, as the
examples below demonstrate. The
st r ic t set-theoretic condition must
be broadened in at least two ways:

1. multi-functional components
require that an object be a member
of more than one set. Consider the
design of an automobile. Early
design may consider two systems,
each u i th a distinct function and
required performance, eg. the power
and structural systems, Normally, an
engine is considered part of the
power systeM and uould be one of the
children of this parent. However,
engine blocks can are also be used
as a frame Member, particularly in
racing cars. Thus they should
belong to this hierarchy also. In
general, any entity having More than
one function is l ikely to belong to
multiple sets, eg. have More than
one parent.

2. functional and spatial
composition each require their own
structure. Consider an electrical
d is t r ibut ion box on the 4th floor of
an apartment building, possibly in
someone* s apartment. Is the box
part of the apartment entity, the
e lec t r ica l system entity, or the 4th
floor "entity11? Both the 4th floor
ent i ty and the apartment entity are
defined by LOCATION; the apartment
may even be defined as "part of the
4th f loor. On the other hand, the
e lec t r ica l system "entity" is
defined by function. It would be
desirable not to have to make an
ei ther-or choice, but allow accesses
to the electr ical box to be made by
both location AND function. Uith
multiple functions, this means one
ent i ty may be "part ofH MANY higher
level en t i t i es . It is reasonable to
conclude that enti t ies are children
of other ent i t ies AS DETERMINED BY
THEIR ATTRIBUTES, of which location
and function are at least two.
Formally, this is denoted

.wF . . ,wrl wpe (3)

where uP i s an attribute describing
enti ty X( .

These tuo examples suggest
that a richer set of relations is
needed in design than those provided
by the conventional set-theoret ic
hierarchy. The hierarchical
organization is an overlapping set



CHARLES f i . EASTMAN

at t r ibutes of a higher level
abstract object. Uhereas analysis
generates information upuard in the
abstraction hierarchy, synthesis
generates information downward.
Uhen synthesis is found to be
d i f f i c u l t for one subtask, synthesis
is often iterated at a higher level
In order to re frame the lower level
problem.

Synthesis is often a
nondeterministic process and
involves a "search" for an
acceptable solution. However, some
synthesis processes do not involve
search, but are procedural methods
for deta i l ing . Ue normally think of
most design synthesis steps as large
appl icat ion programs, such as an
linear program. In most design
areas, however, a good portion of
component selection is done
procedural Iy; they are derived from
a few simple deterministic
re la t ions . Examples include pipe
f i t t i n g s , window and stair
d e t a i l i n g , many joint detai ls, etc.
Thus synthesis is possible without
analyst 8.

This form of process can be
executed within the abstraction
hierarchy by taking each functional
a t t r ibu te of a designated entity k
and prescribing for it a
configuration of enti t ies I that
r e a l i z e i t . Integrity relations
that apply downward are numerous,
such as code and regulatory
requirements. Examples include
required joints in a structure or
the control system for some chemical
process. In general, synthesis
oriented integrity relations impose
one or a small class of "solutions",
based on the requirements of some
" c r i t i c a l " performance.

Both analysis and synthesis
processes rely on relations within
the abstraction hierarchy.
Synthesis takes information from one
level and adds information at a
lower level . Analysis takes
information from some level and adds
more at the same or higher level.
In some cases, the breadth of

relat ion in the hierarchy
encompassed by one analysis
encompasses many entity
descriptions, such as material
balance and spatial location. Many,
however, involve only a feu.

C. Knowledge About
Abstract Objects

The third major form of
design knowledge is of entities that
incorporate particular combinations
of functions or attributes. This
knowledge does not only consist of
directly realizable objects
purchasable in the marketplace (this
set is constantly changing), but
more importantly, abstract objects
and the range or attributes that are
realizable for them. Thus an
architect knows if a 2-bedroom
apartment with 488 sq. feet of
space is likely to be realizable and
a chemical engineer if an 9BX to 18%
mix of gasoline to fuel oil is
realizable from a particular crude.
These estimates are used throughout
the intermediate levels of design to
define a general configuration with
the attributes required. Host
technical breakthroughs do not
consist of a new realizable object
(primitive) but rather an abstract
object resulting from a new
technology allowing mixes of
attributes that could not be jointly
realized previously. That is, it
consists of a class of new
conf i gurat ions.

