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ABSTRACT

Methodologies have been developed to provide assistance in the maintenance

of integrity and consistency within a relational database. These methodologies

usually entail the complete removal of all dependencies between the data

items. A proposed engineering design database model provides a constraint

processing mechanism that is capable of checking the satisfaction of specific

dependencies or constraints. The objective of this thesis is to expand this

model so that it can be implemented in a large engineering design relational

database system.

An introduction to the basic issues of database management and to the

concepts of the relational database model are presented. Examples of basic

data retrieval operations and an actual relational data retrieval language are

provided. Guidelines for database design are also developed.

Basic constraint processing issues including a description of the different

constraint sources and types are presented. A proposed constraint processing

mechanism is described and extended to allow the enforcement of a wide

range of constraint types and provide the flexibility needed for engineering

design.

An actual design example is used to provide a detailed comparison between

the extended mechanism and the traditional approach to constraint

enforcement.

KEYWORDS: database; relational database; design database; data integrity; data

consistency; information retrieval; queries; normalization; constraints; constraint

processing; constraint enforcement; computer programs; structural engineering;

engineering design;
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CHAPTER ONE

INTRODUCTION

1.1. BACKGROUND

During the design and construction of any engineering project, large amounts

of information pertaining to all aspects of the project must be stored,

accessed and operated upon. One way to store this information is in a

database. A database offers two main advantages. First, it provides data

independence. The way in which data is stored or accessed in the database is

independent from its use. The user's view of the data is defined by the

conceptual schema which provides the definition of information content only.

No references to storage/access details are included in the schema [9] . The

user need only specify which data items are needed, not how to find them or

where to look for them. Therefore, even if one user needs the data in one

form and another user needs the same data in a different form, the data is

stored only once. It is then the database system's responsibility to supply

the data in the appropriate form. The user specifies what data is needed

through a retrieval language. An example of such language is shown in

Section 2.3.2. Most database systems offer access to the retrieval operations

from two different modes. First, the standalone mode provides the user with

interactive access to the data. The second mode is the application program

mode. It supplies the retrieval operations as a data sublanguage which can be

called by a host programming language in an application program.

A second advantage that a database provides is centralized control of the

data [9] , allowing all users to access the same data. Instead of each user

having his own private files, which would probably store data similar to other

user's files, all fifes can be integrated into one database, thus eliminating

redundancy. Since the data are stored in only one place, centralized control

also insures that the data are consistent. Once a piece of data is changed, all



users access the most recent value. Centralized control also eases the

process of insuring data integrity, that is, that all updates of the data are

valid. Whenever an update is attempted, a predefined checking procedure

based on a specific constraint can be invoked to determine the validity of the

update.

1.2. OBJECTIVES

Since "a major aspect of engineering design involves the evaluation and

satisfaction of constraints'' [15] , it is important that the database be able to

process these constraints to insure integrity and consistency of the data

contained within. In order to insure complete integrity and consistency of the

data, the constraint processing mechanism must be flexible so that the

designer can specify which constraints need to be satisfied and so that a wide

range of constraint types can be enforced.

Therefore, the primary objectives of this thesis are to:

• investigate the use of constraints and constraint processing
mechanisms to insure integrity and consistency in an engineering
design database;

• extend a constraint processing mechanism proposed by Rasdorf
[19] so that it can be implemented for a wide range of constraint

types; and

• provide a design example comparing the presented mechanism to
the traditional approach to constraint processing.

1.3. SURVEY OF PREVIOUS WORK

Until recently, most research in the area of constraint processing has

centered around the normalization process which removes dependencies from

and therefore insures integrity within the database. Codd [7 ] introduced this

process by describing the basic normal forms or database configurations that

remove a number of common dependencies. Other normal forms have been

presented by Fagin [10] , [11] , Aho, Beeri and Ullman [1 ] and others.

Additional work in the area of constraint enforcement through normalization

includes a method for testing the database schema [18] and a proposed

algorithm for viewing the dependencies and deciding upon a proper

configuration within the database [12] so that integrity is maintained.



As stated above, the normalization process eliminates dependencies so

integrity is maintained. It appears to provide a successful integrity

enforcement mechanism for the business-oriented applications for which it is

developed. However, engineering design applications require greater flexibility

and control over the constraints. Instead of eliminating a dependency within a

database, it may be more useful to store the dependent data and insure

integrity by introducing a constraint checking mechanism into the database

system. Stonebraker [21] described a constraint processing mechanism which

can enforce four different types of constraints. Bernstein, Blaustein and

Clarke [3 ] introduced a mechanism that stores specific information about the

data (such as minimum and maximum values) so that updates to the database

can be checked against this aggregate data to find possible integrity violations.

Although these methods allow constraint checking, they do not provide the

necessary flexibility for engineering design. Rasdorf [19] proposed a

constraint processing mechanism that provides the user control over the

particular constraints to enforce and stores the status (satisfied or violated) of

the constraint at the time the constraint is checked. This mechanism, however,

can not handle the large selection of constraint types as discussed in [21] .

1.4. ORGANIZATION

Chapter 2 provides an introduction to the basic concepts of database

management. The relational database model is presented, along with a

discussion of data retrieval and normalization issues.

Basic constraint processing issues including a description of constraint

sources and types is presented in Chapter 3. A comparison is provided

between traditional constraint enforcement and the constraint processing

mechanism proposed by Rasdorf [19] . Extensions to this mechanism are

described which enable it to handle a larger number of constraint types.

Chapter 4 outlines a design example which is used in Chapter 5 to continue

the comparison between traditional constraint enforcement and the extended

version of Rasdorf's work. Data items, constraints and design processes are

presented, along with the basic database schema.



A detailed comparison between a normalized design database and a complete

constraint checking database system which includes relations that are

augmented with constraint status attributes is presented in Chapter 5.

Finally, Chapter 6 summarizes the results of the investigation. Specific

conclusions are listed and potential areas of future work are presented.



CHAPTER TWO

RELATIONAL DATABASE CONCEPTS

This chapter provides an introduction to relational database management

systems (RDBMS). Basic concepts are discussed, including data retrieval and

normalization.

2.1. WHY A RELATIONAL DATABASE?

A relational database stores information in a set of relations, which are

basically two-dimensional tables. Al l information about each aspect of the

project can be stored in a set of one or more relations. An example of a

relational database, used throughout this chapter, is shown in Figure 2-1. This

database is made up of three relations; BEAMS, DESIGNATIONS and GRADES.

The BEAMS relation is similar to a beam schedule for a construction project;

it lists the LENGTH, DESIGNATION, GRADE of steel and quantity (QTY) of each

specific shape and grade in the project. The DESIGNATIONS relation is similar

to the structural shape tables in the AISC manual [2 ] and contains the

DESIGNATION, SECTION MODULUS, AREA, moment of inertia (i) and depth (D) for each

shape. Finally, the GRADES relation lists the GRADE and yield stress (FY) for

different grades of steel.

Since, as stated by Codd [ 8 ] , "relational database technology offers

dramatic improvements in productivity", relational databases are of great

interest to the developers of engineering design databases. Therefore, using

examples similar to the database in Figure 2-1, this chapter wil l provide an

introduction to the relational database approach by discussing some of the

basic concepts involved, including guidelines for database design through

normalization.



BEAMS

DESIGNATIONS

GRADES

LENGTH

20

20

20
• • mil . . i r , ...I, . _ 4

20

40

40

20

35

20

DESIGNATION

W36X300

W36X300

W33x241

W33x241

W30X211

W30X211
• II- • Ml • 1 • 1 "I IB IBI H tm M • II

W27X114

W16X57
mi 11

W27X114

GRADE

A36
• II -1 -II B J 1.

A514

A514
-. _ -m — mm _ _

A36

A588
.

A242
, IN

A36
^ _ ••! Ill — _ 1 4

A36

A514

QTY

15

9

5

5

8

4
in i

2

3

7

DESIGNATION

W36X300

W33X241

W30X211

W27X114

W16X57

SECTION

MODULUS

1110
— M HI li. Ill H H !• _•

829

663

299
• • n M M M nan in

92.2

AREA

88.3
_ _- « _ mr irr -1

70.9

62.0

33.5

16.8

I

20300
IB 11(1 1 I"

14200

10300

4090

758

i
i

! D
1

136-74

134.18

!30.94

127.29

116.43

A514 ! 100

A588 ! 50

A242 50

Figure 2-1: Example of a Relational Database.



2.2. NOMENCLATURE

This section wil l describe a few of the basic terms in the relational

database model.

The columns of the relations in Figure 2-1, such as LENGTH, DESIGNATION,

SECTION MODULUS and GRADE, are called attributes. The actual values for each

attribute are taken from the domain of the attribute. A domain is the set of

all allowable values for a specific attribute. For example, the quantity (QTY)

attribute in the BEAMS relation (Figure 2-1) has for its domain all integers

greater than zero. In any given relation, the ordering of the columns is

arbitrary.

The individual rows of a relation are called tuples. No tuple is duplicated

within any relation. A tuple thus represents some unique object or entity with

its properties (attribute values). As is the case with domains, the ordering of

the tuples within a relation is also arbitrary.

In each relation, a group of one or more of the attributes uniquely identifies

each tuple. This group of attributes is called the key for the relation. The

key for the BEAMS relation in Figure 2-1 is the attribute combination of

LENGTH, DESIGNATION and GRADE: with these attributes specified, a specific tuple is

uniquely determined. For the DESIGNATIONS relation, the key is DESIGNATION.

The key for the GRADES relation is GRADE.

The overall configuration of the database is referred to as the schema. The

schema is the layout of the relations themselves, without the data. The

description of an individual relation is called the relation schema. Once all

relations are described, such as the attribute names and types in each relation,

the database schema is completely defined.

A constraint is a tool used to control the integrity of a relation. As stated

above, the quantity (QTY) attribute in the BEAMS relation must be greater than

zero. Therefore, the following constraint is specified:

QTY > 0

Also, if the value of one attribute is dependent upon another, a constraint can

be specified to insure this dependency. For example, if a relation contains the
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height, width and area of a solid rectangular beam, the user may want to

specify the following constraint:

AREA = WIDTH X HEIGHT

If a user tries to change one of these attribute values for a tuple without

changing any other value, the database system would disallow the change and

warn the user of the constraint violation.

2.3. DATA RETRIEVAL

Once a database is created, any authorized user must be able to access the

data. Section 2.3.1 wil l discuss the three basic relational operators that

support this process: SELECT, PROJECT and JOIN. Section 2.3.2 wil l

demonstrate the implementation of these basic operators in a current relational

database management system query language.

The examples in this section show the DBMS commands in BOLD FACE, the

relation names in UPPER CASE and the attribute names in lower case letters.

2.3.1. BASIC OPERATORS

This section presents the three basic relational operators. These three

operators can be used individually or in any combination to retrieve data from

the database. The PROJECT and JOIN operators wil l be used in Section 2.4 to

describe the normalization process.

2.3.1.1. SELECT

The SELECT operator is used to produce a new relation from the rows of an

existing relation for which a specified selection criterion is satisfied. The

criterion is specified by attaching a boolean predicate to the SELECT command

through the use of a WHERE clause. Al l tuples for which the WHERE clause

evaluates to true are retrieved. For example, the following command forms a

new relation from the BEAMS relation of Figure 2-1, containing all beams

whose length equals 40 feet.

SELECT BEAMS WHERE length = 40

The result is:



LENGTH ! DESIGNATION \ GRADE | QTY

40

40

W30X211 A588 8

W30X211 A242

2.3.1.2. PROJECT

The PROJECT operator is used to produce a new relation containing one or

more of the columns of an existing relation. For example, the following

command forms a new relation from the BEAMS relation in Figure 2-1, by

eliminating the GRADE and quantity (QTY) columns.

PROJECT BEAMS OVER length AND designation

The result is:

LENGTH

20

20

40
II

20

35

DESIGNATION

W36X300 |

W33X241 |

W30X211 |

W27x114 |

1 W16X57 !

Notice that the duplicate tuples created by the projection are removed.

2.3.1.3. JOIN

The JOIN operator is used to produce a new relation by combining two or

more relations over a comparison between attributes with common domains.

Therefore, the relations to be joined must contain a common domain. For

example, the following command forms a new relation containing the attributes

LENGTH, DESIGNATION, GRADE and quantity (QTY) from the BEAMS relation in Figure

2-1 and the attributes GRADE and FY from the GRADES relation in Figure 2-1.

JOIN BEAMS AND GRADES OVER grade

The result is:
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A36
III! • H !• | • HI

A36

A514
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9

5

5

8
L

4
• I U± _ll 1

2

3

7

GRADE

A3 6

A514

A514

A36

A588

A242
mm m , T11 — «• .» „

A36

A36

A514

i

Fy !

36 !

loo !

100

36 !

50 !

50 !

36 !

36 !

100 |

This is an example of an equijoin; the two relations are joined where the

grade values are equal. Other types of joins are possible, such as, greater

than and less than joins. These joins combine the relations where a specific

attribute in one relation is greater than (or less than) an attribute in another

relation.

Also, notice that the equijoin produces a relation with two identical columns.

This redundancy must be eliminated by projecting out one of the duplicate

attributes. However, since the removal of the duplicate attribute is a very

common operation after a join, a natural join can be specified, which is the

same as an equijoin with the duplicate attribute eliminated.

2.3.2. IMPLEMENTATION OF RELATIONAL OPERATORS

Many languages have been developed to ease the data retrieval operations

for the inexperienced user. One such language is called SEQUEL (Structured

English QUEry Language) [ 5 ] . After many extensions and improvements,

SEQUEL 2 was developed [6 ] and implemented in the Database Management

System (DBMS) entitled SYSTEM R [4 ] . This language is used in the

following examples to query, manipulate, define and control the database in

Figure 2-1.
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2.3.2.1. QUERYING THE DATABASE

The query facility of SEQUEL 2 allows the user to ask the database

questions about the data. The SELECT command is used to specify which

attributes are to be returned. The FROM command is used to specify the

relation to use for the SELECT command. The WHERE command is used to

compare attributes to values or to other attributes. The comparisons may be

connected by the operators AND and OR to form more complex comparisons.

Also, the result of a query may be used in the WHERE command of another

query. The following examples are typical queries.

1. List the DESIGNATION, depth (D) and SECTION MODULUS of all beams with
a depth less than 34 inches, sorted in order of increasing section
modulus.

SELECT designation, D, section modulus
FROM DESIGNATIONS
WHERE D < 34
ORDER BY section modulus

The result is:

DESIGNATION

W16X57

W27X114

W30X211

16

27

30

i
i

D !
1
1

SECTION |

MODULUS

•43! 92.2 !

.291

.94!

299 !

663 !

The ORDER BY command orders the tuples of a relation by the
attribute specified. However, the ordering is done specifically for
the user and does not effect the actual storage of the relation,
since the order of tuples is completely arbitrary.

2. List the average area of the 20 foot beams.

SELECT AVERAGE(area)
FROM DESIGNATIONS
WHERE designation IN

SELECT designation
FROM BEAMS
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WHERE length = 20

The result is:

AREA

64.2

This command is the same as the following list of operations using
the basic operators, defined in Section 2.3.1.

• SELECT BEAMS WHERE (length.ECL20)

• JOIN RESULT AND DESIGNATIONS OVER designation

• PROJECT RESULT OVER area

• Compute average area using the result of the above command.

3. Find all beams in the project made of A514 steel.

SELECT UNIQUE designation
FROM BEAMS
WHERE grade = 'a514'

The result is:

DESIGNATION

W36X300

W33X241

W27X114

Notice that the word 'unique' follows the select command. This is
because SEQUEL 2 allows duplicate tuples and only removes them
upon request.

4. Find the yield stress for all W36x300 beams in the project.

SELECT UNIQUE Fy
FROM GRADES
WHERE grade IN
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SELECT grade
FROM BEAMS
WHERE designation = 'W36x300'

The result is:

FY

36

100

5. List the DESIGNATION, SECTION MODULUS and the values of 2«I/D for all
beams with a 2*I/D value less than 830. Notice that the derived
value of 2*I/D is calculated by the database system.

SELECT designation, section modulus, 2*I/D
FROM beams
WHERE 2«I/D < 830

The result is:

DESIGNATION

W30X211

W27x114

W16X57

SECTION

MODULUS

663

299

92.2

2*I/D

665.80

299.74

92.27

6. How many different beam designations are in the project?

SELECT COUNT (UNIQUE designation)
FROM BEAMS

The result is:

! 5 i
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2.3.2.2. MANIPULATION OF THE DATABASE

The manipulation aspect of SEQUEL 2 allows the user to change, add and/or

delete values in the database, as shown in the following examples.

1. Insert a new beam into the BEAMS relation with a length of 60
feet, a designation of W27x114 and a grade of A36, leaving the
quantity null until it can be determined.

INSERT INTO BEAMS (length, designation, grade);
<60, W27x114, A36>

This command causes the system to create a new tuple in the
BEAMS relation with the given data in the appropriate attribute
columns. Notice that the attributes to be stored are listed after the
relation name. If all attributes are to receive values, the list is
optional.

2. Create a new relation called SMALL DEPTHS, with the same
attribute names as DESIGNATIONS, that includes beams from the
DESIGNATIONS relation that have depth values less than 30.

ASSIGN TO SMALL DEPTHS (designation, section modulus, area,
I, DE-

SELECT designation, section modulus, area, I, D>
FROM DESIGNATIONS
WHERE D < 30

The following relation is created by this command:

SMALL DEPTHS DESIGNATION
SECTION

W27X114

W16X57

! MODULUS
AREA

299 33.5 i 4090127.29

92.2 j 16.8 ! 758 !16.43|

3. Add to the SMALL DEPTHS relation all beams in the DESIGNATION
relation with depths less than 34 (for this example it is assumed
that the beams with depths less than 30 are already contained in
the SMALL DEPTHS relation).

INSERT INTO SMALL DEPTHS
SELECT (designation, section modulus, area, I, D)
FROM DESIGNATIONS
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WHERE D < 34 AND D > 30

The result is:

SMALL DEPTHS DESIGNATION

W27x114

W16X57

W30X211

SECTION

MODULUS

299

92.2-

663

AREA

33.

1 16.
i

62.

.5

O
 

1 
00

1

1

i !
1
I

4090!

758 !

10300!

27

30

D

to
 i

VO 
1

.43!

.94

4. Delete all beams in the SMALL DEPTHS relation with depths greater
than 30.

DELETE SMALL DEPTHS
WHERE D > 30

This command would return the SMALL DEPTHS relation to its
original form.

5. Update the BEAMS relation by adding 10 feet to the beams with a
length equal to 35 feet.

UPDATE BEAMS
SET length * length + 10
WHERE length = 35

This command changes the eighth tuple in the BEAMS relation to:

45 ! W16X57 | A36 ! 3

2.3.2.3. DATA DEFINITION

The data definition aspect of SEQUEL 2 allows the user to create, delete

and/or change the structure of relations in the database.

1. The following command would be used to define (create) the
DESIGNATIONS relation:

CREATE TABLE DESIGNATIONS <designation(CHAR<7), NONULL),
section modulus(DECIMALd)), area(DECIMAL(1»,
I(DECIMAL(1», D(DECIMAL(2)))

The CHAR(n) specification means that the value for the appropriate
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attribute is always a character string of at most n characters.
NONULL means that the attribute must always be specified for each
tuple. DECIMAL(n) means that the value for the attribute is a real
number with at most n decimal places.

2. Add an attribute (column) to the designation relation to store the
web thickness (TW).

EXPAND COLUMN TW(DECIMAL(3»

3. Delete the GRADE relation.

DROP TABLE GRADE

2.3.2.4 CONTROL OF THE DATABASE

This aspect of SEQUEL 2 allows the users to control the access of their

data to other users and to exercise control over the integrity of data values.

Access is controlled by the GRANT and REVOKE commands. Data integrity is

controlled by specifying assertions on the data, using the ASSERT command.

Each assertion is given a name by the user who specifies it and is referenced

by this name whenever it is violated.

1. Allow Smith complete access (read, insert and change) to the
BEAMS relation, including the option to give access to someone
else.

GRANT READ, INSERT, UPDATEdength, designation, grade, qty)
ON BEAMS TO Smith WITH GRANT OPTION

2. Disallow Smith's access to the BEAMS relation.

REVOKE ALL RIGHTS ON BEAMS FROM Smith

The ALL RIGHTS command can always be substituted by a list of
rights as seen in the above example.

