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INTRODUCTION

Today's electrical engineering design, especially in the IC area, is characterized

by a high number of conflicting objectives and an even higher number of

designable parameters. The designer has to face the sometimes too burdening

task, of performing multidimensional trade-offs in order to locate a feasible

combination of input parameters that corresponds to a nominal combination of

objective values. During the last decade, a great deal of research has been

devoted to this area. This research deals with circuit simulation techniques,

multiple optimization methods and a plethora of interactive algorithms.

In this work we describe the implementation and applications of an interactive

algorithm for biobjective decision making. We also propose an extension for

higher dimensions. The interaction scheme was originally presented in [Poiak

80].The material presented here is organized as follows:

The first chapter contains a rather general overview of the mathematical

formulation of the problem. The multiple objective optimization concept is

established and various solution approaches are discussed. The chapter closes

with an overview of the classification of interactive CAD algorithms.

The second chapter is devoted to the presentation of the Rectangle

Representation and Rectangle Elimination concepts. A general interactive

algorithm for biobjective decision is presented. This algorithm is based on

some optimality criteria also to be discussed in this chapter.

The third chapter describes the implementation of the algorithm and the

various problems encountered. The necessary supporting software packages are

described and an example of a MOSFET NAND gate design is given.

The fourth chapter discusses the possibility of expanding the algorithm for
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multidimensional use. Implementation problems are discussed and the same

example is solved for a three dimensional demonstration.

The fifth chapter contains the conclusions from the use of the algorithm.

Future work concerning implementation improvements and expansion

possibilities is also discussed here.

Costas J. Spanos



CHAPTER 1

GENERAL BACKGROUND

In this chapter we present a brief overview of the Multiple Objective

Optimization problem. We give the definition, the basic theory and the various

numerical approaches for the solution of this problem. At the end of this

chapter we interpret existing Computer Aided Design algorithms from the

point-of-view of Decision Maker2-Anatyst3 interaction. This part may be

skipped without loss of continuity, for the reader familiar with this material.

1.1 The Multiple Objective Decision Making Problem

A Multiple Objective Decision Making problem arises when the Decision Maker

is trying to simultaneously optimize several objective functions. This is often

the case in electrical circuit design. Specifically, a designer is trying to choose

values for a set of designable parameters, and meet a set of physical and

constructive constraints which are imposed on these parameters and on the set

of circuit outputs.

The general formulation of the problem can take the form:

max [f (p),f Jp).~.f <p)] (1.1)
1 2 n

subject to g(p) £ 0, i « 1_,r

We employ the term max to mean either maximize or minimize. The goal of

the Decision Maker here, is to find those input parameter combinations that

The DECISION MAKER is the person who mikes the trade-off decisions during the engineering
design process

The ANALYST is the person responsible for the mathematical solution of the engineering problem
In this work is the computerized algorithm which performs this task
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will optimize these objective functions. Typically the objective functions are

competing, meaning that the absolute optimum for one of them may

correspond to a poor value for the others. Thus the notion of trade-off is

introduced in the procedure, meaning that the designer will have to

compromise for a less satisfactory value for some of the functions in order

to obtain a better response for the rest.

The problem as presented here can easily be seen as consisting of two major

parts or subproblems. The first part is imposed by the vplume of numerical

calculations that are needed for the analysis even for a rather modest circuit.

The mathematical formulation and the numerical philosophy in circuit analysis

and nonlinear programming in general, is the subject of this part.

The second part has to do with an inherent weak point in Multiple Objective

Decision Making problems. This point is that very often the various objective

functions belong to a quite diverse spectrum of interpretation ( for example

we may have in the same problem objectives expressed in terms of voltages,

currents, times, gains, noise figures and even cost ), which cannot be

compared in a strict mathematical manner. So it is of great importance that

the engineering judgment of the Decision Maker will have to take place during

the trade-off procedure and of course the algorithm must permit this

involvement.

The last part of the Multiple Objective Decision Making aspect is about a

classification of the various algorithms from the point-of-view of the amount

of interaction that they permit between them and the Decision Maker

1.2 Multiple Objective Optimization

We begin with a brief survey of the mathematical background in the areas of

Multiple Objective Optimization and Constrained Optimization. Consider the

general unconstrained multiple objective optimization problem:

min f.(p) I s 1,~.,n (1.2)

where p is the m-dimensional vector of design parameters. One straightforward

way to solve (1.2), is to combine all of the objective functions into a single
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objective function, and then use classical techniques for optimizing this

function. The simplest way to do this is the weighted sum approach:

Ftp) - X wf(p) (1.3)
I I

where the weight w>0 can be thought of as a measure of the relative

importance of f (p).

An alternate approach to solving (1.2) is to formulate the mini max problem:

min max { w f (p) } (1.4)
p i I I

Typically the optimal solution of (1.4) will yield a value p# such that:

w f (p*) «_« w f (p*) (1.5)
II ii *Q IQ .

for a subset of the objective functions, while all others will end up with lower

values.