Designers also occasionally
search this knowledge of abstract
objects. They ask the question:
what can this abstract object be
used for? It is an attempt to
identify a group of attributes from
a conf iguragion that would be of
value. It may be used in deriving
possible uses of a new plastic or in
determining the best use of a given
buiI ding si te.

Currently, in manual design
the only knowledge that is
expl ic i t ly integrated into a design
solution is the description of the
bottom level objects utilized.
Abstract objects and especially the
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of trees, resulting in a
semi- lat t ice. One way of treating
relat ions betueen entit ies is to
define relations betueen entities
and the attributes of other
e n t i t i e s . This form allows an
e n t l t i y to be part of Many sets.

An implication is that
database systems that rely on set
theoretic relations wil l not in
general be suitable for design
applications. Rather network
capabi l i t ies wi l l be required
[Taylor and Frank, 1976].

An additional point emerges
from these discussions of the
abstraction hierarchy as a
conceptual model for design
information. Both emergent
properties and articulation by the
addition of attributes point to the
need for entity descriptions with
varying, extensible attributes. One
fixed ent i ty record format would be
too cumbersome ( i f al l possible
a t t r ibute fields were defined
i n i t i a l l y ) or limited for an
Integrated design database.

V I . DESIGNING
HIERARCHY

IN AN ABSTRACTION

In this section, it will be
shown hou the abstraction hierarchy,
as defined above, supports different
design operations. Again, such an
excercise is frought with
d i f f i c u l t i e s , because there is no
agreed upon taxonomy of design
operations. At a more aggregate
level , however, there are the
conventions of ANALYSIS and
SYNTHESIS and these shall be relied
on to organize the discussion.

A. Analysis

The best understood of
design operations is ANALYSIS.
Analysis consists of deriving new
attr ibutes for an entity by applying
a model to either other attributes
of the same entity or to to
at tr ibutes of others that comprise
the ent i ty . Conventionally, this is
to predict one of the performances

of the design. Actually, the
performance is of one or more
abstract objects. Examples include
modeling the overall material
balances of a chemical plant from
the known behavior of its
constituent processes or of a
structure from the behavior of its
members. Analysis, then, is the
generation of information from lower
levels to higher levels in the
abstraction hierarchy (the opposite
flow of information from that
commonly assumed).

The analysis model
incorporates the detail form of
re la t ion betueen the entities
defined in the structure it is
applied to. The structure
ident i f ies betueen uhat entities
these relations apply.' The general
form of this relation may be
characterized as:

for a l l children a associted with
at tr ibute (9) b of entity c, apply
the expression d to derive the value
v. v may be compared with earlier
estimates or simply assigned as the
value of b.

The expression d is most
conveniently tied to the TYPE of
a t t r ibute b. Thus a single cost
function could be applied to the
components of any abstract object,
or a single function could be
applied to sizing of pipes or
structural members or in determining
the acoustic properties of walls.

B. Synthesi a

The second form of operation
trad i t iona l ly associated uith design
is SYNTHESIS. Synthesis might be
defined as the generating of neu
configurations so as to satisfy
ear l ie r defined functions. Examples
include laying out spaces in a
building, defining a structure or
piping destribution system, or
laying out equipment in a chemical
plant .

Synthesis can be interpreted
as defining constituents that
sat isfy one or more of the
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relations involved are only dealt
uith in the designer's head or on
paper used temporarily during early
stages of the process. The
abstraction hierarchy explicitly
includes both abstract objects and
the analysis and synthesis relations
uithin its structure. The
abstraction hierarchy provides a
useful conceptual frame for
organizing design knowledge.

An important class of
information relied on heavily during
design pertains to the contextual
conditions in uhich the design is
imbedded. This includes any special
environmental conditions to be
encountered by mechanical equipment.
It also involves the production and
maintenance information relevant to
the entity being designed. Most
importantly, it involves the human
factors information regarding
operators of the equipment or
occupants of the facility of ship*