3. Require that all quantities in the BEAMS relation are greater than
zero.

ASSERT A1 ON BEAMS: qty > 0.0

4. Require all beam lengths in the BEAMS relation to be greater than 5
but less than 100.

ASSERT A2 ON BEAMS: length BETWEEN 5 AND 100

5. Require each beam in the BEAMS relation to have a designation
equal to one of the designations in the DESIGNATIONS relation.
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ASSERT A3:
(SELECT designation FROM BEAMS)
IS IN
(SELECT designation FROM DESIGNATIONS)

2.4. NORMALIZATION

Normalization is a method for insuring that the organization of the database

has certain desirable properties. It is a tool for determining the best possible

arrangement of the data in the database. Six different normal forms wil l be

discussed; first, second, third fourth, fifth, and domain-key normal form. The

description of first, second, third, fourth and f i f th normal forms is based on

the discussion of normalization by Date [ 9 ] .

2.4.1. FIRST NORMAL FORM

All relations in a relational database must be in first normal form (INF).

There are two reasons for this: first, storage is easier, and second, the data

manipulation operators are not as complicated as they would be for

unnormalized relations. A relation not in 1NF is called an unnormalized

relation. Figure 2-2 is an example of an unnormalized relation.

BEAM

LENGTH

20

20

40

35

20

INFORMATION

DESIGNATION

W36X300

W33x241

W30X211

W16X57

W27X114

! GRADE

! A36
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j — — — — — — _ , j
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5

Q
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2
7

Figure 2-2: Relation BEAM: an unnormalized relation.

The key for this relation, beam information, is made up of the sub-attributes
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LENGTH, DESIGNATION and GRADE. This relation is considered unnormalized,

because not all rows and columns contain single values. Figure 2-3 shows an

equivalent normalized relation. The key for this relation is a composite key

consisting of LENGTH, DESIGNATION and GRADE. Notice that all values are simple,

that is, they are all single valued.
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Figure 2-3: Relation Beami: first normal form.

This leads to the definition of a normalized relation:

A relation whose attributes or tuples cannot be broken down into
two or more attributes or tuples is considered normalized.

2.4.2. SECOND NORMAL FORM

After examining the relation in figure 2-3, one may observe that certain

problems arise because of the parti a/ dependency of the non-key attributes on

the attributes in the composite key. As shown in figure 2-4, Fy is uniquely

determined by GRADE. Also, SECTION MODULUS, AREA, I and D are uniquely

determined by DESIGNATION. These partial dependencies exist even though the

entire key of LENGTH, GRADE and DESIGNATION is necessary to identify a specific

tuple. Notice also that section modulus is determined by I and D. This is

called a transitive dependency and wil l be described in Section 2.4.3. The

partial dependencies cause the following problems:
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composite key

SECTION MODULUS

IT

Figure 2-4: Dependencies in BEAM1 relation.

• There is no way to store the yield stress (Fy) of a grade A529
steel since none of the beams are made of grade A529 steel.

• If the W 16x57 beam is deleted, the relation no longer contains the
I, D, area or section modulus for this shape.

• If it was discovered, after the data was entered, that the area of
the W36x300 beam is not 88.3, then all tuples would have to be
searched to find all occurrences of W36x300 to correct the error.

These problems are eliminated by creating three new relations from the

BEAM1 relation. As shown in Section 2.3.1.2, this can be done by the

PROJECT operator. Figure 2-5 shows these new relations. With the database

in this form, all of the previous problems are solved.

• Any beam designation or grade can be stored, even if those
designations or grades are not currently in the BEAM2 relation.

• A particular beam occurrence can be deleted, without losing its
related dimensions.

• Information about any designation or grade can be changed without
having to search for multiple occurrences.

By eliminating the partial dependencies on the key, the relations in figure 2-5

are now considered to be in at least second normal form1 (2NF). The

definition of second normal form is then as follows:

1
Actually, the BEAM2 and GRADE relations are also in third and fourth normal forms.
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Figure 2-5: BEAM2r DESIGNATION and GRADE relations: second normal form.
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A 1NF relation is in second normal form if all attributes depend
on the entire key.

2.4.3. THIRD NORMAL FORM

Problems can also arise in a relation in second normal form, due to the

possibility of transitive dependencies of two or more non-key attributes. An

example of a transitive dependency is shown in Figure 2-6 for the

DESIGNATION relation in Figure 2-5.

key

SECTION MODULUS |

Figure 2-6: Transitive dependencies between I, D and section modulus.

Although all attributes depend on the key, DESIGNATION, another dependency

exists between SECTION MODULUS, I and D, since, theoretically, section modulus

equals l/(D/2). This kind of transitive dependency can cause problems similar

to the ones in a relation in 1NF. However, in this case none of these

problems are present. This is because a SECTION MODULUS relation

containing SECTION MODULUS (as the key for the relation), I and D could not stand

alone; two beam designations could have the same section modulus even if

the I's and D's were different, thus forcing the key of SECTION MODULUS to be

non-unique. Ignoring the lack of an actual problem in this particular relation,

normalization would force it to be split, so that the transitive dependency is

removed. Figure 2-7 shows two new relations that remove this dependency.

These new relations are in at least third normal form.2

2
Actually, these relations are also in fourth normal form, as explained in Section 2.4.4.
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Figure 2-7: DESIGNSA and DESIGNID relations: third normal form.

This leads to the definition of third normal form.

A 2NF relation is in third normal form if all attributes depend on
the key and no other attribute.

2.4.4. FOURTH NORMAL FORM

A close look at the BEAM2 relation in figure 2-5 uncovers another problem.

To provide a clearer example of this problem, a new relation similar to

BEAM2 is created by removing the quantity attribute and changing a few

tuples. The new relation (BEAM3) is all key. since all attributes must be

specified to uniquely identify any specific tuple. Figure 2-8 shows the new

relation. Assume that this relation is a list of all the possible types of

beams that can be provided. This means that only 20 and 40 feet lengths are

allowed: that a 20 foot beam can only have a grade of A36 or A514, and that

the 40 foot beams can only be made of A588 or A242 steel. This dependency

between LENGTH and GRADE is called a multi-valued dependency (MVD). A multi-
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Figure 2-8: BEAM3 relation.

valued dependency is similar to the transitive dependency: in a relation with a

transitive dependency, one or more attributes uniquely determine the value of

another attribute, while in a relation with a multi-valued dependency, one or

more attributes determine a well-defined set of values for another attribute.

This multi-valued dependency causes the following two problems:

• There is a large amount of redundancy in this relation. This
redundancy causes the same updating problem as before; if a
designation is incorrect, all occurrences have to be searched and
changed.

• If a new grade of steel can be provided for 20 foot beams, three
new tuples must be entered, one for each distinct designation. This
adds to the redundancy.

The MVD is eliminated by creating two new relations. The new relations are

shown in Figure 2-9. These relations are now considered to be in fourth

normal form (4NF), which is defined in the following way:

A 3NF relation is in fourth normal form if, when a multi-valued
dependency exists, one attribute upon another, then all other
attributes depend on this same attribute.
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Figure 2-9: DESIGNATiONL and GRADEL relations: fourth normal form.

2.4.5. FIFTH NORMAL FORM

After examining the discussion on fourth normal form in the previous

section, it could be decided to ignore the redundancy problem in the BEAM3

relation shown in Figure 2-8. If this is done, the BEAM3 relation wil l remain

intact and the user has to be aware of the redundancy. This is a possible

alternative, since any relation that is at least in first normal form is a valid

relation. However, there is a different type of problem associated with a

relation like the BEAM3 relation that could cause more than just a redundancy

problem. This new problem arises from the join dependency of the attributes.

To show this join dependency, assume that, at some time, the BEAM3 relation

is broken into its three projections: DESIGNATIONUcontaining the length and

designation), GRADEUcontaining the length and grade) and

DESIGRADE(containing designation and grade). Then, at some other time, only

two of these relations, such as DESIGNATIONL and DESIGRADE, are joined to

form the original relation. Figure 2-10 shows that this process causes four

new tuples to appear in the new BEAM3 relation (called NBEAM3) that did not

appear in the original BEAM3 relation. This is called a join dependency. It is

only when the third projection is also joined that the NBEAM3 relation is the

same as the original BEAM3 relation. Therefore, in order to eliminate this join

dependency, the BEAM3 relation should be broken into three new relations,

each with a different key corresponding to the number of possible or

"candidate" keys in BEAM3, and left in this form.

Fifth normal form can be defined in the following way:
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Figure 2-10: DESIGNATIONL, GRADEU DESIGRADE and NBEAM3 relations:
Example of join dependency.
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A relation is in f i f th normal form or projection-join normal form if
and only if all join dependencies are eliminated.

2.4.6. DOMAIN-KEY NORMAL FORM

After reading about all the other normal forms, one may wonder if there is

a limit to the number of possible normal forms. It is true that as long as

new problems are found, new normal forms could be defined. However, Fagin

[11] has defined a different normal form that encompasses all of the other

normal forms described in this chapter. It is called domain-key normal form

(DK/NF). In order for a relation to be in DK/NF all insertion and deletion

anomalies must be removed. Insertion and deletion anomalies are defined by

Fagin [11] in the following way:

"An insertion anomaly occurs when a seemingly legal insertion of
a single tuple into a valid instance of the relation schema causes the
resulting relation to violate one of the constraints of the relation
schema. Here 'seemingly legal' means that every entry of the new
tuple is in the appropriate domain and that the new tuple differs
from all previous tuples".

"A deletion anomaly occurs when the deletion of a single tuple
from a valid instance of the relation schema causes a constraint to
be violated".

All of the problems described in this chapter for the other normal forms can

be described as an insertion and/or deletion anomaly, once the concept of

domain dependencies is included in their definitions. A domain dependency is

the dependency between the attribute and the domain. If the domain is

infinite, there is no domain dependency. A bounded domain creates a domain

dependency. For example, assume that the LENGTH domain in the BEAM3

relation in Figure 2-8 is bounded by the values 0 and 100. The insertion of a

beam of length 200 feet would violate the domain dependency. Therefore, this

is a special case of a insertion anomaly (a constraint is violated upon

insertion).

Therefore, removal of these anomalies, by whatever means necessary, causes

the relation to be in DK/NF which implies that the relation is also in first,

second, third, fourth and f i f th normal forms. The reader is directed to Fagin

[11] for a proof of this statement and a more detailed description of DK/NF.
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2.5. CONCLUSION

This chapter has defined some of the basic concepts in the relational

approach to database management, using structural engineering examples. It

has shown that databases, especially relational databases, are of great

potential benefit to the engineering profession, due to increased data

independence. Also, a detailed description of normalization has been provided.

Normalization can best be summarized by the following statement:

Once the user decides on the configuration (schema) of the
database, he or she must also be sure that this schema guards
against all possible insertion and deletion anomalies (problems) that
might arise. If the schema does not do this, the user can choose
one of the following alternatives:

• Change the schema so that all possible problems are
eliminated. If this is done, the database is in the "best"
configuration.

• Use this schema and manually check for the occurrence of the
insertion and/or deletion problems. Under normal
circumstances this alternative should not be chosen, since the
insertion and deletion problems are usually very difficult to
detect.

It is hoped that this chapter has provided the reader with an informative

summary of database issues and has shown the importance of careful planning

during the design of a relational database for engineering.
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CHAPTER THREE

CONSTRAINTS

This chapter provides a detailed discussion of the use of design constraints

in a relational DBMS, including the identification of the various sources and

types of constraints. In addition, it contains a comparison between constraint

enforcement in a normalized database and in a proposed database model

containing relations augmented by constraint status attributes [19] . Extensions

to this model are presented in Section 3.4.4.

3.1. USE OF CONSTRAINTS

As stated in Section 2.2, constraints are used to control the integrity of the

database. They can be used: 1) to set minimum and/or maximum limits on the

attribute values, and: 2) to insure that dependencies between attribute values

are correctly maintained. The first class of constraints is supported by most

DBMS's. The second class, however, is much more complex; the enforcement

of the constraint could involve the retrieval of data from different attributes,

tuples and/or relations. Therefore, this class of constraints is not fully

implemented in current DBMS's. The discussion wil l concentrate on the second

class of constraints.

3.2. CONSTRAINT SOURCES

Constraints arise from the following three main sources:

1. Physical or geometric relationships.

2. Codes and standards.

3. Design objectives or designer "style".

The following sections wil l describe and provide examples of each of these

constraint sources.
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3.2.1. PHYSICAL OR GEOMETRIC RELATIONSHIPS

Constraints which arise due to physical or geometric relationships are the

easiest to understand. The constraint is usually based on the definition of one

or more of the data items. An example of this kind of constraint (as shown

in Section 2.2) is one that insures that the area of a solid rectangular beam is

always equal to the height times the width:

area - height*width = 0

Another constraint of this kind could be based on purely geometric relations.

Suppose a relation includes information about beams, such as beam ID number,

length, yield stress (F ), etc. Another relation contains information about

sections of all the beams in the first relation, such as beam ID number,

section ID number, section length, flange and web dimensions, etc. With these

two relations in the database, a dependency arises between the length of each

beam and the sum of the section lengths for that beam:

For each beam,

(length - ,2L,(section lengths)) = 0.0

3.Z2. CODES AND STANDARDS

Design codes and standards provide many rules and guidelines governing

acceptability of a specific design [15]. These rules can be modeled in a

database as constraints. A typical example is the provision in the AISC

Specification [2] that the actual bending stress (fb) in a beam must be less

than or equal to the allowable bending stress (Fu) for that beam. This

constraint is shown below:

An entire specification can be represented as a set of such constraints [13],

[14], [16], [20].
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3.2.3. DESIGN OBJECTIVES OR DESIGNER "STYLE"

Individual designers can also impose constraints upon their particular design

procedure in order to meet specific design objectives. For example. Section

1.10.2 (plate girders) of the AISC Specification [2 ] imposes the following

constraint on the ratio of the clear distance between flanges to web thickness

(h/tj:

h/t £ 14,000/(F (F • 16.5))1/2 (3.1)
w y y

where F is the yield stress of the steel. However, if transverse stiffeners are

provided the limiting ratio is
h/t £ 2000/(F )1/2 (3.2)

w y

Therefore, if transverse stiffeners are included in the design, constraint (3.2)

must be checked, and constraint (3.1) does not have to be included. However,

if the designer decides not to use transverse stiffeners, then (3.1) is the

appropriate constraint. Thus, the specific constraint used is chosen by the

designer to meet a particular design objective.

Other constraints, which are completely independent of a design code, can

be imposed by a designer. A designer may decide that only one grade of

steel wil l be used and therefore specify a constraint which limits the value of

the yield stress to the value which corresponds to the specific grade.

Constraints could also be specified to limit beam dimensions, stresses or

deflections to values within an acceptable range determined by the designer

based on previous experience.

3.3. CONSTRAINT TYPES

The type of a constraint may be determined by the location of the data

items needed to evaluate the constraint. For example, if all the data

necessary to evaluate a particular constraint is stored in one single tuple of a

relation, then the constraint is considered a single relation-single tuple

constraint. Since some constraint types are more complex to evaluate than

others, due to the effort spent on retrieving the necessary data items, it is

important for the database schema designer to be aware of the types that

would have to be included in any proposed schema. Therefore, this section

wil l describe and provide examples of the various constraint types.
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Section 3.3.1 wil l discuss constraint types that insure integrity within a

single relation. In Section 3.3.2, the discussion is expanded to include

constraints that insure integrity between data in two or more relations.

The examples used in this section are based on the following two relations:

BEAMS(6eamid, blend, brend, blength)

SECTIONS(£eam/(/, sectionid, slend, srend, slength, width, height, area)

The relation name is listed first, followed by the names of all of its

attributes. The attributes in italics are the key for the relation. The BEAMS

relation contains the beam identification number (beamid - key), left end

location with respect to a datum, right end location and the length of each

beam. The SECTIONS relation contains the beam and section identification

numbers (beamid, sectionid - composite key), left end location with respect to

the left end of the beam, right end location, segment length, width, height and

area of each solid rectangular section of each beam in the BEAMS relation.

3.3.1. SINGLE RELATION CONSTRAINTS

As stated above, single relation constraints insure integrity within a single

relation. There are three main types of single relation constraints:

1. Single relation-single attribute.

2. Single relation-single tuple.

3. Single relation-multiple tuple.

Single relation-single attribute constraints have already been defined. They

restrict the allowable range for a specific attribute. For ~ example, the

following single relation-single attribute constraints could be imposed:

BEAMS.blength > 0.0

BEAMS.blength £ 100.0

SECTIONS.slength £ 0.0

SECTIONS.slength £ 100.0

SECTIONS-width > 0.0
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SECTIONS.height > 0.0

SECTIONS.area > 0.0

Notice that each expression constrains only a specific attribute value in a

single tuple of a single relation. This simple type of constraint is

implemented in essentially all DBMS's. The constraints limiting the beam

lengths can be specified as a SEQUEL 2 [6 ] assertion (discussed in Section

2.3.2.4) in the following manner

ASSERT A1 ON BEAMS: blength BETWEEN 0.0 AND 100.0

Single relation-single tuple constraints are used to enforce dependencies

between attributes in each tuple of a single relation. The dependencies can

involve simple comparisons between attributes in a specific tuple, such as:

SECTIONS.slend £ SECTIONS.srend

This constraint forces the value for the left end location of a section to be

less than the right end value for each section in the SECTIONS relation, i.e.

positive distance is measured from left to right.

This type of constraint can also require mathematical operations:

SECTIONS-width X SECTIONS.height - SECTIONS.area = 0.0

BEAMS.brend - BEAMS.blend - BEAMS.blength = 0.0

SECTIONS.srend - SECTIONS.slend - SECTIONS.slength = 0.0

The first constraint requires the area of a particular section to be equal to its

width times its height. The next two constraints require beam and section

lengths to equal the distance between their right and left ends. In SEQUEL 2,

the first constraint between the right and left end locations is specified as

follows.

ASSERT A2 ON SECTIONS: slend < srend

The single relation-single tuple constraints are also fairly simple to

implement, since they require data retrieval from only one tuple in a specific

relation each time the constraint is checked. However, the specification of

mathematical operators in the constraint introduces some amount of

complexity. Therefore, some DBMS's allow only a restricted form of the

single relation-single tuple type constraints with only relational operations (=,

#, >, £, <, £) permitted in the constraint specification.
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Single relation-multiple tuple constraints are much more complex than the

two types discussed above. This type is used to insure dependencies between

data items in different tuples of a specific relation. An example of this type

of constraint is listed below. This constraint insures the design objective that

the height difference between two adjacent sections is less than a specified

constant.

| SECTIONS.heightX - SECTIONS.heightY| £ CONSTANT

WHERE SECTIONS.beamidX = SECTIONS.beamidY AND
SECTlONS.slendX = SECTIONS-srendY

The X and Y following the attribute name indicate different tuples, i.e. Xth

tuple and Yth tuple. Also, the | | indicates absolute value.

To check the constraint the relation is searched to select a group of

sections that have a common beam identification number. Then all the srend

and slend attributes in this group are compared to find adjacent sections so

that the height attributes from the two sections can be checked. Therefore,

data from two tuples is needed every time this constraint is checked. Since

most DBMS's do not allow constraints that require comparisons between two

or more tuples, this type of constraint cannot be enforced. However, SEOUEL

2 does allow these type constraints3, since its assertion component includes

the ability to select (query) the appropriate data and then check the constraint.

ASSERT A3 ON SECTIONS : | X,height - Y,height| £ constant

WHERE X,beamid = Y,beamid AND X,slend = Y,srend

3.3.2. MULTIPLE RELATION CONSTRAINTS

Multiple relation constraints are used to insure integrity between data items

in different relations. There are three main types:

1. Multiple relation-single attribute

2. Multiple relation-single tuple.

3. Multiple relation-multiple tuple

3
SEQUEL 2 excludes the use of mathematical operations within the constraints, but this restriction

will be ignored in the discussion.
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Multiple relation-single attribute constraints enforce dependencies between

single attribute values in two or more relations. The only difference between

this type of constraint and the single relation-single attribute constraints is

that the attribute value is compared to another attribute value in a different

relation instead of being compared to a user supplied constant. For example,

to insure that each section in the SECTIONS relation has a beamid equal to

one of the beamid's in the BEAMS relation, the following constraint is

specified:

SECTIONS.beamid = BEAMS.beamid

This constraint arises due to the hierarchical relationship between attributes,

since the information in the SECTIONS relation corresponds to specific

sections of the beams in the BEAMS relation; a section cannot exist if the

beam itself does not exist.

This type of constraint is more difficult to enforce than the single relation

types, since it involves retrieval from two or more relations. However, the

following SEQUEL 2 assertion can be specified to enforce the example

constraint:

ASSERT A4:

(SELECT beamid FROM SECTIONS)
IS IN
(SELECT beamid FROM BEAMS)

Multiple relation-single tuple constraints insure dependencies between

individual tuples in two different relations. The only difference between this

constraint type and the previous one is that more than one attribute from each

tuple is needed to evaluate the constraint. For example, the following multiple

relation-single tuple constraint is specified to force an individual section length

to be less than or equal to its corresponding beam length (a section cannot be

longer than the beam):

SECTIONS.slength < BEAMS.blength

WHERE BEAMS.beamid = SECTIONS.beamid

To evaluate this constraint, data is required from two attributes in single

tuples of two different relations. The constraint is specified in SEQUEL 2 in

the following manner:
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ASSERT A5: ON SECTIONS X: slength <=

(SELECT btength
FROM BEAMS
WHERE beamid = X,beamid)

Multiple reiation-multiple tuple constraints insure dependencies between data

in two or more tuples in two or more relations. These constraints usually

require aggregate data, such as averages, summations, minimum and/or

maximum values of particular attributes in all tuples of specific relations.

Since, as shown by [ 3 ] , the aggregate information can be "designed to be

quickly accessed and easily maintained", multiple relation-multiple tuple

constraints which require aggregate data may not be as complex as other

multiple relation-multiple tuples constraints. However, it is assumed that the

more complex constraints are still enforceable, given access to all necessary

retrieval operations. The following is an example of a multiple relation-

multiple tuple type constraint which requires aggregate data:

BEAMS.blength - ^jSECTIONS.slength) = 0.0

WHERE BEAMS.beamid = SECTIONS.beamid

where x . indicates a summation operator. This constraint forces the beam

length in BEAMS to equal the summation of all the lengths of all sections of

each beam. It can be specified in SEQUEL 2 in the following manner

ASSERT A6 ON BEAMS X: blength =

(SELECT SUM(slength)
FROM SECTIONS
WHERE beamid - X,beamid)

An example of a multiple relation-multiple tuple constraint that does not

require aggregate data is one which insures the design objective that the height

difference between two adjacent sections is less than one tenth of the overall

beam length.

| SECTIONS-heightX - SECTIONS.heightY| £ BEAMS.blength/10

WHERE BEAMS.beamid = SECTIONS.beamidX AND
SECTIONS.beamidX = SECTIONS.beamidY AND
SECTIONS.slendX = SECTIONS.srendY

It can be specified in SEQUEL 2 in the following manner
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ASSERT A7 ON SECTIONS : (|X,height - Y,height| <
(SELECT blength
FROM BEAMS
WHERE beamid = X,beamid)/10)

WHERE X,beamid = Y,beamid AND X,slend = Y,srend

3.4. CONSTRAINT ENFORCEMENT ALTERNATIVES

This section wil l present three alternatives for constraint enforcement in an

engineering design database.

3.4.1. NORMALIZED DATABASE

Normalization has been the most common method used to remove

dependencies between data items, by projecting out the dependent or

"redundant" attributes [15] . Using the remaining independent attribute values,

the user or application program can then determine the values of the deleted

redundant attributes.

As stated in [15 ] , one objection to normalization by deleting the dependent

attribute(s) is that it is usually diff icult to determine which attributes are

dependent or independent. Also, during the design process, attributes can

change from independent to dependent, and vice versa.

An example of this (similar to the one presented in [15]), would be the

dependence between the width, height and area of solid rectangular beams. At

one point the designer may determine the necessary beam area to satisfy a

specific stress constraint and then select the beam dimensions which provide

that area. At some other time, the designer may determine the beam

dimensions first from clearance constraints, and then calculate the resulting

area. Therefore, at specific points of the design process, the designer would

need to delete different attributes from the database to eliminate the attribute

dependencies. One of the following expressions would be used to calculate

the value of the dependent attribute (depending upon which attribute was

chosen):
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SECTIONS.area = SECTIONS.width X SECTIONS.height

SECTIONS.height = SECTIONS.area / SECTIONS.width

SECTIONS.width = SECTIONS.area / SECTIONS.height

A second objection to normalization is that although dependencies can be

removed so that equality constraints can be enforced, a constraint which

specifies an inequality between data items cannot be enforced. For example, a

constraint could specify that a section length must be greater than or equal to

twice its height. To eliminate this dependency, the length attribute would have

to be deleted; however, this would cause the loss of independent data, since

the actual length values probably depend upon other factors and cannot be

calculated by just doubling the height value.

Finally, a third objection to normalization is that it does very little (if

anything at all) for multiple relation constraints. For example, the two

relations used in the previous section can be normalized with respect to the

length, the left and the right end locations by eliminating the brend and srend

attributes, as shown below.

BEAMSl&ea/n/tf, blend, blength)

SECTI0NS(£ea/7?/i/, sect/on id, slend, slength, width, height, area)

Within a particular relation, none of the remaining information concerning the

length or location of the beams or sections can be eliminated without losing

independent data. However, the dependency between the beam length and the

summation of section lengths still exists.

Thus, even though normalization eliminates some dependencies within

relations, it does not provide the necessary flexibility for the design process.

Therefore, an alternative is needed that will insure all dependencies are

satisfied and also provide flexibility.
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3.4.2. DIRECT CONSTRAINT ENFORCEMENT

An alternative to normalization for constraint enforcement is to add integrity

rules to the DBMS so that it can enforce all of the possible constraint types

illustrated in Section 3.3. Therefore, if an insertion or update causes a

constraint to be violated, the specific action is immediately rejected by the

database system and no change is made. This alternative is capable of

insuring all dependencies, however, it is still not flexible enough for design

purposes, since the database requires the constraints to be satisfied at all

times. During preliminary design, certain constraints are ignored to allow for

the testing of trial solutions or because some data items have not yet been

calculated. Therefore, a database system that provides this additional

constraint control must be developed.

3.4.3. AUGMENTED DATABASE, SINGLE RELATIONS

This section summarizes a database system, proposed by Rasdorf [19 ] ,

[15 ] , which contains relations augmented by constraint status attributes. A

constraint status attribute is added for each constraint to record the status of

the constraint and can have a value of either TRUE (for constraint satisfied) or

FALSE (for constraint violated). This extra attribute is added to the specific

relation that is constrained by the particular constraint. For example, to check

the constraint on the area, width and height of a section, the SECTIONS

relation is modified as follows:

SECTIONS(£ea/77/'tf, sect ion id, srend, slend, slength, width, height,

area, areaok)

where the areaok attribute is the status attribute for the constraint. Section

3.4.4 wi l l discuss the proper placement of these attributes for constraints

which involve more than one relation.

3.4.3.1. CONSTRAINT EVALUATION

The constraint status is determined by the database using either user

supplied checking functions which can evaluate the status attribute by checking

the constraint or assignment procedures which can assign a value to the
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dependent data item such that the constraint is satisfied. For example, the

status of the area constraint can be evaluated by using either the PASCAL

function or the PASCAL procedure show below.

FUNCTION AREAOK(area, width, height:REAL): BOOLEAN
BEGIN

AREAOK := (ABS(area - width*height) <= .01)
END

PROCEDURE SETAREA(width, height:REAU VAR arearREAL;
VAR areaok:BOOLEAN)

BEGIN
area :- heigbt«width
areaok := TRUE

END

Notice that the SETAREA procedure calculates the value for the area. Similar

procedures can be specified to calculate the height or width. Section 3.4.3.2

wil l show how the user can specify which assignment procedure to use.

These routines assume that all necessary data is available and can be passed

to them. Rasdorf's presentation [19] , only discussed constraint routines

whose arguments are attribute values in a single tuple of a single relation. In

general this is not always the case. Section 3.4.4 wil l extend this discussion

to multiple tuple and multiple relation constraints.

3.4.3.2. CONSTRAINT CONTROL

As stated in Section 3.4.2, the database must permit the user to control

which constraints are to be enforced at any given time. The database system

proposed in [19] , [15] provides this by including a control mechanism which

supports the following three control commands:

• INVOKE(constraint)

• ACTIVATE(constraint)

• DEACTIVATE(constraint)

where the word constraint is replaced by the name of the constraint checking

function or assignment procedure.

The INVOKE command causes the database to call the specified constraint

routine to check the constraint for each tuple currently in the database. If the
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procedure encounters any undefined, uninitialized or "null" values while

selecting data, the constraint status attribute is automatically set to false.

This allows the user to continue with the design process even though pieces

of data are missing or constraints are violated. At some other point in the

design process, the user can SELECT the status attributes that were set to

FALSE to correct or load the appropriate pieces of data. The INVOKE

command also can be combined with a where clause so that the constraint is

invoked on only a specific set of tuples.

The ACTIVATE command causes the database to call the specified routine

for each insertion or update of the database, and accept the change only if the

constraint status attribute evaluates to TRUE.

The DEACTIVATE command causes the database to ignore the constraint so

that changes can be made without checking. When the changes are completed,

the constraint can be invoked and activated again.

As stated in [15 ] , complete integrity "can be assured only if ACTIVATE is

preceded by INVOKE". Therefore, in this study, it is assumed that the

ACTIVATE command automatically performs the INVOKE, warns the user of

any non-conforming data and then activates the constraint. Since the INVOKE

command can be combined with a where clause, the specification of the

ACTIVATE command can include a where clause which is used for the INVOKE

only.

3.4.4. AUGMENTED DATABASE, MULTIPLE RELATIONS

The following wil l describe the necessary extensions to the database system

described in the previous section which eliminate specific problems with the

model as well as provide the enforcement of multiple tuple and multiple

relation constraints. Two extensions to the constraint control mechanism are

needed. First, there must be a way to determine which constraints are

activate at any specific time. For example, a user could insert new values

into the database and invoke and activate the constraints so that they are all

satisfied. Then another user could deactivate a particular constraint and

change the values of some of the data such that the deactivated constraint

may or may not be satisfied. If this data is then retrieved, it cannot be
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assumed to be valid unless all constraints that depend on this data are

reactivated before the retrieval. This would not be very efficient since most

of the constraints have not been deactivated. However, if the database

system kept a record of all of the activated constraints, the user could

specify which constraints are to be satisfied, and then the database would

only activate the constraints that were not currently activated.

Second, although the current mechanism gives the user control over the

enforcement of constraints, there is a definite problem in the way the

constraints are checked. As stated above, once a constraint is activated, the

database permits changes only if the changes satisfy the constraint.

Therefore, for an equality constraint whose status attribute currently has a

value of TRUE, no changes will ever be allowed, since the constraint is

checked after every single change. For example, suppose the areaok attribute

is equal to TRUE for a specific beam, however, a user intends to change the

width of this beam. To do this, the user would also have to change the area

so that the constraint is again satisfied. This process cannot be accomplished

if the constraint is currently activated; the first update (on width) violates the

constraint, so it is rejected. The second update (on area) also violates the

constraint and is also rejected. The update can only be accomplished by

deactivating the constraint, specifying the changes and then invoking the

constraint, in which case, the ACTIVATE command is of no use.

This problem can be eliminated if multiple updates are allowed. A multiple

update enables a user to complete an entire transaction (containing many

insertions or updates) before any constraints are checked. Once the

transaction is completed, the appropriate constraints are checked and the

transaction is either accepted or rejected, in which case the entire transaction

must be "backed out" to restore the database to its original state before the

transaction began.

In SEQUEL 2 a user can specify a multiple update by placing the update

commands "between the statements BEGIN TRANSACTION and END

TRANSACTION" [6] . All assertion checking is ignored until the entire

transaction is processed (unless the word IMMEDIATE was included in the

assertion specification, in which case the assertion is always checked).
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The need for multiple updates also arises in the enforcement of multiple

relation constraints. Such an example is the one which forces each beam

length to equal the summation of each of its section lengths. Since this

constraint involves multiple tuples and multiple relations, it cannot be enforced

in the database system described in the previous section. However, if the

checking and assignment routines in that system are given access to all of the

database query operations, this type of constraint can be enforced [15].

Therefore, the model must be extended to include the ability of specifying

database query operations in all constraint procedures and functions.

Enforcement of this constraint requires the addition of one constraint status

attribute to the BEAMS relation to record the status of the constraint. The

status attribute is added to the BEAMS relation because this constraint is

checked for each beam. If it were added to the SECTIONS relation, a large

amount of redundant data would be introduced to the database since, for each

section of a specific beam, the status attribute has the same value.

With the new attribute (lengthok) added, the example database has the

following structure:

BEAMS(beam/d, blend, brend, blength, lengthok)

SECTIONS(£ea/n/</, sect ion/d, slend, srend, slength, width, height,

area)

In order to evaluate the status attribute, the following PASCAL-like function is

used:

FUNCTION LENGTHOK(beamnum:char): BOOLEAN
BEGIN

DBMS("SELECT(blength into blen from BEAMS where beamid
beamnum,
SUM(slength) into sumlen, COUNT into num
from SECTIONS where beamid - beamnum,
selectok)")

IF (selectok) AND (num => 1) THEN
lengthok := (ABS(blen - sumlen) <= .01)

ELSE
lengthok := 'false'
ERRORC'Error or null value in BEAMS and/or

SECTIONS relation")
END
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The DBMS procedure is called to perform the query operations. The argument

of this procedure specifies the query operations to be executed. In this study,

the DBMS procedure calls wil l use a query language similar to SEQUEL 2.

Also, the "BEGIN and END TRANSACTION" commands from SEQUEL 2 are

implied by the DBMS procedure. For example, in the above example, it is

assumed that the two SELECT operations are one complete transaction. The

SELECT procedure is used to select the length attribute (blength) from BEAMS

for the current beam (beamnum) and the summation of the section lengths

(slength) and the number of sections selected (num) from SECTIONS for all

sections of the current beam (beamnum). The selectok variable is used to

" f lag" the success or failure of the select operations. If the selectok variable

is FALSE or if the number of sections selected (num) is zero, the constraint

cannot be checked and the function assumes that there are null values or an

error in one or more of the relations. Therefore, the constraint status

attribute (lengthok) is set to FALSE. Notice that if no sections are selected,

the value of selectok is TRUE. This is because selecting a COUNT equal to

zero is considered a successful select operation.

When a user tries to update a beam's length and/or any of its section

lengths, the database system can call this function and allow or reject the

update depending upon the value of the constraint (lengthok). Again, this

assumes that multiple updates are allowed. If the user can not specify a

multiple update, the database need only check the value of lengthok. If

lengthok has the value FALSE, the database calls the function and acts on the

update accordingly. If lengthok has the value of TRUE, then the update is

automatically rejected without calling the function (since changing only a beam

length or one section length wi l l violate the constraint). This eliminates some

processing effort; however, it also removes some user flexibility. If the

user's complete update would satisfy the constraint, it is still rejected, since

the database looks at each specific change.

A second example of the proposed constraint enforcement mechanism is

shown below. This example enforces the constraint which insures the design

objective that the height difference between two adjacent sections is less than

a specified constant.

FUNCTION HEIGHTOK(beamnum, sectnumxhar): BOOLEAN
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BEGIN
DBMS("SELECT(height into hf srend into rendr slend into

lend from SECTIONS where beamid = beamnum
and sectionid = sectnum,
height into height 1, COUNT into numi from
SECTIONS where beamid = beamnum and slend
rend,
height into height2, COUNT into num2 from
SECTIONS where beamid = beamnum and srend
lend,
brend, blend from BEAMS where beamid =
beamnum, selectok)")

IF (selectok) THEN
BEGIN

TF (numi = 0 AND rend = brend) THEN
height 1 :- h

IF (num2 = 0 AND lend = blend) THEN
height2 := h

heightok := (abs(h - height!) £ constant)
AND (abs(h - height2) < constant)

END
ELSE

BEGIN
heightok :- 'false'
ERRORC'error or null value in BEAMS or SECTIONS")

END
END

If the select operations are unsuccessful, the function assumes that there are

null values or an error in the BEAMS or SECTIONS relations. If the number

selected from the second or third selects equals zero, and the current section

is at one of the beam ends, then the function automatically sets the value of

height so that the constraint is satisfied for that end of the section.

The proposed constraint enforcement alternative seems to provide the

designer with a large degree of flexibility by allowing the enforcement of all

constraint types and by giving the user complete control over which

constraints are to be enforced at any particular time. The next chapter will

describe a design example that will be used in Chapter 5 to compare the use

of this alternative to the normalized database alternative.
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CHAPTER FOUR

DESIGN EXAMPLE

This chapter describes a specific design example used in Chapter 5 to

compare two of the constraint processing alternatives discussed in Section 3.4,

namely, normalization versus augmented databases.

Included in this description is the definition of the data items in the

database, the database schema, and the constraints that must be enforced by

the user or program in the first alternative or by the database in the second

alternative.

4.1. DESIGN PROCEDURE

The example deals with the design of the girders of a continuous plate

girder bridge. It involves the following three main design phases:

• Conceptual Design
«

• Beam Sizing

• Splice and Stiffener Design

4.1.1. CONCEPTUAL DESIGN

The conceptual design phase involves the selection of the preliminary beam

dimensions using a few specific design constraints, such as basic constraints

for allowable stress or allowable dimensions. This phase receives as input all

of the basic information about the overall structure, layout and assumed

behavior, such as segment lengths, locations and moment type (design for

positive or negative moment segments), since this information is based on the

designer's experience. This information must be checked before any

calculations can be performed. Therefore, all appropriate constraints are

checked at the beginning of this phase.
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4.1.2. BEAM SIZING

The beam sizing phase uses the results of an analysis procedure to select

the final beam dimensions. Three steps are involved: first check the

corresponding constraints for all input data; second call the analysis procedure

to perform the static analysis; and third, check the design constraints using the

preliminary dimensions and analysis results. If any constraints are violated,

the necessary changes are made, the analysis is repeated with the new values

and the design constraints are rechecked. This process is repeated until all

constraints are satisfied.

4.1.3. SPLICE AND STIFFENER DESIGN

In the splice and stiffener design phase, the design of all bearing stiffeners

and beam splices is performed. The process includes checking all appropriate

constraints on the input data, the selection of all dimensions for the

stiffeners, splice plates and bolts, and checking the corresponding design

constraints to insure that these dimensions are satisfactory.

4.2. DATA ITEMS

Figure 4-1 contains a list of each data item stored in the database along

with its corresponding definition.

The entire database schema, including the relations and the single relation-

single attribute constraints checked by the database is shown in Figure 4-2.

The STRUCTURE relation contains information that remains constant throughout

the design procedure, such as allowable stresses and deflections, overall girder

length and grade of steel of the structure. The SEGMENTS relation contains

information about the length and location of each segment of the girders.

This relation identifies the points of the girder in which the section flange

dimensions change. The ends of each section are usually located at a point

of minimum moment. Since it is assumed that only two different flange

sections are designed (one for positive moment sections, one for negative

moment sections), the posmom attribute is used to differentiate between the

two sections. The WSECTIONS relation contains the design alternative number

and the web dimensions for the entire girder. The FSECTIONS relation
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ALTERNATIVE

ANALOC

BBS

BF

Bl

BO

BOLTDIA

BWS

BSLOC

CLEAR

DEFALL

DEFY

E

FBALL

Identification number for alternative designs of the current
structure.

Analysis result point measured from the left end of section
(expressed as a function of the section length). For example,
a value of .2 specifies a distance of two tenths of the
section length from the left end.

Width of the bearing stiffener.

Flange width of a particular section.

Width of the inside flange splice plate.

Width of the outside flange splice plate.

Bolt diameter to use for all connections.

Width of the web splice plates.

The location of the bearing stiffeners measured from the left
end of the girder.

Allowable vertical clearance for the girder.

Allowable deflection limit (expressed as the denominator of
the length to deflection ratio. For example, if the deflection
must be less than the span length divided by 1000 (1/1000),
the value of DEFALL would be 1000.

Calculated vertical deflection at a particular analysis point of
a section.

Modulus of elasticity of steel.

Allowable bending stress in the structure.

Figure 4-1: Data Items for Design Example.
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FBBOLT Allowable shear force in a bolt.

FNBOLTS The total number of bolts needed for the flange splice.

FNLINES The number of lines of bolts on each side of the flange

splice.

FSLENGTH Total length of the flange splice plates.

FSLOC Location of the center line of the flange splice measured

from the left end of the girder.

FV Allowable shear stress in the structure.

FY Yield stress of steel.

GRADE Grade of steel used in the structure.

H Web height of a particular section.

HBS Height of the bearing stiffener.

HOLEDIA Diameter of all drilled bolt holes.

IX Moment of inertia of a particular section.

LENGTH Length of the girder.

LOAD . Character variable for loading type. For example, load equals
'dload' for the analysis results corresponding to the analysis
performed using only the dead load.

MOM Calculated moment at a particular analysis point of a section.

NUMGIRDER The number of girders used across the width of the bridge.

Figure 4 -1 : Data Items for Design Example, continued.
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POSMOM

ROT

SECTIONID

SHEAR

SLEND

SLENGTH

SUPPORTLOC

TBS

TF

Tl

TO

TW

TWS

WNBOLTS

WNLINES

WSLENGTH

WSLOC

Logical variable; TRUE if current section is to be designed
for positive moment; FALSE if current section is to be
designed for negative moment.