Some of this information is
simply coded and can be stored as
part of the initial problem
definition in the upper levels of
the hierarchy. Examples are the
number of occupants of different
rooms or the environmental
conditions to be encountered by
equipment. In addition, much design
information is encoded in
application programs. Examples
include elevator selection and
sizing programs in building design,,
clearance requirements in pipe
.layout programs. In addition, it is
easy to imagine the many such
relations can be added to an
integrated design database as
integrity relations. These could
include clearance and spacing
standards, for example, applied to
passage sizes in buildings and
ships, based on maximum circulation
flou. Or they could monitor
environmental conditions based on
activities, so that any workstation
requiring particular lighting or
acoustical conditions could be
constantly monitored, resulting in
the designer being warned uhen the
conditions are not being met*

VII. IMPLEMENTATION

In order to demonstrate the
feasibility of abstraction
hierarchies and their use in
integrity management, a small
example ui I I be developed. But in
order to follou it, some conventions
regarding database organization have
to be introduced first. Those used
here are the physical implementation
concepts used in GLIDE [Eastman and
Henri on, 1977al developed by a team
led by the author. These
conventions are generally consistent
uith the COOASYL recommendations
[C00ASYL.197D. Other
representations could have been
used, such as the Relational
tCodd.1978).

GLIDE is a language
especially developed for
implementing integrated design
databases. Beside the data types,
operators and control structures of
conventional block structured
languages, GLIDE includes record
types for defining complex entities
and the relations between them. In
GLIDE, record formats are provided
by a FORM, uhich specifies the
Attributes of interest for a class
of entities. It also provides
direct access to each entity within
the class it defines. Attributes
may be defined to store boolean,
real or integer scalars or vectors,
text strings or pointers to other
records. A COPY is an instance of a
Form record. Each Copy also has a
feu system defined Attribute type9
available for defining it; the most
important are SHAPE and LOCATION.
Shape is a closed bounded polyhedron
stored as a separate record (for
uhich an extensive set of shape
definition and manipulation routines
are provided). Location is a vector
of six real numbers corresponding to
the three translations and three
rotations needed to define any
location within a global coordinate
system. Uith these system defined
Attributes, GLIDE includes
capabilities for graphically
displaying and manipulating object
locations and shapes, in perspective
or orthographic formats.
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Relations between entities
that are related one-to-one can be
handled by Attribute pointers. For
one-to-many relations, GLIDE
incorporates a SET RECORO, which is
a non-ordered collection of pointers
to other records. These may point
to Fonts, Copies or other Sets.
These facilities are More fully
defined in [Henrion, 1977; Eastnan
and Henri on, 1977a], but this
description should be adequate for
the example to be developed.

A. Example abstraction
hierarchy

The example problem to be
developed is a simple building. The
integrated design database is to
support all design activities,
including architectural and
engineering considerations.

The initial information
provided is a very rough description
of the project. It will include the
building type, its site, its
construction budget, approximate
floor area and other such measures.
If thought to be important, this
initial description may include
estimates on the building's
performance, such as its annual
energy consumption. This
information can be entered and
stored in a Form with only one Copy.
Each of the functions and measures
are stored as Attributes. The site
is stored as a Form and single Copy
with a complex shape.

At this time or soon after,
information will be gathered about
the areas the building is to
enclose. Each area includes a
certain amount of area for
functional use, an unassigned area
for circulation and public
activities, an estimated cost, etc.
These areas may or may not later
correspond to control zones for the
heating equipment. This information
is easily structured as entities and
Attributes, of Form type 'Area', as
shown in Figure III. An Attribute
in the 'Building' points to the
'Area* Form and thus to all its

Copies. Already there is at least
one integrity issue, that between
the area estimates for each 'Area*
and the total for 'Building*. This
is just the beginning.

After a much longer period
of time, the rest of the Forms and
Sets shown in Figure III will become
defined. Sets often occur without
being explicitly named and in these
cases, they are shown with a name in
perentheses. They are accessed
through the Attribute pointers;
•AREAS OF BUILDING' returns the Form
'Area' and all its Copies; 'BAYS OF
FRAME* returns the Set (in this case
a vector of Sets) with the joints
and members for each of the building
frame's bays. (In addition, it is
possible in GLIDE to add back
pointers that go upward in the
hierarchy, but since these were not
needed for the example, they were
omitted.) The Members of a Set are
accessed by the loop control
statement:
FOR MEM <temp. var> OF <set> DO

where the temporary variable
incrementally points to each member
of the <set>.