Calculated rotation at a particular analysis point of a section.

Identification number for each section.

Calculated shear force at a particular analysis point of a
section.

Location of the left end of a section with respect to the left
end of the beam (assumed to be a distance of 0).

Length of a section.

The location of the supports measured from the left end of
the girder.

Thickness of the bearing stiffener.

Flange thickness of a particular section.

Thickness of the inside flange splice plate.

Thickness of the outside flange plate.

Web thickness of particular section.

Thickness of the web splice plate.

The total number of bolts needed for the web splice.

The number of lines of bolts on each side of the web splice.

The total length of the web splice plates.

The location of the center line of the web splice measured
from the left end of the girder.

Figure 4-1: Data Items for Design Example, continued.
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RELATIONS

STRUCTURE(grade, fball, fv, e, detail, length, clear, boltdia, holedia.
fbbolt)

SEGMENTS(a/te/77af/Ve. sectionid, slength, slend, posmom)

WSECTIONS<a/te/77af/ve, h, tw)

FSECTI0NS(a/te/7?af/Ve, posmom, bf, tf)

ANA\yS\S(alternative. sectionid, load, analoc, shear, mom, defy, rot, ix)

G\ROER(alternative, numgirder)

SUPPORTS(a/ter/?af/Ve, supportloc)

BSTIFFENERS(a/ter/7af/Ve, osioc, hbs, tbs, bbs)

FSPLICES(a/ter/?af/Ve, fsloc, bo, to, bi, t i , fslength, fnlines, fnbolts)

WSPUCESia/ternative, wsfoc, bws, tws, wslength, wnlines, wnbolts)

GRADESigrade, fy)

SINGLE RELATION-SINGLE ATTRIBUTE CONSTRAINTS

0 < fball £ MAXfball 0 < clear <. MAXclear

0 < fv £ MAXfv 0 < boltdia < MAXboltdia

0 < e £ MAXe 0 < holedia £ MAXholedia

0 < defall £ MAXdefall 0 < fbbolt £ MAXfbbolt

0 < length £ MAXIength 0 < slength £ MAXslength

Figure 4-2: Database schema for normalized design database example.
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0 < slend £ MAXslend

0 < tw £ MAXtw

0 < tf £ MAXtf

0 < numgirder £ MAXnumgirder

0 < bsloc £ MAXbsloc

0 < tbs £ MAXtbs

0 < fsloc <• MAXfsloc

0 < to £ MAXto

0 < ti £ MAXti

0 < fnlines £ MAXfnlines

0 < wsloc £ MAXwsloc

0 < tws £ MAXtws

0 < wnlines £ MAXwnlines

0 < fy £ MAXfy

0 < h £ MAXh

0 < bf £ MAXbf

0 < anaioc £ 1.0

0 < supportloc £ MAXsupportloc

0 < hbs £ MAXhbs

0 < bbs £ MAXbbs

0 < bo <: MAXbo

0 < bi <. MAXbi

0 < fslength £ MAXfslength

0 < fnbolts £ MAXfnbolts

0 < bws £ MAXbws

0 < wslength £ MAXwslength

0 < wnbolts £ MAXwnbolts

Figure 4-2: Database schema for normalized
design database example, com.



52

contains the alternative number and the flange dimensions for the positive and

negative moment sections of the girder. The ANALYSIS relation contains all

of the results of a static analysis procedure applied to the structure. The

GIRDER relation stores the number of girders in the specific design alternative.

The SUPPORTS relation contains the support locations for each design

alternative. The BSTIFFENERS, FSPLICES and WSPLICES relations contain the

information (alternative, location and dimensions) describing the bearing

stiffeners, the flange splices and the web splices, respectively. Finally, the

GRADES relation contains the grade and yield stress for different grades of

steel.

Input and output data for each design phase is contained in two specific

sets of relations. Figure 4-3 shows the relations used for input and output for

the three phases.

4.3. CONSTRAINTS

All of the constraints needed for the design example are listed in Figure 4-4,

including their definitions and sources. These constraints use data items

retrieved from the database as well as local variables calculated from the

retrieved data. The source of some of the constraints is listed as "the design

code". Since the design example is based on an actual bridge design, the

particular design constraints used are taken from a state bridge design manual.

Also, notice that some of the constraints use a function called TOLERANCE.

This function returns a value to use as a tolerance in the particular constraint.

Table 4-1 provides a list of each constraint and the design phases in which it

is used.

The total design procedure uses additional constraints that are not listed in

Figure 4-4. These constraints deal with overall decisions made about the

design procedure before the design begins. For example, this design assumes

that all connections are bolted. This assumption is not really necessary, since

the program or database could include the constraints for all other types of

connections and use only the ones that apply to the type of connection used.

Inclusion of such additional constraints only adds complexity and does not add

to the discussion of the constraint enforcement alternatives.
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INPUT

STRUCTURE

SEGMENTS

GRADES

PHASE

CONCEPTUAL

DESIGN

PHASE

OUTPUT

WSECTIONS

FSECTIONS.

STRUCTURE

SEGMENTS

WSECTIONS

FSECTIONS

GIRDER

SUPPORTS

BEAM

SIZING

PHASE

ANALYSIS

WSECTIONS

FSECTIONS

STRUCTURE

SEGMENTS

WSECTIONS

FSECTIONS

SUPPORTS

ANALYSIS

GRADES

STIFFENER

AND

SPLICE

DESIGN

PHASE

BSTIFFENERS

FSPLICES

WSPLICES

Figure 4-3: Data f low for the three design phases.
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AFREMOK afremok := .75 £ (bf - (fnbolts/fnlines)*holedia)/bf

This constraint from the design code insures that at least
75% of the flange area remains after the bolt holes are
drilled.

AWREMOK

- BBSOK

BEAMOK

BEARINGOK

BIOK

BOLTFOK

BOOK

awremok := .75 £ (h*tw - (wnbolts/wnlines*holedia*tw)/(h*tw)

This constraint from the design code insures that at least
75% of the web area remains after the bolt holes are drilled.

bbsok := bbs £ (bf - tw)/2

This physical constraint insures that the bearing stiffener is
wider than the overhanging flange.

beamok := htok AND stressok AND defok AND iok

This design objective constraint insures that all constraints
for the beam sizing phase are satisfied.

bearingok := reaction/(2*tbs*bbs) £ .9*fy

This constraint from the design code insures that the force
in the bearing stiffener does not exceed its bearing capacity.
The variable "reaction" is the calculated reaction at the
support.

biok := (bi £ (bf - tw)/2 AND bi £ ((fbbolts/fnlines)/2 + 1)»2)

This physical constraint insures that the width of the inside
flange splice plate is no larger than the overhanging flange
and large enough for the bolt holes.

boltfok := boltf £ fbbolt

This constraint from the design code insures that the force
on each bolt (boltf) in the web splice is no greater than the
allowable force.

book := (bo £ bf AND bo > (tw • ((fnbolts/fnlines) + 2)*2))

This physical constraint insures the the width of the outside
flange splice plate is no greater than the flange width and
large enough for the bolt holes.

Figure 4-4: Constraints used in the design example.
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BSLOCOK

BWSOK

CCOK

CHANGEOK

CLEAROK

bslocok := (bsloc is equal to supportloc in SUPPORTS)

This design objective constraint insures that the bearing
stiffener is located at a support.

bwsok := (bws £ h AND bws £ ((fbbolts/fnlines) - 1)*3.5 + 3)

This physical constraint insures that the width of the web
splice plate is no greater than the web height and large
enough for the bolt holes.

ccok := cc £ k*hbs/r

This constraint from the design code insures that the column
slenderness ratio (cc) for the bearing stiffener is acceptable.
The variables "k" and "r" are the effective length and radius
of gyration of the stiffener, respectively.

changeok := abs(tf2 - tf 1) £ TOLERANCE('changeok')

This design objective constraint insures that the difference in
height between two adjacent sections is less than a specified
tolerance. Since the height of the web is constant
throughout the girder, the constraint only has to compare
flange thicknesses (tf 1 and tf2).

clearok := abs(h + tf*2 - clear) £ TOLERANCE('clearok')

CONCEPTOK

This physical constraint insures that the total height of a
girder (web height plus flange thicknesses) is no greater than
the actual clearance.

conceptok :- conhtok AND coniok AND coniflangeok AND
conflangeok

This design objective constraint insures that all of the
constraint for the conceptual design phase are satisfied.

CONFLANGEOK conflangeok := bf/tf £ 65/(fy) 1/2

This constraint from the design code insures that the
slenderness ratio of the flange does not exceed a specific
maximum.

Figure 4-4: Constraints used in design example, continued.
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CONHTOK conhtok := h*((shear*1000)/(h*tw))l/2/7500 £ tw

This constraint from the design code was chosen to satisfy
the design objective that no transverse stiffeners be included
in the design. It restricts the web slendemess ratio to be
less than a specific maximum. This constraint is exactly the
same as HTOK except that it is used in the conceptual design
phase before an analysis is performed and the exact value of
shear is known.

CONIFLANGEOK coniflangeok := bf*tf*(h/2)2*2 > iflanges

This physical constraint insures that the actual moment of
inertia of the flanges is no less than the required moment of
inertia (iflanges).

CONIOK

CONNOK

coniok := ABS(h - (3*h*sreqd/(2*tw))1/3) < TOLERANCE('coniok')

This physical constraint insures that the web height provides
the required moment of inertia. The variable "sreqd" is the
required section modulus.

connok := (abs(slendd) + slength(i) * lend) £
TOLERANCE('connok') AND ABSUend + seclength - slend(2)) £
TOLERANCE('connok'))

DEFOK

FNBOLTSOK

This physical constraint insures that the current section is
connected to another section on each side. The variables
"lend" and "seclength" are the left end and section length of
the current section, respectively. In a complete
implementation, a check is needed to verify if one or both
ends of the section correspond to the beam end(s).

defok := l/defall £ defy

This constraint from the design code insures that the
deflection in a particular section does not exceed the
maximum allowable deflection of the current span. The
variable " I " is the current span length.

fnboltsok := ABS(fnbolts
TOLERANCEt'fnboltsok')

tencap/fbbolt)

This constraint from the design code insures that a sufficient
number of bolts are used for the flange splice. The variable
"tencap" is the capacity of the flange.

Figure 4-4: Constraints used in design example, continued.
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FORCEOK forceok := reaction £ p

This constraint from the design code insures that the actual
force in the bearing stiffener (the reaction at that location) is
not greater than the allowable force (p).

FSLENGTHOK fslengthok := fslength £ 2*((fnlines - 1)*3 • 3.5)

This physical constraint insures that the length of the flange
splice plate is large enough for the bolt holes.

FSLOCOK

FSPLICEOK

GIRDEROK

GRADEOK

fslocok := (fsloc is equal to slend in SEGMENTS)

This physical constraint insures that the flange splice is
located at a section end.

fspliceok :- afremok AND splicecapok AND book AND biok
AND fslengthok AND fslocok

This constraint from the design code insures that all of the
constraints for the flange splice part of the stiffener and
splice design phase are satisfied.

girderok := conceptok AND beamok AND stiffok AND
fspliceok AND wspliceok

This design objective constraint insures that all constraints
from all three design phases are satisfied.

gradeok := (grade is in GRADES)

This physical constraint insures that the grade of steel is
valid (only the valid grades are contained in the GRADES
relation.

HBSOK hbsok := ABS(h - hbs) £ TOLERANCE('hbsok')

This physical constraint insures that the bearing stiffener
height is equal to the web height.

Figure 4-4: Constraints used in design example, continued.
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HTOK htok := h/tw £ 7500/((maxshear*1000)/(h*tw»1/2

This constraint from the design code was chosen to satisfy
the design objective that no transverse stiffeners be included
in the design. It restricts the web slenderness ratio to be
less than a specific maximum. The maxshear variable is the
maximum shear stress in the girder. This constraint is
exactly the same as CONHTOK except that it is used in the
beam sizing phase after an analysis is performed and the
exact value of maxshear is known.

IOK iok := ABS(i - ix)/i £ TOLERANCE('iok')

ISPLICEOK

LENGTHOK

SOK

This physical constraint insures that any changes to the web
or flange dimensions between successive analyses are small
so that the actual dimensions are close to the dimensions
used for the analysis. The variable " i " is the calculated
moment of inertia using the actual dimensions.

ispliceok := isplice 2: ,75*tw*h3/12

This constraint from the design code insures that the
moment of inertia of the web splice plates (isplice) is not
less than the required moment of inertia.

lengthok := absdength - sumlen) £ TOLERANCE('lengthok')

This physical constraint insures that the sum of the section
lengths (sumlen) is equal to the girder length.

sok := sreqd £ .75*tws*bws2*2/6

This constraint from the design code insures that the section
modulus of the web splice plates is not less than the
required section modulus (sreqd).

SPLICECAPOK splicecapok := tencap

This constraint from the design code insures that the actual
force carried by the flange splice plates (f) is no greater than
their capacity (tencap).

Figure 4-4: Constraints used in design example, continued.
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STIFFOK stiffok := tbsok AND ccok AND forceok AND bearingok AND
bbsok AND hbsok AND bslocok

STRESSOK

This constraint from the design code insures that all of the
constraints for the stiffener design part of the stiffener and
splice design phase are satisfied.

stressok := fball £ m*c/i

This constraint from the design code insures that the actual
stress in a particular section of the girder is no greater than
the allowable stress. The variables "m", "c" and " i " are the
bending moment, distance from the flange to the neutral axis
and the moment of inertia of the section.

SUPPORTLOCOK supportlocok
length)

(supportlocd) = 0) AND (supportloc(num)

This physical constraint insures that the first support is
located at the left end of the girder and the last support
(num) is located at the right end of the girder.

TBSOK tbsok := tbs bbs*(fy/33000)1/2/12

This constraint from the design code insures that the
thickness of the bearing stiffener is no greater than a
specific maximum limit (which is a function of the stiffener
width).

WSLENGTHOK wslengthok := wslength £ 2*<(wnlines - 1)*3 + 3.5)

This physical constraint insures that the length of the web
splice plate is large enough for the bolt holes.

WSLOCOK wslocok := (wsloc is equal to slend in SEGMENTS)

This physical constraint insures that the web splice is
located at a section end.

WSPLICEOK wspliceok := sok AND awremok AND boltfok AND ispliceok
AND bwsok AND wslengthok AND wslocok

This constraint from the design code insures that all of the
constraints for the web splice part of the stiffener and
splice design phase are satisfied.

Figure 4-4: Constraints used in design example, continued.
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CONSTRAINT PHASE(S)

AFREMOK III

AWREMOK III

BBSOK III

BEAMOK II

BEARINGOK III

BIOK III

BOLTFOK III

BOOK III

BSLOCOK III

BWSOK III

CCOK III

CHANGEOK I, II

CLEAROK I, II, III

CONCEPTOK I

CONFLANGEOK . I

CONHTOK I

CONIFLANGEOK I

CONIOK I

CONNOK I, II, III

DEFOK II

Table 4-1: List of phase(s) that use each constraint.
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CONSTRAINT PHASE(S)

FNBOLTSOK III

FORCEOK IN

FSLENGTHOK III

FSLOCOK III

FSPLICEOK III

GRADEOK I, II, III

GIRDEROK

HBSOK III

HTOK II

I OK II

ISPLICEOK III

LENGTHOK I, II, III

SOK III

SPLICECAPOK III

STIFFOK III

STRESSOK II

SUPPORTLOCOK II, III

TBSOK III

WSLENGTHOK III

WSLOCOK III

WSPLICEOK III

Figure 4-1: List of phase(s) that use each constraint.
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4.4. EXTERNAL PROCEDURES

Certain aspects of the design procedure are independent of the type of

constraint enforcement method used. These aspects include the estimation of

shears and moments for the conceptual design phase, the static analysis of

the structure for the beam sizing phase and the selection of dimensions for all

of the phases. In order to simplify the examples, these aspects are assumed

to be performed by external procedures which can be called by the design

program or the constraint evaluation procedures. It is assumed that these

procedures have access to the database, and therefore, only a minimum of

data need to be passed to them. A list of the necessary external procedures

is shown in Figure 4-5. Table 4-2 provides a list of each procedure and the

phase number in which it is used.



63

ANALYZE(trialid) Perform the static analysis of the specific design alternative
(trialid) of the structure. This procedure retrieves the basic
information about the structure, such as girder and section
data, performs the analysis and loads the entire ANALYSIS
relation.

CALCBOLTF1(boltff vreqd, wnlines, wnbolts)
Calculate the force on each bolt (boltf) of the web splice for
the normalized design example. The variable "vreqd" is the
required shear stress.

CALCBOLTF2(boltf, wloc)
Calculate the force on each bolt (boltf) of the web splice
located at wloc for the augmented design example. Notice
the difference between this procedure and the one above.
This procedure assumes that the data has already been stored
in the database and that it can retrieve and calculate the
necessary data to calculate boltf. The other procedure must
be passed all of the necessary information.

CALCISPLICEKisplice, bws, tws, wnlines, wnbolts)
Calculate the moment of inertia of the web splice plate
(isplice) for the normalized design example.

CALCISPLICE2(isplice, wloc)
Calculate the moment of inertia of the web splice plate
(isplice) located at wloc for the augmented design example.
Notice the difference between this procedure and the one
above. This procedure assumes that the data has already
been stored in the database and that it can retrieve and
calculate the necessary data to calculate isplice. The other
procedure must be passed all of the necessary information.

CALCMSHEAR(maxshear)
Compute the maximum shear in the structure (maxshear),
using the analysis results.

CALCREACT(reaction, loc)
Calculate the reaction (reaction) at the support located at loc.

CALCSEGMENTS Recalculate the segment lengths and locations so that the
connections are located at points of minimum moment.

Figure 4-5: External procedures used in design example.
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DBMSL.) Perform any DBMS query language statement, which are
specified in the argument of the procedure. This argument is
considered a single transaction (it implies the BEGIN and END
TRANSACTION commands in SEQUEL 2). Each operation
returns a logical "actionok" variable.

ESTMOM(mom) Estimate the maximum moment in the girder to check coniok.

ESTNEGPOSMOM(negmom, posmom)
Estimate the maximum negative (negmom) and positive
moments (posmom) to check coniflangeok.

ESTSHEAR(shear) Estimate the maximum shear force in the girder to check
conhtok.

ON("<expression> (<action>)")
Perform the <action> whenever the expression is true. Used
to handle abnormal DBMS transaction failures.

SIZEBFTF(bf, tf, quit)
Select the flange dimensions. The procedure wil l return a
value of TRUE via the argument quit if it is not successful in
generating a set of data. This quit option is provided in all
of the following procedures.

SIZEBOTCXbo, to, bi, t i , quit)
Select the width and thickness of the outside and inside
flange splice plates. The returned value of quit is True if
the procedure did not successfully select new data.

SIZEBWSTWS(bws, tws, quit)
Select the width and thickness of the web splice plates. The
returned value of quit is True if the procedure did not
successfully select new data.

Figure 4-5: External procedures used in design example, continued.
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SIZEFNUfnlines, fslength, fnbolts, quit)
Select the bolting data and the length for the flange splice
plates. The returned value of quit is True if the procedure
did not successfully select new data.

SIZEHTW<h, tw, quit)
Select the web dimensions. The returned value of quit is
True if the procedure did not successfully select new data.

SIZETBSBBS(tbs, bbs, quit)
Select the bearing stiffener thickness and width. The
returned value of quit is True, if the procedure did not
successfully select new data.

SIZEWNUwslength, wnlines, wnbolts, quit)
Select the length and bolting data for the web splice plates.
The returned value of quit is True if the procedure did not
successfully select new data.

Figure 4-5: External procedures used in design example, continued.
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PROCEDURE PHASE(S)

ANALYZE II

CALCBOLTF1 III

CALCBOLTF2 III

CALCISPLICE1 III

CALCISPLICE2 III

CALCMSHEAR II

CALCREACT III

CALCSEGMENTS II

DBMS I, II, III

ESTMOM I

ESTNEGPOSMOM I

ESTSHEAR I

ON I, II, III

SIZEBFTF I, II

SIZEBOTO III

SIZEBWSTWS III

SIZEFNL III

SIZEHTW I. II

SIZETBSBBS III

SIZEWNL III

Table 4-2: List of phase(s) that use each procedure.
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CHAPTER FIVE

CONSTRAINT PROCESSING USING DESIGN EXAMPLE

This chapter presents example computer subprogram-relational database

implementations of the design procedure described in the previous chapter,

using two of the constraint enforcement alternatives discussed in Section 3.4.

Section 5.1 discusses the implementation using a completely normalized

database that can only enforce single relation-single attribute constraints.

Section 5.2 discusses the implementation using the proposed augmented

database which has access to all of the retrieval operations so that all

constraint types can be enforced.

5.1. NORMALIZED DESIGN DATABASE

This section presents segments of a computer program which implement the

design procedure using a normalized relational database. Each segment

performs one of the three design phases and is completely independent from

the other segments. The database schema is the same as the one shown in

Figure 4-2. Input and output data for each segment is contained in two

specific sets of relations, which are shown for each phase.

5.1.1. CONCEPTUAL DESIGN PHASE

5.1.1.1. DATABASE SCHEMA

The conceptual design phase receives all input from the three relations

shown in Figure 5-1.

Since most of the data contained in these three relations is selected by the

designer (based on experience), they are completely loaded before this phase

begins. At the beginning of the phase, the data in these relations are verified.
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STRUCTURE(grade, fball, fv, e, detail, length, clear, boltdia,
holedia, fbbolt)

SEGMENTSia/ternative, sect ion id, slength, slend, posmom)

, fy)

Figure 5-1: Relations needed for input to phase I.

by checking the corresponding constraints. If any constraints are violated, no

other operations are performed in this or subsequent phases.

All output from this phase is stored in the WSECTIONS and the FSECTIONS

relations, shown in Figure 5-2.

WSECTIONS(a/ter/73f/Ve, h, tw)

FSECTI0NS(a/te/7?a?/Ve, posmom, bf, tf)

Figure 5-2: Relations needed for output from phase I.

5.1.1.2. ALGORITHM

The following steps are included in the conceptual design phase

implementation.

1. Check the constraints on the summation of the section lengths and
the girder length (lengthok), the connectivity of the sections
(connok) and the validity of the grade of steel (gradeok).

2. Estimate shear and moment.

3. Repeat the following process until the constraints are satisfied and
the values are successfully inserted into the database.

a. Choose the web dimensions.

b. Check the constraints on the web slendemess ratio (conhtok)
and the moment of inertia of the web (coniok).

c. Insert web dimensions if conhtok and coniok are satisfied.

4. Estimate the maximum moment for the positive and negative
moment sections.

5. Repeat the following process until the constraints are satisfied and
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the values are successfully inserted into the database for both
moment sections.

a. Choose the flange dimensions.

b. Check clearance (clearok), flange moment of inertia
(coniflangeok), flange dimensions (conflangeok) and change in
section heights (changeok).

c. Insert flange dimensions if all constraints are satisfied.

The following Pascal-like procedure can be used to perform the conceptual

design phase.

PROCEDURE CONCEPKtrialid, conceptok)
BEGIN

ONCNOT selectok (conceptok := 'false',
ERRORC'data missing for conceptual

design phase"),
RETURN)")

{ CHECK LENGTHOK }
DBMS("SELECT(length from STRUCTURE,

SUM(slength) into sumlen from SEGMENTS
where alternative = trialid, selectok)")

lengthok := absdength - sumlen) £ TOLERANCE('lengthok')

{ CHECK CONNOK }
DBMS("SELECT(sectionid, slength, slend, COUNT into num from

SEGMENTS order by slend where alternative = trialid,
selectok)")

IF (num # 0) AND (slendd) = 0) AND (slend(num) + slength(num) -
length) THEN

BEGIN
connok := 'true'
FOR j • 2 TO num

BEGIN
WHILE connok DO

BEGIN
connok :- abs(slend(j - 1) + slengtMj - 1) - slend(j))

£ TOLERANCE('connok')
END

END
END

ELSE
connok :» 'false'

{ CHECK GRADEOK }
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DBMS("SELECT{grade into grade 1 from GRADES where grade =
SELECT(grade from STRUCTURE), selectok)")

gradeok := 'true'

IF NOT {lengthok AND connok AND gradeok) THEN
BEGIN

ERRORC'lengthok or connok or gradeok failed")
conceptok := 'false'
RETURN

END

DBMS("SELECT(fball, from STRUCTURE,
fy from GRADES where grade = grade 1, selectok)")

{ CHOOSE WEB DIMENSIONS }
ESTSHEAR(shear)
ESTMOM(mom)
sreqd := mom* 12/fball

REPEAT { CHOOSE WEB AND FLANGE DIMENSIONS UNTIL
CONSTRAINTS ARE SATISFIED }

REPEAT { CHOOSE WEB DIMENSIONS UNTIL CONSTRAINTS
ARE SATISFIED OR USER QUITS }

SIZEHTWth, tw, quit)
IF quit THEN

BEGIN
conceptok := FALSE
RETURN

END

conhtok := h««shear»1000)/(h»tw))1/2/7500 <J tw

coniok := ABS(h - (3»h»sreqd/(2*tw))1/3) £ TOLERANCE('iok')

IF conhtok AND coniok
DBMS("INSERT(into WSECTIONS(h, tw): <h, tw>

where alternative = trialid, insertok)")
UNTIL conhtok AND coniok AND insertok

{ CHOOSE FLANGE DIMENSIONS }
ESTNEGPOSMOMGiegmom, posmom)
FOR j := 1 TO 2 { CHOOSE FLANGE DIMENSIONS FOR }

BEGIN { POSITIVE AND NEGATIVE SEGMENTS }
IF (j = 1) THEN

mom := negmom
pmom := FALSE

ELSE
mom := posmom
pmom :- TRUE
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ireqd := mom»h/(2*fball)
iweb := tw»(h)3/12
iflanges := ireqd - iweb

REPEAT { CHOOSE FLANGE DIMENSIONS UNTIL
CONSTRAINTS ARE SATISFIED OR
USER QUITS }

SIZEBFTF(bf. tf. quit)
IF NOT quit THEN

DBMS("SELECT(clear from STRUCTURE, selectok)")
clearok := abs(h + tf*2 - clear) £

TOLERANCE('clearok')
coniflangeok := bf«tf«(d/2)2*2 ^ iflanges
conflangeok ~ bf/tf £ 65/(fy)1/2

changeok := TRUE
IF j = 2 THEN

BEGIN { CHECK ONLY IF BOTH
SECTIONS ARE CHOSEN }

DBMS("SELECT(tf into tf2 from
FSECTIONS where posmom = FALSE
and alternative = trial id, selectok)")

changeok := abs(tf2 - tf) £
TOLERANCE('changeok')

END

IF (coniflangeok AND conflangeok AND clearok AND
changeok) THEN
DBMS("INSERT(into FSECTIONS: <trialid, pmom,

bf, tf>, insertok)")
ELSE

conceptok := FALSE
RETURN

UNTIL (coniflangeok AND conflangeok AND clearok AND
changeok AND insertok) OR quit

IF NOT quit THEN
momentok(j) := TRUE

ELSE
momentoMj) := FALSE

END
conceptok := momentokd) AND momentok(2)

UNTIL conceptok
END { CONCEPT }
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5.1.2. BEAM SIZING PHASE

5.1.2.1. DATABASE SCHEMA

The beam sizing phase receives all input from the STRUCTURE, SEGMENTS,

WSECTIONS, FSECTIONS, GIRDER and SUPPORTS relations, shown In Figure 5-

3.

STRUCTURE(grade, fball, fv, e, defall f length, clear, boltdia,
holedia, fbbolt)

SEGMENTS(a/ternat/ve, sectionid, slength, slend, posmom)

WSECTI0NS(a/te/7*af/Ve, h, tw)

FSECTIONS(a/te/viaf/Ve, posmom. bf, tf)

G\RDER(a/ternative, numgirder)

SUPPORTS(a/te/77af/Ve, supportloc)

Figure 5-3: Relations needed for input to phase II .

Again, before beginning, all constraints corresponding to this input data are

checked and the phase does not continue if these constraints are not satisfied.

This phase calls an analysis procedure to perform the static analysis of the

structure. The results of this procedure are stored in the ANALYSIS relation.

The only other output from this phase consists of possible updates to the

WSECTIONS, FSECTIONS or the ANALYSIS relation (if the analysis procedure

is recalled). These three relations are shown in Figure 5-4.

ANALYSIS(a/te/v?af/Ve, sectionid. load, analoc, shear, mom, defy, rot, ix)

WSECT\ONS(a/ternative, h, tw)

FSECTI0NS(a/te/7?af/Ve, posmom. bf, tf)

Figure 5-4: Relations needed for output from phase II.
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5.1.2.2. ALGORITHM

The following steps are included in the beam sizing design phase

implementation.

1. Check the length (lengthok), connectivity (connok)r clearance
(clearok), change in height (changeok) and support location
(supportlocok) constraints.

2. Perform the analysis, find the maximum shear force.

3. Check the constraint on the web slenderness (htok). If it is not
satisfied, repeat the following process until the constraints are
satisfied and the values are successfully inserted into the database.

a. Select new web dimensions.

b. Check the clearance (clearok) and and the web slenderness
(htok) constraints.

c. Update with the new values if clearok and htok are satisfied.

4. Repeat the following process for the positive and negative moment
sections.

a. Calculate the maximum moment

b. Check the bending stress constraint (stressok). If the
constraint fails, repeat the following process until the
constraints are satisfied and the values are successfully
inserted.

i. Select new flange dimensions.

ii. Check the bending stress (stressok), the clearance
(clearok) and the change in section heights (changeok)
constraints.

iii. Update with the new values if these constraints are
satisfied.

5. Check the deflection limit (defok) for each span. If the constraint
fails, repeat the following process until the constraints are satisfied
and the values are successfully inserted.

a. Choose new web dimensions.

b. Check the clearance constraint (clearok).

c. Update with the new values if the clearok constraint is
satisfied.
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d. Choose new flange dimensions.

e. Check the clearance (clearok) and change in section heights
(changeok) constraints.

f. Update with the new values if the clearok and the changeok
constraints are satisfied.

6. Check the change in section dimension constraint (iok).

7. Check the beam satisfaction constraint (beamok). If the constraint
fails, and the user has not failed to select new dimensions, select
new section locations based on zero moment points from the
analysis and repeat the entire phase again.

The following procedure can be used to perform the beam sizing phase.

PROCEDURE BEAMSIZEUrialid, beamok)
BEGIN

ONC'NOT selectok (beamok := FALSE,
ERRORC'data missing for beam sizing phase"),
RETURN)")

ONC'NOT joinok (beamok := FALSE,
ERRORC'error in ANALYSIS or SEGMENTS

relations - join failed"),
RETURN)")

REPEAT { CONTINUE UNTIL CONSTRAINTS ARE SATISFIED
OR USER QUITS }

{ CHECK LENGTHOK }
DBMS("SELECT(length from STRUCTURE,

SUM(slength) into sumlen from SEGMENTS where
alternative = trialid, selectok)")

lengthok := absdength - sumlen) £ TOLERANCE('lengthok')

{ CHECK CONNOK }
DBMS("SELECT(sectionid, slength, slend, COUNT into num from

SEGMENTS order by slend where alternative =
trialid, selectok)")

IF (num # 0) AND (slendd) = 0) AND (slend(num) +
slength(num) = length) THEN

BEGIN
FOR j = 2 TO num

BEGIN
WHILE connok DO

BEGIN
connok := abs(slend(j - 1) + slength(j - 1) - slend(j))

< TOLERANCE('connok')
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END
END

END
ELSE

connok := FALSE

{ CHECK CLEAROK }
DBMS("SELECT(clear from STRUCTURE,

h from WSECTIONS where alternative - trialid,
tf from FSECTIONS where alternative = trialid and
tf = MAX(tf). selectok)")

clearok :• abs(h + tf»2 - clear) £ TOLERANCE('clearok')

{ CHECK CHANGEOK }
DBMS("SELECT(tf into tf 1 from FSECTIONS where posmom = TRUE

and alternative • trialid,
tf into tf2 from FSECTIONS where posmom = FALSE
and alternative = trialid, selectok)")

changeok := abs(tf2 - tf 1) ^ TOLERANCE('changeok')

{ CHECK SUPPORTLOCOK }
DBMS("SELECT(supportloc, COUNT into num from supports order

by supportloc where alternative = trialid,
selectok)")

IF {num - 0) THEN
supportlocok := FALSE

ELSE
supportlocok := (supportlocd) = 0) AND

(supportloc(num) = length)

IF NOT (lengthok AND connok AND clearok AND changeok AND
supportloc) THEN

BEGIN
ERRORC'lengthok or connok or clearok changeok or

supportloc failed")
beamok := FALSE
RETURN

END

reanalyze := TRUE

{ PERFORM ANALYSIS }
ANALYZE(trialid)

CALCMSHEAR(maxshear)
DBMS("SELECT(h, tw from WSECTIONS where alternative

= trialid, selectok)")

{ CHECK WEB DIMENSIONS }
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htok := h/t < 7500/((maxshear*1000)/(h«tw))1/2

IF NOT htok THEN
BEGIN

REPEAT { CHOOSE NEW WEB DIMENSIONS UNTIL
CONSTRAINTS ARE SATISFIED OR
USER QUITS }

SIZEHTWfh, tw, quit)
IF NOT quit THEN

BEGIN
DBMS("SELECT(tf from FSECTIONS where alternative =

trial id and tf = MAX(tf), selectok)")

clearok := abs(h + tf*2 - clear) £ TOLERANCECclearok')

htok :• h/t £ 7500/((maxshear»1000)/(h«tw))1/2

IF htok AND clearok THEN
DBMS("UPDATE<WSECTIONS(h, twh <h, tw> where

alternative - trialid, updateok)")
END

UNTIL (htok AND updateok AND clearok) OR quit
IF quit THEN

reanalyze := FALSE
END

DBMS("SELECT(fball. defall from STRUCTURE, selectok)")

{ CHECK STRESS IN NEGATIVE AND POSITIVE MOMENT SECTION >
FOR j := 1 TO 2

BEGIN { CHECK CONSTRAINTS FOR POSITIVE
AND NEGATIVE SECTIONS }

IF (j = 1) THEN
pmom := FALSE

ELSE
pmom := TRUE

DBMS("SELECT{sectionid into SECTS from SEGMENTS where
posmom = pmom and alternative = trialid,
selectok)")

DBMS("SELECT(mom, analoc into loc, sectionid into secid from
ANALYSIS where load =
'dload' and sectionid is in (SELECTisectionid
from SECTS)) and mom -
max(abs(mom)), selectok)")

deadload := mom
DBMS("SELECT(mom from ANALYSIS where

load * 'dload' and sectionid - secid
and analoc = loc and mom = max(abs(mom)),
selectok)")

liveload := mom
m := deadload + liveload + .22*liveload
DBMS("SELECT(h, tw from WSECTIONS where alternative
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= trialid,
bf, tf from FSECTIONS where posmom =
pmom and alternative = trialid, selectok)")

REPEAT { CHECK STRESSOK UNTIL SATISFIED }

c := (h + 2«tf)/2
i := tw»(h/2)3/12 + bf«(tf/2)3/12 + bf»tf*(h/2 - tf/2)2

stressok(j) := fball £ m*c/i
IF NOT stressoMj)

BEGIN
REPEAT { CHOOSE NEW FLANGE DIMENSIONS UNTIL

CONSTRAINTS ARE SATISFIED OR
USER QUITS }

SIZEBFTF(bf, tf, quit)
clearok := abs(h + tf*2 - clear) £

TOLERANCE('clearok')

DBMS("SELECT(tf into tf 1 from FSECTIONS where
posmom * pmom and
alternative = trialid, selectok)")

changeok := abs(tf - tf 1) <. TOLERANCECchangeok')

UNTIL (clearok AND changeok) OR quit
IF quit THEN

reanalyze := FALSE
ELSE

DBMS("UPDATE(FSECTIONS(bf, tfh <bf, tf>
where posmom = pmom and
alternative = trialid,
updateok)")

END
UNTIL updateok OR quit

END

DBMS("SELECT(supportloc, COUNT into num from supports order
by supportloc where alternative = trialid,
selectok)

JOIN(ANALYSIS(sectionid, defy) with SEGMENTS(sectionid,
slength, slend, posmom) into TEMP over sectionid
where alternative - trialid, joinok)")

{ CHECK THE DEFLECTION IN EACH SECTION FOR EACH SPAN }
FOR j :- 1 TO {num - 1)

BEGIN
I := supportlodj + 1) - supportloc(j)
DBMS("SELECT(sectionid into sid, defy, posmom into pmom

from TEMP where defy = MAX(defy) and
supportlodj + 1) £ (slend * slength)
and supportlodj) £ (slend), selectok)")

defok :- l/defall 2 defy
IF NOT defok THEN



78

BEGIN
REPEAT { CHOOSE NEW WEB DIMENSIONS }

SIZEHTW(h, tw, quit)
clearok := abs(h + tf*2 - clear) £ TOLERANCE('clearok')

DBMS("UPDATE<WSECTIONS<h, twh <h, tw> where
alternative = trialid, updateok)")

UNTIL {updateok AND clearok) OR quit
IF quit THEN

reanalyze := FALSE

REPEAT { CHOOSE NEW FLANGE DIMS. }
SIZEBFTF(bf, tf. quit)
clearok := abs(h + tf«2 - clear) £ TOLERANCE('clearok')
DBMS("SELECT(tf into tf 1 from FSECTIONS where

posmom i* pmom and •
alternative = trialid, selectok)")

changeok := absttf - tf 1) £ TOLERANCE('changeok')

DBMS("UPDATE(FSECTIONS(bf, tf): <bf, tf> where
posmom = pmom and alternative =
trialid, updateok)")

UNTIL updateok OR quit
IF quit THEN

reanalyze := FALSE
END

END

{ CHECK FOR LARGE CHANGE IN i }
DBMS<"SELECT(sectionid into sid, COUNT into num from

SEGMENTS where alternative = trialid,
h, tw from WSECTIONS where alternative •
trial id, selectok)")

iok := TRUE
FOR j = 1 TO num

BEGIN
WHILE (iok) DO

BEGIN
DBMS("SELECT(bf, tf from FSECTIONS where alternative

trialid and posmom =
SELECT(posmom from SEGMENTS where
sectionid = sid(j)),
ix from ANALYSIS where
sectionid = sid(j), selectok)")

i := tw*(h/2)3/12 + bf*(tf/2)3/12 + bf*tf»(h/2 - tf/2)2

iok := ABS(i - ix)/i £ TOLERANCE('iok')
END

END

beamok := htok AND stressokd) AND stressok(2) AND defok
and iok
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IF (NOT beamok) AND (reanalyze) THEN
CALCSEGMENTS

UNTIL beamok OR (NOT reanalyze)
END { BEAMSIZE }

5.1.3. STIFFENER AND SPLICE DESIGN PHASE

5.1.3.1. DATABASE SCHEMA

The stiffener and splice design phase receives all input from the

STRUCTURE, SEGMENTS, WSECTIONS, FSECTIONS, SUPPORTS, GRADES and

ANALYSIS relation shown in Figure 5-5.

STRUCTURE(grade, fball, fv, e, defall, length, clear, boltdia,
holedia, fbbolt)

SEGMENTS(a/te/773f/Ve, sect/on/d, slength, slend, posmom)

WSECTI0NS(a/te/7Wtf/Ve, h, tw)

FSECTI0NS(a/te/7?a*/Ve, posmom, bf, tf)

SUPPORTS(a/fe/v?af/Ve, supportloc)

ANALYSIS(a/te/v?af/Ve, sectionid, load, analoc, shear, mom, defy, rot, ix)

GRADES^acfe, fy)

Figure 5-5: Relations needed for input to phase III.

The supportloc attribute in the SUPPORTS relation is used to position the

bearing stiffeners, since a stiffener is needed at each support. The slength

and slend attributes of the SEGMENTS relation are used to find the splice

locations.

The output from this phase is stored in the BSTIFFENERS, FSPLICES and

WSPLICES relations shown in Figure 5-6.
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BSTIFFENERS(a/te/77*f/Ve, bsloc, hbs, tbs, bbs)

FSPLICES(a/ternative, fsloc. bo, to, bi f t i r fslength, fnlines, fnbolts)

WSPLICES(a/te/7?af/Ve, wsloc, bwsr tws, wslength, wnlines, wnbolts)

Figure 5-6: Relations needed for output from phase III.

5.1.3.2. ALGORITHM

The following steps are included in the stiffener and splice design phase

implementation.

1. Check the constraints on the support locations (supportlocok), the
clearance (clearok) and the grade of steel (gradeok).

2. For each support, repeat the following process until the constraints
are satisfied and the values are successfully inserted into the
database.

a. Select stiffener dimensions.

b. Check the constraints on the stiffener height (hbsok), width
(bbsok), thickness (tbsok) and slenderness ratio (ccok).

c. Calculate the reaction at the support.

d. Check the constraints on the stiffener force (forceok), location
(bslocok) and bearing capacity (bearingok).

e. Insert the values.