1. spatial
hierarchy

Design information can be
added in many sequences, but
eventually certain structures must
be provided to allow needed
re la t ions . For general types of
accessing, drafting and the
Implementation of construction
d e t a i l s , the building information
should be organized according to a
spatial hierarchy. The spatial
hierarchy covers a l l points in space
within the project and decomposes it
into disjoint point sets
recursively, resulting in a tree
hierarchy. At the top level, the
spatial hierarchy consists of the
whole building, then of its floor
levels, defined by the Form
fFloor levels ' . These are broken
into three classes of entities;
'Spaces', ' Interiorwal Is' and
'Exteriorwal I s ' . These correspond
to rooms, interior partitions and
building shel l , respectively, and
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are each defined as Forms. At a
lower level of detai l , each of these
are decomposed Into their
components, to the point that
Interior walls will get detailed
into a set of wood or metal studs,
concrete blocks or other
construction method chosen by the
designer. The entities in the
spatial hierarchy are flagged with
the Attribute 'spat ia l* .

2. functional
hierarchies

In addition to the spatial
hierarchy, certain functional
hierarchies are necessary for
effect ive designing. First, the
building's structural system must be
defined and organized so that it may
be analyzed. The general definition
of the structure is given in the
Form 'Frame'. I ts one'Copy defines
bay and aisle spacing and, along
with the floor heights in
'Floor leve l ' , dimensions the
structural grid. 'Frame' points to
a Form of ' I n i t i a l Members' and
another one of 'Joints'. The
i n i t i a l members are a l l simple spans
without Intermediate joints and thus
may be combined in fabrication. The
i n i t i a l members and joints have the
necessary information for running a
preliminary structural analysis,
using a standard package such as
STRESS CFenves,Logcher and flauch,
1965]. The in i t ia l members are
given only an approximate shape,
possibly a rectalinear solid or a
l ine. Later, when other issues have
been identif ied, each ini t ia l member
wi l l point to one detail member that
has a specific shape, end cuts to go
around flanges and detailing needed
for fabrication. Rough steel
estimates may be derived from the
description of * Ini t i a I member s *; the
detai I members can serve as shop
drawings. Several in i t ia l members
may point to a single detail member,
where a continuous member picks up
loads from several joints with
eecondary members.

For drafting, the
'Floor level* Copies point to the
many ent i t ies needed to draw each

pi an i a standard floorplan can be
generated from the 'Ua 11 surfaces'
and 'Exterior Malls'. To these can
be added the equipment pointed to by
each 'workstation* or alternatively,
the detaiI structural members can be
depicted. The elevations of the
facade can be generated by drawing
the ent i t ies in the Set pointed to
by 'DETAIL OF FACADE [n], where
'Facade* is a Form with as many
Copies as there are separate faces
of the facade. Interior elevations
also can be drawn, from the
•SURFACES OF' each 'Space'. Uith
this information, each space can be
drawn in perspective, if desired.

This abstraction hierarchy
need not have been sequentially
defined in a top-to-bottom order.
One set of branches could be
detailed and others f i l led in later.
The structural frame, for example,
could have been defined early, with
the walls placed later.
Alternatively, the exterior and
interior walls could have been
placed f i rs t and the spaces detailed
before and structural decisions
made. As the hierarchy is
developed, however, the relations
between members must be entered, so
that needed access paths and
relations are defined.

The hierarchy presented is
not complete, of course, and covers
only most areas in the schematic
stages of design development. The
mechanical system is not developed
at a l l , nor is the site and its
interaction with the building, eg.
the foundation. But these would
have a similar type of structure to
that which is shown. I t is not
suggested that this is the only
appropriate abstraction hierarchy
for buildings; indeed, there are
probably many. Different designs
wi l l justi fy different hierarchies;
a concrete frame will have
reinforcing as an entity but a steel
frame wi l l not. Different walls and
facades are made up of different
kinds and numbers of components.
The point to be made from this
example is that the abstraction
hierarchy allows various sequences
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of design development. It can
accomodate varied kinds of emergent
functions and can s t i l l accept
various application programs.

B. Exogenous
information

The abstraction hierarchy
presented focuses primarily on the
relations between information that
describes the design project itself.
That is, it stores information that
is the result of design
dec i s i onmak i ng. Of s i gni f i cant i f
not equal importance is the
information about the problem
CONTEXT.