3. Check the girder length (lengthok) and connectivity (connok)
constraints.

4. Repeat the following process for each splice.

a. Repeat the following process until the constraints are
satisfied.

i. Select bolting pattern and plate length for the flange
splice.

ii. Check the constraints on the number of bolts (fnboltsok),
the length (fslength), the location of the flange splice
(fslocok) and the remaining area (afremok) of the flange
splice plate.

b. Repeat the following process until the constraints are satisfied
and the values are successfully inserted into the database.
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i. Select flange splice plate widths and thicknesses.

ii. Check the constraints on the width of the outside flange
splice plate (book), the width of the inside flange splice
plate (biok) and the capacity of the splice plates
(splicecapok).

iii. Insert all of the values if all flange splice constraints
are satisfied.

c. Repeat the following process until the constraint is satisfied.

i. Select width and thickness of the web splice plates.

ii. Check the constraint on the section modulus of the
splice plate (sok).

d. Repeat the following process until the constraints are satisfied
and the values are successfully inserted into the database.

i. Select bolting pattern and plate length for the wed
splice plates.

ii. Check the constraints on the width (bwsok), the length
(wslength) and the remaining area (awremok) of the web
splice.

iii. Calculate the force per bolt.

iv. Check the constraint on the force per bolt for the web
splice (boltfok).

v. Calculate the moment of inertia of the splice plates.

vi. Check the constraints on the moment of inertia
(ispliceok) and the location of the web splice plate
(wslocok).

vii. Insert all of the new values if all web splice plate
constraints are satisfied.

The following procedures can be used to perform the third phase of the

design procedure.

PROCEDURE STIFF(trialid, stiffok)
BEGIN

ONC'NOT selectok (stiffok := FALSE,
ERRORC'data missing for stiffener design

phase"),
RETURN)")
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{ CHECK SUPPORTLOCOK }
DBMS("SELECT(length from STRUCTURE,

supportloc, COUNT into num from supports order by
supportloc where alternative = trialid, selectok)")

supportlocok := (supportlocd) = 0) AND (supportloc(num) = length)

{ CHECK CLEAROK }
DBMSC'SELECTOi, tw from WSECTIONS where alternative = trialid,

tf from FSECTIONS where alternative =
trialid and tf = MAX(tf), selectok)")

clearok := abs(h + tf»2 - clear) £ TOLERANCE('clearok')

{ CHECK GRADEOK }
DBMS("SELECT(grade into grade 1 from GRADES where grade =

SELECTtgrade from STRUCTURE), selectok))

gradeok := TRUE

IF NOT (supportlocok AND clearok AND gradeok) THEN
BEGIN

ERRORC'SUPPORTLOCOK OR CLEAROK OR GRADEOK FAILED")
stiffok := FALSE
RETURN

END

DBMS("SELECT(e from STRUCTURE,
fy from GRADES where grade = grade 1, selectok)")

{ CHOOSE STIFFENER DIMENSIONS }
hbs := h
FOR j := 1 to num DO

BEGIN
REPEAT { CHOOSE THE STIFFENER DIMENSIONS UNTIL ALL

CONSTRAINTS ARE SATISFIED OR THE USER QUITS }
SIZETBSBBSUbs, bbs, quit)
IF quit THEN

stiffok := FALSE
RETURN

ELSE
BEGIN

{ CHECK STIFFENER CONSTRAINTS }
DBMS("SELECT(bf from FSECTIONS where posmom =

SELECT(posmom from SEGMENTS where
((slend + slength) £ supportloc(j + 1)
and slend £ supportloc(j))),
selectok)")

hbsok := (ABS(h - hbs) £ 0)
bbsok := bbs £ (bf - tw)/2
tbsok(j) := tbs £ bbs#(fy/33000)1/2/12
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bsi := tbs«(2*bbs + tw)3/12 + (tw*i8 - tbs)»tw3/12
bsarea := (2*bbs + tw)*tbs + (tw»i8 - tbs)«tw
r := bsi/bsarea
cc := (2*»r2»e/fy)1/2

k := 1.0
ccok(j) := cc £ k*h/r
fa - 23580 - 1.03»(k«h/r)2

p := fa*bsarea
CALCREACT(reaction, supportloc(j))
forceok(j) := reaction £ p
bearingok(j) := reaction/(2*tbs»bbs) £ .9«fy
DBMS("INSERT(into BSTIFFENERS(alternative, bsloc,

hbs, tbs, bbsh <trialid, supportloc(j),
hbs, tbs, bbs>, insertok)")

{ BSLOCOK IS AUTOMATICALLY SATISFIED SINCE BSLOC IS LOADED WITH
SUPPORTLOC(j) }

bslocok := TRUE
END

UNTIL tbsok(j) AND ccok(j) AND forceok(j) AND bearingok(j)
AND insertok AND bbsok AND hbsok AND bslocok

stiffok := TRUE
END { STIFF }

PROCEDURE SPLICESUrialid, fspliceok, wspliceok)
BEGIN

ONC'NOT selectok (fspliceok := FALSE,
wspliceok := FALSE,
ERRORC'data missing for splice design phase")
RETURN)")

{ CHECK LENGTHOK }
DBMSC'SELECTOength from STRUCTURE,

SELECT(SUM(slength) into sumlen from SEGMENTS where
alternative = trialid, selectok)")

lengthok := absilength - sumlen) ^ TOLERANCE('lengthok')

{ CHECK CONNOK }
DBMS("SELECT{sectionid, slength, slend, COUNT into num from

SEGMENTS order by slend where alternative = trialid,
selectok)")

IF (num * 0) AND (slendd) = 0) AND (slend(num) +
slength(num) = length) THEN

BEGIN
FOR j » 2 TO num

BEGIN
WHILE connok DO

BEGIN
connok := abs(slend(j - 1) + slengtMj - 1) - slend(j))
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£ TOLERANCE('connok')
END

END
END

ELSE
connok := FALSE

IF NOT (lengthok AND connok) THEN
BEGIN

ERRORC'lengthok or connok failed")
fspliceok := FALSE
wspliceok := FALSE
RETURN

END

DBMS("SELECT(fball, fv, fbbolt, holedia from STRUCTURE,
h, tw from WSECTIONS where alternative = trialid,
sectionid into sid, slend, COUNT into num from
SEGMENTS order by slend where alternative = trialid,
selectok)")

fspliceok :* TRUE
wspliceok := TRUE
FOR j := 2 TO num DO

BEGIN
DBMSC'SELECTltf into tf1 from FSECTIONS where alternative =

trialid and posmom =
SELECT(posmom from SEGMENTS where sectionid =
sid(j - 1)).
tf into tf2 from FSECTIONS where alternative =
trialid and posmom =
SELECT(posmom from SEGMENTS where sectionid -
sid(j)), selectok)")

{ CHOOSE SMALLER SECTION }
IF tf 1 £ tf2 THEN

section :» sid(j - 1)
ELSE

section := sid(j)

DBMS("SELECT(tf, bf from FSECTIONS where alternative = trialid
and posmom =
SELECT(posmom from SEGMENTS where sectionid
= section), selectok)")

resize := TRUE
REPEAT { UNTIL ALL FLANGE SPLICE CONSTRAINTS

ARE SATISFIED }
af := tf*bf
tencap := af*.75»fball

REPEAT { CHOOSE BOLT INFORMATION AND PLATE LENGTH
FOR FLANGE SPLICE UNTIL CONSTRAINTS ARE
SATISFIED OR USER QUITS }
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SIZEFNUfnlines, fslength, fnbolts, quit)
fnboltsok :- ABS(fnbolts - tencap/fbbolt) £

TOLERANCE('fnboltsok')

nbline := fnbolts/fnlines
fslengthok := fslength £ 2»({fnlines - 1)*3 + 3.5)
afremok := .75 £ (bf - nbline«hoiedia)/bf

UNTIL (afremok AND fslengthok AND fnboltsok) OR quit
IF quit THEN

resize := 'false"
ELSE

BEGIN
REPEAT { CHOOSE PLATE WIDTHS AND THICKNESSES

UNTIL CONSTRAINTS ARE SATISFIED OR
USER QUITS }

SIZEBOTO(bo, to, bi, ti, quit)
book := (bo £ bf AND bo £ (tw +

(nbline + 2)«2))
biok := (bi £ (bf - tw)/2 AND bi >

(nbline/2 • 1)»2)
anet := bo*to + 2*bi*ti - nbline*holedia*(to + ti)
f :- anet»fball
splicecapok := tencap £ f

UNTIL (splicecapok AND book AND biok) OR quit
IF quit THEN

resize :- FALSE

IF (afremok AND splicecapok) THEN
DBMS("INSERT(into FSPLICES: <trialid, slend(j),

bo, to, bi, ti, fslength, fnlines,
fnbolts>, insertok)")

{ FSLOCOK IS AUTOMATICALLY SATISFIED SINCE FSLOC IS LOADED WITH
SLEND(j) }

fslocok := TRUE
END

UNTIL (afremok AND splicecapok AND insertok AND fslocok) OR
NOT resize

IF NOT resize THEN
fspliceok := FALSE

vreqd := .75»tw»h»fv
sreqd := .75» tw»h2/6
REPEAT { UNTIL WEB SPLICE IS OK }

REPEAT { CHOOSE PLATE WIDTH AND THICKNESS UNTIL
CONSTRAINT ARE SATISFIED OR USER QUITS }

SIZEBWSTWS(bws, tws, quit)
sok := sreqd £ .75*tws*bws »2/6
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UNTIL sok OR quit
IF quit THEN

resize ~ FALSE
ELSE

BEGIN
SIZEWNL(wslength, wnlines, wnbolts, quit)
IF NOT quit

BEGIN
nbline := wnbolts/wnlines
bwsok := (bws £ h AND bws £

(nbline - 1)*3.5 + 3)
wslengthok :- wslength £ 2*{(wnlines - 1)*3 + 3.5)
awremok := .75 £ h*tw - nbline*holedia*tw/(h*tw)
CALCBOLTFi(boltf, vreqd, wnlines, wnbolts)
boltfok := boltf <• fbbolt
CALCISPLICEKisplice, bws, tws, wnlines, wnbolts)
ispliceok := isplice £ .75*tw«h3/12
IF bwsok AND wslengthok AND awremok AND

boltfok THEN
DBMS("INSERT(into WSPLICES: <trialid, slend(j),

bws, tws, wslength, wnlines,
wnbolts>, insertok)")

{ WSLOCOK IS AUTOMATICALLY SATISFIED SINCE WSLOC IS LOADED WITH
SLEND(j) }

wslocok := TRUE
END

ELSE
resize := FALSE

END
UNTIL (sok AND awremok AND boltfok AND ispliceok AND

bwsok AND wslengthok AND insertok AND
wslocok) OR NOT resize

IF NOT resize THEN
wspliceok := FALSE

END

END { SPLICES }

5.1.4. DISCUSSION OF THE NORMALIZED DESIGN DATABASE EXAMPLE

The four procedures presented in the previous section can be used to

perform the three basic design phases using a completely normalized database.

Each procedure passes a logical variable which flags the success or failure of

the specific design process. Therefore, an overall bridge design program could

call these procedures to perform the design of the girders and then check the

value of girderok in the following manner:
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CONCEPT(trialid, conceptok)

IF conceptok THEN
BEGIN

BEAMSIZEitrialid, beamok)
IF beamok THEN

BEGIN
STIFF(trialid, stiffok)
SPLICES(trialid, fspliceok, wspliceok)

END
END

girderok := conceptok AND beamok AND stiffok AND fspliceok AND
wspliceok

IF girderok THEN

{ CONTINUE THE BRIDGE DESIGN }

Since the database can only check single relation-single attribute constraints,

the responsibility of insuring integrity within the database is placed on the

design program. Therefore, every time a particular piece of data is retrieved

from the database, all constraints that depend on this data must be checked to

insure that the data item is valid.

Also, the design program is completely dependent upon the specific

constraints that it must enforce. A slight change in a constraint or the

introduction of a new constraint requires a major update of the design

program.

The next section presents the design example using an augmented constraint

checking database. In this example, the responsibility of integrity checking is

placed upon the database system, which is shown to solve the problems listed

above.



88

5.2. AUGMENTED DESIGN DATABASE

This section wil l present the computer procedures to add to the database

system which enforce particular design constraints and the actual design

procedures that implement the design procedure described in Section 4.1 with

an augmented relational database.

5.2.1. DATABASE SCHEMA

The entire database schema for this example is shown in Figure 5-7. Notice

that the relations are exactly the same as the ones shown in Figure 4-2 for

the normalized database example, except that the constraint status attributes

are added for each constraint. The choice of the exact location of each of

these attributes is based on the location of the data needed to evaluate the

constraint and the amount of redundancy caused by the addition of the

attribute. For example, the status attribute for the constraint that limits the

bending stress in a section (stressok) is stored in the FSECTIONS relation

because the stressok constraint is used for each section of the girder (positive

and negative). The only other relation that contains information about positive

and negative sections is the SEGMENTS relation. However, this relation does

not contain any of the information needed to check the constraint. Therefore,

it is more logical to store the stressok attribute in the FSECTIONS relation.

The supportlocok attribute could be stored in the SUPPORTS relation instead

of in the GIRDER relation, since the data needed to check the constraint is

stored in the SUPPORTS relation. However, if it is stored in the SUPPORTS

relation, each supportlocok would have the same value for each support for a

given alternative, since supportlocok only checks to see if a support is located

at each end of the girder (nothing is said about each individual support). This

would introduce unnecessary redundancy. Finally, the changeok attribute is

stored in the FSECTIONS relation. Even though this introduces redundancy

(since the value for changeok is the same for the positive and negative

moment sections), it is assumed that the cost of this small redundancy is

negligible compared to other issues, such as logical location and the fact that

the only data needed to check the changeok constraint is located in the

FSECTIONS relation. Therefore, placing the changeok attribute in the

FSECTIONS relation makes the constraint a single relation constraint. In fact,

since multiple relation constraints are more complex the the single relation
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RELATIONS

STRUCTURE(grade, fball, fv, e, detail, length, clear, boltdia, holedia,
fbbolt, gradeok)

SEGMENTS(a/te/7?af/Ve, sect ion id, slength, slend, posmom, connok)

WSECTI0NS(a/te/7?af/Ve, h, tw, conhtok, coniok, htok)

FSECTIONS(a/te/77af/Ve, posmom. bf, tf, clearok, coniflangeok,
conflangeok, defok, iok, changeok, stressok)

ANALYSlSia/ternative, sectionid, load, analoc. shear, mom, defy, rot, ix)

G\RDER(a/ternative, numgirder, girderok, beamok, stiffok, wspliceok,
fspliceok, conceptok, lengthok, supportlocok)

SUPPORTSia/ternative. supportloc)

BSTIFFENERS(a/te/77af/Ve, bsloc, hbs, tbs, bbs, bbsok, bearingok,
bslocok, hbsok, bbsok, tbsok, ccok, forceok)

FSPUCESia/ternative. fs/oc, bo, to, bi, t i , fslength, fnlines, fnbolts,
afremok, biok, book, fslocok, fslengthok, splicecapok)

WSPL\CES(a/ternative, ws/oc, bws, tws, wslength, wnlines,
wnbolts, awremok, boltfok, bwsok, wslocok, sok,
wslengthok, wspliceok)

GRADES(grade. fy)

SINGLE RELATION-SINGLE ATTRIBUTE CONSTRAINTS

0 < fball £ MAXfball 0 < clear £ MAXclear

0 < fv £ MAXfv 0 < boltdia £ MAXboltdia

0 < e £ MAXe 0 < holedia £ MAXholedia

0 < defall £ MAXdefall 0 < fbbolt £ MAXfbbolt

Figure 5-7: Database schema for augmented design database example.
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0 < length £ MAXIength

0 < slend £ MAXslend

0 < tw £ MAXtw

0 < tf £ MAXtf

0 < numgirder £ MAXnumgirder

0 < bsloc £ MAXbsloc

0 < tbs £ MAXtbs

0 < fsloc £ MAXfsloc

0 < to £ MAXfo

0 < ti £ MAXti

0 < fnlines £ MAXfnlines

0 < wsloc £ MAXwsloc

0 < tws £ MAXtws

0 < wnlines £ MAXwnlines

0 < fy <, MAXfy

0 < slength £ MAXslength

0 < h £ MAXh

0 < bf £ MAXbf

0 < analoc £ 1.0

0 < supportloc £ MAXsupportloc

0 < hbs £ MAXhbs

0 < bbs £ MAXbbs

0 < bo £ MAXbo

0 < bi < MAXbi

0 < fslength £ MAXfslength

0 < fnbolts £ MAXfnbolts

0 < bws £ MAXbws

0 < wslength £ MAXwsiength

0 < wnbolts £ MAXwnbolts

Figure 5-7: Database schema for augmented design
database example, continued.
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constraints, it is important to try to place the attribute such that the constraint

becomes a single relation constraint. This same evaluation process was used

to position all of the other constraint status attributes.

5.2.2. CONSTRAINT PROCEDURES

The following constraints are to be included in the augmented relational

database.

FUNCTION LENGTHOK(trialid)
{ CHECK LENGTHOK FOR THE GIRDER }

BEGIN
ONC'NOT selectoMlengthok :- 'false',

ERRORC'data missing for lengthok"),
RETURN)")

DBMSC'SELECTOength from STRUCTURE,
SUM(slength) into sumlen from SEGMENTS where
alternative = trialid, selectok)")

lengthok := absdength - sumlen) £ TOLERANCEC lengthok')
END

FUNCTION CONNOK(trialid, section)
{ CHECK CONNOK FOR SECTIONID = SECTION }

BEGIN
ONC'NOT selectoMconnok := 'false',

ERRORC'data missing for connok"),
RETURN)")

DBMS("SELECT(slength into seclength, slend into lend from SEGMENTS
where alternative = trialid and sectionid = section,
selectok)")

DBMSC'SELECTOength from STRUCTURE,
slength, slend, COUNT into num from SEGMENTS order
by slend where alternative = trialid and
(slend = (lend + seclength) or (slend + slength) =
lend), selectok)")

IF (num = 0 AND lend = 0 AND seclength = length) THEN
connok := 'true'

ELSE
IF (num = 1) AND ((lend - 0 AND (slength + slend) = length) or

(slend = 0 AND (seclength + lend) = length)) THEN
connok := 'true'

ELSE
IF (num = 2) THEN
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connok := (abs(slendd) + slengthd) - lend) £
TOLERANCECconnok')

AND ABSOend + seclength - slend(2» <,
TOLERANCECconnok'))

ELSE
connok := 'false'

END

FUNCTION GRADEOK
{ CHECK GRADEOK FOR THE STRUCTURE }

BEGIN
ONC'NOT selectok (gradeok := 'false'.

ERRORC'data missing for gradeok"),
RETURN)")

DBMS("SELECT(grade from GRADES where grade =
SELECT(grade from STRUCTURE), selectok)")

gradeok := 'true'
END

FUNCTION CONHTOK(trialid)
{ CHECK CONHTOK FOR THE GIRDER }

BEGIN
ONC'NOT selectok (conhtok := 'false'.

ERRORC'data missing for conhtok"),
RETURN)")

DBMS(SELECTC'fball, from STRUCTURE.
h, tw from WSECTIONS where alternative = trialid,
selectok)")

ESTSHEAR(shear)
conhtok := h»((shear»1000)/(h*tw))1/2/7500 £ tw

END

FUNCTION CONIOK(trialid)
{ CHECK CONIOK FOR THE GIRDER }

BEGIN
ONC'NOT selectok (coniok := 'false',

ERRORC'data missing for coniok"),
RETURN)")

DBMS("SELECT(h, tw from WSECTIONS where alternative = trialid,
fball from STRUCTURE, selectok)")

ESTMOM(mom)
sreqd := mom*12/fball
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coniok := ABS(h - (3«h*sreqd/(2*tw))1/3) £ TOLERANCE('coniok')
END

FUNCTION CONIFLANGEOK(trialid, pmom)
{ CHECK CONIFLANGEOK FOR THE SECTION WHERE POSMOM = PMOM }

BEGIN
ONC'NOT selectok (coniflangeok := 'false',

ERRORC'data missing for coniflangeok"),
RETURN)")

DBMS("SELECT(bf, tf from FSECTIONS where alternative = trialid and
posmom = pmom,
h, tw from WSECTIONS where alternative = trialid,
fball from STRUCTURE, selectok)")

ESTMOM(mom)
ireqd :- mom*h/(2*fball)
iweb := tw»(h)3/12
iflanges := ireqd - iweb
coniflangeok := bf*tf*(d/2)2*2 £ iflanges

END

FUNCTION CONFLANGEOKftrialid, pmom)
{ CHECK CONFLANGEOK FOR THE SECTION WHERE POSMOM = PMOM }

BEGIN
ONC'NOT selectok (conflangeok := 'false',

ERRORC'data missing for conflangeok"),
RETURN)")

DBMS("SELECT(bf, tf from FSECTIONS where alternative = trialid and
posmom = pmom,
fy from GRADES where grade = SELECT(grade from
STRUCTURE), selectok)")

1/2flangeok := bf/tf £ 65/{fy)
END

FUNCTION CLEAROK(trialid, pmom)
{ CHECK CLEAROK FOR THE SECTION WHERE POSMOM = PMOM }

BEGIN
ONC'NOT selectok (clearok := 'false',

ERRORC'data missing for clearok"),
RETURN)")

DBMS("SELECT(clear from STRUCTURE,
h from WSECTIONS where alternative = trialid,
tf from FSECTIONS where alternative = trialid and
posmom = pmom, selectok)")
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clearok := abs(h + tf*2 - clear) £ TOLERANCE('clearok')
END

FUNCTION CHANGEOK(trialid)
{ CHECK CHANGEOK FOR THE GIRDER }

BEGIN
ONC'NOT selectok (changeok := 'false',

ERRORC'data missing for changeok"),
RETURN)")

DBMS("SELECT(tf into tf 1 from FSECTIONS where posmom = 'true'
and alternative = trialid,
tf into tf2 from FSECTIONS where posmom = 'false'
and alternative = trialid, selectok)")

changeok := abs(tf2 - tf 1) £ TOLERANCE('changeok')
END

FUNCTION SUPPORTLOCOK(trialid)
{ CHECK SUPPORTLOCOK FOR THE GIRDER }

BEGIN
ONC'NOT selectok (supportlocok := 'false',

ERRORC'data missing for supportlocok"),
RETURN)")

DBMS("SELECT{supportloc. COUNT into num from supports order by
supportloc where alternative = trialid, selectok)")

IF (num = 0) OR (num = 1) THEN
supportlocok := 'false'

ELSE
supportlocok := (supportlocd) = 0) AND (supportloc(num) = length)

END

FUNCTION HTOK(trialid)
{ CHECK HTOK FOR THE GIRDER }

BEGIN
ONC'NOT selectok (htok := 'false',

ERRORC'data missing for htok"),
RETURN)")

CALCMSHEAR(maxshear)
DBMS("SELECT(h, tw from WSECTIONS where alternative

= trialid. selectok)")

htok := h/tw < 7500/((maxshear*1000)/(h*tw))1/2

END
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FUNCTION STRESSOK(trialid, section)
{ CHECK STRESSOK FOR THE SECTION WHERE SECTIONID = SECTION }

BEGIN
ONC'NOT selectok (stressok := 'false',

ERRORC'data missing for stressok"),
RETURN)")

DBMS("SELECT(fball. defall from STRUCTURE,
posmom into pmom from SEGMENTS where
alternative = trialid and sectionid - section,
mom, analoc into loc, sectionid into secid from
ANALYSIS where load - 'dload' and sectionid
= section and mom = max(abs(mom)), selectok)")

deadload := mom

DBMS(SELECT(mom from ANALYSIS where load # 'dload' and
sectionid = section and analoc s loc and mom
= max(abs(mom)),
h, tw from WSECTIONS where alternative = trialid,
bf, tf from FSECTIONS where posmom = pmom and
alternative = trialid, selectok)")

liveload := mom
m := deadload + liveload + .22«liveload -
c ~ (h + 2*tf)/2
i := tw»(h/2)3/12 • bf»(tf/2)3/12 + bf#tf*(h/2 - tf/2)2

stressok := fball £ m*c/i
END

FUNCTION DEFOK(trialid, section)
{ CHECK DEFOK FOR THE SECTION WHERE SECTIONID = SECTION }

BEGIN
ONC'NOT selectok (defok := 'false',

ERRORC'data missing for defok"),
RETURN)")

DBMS("SELECT(defall from STRUCTURE,
defy from ANALYSIS where defy = MAX(defy) and
sectionid = section,
slend, slength from SEGMENTS where alternative -
trialid and sectionid = section, selectok)")

DBMS("SELECT(MIN(supportloc) into minloc from supports
where supportloc £ (slend + slength),
MAX(supportloc) into maxloc from supports
where supportloc £ (slend), seJectok)")

I := minloc - maxloc

defok := l/defall £ defy
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END

FUNCTION IOK(trialid, section)
{ CHECK IOK FOR THE SECTION WHERE SECTIONID = SECTION }

BEGIN
ONC'NOT selectok (iok := 'false',

ERRORC'data missing for iok"),
RETURN)")

DBMS("SELECT(h, tw from WSECTIONS where alternative = trialid,
bf, tf from FSECTIONS where alternative » trialid and
posmom = SELECT(posmom from SEGMENTS where
sectionid = section),
ix from ANALYSIS where sectionid = section, selectok)")

i :• tw»(h/2)3/12 + bf*(tf/2)3/12 • bf«tf»<h/2 - tf/2)2

iok := ABS(i - ix)/i £ TOLERANCE('iok')
END

FUNCTION BSLOCOKUrialid, bloc)
{ CHECK BSLOCOK FOR THE BEARING STIFFENER WHERE BSLOC = BLOC }

BEGIN
ONC'NOT selectok (bslocok := 'false',

ERRORC'data missing for bslocok"),
RETURN)")

DBMS("SELECT(supportloc from SUPPORTS where alternative = trialid
and supportloc = bloc, selectok)")

bslocok := 'true'
END

FUNCTION HBSOK(trialid, bloc)
{ CHECK HBSOK FOR THE STIFFENER WHERE BSLOC = BLOC }

BEGIN
ONC'NOT selectok (hbsok := 'false',

ERRORC'data missing for hbsok"),
RETURN)")

DBMS("SELECT(h from WSECTIONS where alternative = trialid,
hbs from BSTIFFENERS where alternative = trialid and
bsloc = bloc, selectok)")

hbsok := (ABS(h - hbs) £ TOLERANCE('hbsok')
END

FUNCTION BBSOKUrialid, bloc)
{ CHECK BBSOK FOR THE STIFFENER WHERE BSLOC = BLOC }
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BEGIN
ONC'NOT selectok (bbsok := 'false',

ERRORC'data missing for bbsok"),
RETURN)")

DBMS("SELECT(tw from WSECTIONS where alternative = trial id,
bf from FSECTIONS where posmom = SELECT(posmom
from SEGMENTS where (slend + slength) £ bloc
and (slend) £ bloc),
bbs from BSTIFFENERS where alternative = trialid and
bsloc = bloc, selectok)")

bbsok :- bbs £ (bf - tw)/2
END

FUNCTION TBSOK(trialid, bloc)
{ CHECK TBSOK FOR THE STIFFENER WHERE BSLOC = BLOC }

BEGIN
ONC'NOT selectok (tbsok := 'false',

ERRORC'data missing for tbsok"),
RETURN)")

DBMS("SELECT(fy from GRADES where grade = SELECKgrade from
STRUCTURE),
tbs, bbs from BSTIFFENERS where alternative = trialid
and bloc = bsloc, selectok)")

tbsok :» tbs £ bbs*(fy/33000)1/2/12
END

FUNCTION CCOK(trialid, bloc)
{ CHECK CCOK FOR THE STIFFENER WHERE BSLOC * BLOC }

BEGIN
ONC'NOT selectok (ccok := 'false',

ERRORC'data missing for ccok"),
RETURN)")

DBMS("SELECT(tw from WSECTIONS where alternative = trialid,
tbs, bbs, hbs from BSTIFFENERS where alternative -
triaiid and bsloc = bloc,
fy from GRADES where grade » SELECT(grade from
STRUCTURE),
e from STRUCTURE, selectok)")

bsi := tbs«(2»bbs + tw)3/12 + (tw*18 - tbs)*tw3/12
bsarea := (2*bbs + tw)*tbs + (tw*i8 - tbs)«tw
r := bsi/bsarea
cc := (2»ir2*e/fy)1/2

k := 1.0
ccok :* cc ^ k*hbs/r
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END

FUNCTION FORCEOK(trialid, bloc)
{ CHECK FORCEOK FOR THE STIFFENER WHERE BSLOC = BLOC }

BEGIN
ONC'NOT selectok {forceok := 'false',

ERRORC'data missing for forceok"),
RETURN)")

DBMSC'SELECTUw from WSECTIONS where alternative = trialid,
tbs, bbs, hbs from BSTIFFENERS where alternative
trialid and bsloc = bloc, selectok)")

bsi := tbs*(2*bbs + tw)3/12 + (tw*18 - tbs)»tw3/12
bsarea :« (2*bbs + tw)*tbs + (tw*18 - tbs)*tw
r := bsi/bsarea
k := 1.0
fa = 23580 - 1.03«(k»hbs/r)2

p := fa«bsarea
CALCREACT<reaction, bloc)
forceok := reaction ^ p

END

FUNCTION BEARINGOK(trialid. bloc)
{ CHECK BEARINGOK FOR THE STIFFENER WHERE BSLOC = BLOC }

BEGIN
ONC'NOT selectok (bearingok := 'false',

ERRORC'data missing for bearingok"),
RETURN)")

DBMS(SELECT(tbs, bbs from BSTIFFENERS where alternative =
trialid and bsloc - bloc,
fy from GRADES where grade = SELECT(grade from
STRUCTURE), selectok)")

CALCREACT(reaction, bloc)
bearingok := reaction/(2«tbs*bbs) £ .9«fy

END

FUNCTION FSLOCOKUrialid, floe)
{ CHECK FSLOCOK FOR THE FLANGE SPLICE WHERE FSLOC = FLOC }

BEGIN
ONC'NOT selectok (fslocok := 'false',

ERRORC'data missing for fslocok"),
RETURN)")

DBMS("SELECT(slend from SEGMENTS where alternative = trialid and
slend = floe, selectok)")
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fslocok := 'true'
END

FUNCTION FSLENGTHOKUrialid, floe)
{ CHECK FSLENGTH FOR THE FLANGE SPLICE WHERE FSLOC = FLOC }

BEGIN
ONC'NOT selectok (fslengthok :- 'false',

ERRORC'data missing for fslengthok"),
RETURN)")

OBMS("SELECT(fslength, fnlines from FSPLICES where alternative
trialid and fsloc - floe, selectok)")

fslengthok := fslength £ 2»<(fnlines - 1)»3 + 3.5)
END

FUNCTION FNBOLTSOK<trialid, floe)
{ CHECK FNBOLTSOK FOR THE FLANGE SPLICE WHERE FSLOC = FLOC }

BEGIN
ONC'NOT selectok (fnboltsok := 'false',

ERRORC'data missing for fnboltsok"),
RETURN)")

DBMSC'SELECT(fball, fbbolt from STRUCTURE,
tf, bf from FSECTIONS where alternative = trialid and
(slend + slength) £ floe and slend £ floe
and tf = MIN(tf),
fnbolts from FSPLICES where
alternative = trialid and fsloc = floe, selectok)")

af := tf*bf
tencap := .75*af»fball
fnboltsok := ABS(fnbolts - tencap/fbbolt) £ TOLERANCE('fnboltsok')

END

FUNCTION AFREMOK(trialid, floe)
{ CHECK AFREMOK FOR THE FLANGE SPLICE WHERE FSLOC = FLOC }

BEGIN
ONC'NOT selectok (afremok := 'false',

ERRORC'data missing for afremok"),
RETURN)")

DBMSC'SELECT(holedia from STRUCTURE,
bf from FSECTIONS where alternative = trialid and
(slend + slength) £ floe and slend £ floe
and tf = MIN(tf),
fnbolts, fnlines from FSPLICES where alternative = trialid
and fsloc = floe, selectok)")
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nbline := fnbolts/fnlines
afremok := 75 £ (bf - nbline*holedia)/bf

END

FUNCTION BOOK(trialid, floe)
{ CHECK BOOK FOR THE FLANGE SPLICE WHERE FSLOC = FLOC }

BEGIN
ONC'NOT selectok (book := 'false',

ERRORC'data missing for book"),
RETURN)")

DBMS("SELECT(bf from FSECTIONS where alternative = trial id and
(slend + slength) £ floe and slend £ floe,
bo, fnbolts, fnlines from FSPLICES where alternative
trialid and fsloc = floe,
tw from WSECTIONS where alternative = trialid,
selectok)")

nbline := fnbolts/fnlines
book := (bo £ bf AND bo £ (tw + (nbline + 2)«2))

END

FUNCTION BIOKftrialid, floe)
{ CHECK BIOK FOR THE FLANGE SPLICE WHERE FSLOC = FLOC }

BEGIN
ONC'NOT selectok (biok := 'false',

ERRORC'data missing for biok"),
RETURN)")

DBMS("SELECT(bf from FSECTIONS where alternative = trialid and
(slend + slength) £ floe and slend £ floe,
bi, fnbolts, fnlines from FSPLICES where alternative -
triaiid and fsloc = floe,
tw from WSECTIONS where alternative = trialid,
selectok)")

nbline := fnbolts/fnlines
biok := (bi £ (bf - tw)/2 AND bi £ (nbline/2 + 1)*2)

END

FUNCTION SPLICECAPOK(trialid, floe)
{ CHECK SPLICECAPOK FOR THE FLANGE SPLICE WHERE FSLOC = FLOC }

BEGIN
ONC'NOT selectok (splicecapok := 'false',

ERRORC'data missing for splicecapok"),
RETURN)")

DBMS("SELECT(holedia, fball from STRUCTURE,
tf, bf from FSECTIONS where alternative = trialid and
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(slend + slength) £ floe and slend £ floe
and tf = MIN(tf),
bo, to, ti , bi, fnbolts, fnlines from FSPLICES where
alternative = trialid and fsloc = floe, selectok)")

nbline := fnbolts/fnlines

af := tf#bf
tencap := .75*af*fball
anet := bo»to + 2*bi*ti - nbline*holedia«(to • ti)
f := anet *f ball
splicecapok := tencap £ f

END

FUNCTION WSLOCOKttrialid, wloc)
{ CHECK WSLOCOK FOR THE WED SPLICE WHERE WSLOC = WLOC }

BEGIN
ONC'NOT selectok (wslocok := 'false',

ERRORC'data missing for wslocok"),
RETURN)")

DBMSC'SELECKslend from SEGMENTS where alternative - trialid and
slend = wloc, selectok)")

wslocok := 'true'
END

FUNCTION SOKUrialid, wloc)
{ CHECK SOK FOR THE WEB SPLICE WHERE WSLOC = WLOC }

BEGIN
ONC'NOT selectok (sok := 'false',

ERRORC'data missing for sok"),
RETURN)")

DBMSC'SELECTOi, tw from WSECTIONS where alternative = trialid,
tws, bws from WSPLICES where alternative = trialid and
wsloc = wloc, selectok)")

sreqd := .75* tw*h*/6
sok := sreqd £ .75«tws*bws2*2/6

END

FUNCTION BWSOK(trialid, wloc)
{ CHECK BWSOK FOR THE WEB SPLICE WHERE WSLOC = WLOC }

BEGIN
ONC'NOT selectok (bwsok := 'false'.

ERRORC'data missing for bwsok"),
RETURN)")
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DBMSC'SELECKbws, wnbolts, wnlines from WSPLICES where
alternative = trialid and wsloc = wloc,
h from SEGMENTS where alternative = trialid, selectok)")

nbline := wnbolts/wnlines
bwsok := (bws £ h AND bws £ (nbline - 1)*3.5 + 3)

END

FUNCTION WSLENGTHOK(trialid, wioc)
{ CHECK WSLENGTHOK FOR THE WEB SPLICE WHERE WSLOC = WLOC }

BEGIN
ONC'NOT selectok {wslengthok := 'false',

ERRORC'data missing for wslengthok"),
RETURN)")

DBMS("SELECT(wslength, wnlines from WSPLICES where alternative
trialid and wsloc = wloc, selectok)")

wslengthok := wslength £ 2*<(wnlines - 1)*3 + 3.5)
END

FUNCTION AWREMOKUriaiid, wloc)
{ CHECK AWREMOK FOR THE WEB SPLICE WHERE WSLOC = WLOC }

BEGIN
ONC'NOT selectok (awremok := 'false',

ERRORC'data missing for awremok"),
RETURN)")

DBMSC'SELECT{holedia from STRUCTURE,
wnbolts, wnlines from WSPLICES where alternative
trialid and wsloc = wloc,
h, tw from WSECTIONS where alternative = trialid,
selectok)")

nbline := wnbolts/wnlines
awremok := .75 £ h«tw - nbline«holedia*tw/(h*tw)

END

FUNCTION BOLTFOK(trialid, wloc)
{ CHECK BOLTFOK FOR THE WEB SPLICE WHERE WSLOC = WLOC }

BEGIN
ONC'NOT selectok (boltfok :• 'false',

ERRORC'data missing for boltfok"),
RETURN)")

DBMS("SELECT(fbbolt from STRUCTURE, selectok)")

CALCBOLTF2(boltf, wloc)
boltfok := boltf £ fbbolt
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END

FUNCTION ISPLICEOKUrialid, wloc)
{ CHECK ISPLICEOK FOR THE WEB SPLICE WHERE WSLOC = WLOC }

BEGIN
ONC'NOT selectok (ispliceok := 'false',

ERRORC'data missing for ispliceok"),
RETURN)")

DBMS("SELECT(h. tw from WSECTIONS where alternative = trialid,
selectok)")

CALCISPLICE2(isplice, wloc)
is|

END
ispliceok := isplice £ .75«tw»h3/12

FUNCTION CONCEPTOK(trialid)
{ CHECK CONCEPTOK FOR THE STRUCTURE }

BEGIN
ONC'NOT selectok (conceptok := 'false',

ERRORC'data missing for conceptok"),
RETURN)")

DBMS("SELECT(COUNT into num from WSECTIONS where (conhtok
= 'false' or coniok = 'false') and alternative = trialid,
COUNT into num1 from FSECTIONS where (coniflangeok
= 'false' or conflangeok = 'false') and alternative
= trialid, selectok)")

conceptok := (num « 0) AND (num1 = 0)
END

FUNCTION BEAMOK(trialid)
{ CHECK BEAMOK FOR THE STRUCTURE }

BEGIN
ONC'NOT selectok (beamok := 'false',

ERRORC'data missing for beamok"),
RETURN)")

DBMSC'SELECT(COUNT into num from WSECTIONS where htok = 'false'
and alternative = trialid,
COUNT into num1 from FSECTIONS where (stressok =
'false' or defok - 'false' or iok - 'false') and
alternative - trialid), selectok")

beamok :« (num = 0) AND (num1 = 0)
END
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FUNCTION STIFFOK(trialid)
{ CHECK STIFFOK FOR THE STRUCTURE }

BEGIN
ONC'NOT selectok (stiffok := 'false',

ERRORC'data missing for stiffok"),
RETURN)")

DBMS("SELECT{COUNT into num from BSTIFFENERS where (tbsok
'false' or ccok ='false' or forceok ='false' or bearingok
= 'false' or bbsok -'false' or hbsok ='false' or bslocok
= 'false') and alternative = trialid, selectok)")

stiffok :* (num - 0)
END

FUNCTION FSPLICEOK(trialid)
{ CHECK FSPLICEOK FOR THE STRUCTURE }

BEGIN
ONC'NOT selectok {fspiiceok := 'false',

ERRORC'data missing for fspiiceok"),
RETURN)")

DBMS("SELECT(COUNT into num from FSPLICES where (afremok ='false'
or splicecapok -'false' or book -'false' or biok ='false' or
fslengthok ='false' or fslocok ='false') and alternative *
trialid, selectok)")

fspiiceok := (num = 0)
END

FUNCTION WSPLICEOK(trialid)
{ CHECK WSPLICEOK FOR THE STRUCTURE }

BEGIN
ONC'NOT selectok (wspliceok := 'false',

ERRORC'data missing for wspliceok"),
RETURN)")

DBMSC'SELECT(COUNT into num from WSPLICES where (sok ='false' or
awremok ='false' or boltfok ='false' or ispliceok -'false' or
bwsok s'false' or wslengthok ='false' or wslocok ='false')
and alternative = trialid, selectok)")

wspliceok := (num = 0)
END

FUNCTION GIRDEROK(trialid)
BEGIN

ONC'NOT selectok (girderok := 'false',
ERRORC'data missing for girderok").
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RETURN)")

DBMS("SELECT(conceptokf beamok, stiffok, fspliceok, wspliceok from
GIRDER where alternative = trialid, selectok)")

girderok := conceptok AND beamok AND stiffok AND fspliceok AND
wspliceok

END

5.2.3. CONCEPTUAL DESIGN PHASE

5.2.3.1. ALGORITHM

The following steps are included in the conceptual design phase

implementation.