Some contextual information
is included in Figure III. There is
a Form called 'Site', which is
assumed to have a complex shape
representing the ground contours.
The information about the site could
be expanded to include traffic data*
soil conditions and other site
related information. The 'Building*
record also could point to a 'User'
record, with information about human
factors, organizational information
and other relevant social data.

Clearly, the above comments
are only suggestive and much more
detailed development is required to
usefully integrate user and
contextual information into an
abstraction hierarchy.

C. Integrity Management

This hierarchy can support
several kinds of integrity
management. At one level are the
relations betueen different drawings
of the same building part, such as a
beam. Since different projections
of a single polyhedron ui I I start
from the same data, these are
automatically consistent. But shape
and location information is stored
at multiple levels in the hierarchy.
Thus it is required that if a part
euch as a beam is moved, all other
descriptions of that beam must be
moved also. Updating all versions
is the responsibility of the
operation that is used to move the

part , and involves three kinds of
checkst (1) a l l enti t i ies lower in
the hierarchy and spatially related
must be moved by the same
transformation; (2) to eliminate
spatial overlaps, al l spatial
ent i t ies belonging to the same
spatial 'parent' higher in the
hierarchy must be disjoint. Since
both solids and spaces may be
defined, this can require that some
shape is altered. Thus spatial
integrity and the detail definition
of space shapes should be held off
unt i l f a i r l y late in the design
process; (3) also, it is necessary
to check that any moved entity is
subjoint to the higher level entity
that it is part of. The important
recognition is that the access paths
exist to automate such updating
processes.

Another type of integrity
management supported by this
hierarchy is automatic cost
estimation. In i t i a l l y , the building
cost wi l l have a budget that will be
entered as an Attribute of
'Building' at the top of the
hierarchy. Later, the building ui 11
be broken into more detail entities.
In this case, we have relied on the
spatial hierarchy to provide the. one
tree of entit ies guaranteed to be
disjoint at each level and
non-redundant. Thus, as the costs
for exterior and interior walls and
spaces are estimated, these can be
automatically summed and checked
against the whole building, telling
the designer how much over or under
budget he or she is. As lower
levels of the hierarchy are
developed, they are compared with
previously defined higher levels so
that it is known, for instance, when
the structural or mechanical
equipment goes over initial
estimates. This summation process
is from the bottom up, and can
monitor a l l stages of design with
the aid of a single subroutine for
summing and checking against the
higher level estimate. If this
leads to a change in the higher
level estimate, then the checking
routine wil l automatically be
invoked for the next higher level.
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etc.

This sane Maintenance of
information can be applied to other
aspects of the design, such as
thermal heat load analysis. With
automatic data preparation, i t m i l
be possible to run a heat load
analysis ear ly in design development
and i t e r a t i v e l y if necessary. Uhen
to i t e r a t e the analysis can be
i d e n t i f i e d by integri ty management.
In the ear ly runs of such a program,
estimates w i l l be made regarding the
conductance of ual ls and the BTU
loads generated u i th in different
spaces. As detai l design decisions
are made, the thermal implications
of these decisions can be compared
ui th the ea r l i e r assumptions. For
example, the window areas and number
of doors and detai l ing of a
1 I n t e r i o r w a l I * can be compared with
i t s e a r l i e r estimated conductance
and warn the user when the earl ier
assumptions are grossly wrong. Uith
th is knowledge, the designer can
c l e a r l y t e l l i f another i terat ion of
the analysis is necessary.

The invocation of these
checking routines can be controlled
in a var ie ty of ways. It is not
prac t ica l to use any global control,
such as the GOAL statement found in
PLANNER systems [Bobrow and
Raphael ,1974] . The pattern matching
overhead imposed on a l l operations
makes such an approach impractical
on targe databases. Invocation can
be i n i t i a t e d by associating a
procedure with Attribute
declarat ions, in the way that user
defined checking of Attribute values
against a predefined domain can be
invoked [Hammer and ticLoed, 19761.
Thus the check i s made when a new
a t t r i b u t e value is wri t ten. This
procedure then accesses information
regarding the current Copy's parent,
other s ib l ings, etc. as defined by
the hierarchical re lat ions.

D. Comparison to the
COOASYL
Recommends t i ons

The database organization
described here is generally
consistent with the standards set
fo r th by COOASYL Systems Committee.
The network relat ions proposed there
support the general organization of
e n t i t y re la t ions presented in Figure
I I I . They support the one-to- many
and the many-to-many relations.
Database procedures and FUNCTION
a t t r i b u t e s , both part of the COOASYL
recommendations, provide the basic
tools needed for integrity
managment. In particular,
procedures of type ACTUAL are
invoked whenever a variable imbedded
in a function is altered. This
corresponds precisely to updating at
the time of writing values.

Like many problem areas,
design applications would benefit
from recursive pointers, a relation
not allowed by the COOASYL Report.
For example, in many building
designs, a space may be made up of
other spaces (which also may be made
up of spaces). Using the same
ent i ty type for a l l spaces would be
much more convenient for the user.

The most significant
shortcoming of the COOASYL
organizat ion is in the area of
geometric modeling [ Shu and Oyake,
1976) . The def ini t ion and
manipulation of possibly complex
shapes requires record structures
that must be manipulated
dynamically, preferably during
execution. These operations
probably can be implemented within a
standard i .e . * COOASYL, database
system (see [Lafue, 1977]), but
without special f a c i I i t i e s wi 11 be
too slow to support real-time
in terac t ion . It is this problem,
plus the embedding of special
operations useful in design, that
design databases such as GLIDE
uniquely resolve.
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VI11 . CONCLUSION

It should be clear that the
resolution of a l l integrity and
consistency issues is not likely to
be possible for meaningful design
problems. Indeed, for problems
where this is possible, design is
reduced to a t r i v i a l i t y . Rather, it
seems possible that responsibility
for some subset of integrity issues
can be assumed by an integrated
design database, relieving the
designer to focus on others.

It Is not suggested that the
abstraction hierarchy is the
inherent organization of design
information. Given enough effort ,
many different organizations of data
or the current ad hoc organizations
can be used for designing. Rather,
the abstraction hierarchy is a
heur is t ic , to be judged by its
sufficiency in representing
di f ferent kinds of relations, its
i ts c la r i t y of conceptual
organization and i ts efficiency of
implementation. The abstraction
hierarchy concept in design is
certa in ly not new, yet it has not
been Incorporated except as tree
graphs into design databases thus
far . This uork wil l hopefully
provide the specification for a more
useful hierarchical structure for
design.

Integrated design databases
offer the potential of significantly
reducing many of the heretofore
in t r ins ica l ly expensive aspects of
designing. Uhen implemented using
abstraction hierarchies, they offer
a f lex ib le design environment
allowing diverse development
sequences. Yet at the same time,
they provide automatic interfacing
with computerized applications as
well as powerful tools for integrity
management. Integrity managment
w i l l a I low a new partitioning of
responsibi l i t ies between man and
machine, freeing the designer from
many forms of tedious bookkeeping.
The power of integrity managment to
manage many design relationships
w i l l become known only after some

major system designs ate attempted
and further theory is developed
regarding their implementation and
the control of their execution.

The potential benefits of
integr i ty managment as a technique
in CAD is better understood in the
context of problemsolving theory
[Newell and Simon, 1975). Integrity
management supports the
problemsolvtng method of
generate-and-test, one of the most
general and common methods known.
It is used constantly in manual
design, but it is a weak method that
searches a solution space not very
e f f i c i e n t l y . To date. Most CAD
systems have appraoched problem
solving by relying on much more
powerful generative approaches.
That is, the methods generate a
solution guaranteed to have resolved
the relat ions programmed into i t .
This is possible because the
dependency among variables, eg.
which variables determine the values
of others, is fixed. The problem
with this appraoch, however, is that
these powerful methods are too
specialized. They do not allow
incorporation of special or ad hoc
relat ions and in many applications
the formulations they allow are not
complete. Thus they solve one set
of relat ions well , but this is not
the 6ame problem that the designer
ie faced with. Ad hoc adaptations
f i l l the gap. Adding to CAD systems
the capabil i ty to support more
general problemsolving methods, such
as automatic constraint management
and i ts support of
generate-and-test, may greatly
increase the capabilities of
man-machine collaboration in design.

Note: The notions of abstraction
hierarchies developed here owe much
to the continuing discussions with
my associates, Gil les Lafue Steven
Fenves and especially flax Henri on.
However, they did not see a final
draf t in time to correct any errors.
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