1. Activate constraints on existing data that is retrieved by this phase.
If the activate is not successful, return.

2. Repeat the following process until the web dimensions are
successfully designed and inserted into the database.

a. Choose the web dimensions.

b. In a single DBMS transaction, activate the constraints on the
web slenderness (conhtok) and the moment of inertia of the
web (coniok) and insert the web dimensions.

3. Repeat the following process for the positive and negative moment
sections until the flange dimensions are successfully designed and
inserted into the database.

a. Choose the flange dimensions.

b. In a single DBMS transaction, activate the constraints on the
clearance (clearok), the moment of inertia of the flange
(coniflangeok), the flange dimensions (conflangeok) and the
change in section heights (changeok) and insert the flange
dimensions.

The following Pascal-like procedure can be used to perform the conceptual

design phase.

PROCEDURE CONCEPT(trialid)
BEGIN

DBMS("ACTIVATE(lengthok, connok, gradeok where alternative =
trialid, activateok)")
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IF NOT activateok THEN
RETURN

{ CHOOSE WEB DIMENSIONS }
REPEAT

REPEAT
SIZEHTW(h, tw, quit)
IF quit THEN

RETURN

DBMS("ACTIVATE(conhtok, coniok where alternative =
trialid, activateok)

INSERTUnto WSECTIONSOi, tw): <h, tw> where
alternative = trialid, insertok)")

UNTIL insertok

{ CHOOSE FLANGE DIMENSIONS }
FOR j ™ 1 TO 2

BEGIN
IF (j = 1) THEN

pmom :* 'false'
ELSE

pmom := 'true'

REPEAT
SIZEBFTF<bf, tf, quit)
IF NOT quit THEN

IF j = 2 THEN
DBMS("ACTIVATE(changeok where alternative =

trialid, activateok)")
DBMS("ACTIVATE{clearok, coniflangeok, conflangeok

where alternative = trialid,
activateok)

INSERTUnto FSECTIONS: <trialid, pmom,
bf, tf>, insertok)")

UNTIL insertok OR quit

END
DBMS("INVOKE{conceptok where alternative = trialid, invokeok)
IF NOT invokeok THEN

DBMS("DEACTIVATE{conhtok, coniok. coniflangeok,
conflangeok)")

UNTIL invokeok
DBMS("ACTIVATE(conceptok where alternative - trialid, activateok)")

END
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5.2.4. BEAM SIZING PHASE

5.2.4.1. ALGORITHM

The following steps are included in the beam sizing design phase

implementation.

1. Activate constraints on existing data that is retrieved by this phase.
If the activate is not successful, return.

2. Perform the analysis.

3. In a single DBMS transaction, invoke the constraint on the web
slenderness (htok) and select its value. If htok is satisfied, activate
it. If it is not satisfied, repeat the following steps until all web
dimensions are satisfactory (htok is satisfied).

a. Choose new web dimensions.

b. In a single DBMS transaction, activate htok and update with
the new web dimensions.

4. In a single DBMS transaction, invoke the bending stress constraint
(stressok) and select the value of the logical variable for the type
of moment section (posmom) for the sections with a stressok equal
to false.

5. If stressok equals true for both sections, activate stressok. If
stressok equals false for either section, repeat the following steps
for all sections where the bending stress constraint is violated until
a new set of flange dimensions are selected and the constraint is
satisfied.

a. Choose new flange dimensions.

b. In a single DBMS transaction, activate stressok and insert the
new values.

6. In a single DBMS transaction, invoke the deflection limit constraint
(defok) and select the values of logical variable for the moment
type (posmom) for the sections with defok equal to false.

7. If defok is true for all sections, activate defok. Repeat the
following steps for all sections where the deflection limit
constraint is violated until a new set of dimensions are selected.

a. Choose new web dimensions.

b. Update with new values.

c. Choose new flange dimensions.
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d. Update with new values.

8. Invoke the constraint on the change in section dimensions (iok).

9. In a single DBMS transaction, invoke the constraint on the overall
beam sizing phase (beamok) and select its value. If beamok equals
false, and the user has not failed to select new dimensions, select
new section locations based on zero moment points from the
analysis, deactivate htok, stressok, defok and iok and repeat the
entire phase again.

The following Pascal-like procedure can be used to perform the beam sizing

phase.

PROCEDURE BEAMSIZE(trialid)
BEGIN

DBMSC'ACTIVATEdengthok, connok, clearok, changeok, supportlocok
where alternative = trial id, activateok)")

IF NOT activateok THEN
RETURN

ONC'NOT selectok (ERRORC'data missing for beam sizing phase"),
RETURN)")

REPEAT

reanalyze := 'true'
ANALYZE(trialid)

{ CHECK WEB DIMENSIONS }
DBMSC'INVOKEOitok where alternative = trialid, invokeok)")

IF NOT invokeok THEN
BEGIN

REPEAT
SIZEHTW(h, tw, quit)
IF NOT quit THEN

DBMS("ACTIVATE(htok where alternative - trialid,
activateok)

UPDATE<WSECTIONS(h, tw): <h, tw> where
alternative - triaiid, updateok)")

UNTIL updateok OR quit
IF quit THEN

reanalyze := 'false'
END

ELSE
DBMS("ACTIVATE<htok where alternative = trialid, activateok)")
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{ CHECK STRESS IN NEGATIVE AND POSITIVE MOMENT SECTION }
DBMS("INVOKE{stressok where alternative = trialid, invokeok)

SELECT(stressok into stress, posmom into pmom. COUNT
into num where alternative - trialid and stressok -
'false', selectok)")

IF num = 0 THEN
DBMS("ACTIVATE(stressok where alternative = trialid,

activateok)")
ELSE

BEGIN
FOR j := 1 TO num

BEGIN
REPEAT

SIZEBFTF<bf, tf, quit)
IF quit THEN

reanalyze := 'false'
ELSE

DBMS("ACTIVATE(stressok where alternative =
trialid, activateok)

UPDATE(FSECTIONS(bf, tfh <bf, tf>
where posmom = pmom(j) and
alternative = trialid,
updateok)")

UNTIL updateok OR quit
END

END

{ CHECK THE DEFLECTION IN EACH SECTION FOR EACH SPAN }

DBMS("INVOKE(defok where alternative - trialid, invokeok)
SELECT(posmom into pmom, COUNT into num from

FSECTIONS where alternative = trialid and defok
- 'false', selectok)")

IF NOT (num = 0) THEN
BEGIN

FOR j = 1 TO num
BEGIN

REPEAT
SIZEHTW(h, tw, quit)
IF NOT quit THEN

DBMS("UPDATE(WSECTIONS(h, twh <h, tw> where
alternative = trialid, updateok)")

UNTIL updateok OR quit
IF quit THEN

reanalyze := 'false'
REPEAT

SIZEBFTF(bf, tf, quit)
IF NOT quit THEN

DBMS("UPDATE<FSECTIONS(bf, tf): <bf, tf> where
posmom = pmom(j) and alternative =
trialid, updateok)")

UNTIL updateok OR quit
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IF quit THEN
reanalyze := 'false'

END
END

ELSE
DBMS("ACTIVATE(defok where alternative = trialid, activateok)")

{ CHECK FOR LARGE CHANGE IN i }

DBMS("ACTIVATE(iok where alternative = trialid, activateok)")

{ CHECK BEAMOK }

DBMS<"INVOKE(beamok where alternative = trialid, invokeok)

IF (NOT invokeok) AND (reanalyze) THEN
BEGIN

CALCSEGMENTS
DBMS("DEACTIVATE(htok, stressok, defok, iok)")

END
UNTIL invokeok OR (NOT reanalyze)
IF beamok THEN

DBMS("ACTIVATE(beamok)")

END { BEAMSIZE }

5.2.5. STIFFENS* AND SPLICE DESIGN PHASE

5.2.5.1. ALGORITHM

The following steps are included in the stiffener and splice design phase

implementation.

1. Activate constraints on existing data that is retrieved by the
stiffener procedure. If the activate is not successful, return.

2. Activate the constraints on the stiffener height (hbsok), width
(bbsok), thickness (tbsok) slenderness ratio (ccok), force (forceok),
location (bslocok) and bearing capacity (bearingok).

3. For each support, repeat the following until all stiffeners are
successfully designed and inserted into the database.

a. Choose stiffener dimensions.

b. Inset stiffener data.

c. Activate the constraint on the overall design of the stiffeners
(stiff ok).
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4. Activate constraints on existing data that is retrieved by the splice
design procedure. If the activate is not successful, return.

5. Activate the constraints on the number of bolts (fnboltsok), the
length (fslength) the remaining area (afremok), the location of the
flange splice plate (fslocok), the width of the outside flange splice
plate (book), the width of the inside flange splice plate (biok), the
capacity of the splice plates (splicecapok) for the flange splice.
Also, activate the constraints on the section modulus of the splice
plate (sok), the width (bwsok), the length (wslength), the remaining
area (awremok), the force per bolt for the web splice (boltfok), the
moment of inertia (ispliceok) and the location of the web splice
plate (wslocok) for the web splice.

6. For each splice, repeat the following process until all splices are
successfully designed and inserted into the database.

a. Select all flange splice plate dimensions.

b. Insert the flange splice plate dimensions.

c. Activate the overall constraint on the flange splice design
(fspliceok)

d. Choose all web splice plate dimensions.

e. Insert the web splice plate dimensions.

f. Activate the overall constraint on the web splice design
(wspliceok).

The following procedures can be used to perform the third phase of the

design process.

PROCEDURE STIFF(trialid)
BEGIN

DBMS("ACTIVATE(supportlocok, clearok, gradeok where alternative -
trial id, activateok)")

IF NOT activateok THEN
RETURN

ONC'NOT selectok (ERRORC'data missing for stiffener phase"),
RETURN)")

{ CHOOSE STIFFENER DIMENSIONS }

DBMS("SELECT(supportloc, COUNT into num from SUPPORTS order by
supportloc where alternative = trial id, selectok)")



112

DBMS("ACTIVATE(tbsok, ccok, forceok, bearingok, bbsok, hbsok,
bslocok where alternative = trialid, activateok)")

hbs := h
FOR j := 1 to num DO

BEGIN
REPEAT

SIZETBSBBS(tbs, bbs, quit)
IF quit THEN

RETURN

ELSE
DBMS("INSERT(into BSTIFFENERS(alternative, bsloc,

hbs, tbs, bbs): <trialid, supportloc(j),
hbs, tbs, bbs>, insertok)")

UNTIL insertok
END

DBMS("ACTIVATE(stiffok where alternative = trialid, activateok)")

END { STIFF }

PROCEDURE SPLICES(trialid)
BEGIN

DBMSC'ACTIVATEOengthok, connok where alternative - trialid,
activateok)")

IF NOT activateok THEN
RETURN

ONC'NOT selectok (ERRORC'data missing for splice phase"),
RETURN)")

DBMS("SELECT(sectionid into sid, slend, COUNT into num from
SEGMENTS order by slend where alternative = trialid,
selectok)")

DBMS("ACTIVATE(afremok, fslengthok, biok, book, fslocok, fslengthok,
splicecapok, fnboltsok, sok, awremok, boltfok,
ispliceok, bwsok, wslengthok, insertok, wslocok
where alternative = trialid, activateok)")

FOR j := 2 TO num DO
BEGIN

resize := 'true'
REPEAT

SIZEFNL(fnlines, fslength, fnbolts. quit)
SIZEBOTO(bo, to, bi, ti, quit)
DBMSC'INSERTOnto FSPLICES: <trialid, slend(j), bo, to,

bi, ti, fslength, fnlines, fnbolts>,
insertok)")

UNTIL insertok OR quit
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IF NOT quit THEN
DBMS("ACTIVATE(fspliceok where alternative = trialid,

activateok)")

REPEAT

SIZEBWSTWS(bws, tws, quit)
SI ZEWNL(ws length, wnlines, wnbolts, quit)
IF NOT quit

DBMS("INSERT(into WSPLICES: <trialid, slend(j),
bws, tws, wslength, wnlines,
wnbolts>, insertok)")

UNTIL insertok OR quit

IF NOT quit THEN
DBMS("ACTIVATE(wspliceok where alternative = trialid,

activateok)")

END

END { SPLICES }

5.2.6. ALTERNATIVE DESIGN PROCEDURES

The previous section described the implementation of the design example

using the same process as the normalized database example. However, as

stated before, the augmented database model provides a great deal of

flexibility. This section presents examples of how useful this flexibility can

be.

5.2.6.1. INTERACTIVE DESIGN

In the examples in the previous sections, the design was performed by a

computer program (with associated external procedures which performed

specific calculations or requested user input). However, a closer look at the

augmented database example shows that except for the analysis procedure, the

design could be performed interactively with the database system alone. The

design phases do no more than call external procedures or DBMS operations.

For example, to perform the conceptual design phase, a designer would first

choose the web and flange dimensions, such as a web 50 by 1, a positive

section flange 16 by 1 1/4 and a negative section flange 16 by 1 3/4. Next,

the following database commands are specified:
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ACTIVATE(conhtokr coniok)

INSERT INTO WSECTIONS(alternative, h,tw): <1, 50.0, 1.0>

ACTIVATED I earok, coniflangeok, conflangeok)

INSERT INTO FSECTIONS(alternative, posmom, bff tf): <1,
'true', 16, 1.25>

INSERT INTO FSECTIONS(altemative, posmom, bff tf): <1f

'false', 16, 1.75>

ACTIVATE(changeok)

ACTIVATE(conceptok)

If any of the inserts violate any of the constraints, the database system

would print an error message and the designer could select new dimensions.

The next section will show how many of the external procedures can be

included in the database.

5.2.6.2. USE OF ASSIGNMENT PROCEDURES

Since the augmented database example performed the same process as the

normalized database example, no assignment procedures were needed.

However, the augmented database can select many of the dimensions using

assignment procedures based on specific constraints. For example, the

following assignment procedure can be used to choose the flange thickness

using the conflangeok constraint after the flange width is chosen:

PROCEDURE SETTF(trialid, tf)
BEGIN

ONC'NOT selectok (conflangeok := 'false',
ERRORC'data missing for conflangeok"),
RETURN)")

DBMS("SELECT(bf, from FSECTIONS where alternative = trialid and
posmom = pmom,
fy from GRADES where grade = SELECT(grade from
STRUCTURE, selectok)")

tf := MAX(bf/(65/(fy)1/2), USERCHOOSES(value))
conflangeok := 'true'

END
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The procedure sets the value of tf according to the minimum value allowed by

the conflangeok constraint. The USERCHOOSES function is used to allow the

user the option of selecting the value of tf since the conflangeok constraint is

an inequality (tf must be not less than the constant specified in the

constraint). Since, the SETTF procedure assigns a value to tf that satisfies the

conflangeok constraint, the value of conflangeok is automatically set to 'true'.

This type of assignment procedure can be used for many of the sizing

procedures by rearranging the appropriate constraints.

5.2.6.3. SPECIFICATION OF ALTERNATIVE CONSTRAINTS

Since the example assumed that no transverse stiffeners would be included

in the design, both examples had to check the web slenderness constraint

(conhtok) and (htok). However, if the designer decided to change the design

and include transverse stiffeners, other constraints (similar to conhtok and

htok) would have to be checked. In the normalized database example,

significant changes would have to be made to the program to incorporate

checking the new constraints. This is not true for the augmented design

database. All that has to be done is to add the new constraint functions to

the database and then change the program so that the correct constraints are

invoked and activated. If the designer was using the database interactively

with assignment procedures, the user would again just activate the appropriate

constraint. Such interactive use is not possible with the normalized database.

Also, with these added constraint functions included in the database, the

designer is able to "change his mind" during the design. For example, the

designer could design the girders without transverse stiffeners and then if

conhtok or htok are violated, he could decide to include the stiffeners (instead

of changing the dimensions of the girder) and then check the new constraints.

This flexibility is not included in the normalized design database example.

5.2.7. DISCUSSION OF THE AUGMENTED DESIGN DATABASE EXAMPLE

The four procedures presented above can be used to perform the three basic

design phases using an augmented design database. Therefore, an overall

bridge design program could call these procedures to perform the design of

the girders and then continue with the design in the following manner:
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CONCEPT(trialid)
DBMS("SELECT(conceptok from GIRDER where alternative = trialid)")
IF conceptok THEN

BEGIN
BEAMSIZE(trialid)
DBMS("SELECT(beamok from GIRDER where alternative - trialid)")
IF beamok THEN

BEGIN
STIFF(trialid)
SPLICES(trialid)

END
END

DBMSC'ACTlVATE(girderok)
SELECT(girderok from GIRDER where alternative = trialid)")

IF girderok THEN

{ CONTINUE THE BRIDGE DESIGN }

The only differences between this "main" program and the one needed for the

normalized database is that the design procedures do not "flag" their success

or failure (since the database stores this information) and that the overall

girder design constraint must be activated.

Since the database can check all types of constraints, the responsibility of

insuring integrity within the database is placed on the database itself.

Therefore, as long as all appropriate constraints are activated, any data item

retrieved from the database is valid.

Thus, the design program is almost completely independent of the specific

constraints that must be enforced. A slight change in a constraint does not

affect the program. If a new constraint is added, only a small change is

needed to the specific ACTIVATE command in the program so that the

constraint is enforced. This independence and uncoupling of the constraint

enforcement from the details of the design program provides the basis for the

alternative design procedures discussed in Section 5.2.6.
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This chapter has shown that a database based on the proposed augmented

form can handle and enforce a wide variety of constraints and provides the

necessary flexibility for engineering design.
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CHAPTER SIX

SUMMARY AND CONCLUSIONS

6.1. SUMMARY

The main objective of this thesis has been to investigate the application of

current and proposed constraint processing alternatives in engineering design

relational database management systems. The objective has been

accomplished through:

• the investigation of current constraint processing mechanisms;

• the development of a taxonomy for constraint sources and types;

• the presentation of a proposed constraint processing mechanism
[19] which utilizes constraint checking functions and assignment

procedures to enforce single relation-single tuple constraints;

• the extension of this proposed model to include the enforcement of
all types of single and multiple relation constraints; and

• the presentation of a design example comparing the extended
constraint processing mechanism to the traditional approach to
constraint processing, namely, normalization.

The conclusions and recommendations for further research presented in the

following sections resulted from the investigation.

6.2. CONCLUSIONS

The extended constraint processing mechanism presented herein appears to

be applicable to all types of constraints which occur in engineering design.

The ability to access any data from the database enables the mechanism to

enforce the multiple relation constraints as well as the single relation

constraints.



119

This mechanism can readily be incorporated into existing relational database

management systems, since it f i ts directly into the RDBMS framework. For

example, the assertion process of a RDBMS would need the following three

major extensions to implement the proposed mechanism:

1. allow arbitrary mathematical and relational operations in the
specification of the assertions in the query language;

2. provide a control mechanism and a query language interface to
allow a user to control which constraints are to be enforced at any
given time i.e. INVOKE, ACTIVATE and DEACTIVATE; and

3. include a mechanism that can process (store and retrieve the values
of) the constraint status attributes for the constraint processing
functions.

The efficiency of the proposed mechanism is questionable. Since most

constraint functions or procedures must retrieve data from the database, it

could be argued that the mechanism is to costly to implement (due to the

extra processing effort). However, if the procedures are designed so that all

query operations are specified at the same time, most database systems are

capable of optimizing the query for efficiency. Efficiency is most likely to be

a problem for multiple relation constraints, but the database schema can

usually be designed to minimize the number of such constraints. Thus overall

efficiency may not be a significant problem.

6.3. FUTURE WORK

The presentation of the constraint processing mechanism in this thesis has

been limited to the constraint procedures themselves. However, a linkage

between the database an these constraint procedures still must be developed

so that all appropriate constraints are checked upon the update of a specific

data item. This entails the development of a formal mechanism which can

translate the assertion of the constraint procedures into an "information

network" that the database can use to determine which constraints are to be

checked.

Currently, the constraint functions and procedures are supplied by the

database developer or user. A system similar to the one developed by Stirk

[20] that can automatically generate these procedures using decision tables
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based on design codes, design objectives or specific dependencies could be

implemented. In addition, the techniques developed by Holtz [17] for dealing

with inequality constraints may be used to develop assignment procedures for

any designable quantities.

Continued work on any of the topics presented in this thesis, require a fully

implemented DBMS including all of the capabilities discussed in Sections 3.4.3

and 3.4.4. Once this is completed, the design example presented in Chapter 5

can be implemented to provide an actual demonstration of the usefulness of

this constraint processing mechanism.

Finally, although this mechanism has been shown to be successful for the

specific design procedure described in Chapter 4, further investigations are

needed to prove its applicability to other areas of engineering design.
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