Observe that in both cases we have to make an a priori and somehow

arbitrary choice ( meaning before having a concrete opinion on the behavior of

the circuit ) of weighting factors. It is obvious that it is beneficial for the

Decision Maker to have the opportunity to change these weights, especially

after watching the first solutions and thus obtain a feeling about the circuit

behavior. The necessity of user-algorithm interaction is obvious here. This

necessity is to be discussed in some detail very soon.

Observe that in Multiple Objective Decision Making problems, there are no

optimum solutions in the strict sense of the word. However, there are

solutions clearly inferior compared to others. ( for example, we will never

prefer a solution that gives n poor output responses, over one that gives n-m

poor output responses, identical or worse than the previous and m good output

responses. )• On the contrary, looking for the best design, starting at a point p

in the input space, we would like to move towards a direction Ap such that:
V

f.(p-Ap) £ f.(p) i • 1,_.n (1.6)
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We can say that this change in Ap gives rise to a change Af * f(p+Ap) - f(p).

We would like Af to have only non-positive components.

While moving along this good direction we will find a point p from which no

direction for further improvement exists. This point p is a special point in the

input space called a Pareto Critical Point.

In the output space, when no direction for further improvement exists* we may

say that we hit a barrier that constrains further movement. Such a point f on

the barrier of the output space is called a Noninferior Point

In order to go further and present some important theorems, we need to

introduce some formal definitions.

Definition 1: The set of points q « R such that there exists p « R
where q « f(p) is called the realizable set of outputs. m

Q « { q € R ! f(p) * q } (1.7)
n

In general Q * R . so that Q has a boundary 3CL This boundary is of special

interest since it forms the barrier that actually contains the noninferior points

of the output space.

Definition 2: A point p € R is a Pareto critical point, for a mapping
f, if no small change Ap exTsts such that:

f <p*Ap) £ f (p) i * 1,.~,n (1.8)

where not all of the above relationships are equalities.

Pareto critical points correspond to local minima of our objectives. For global

minima we have Pareto points ( not critical ), and we can relax the restriction

imposed by the previous definition, that Ap must be small.

Two observations give us a view of the importance of Pareto points ( both

critical and global ). Let us define the set of Pareto points by P, and the set

of critical Pareto points P . Note that P 3 P .

The first observation is the plausible statement that the best circuit design

occurs at a point p € P.
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We can also observe that if p « P and each f( is continuous, then f(p) < id.

In case that the boundary of Q, £Q, is smooth, one can define at each point q

( 5Q the outward normal to q, n(q). In that case:

f(c) - { q « R ! q # 5Q. n(q) £ 0 }
n

(1.9)

Observe from Fig. 1*1, that at a Pareto point in a two objectives problem, the

objectives are in exact conflict, that is:

Xdf^dp - -df2/dp
for some X > 0.

(1.10)

Figure 1-1: Two Objective Functions representation.

However this condition is only necessary, and this of course means that there

are points p € P that cannot be reached by solving this equation.

Nevertheless, from this relationship we can extract the following important
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observation: if p* is the minimizer of F(p) * ZivY. and iQ is smooth at ftp*),

then -iv is the outward normal to Q at f(p*J.

The two theorems that follow, are to establish the fact that not all best

solutions can be obtained by the weighted sum approach.

Theorem 3: Let MQ) denote the convex hull of Q and 3MQ) its
boundary. Then f(p*) < f(p) A SH(Q) if and only if there exists w > 0
such that:

wrf(p*) « min Iw f (p ) (1.11)
P • •

Thus the set of points p < P which are obtained by solving the equation (1.11)

if the minimum is set equal to 0, is the set:

{ p / p f P and f(p) # 5MQ) } (1.12)

Theorem 4: If each f is a convex function, then P'P and f(p) fc
MQ). ' c

We now discuss some properties of the minimax approach. Specifically we can

show that with the minimax approach we can reach all Pareto Critical Points ,

and not just the convex subset described in the previous theorems. Our

problem now has the form:

min max { wf(p) } w > 0 (1.13)
p i i i i

Theorem 5: If the solution x* of the above problem is unique, then x*
is a Pareto point.

It is instructive to consider a geometrical interpretation of the problem. The

multiple dimensional solution must satisfy the relationship:

min c Q!!w iioo, where w * (w, f~.,w )T (1.14)

The level contours of ! ! w ! ! is a m-dimensional orthogonal parallelepiped
Q OO

centered at 0. By varying the weights the shape of the orthogonal is altered,

thus we can change the point of the contact q*. This is easily illustrated in

the two dimensional case where the m-dimensional parallelepiped is reduced to

a rectangle ( see figure 1-2 ).



13

Theorem 6: If x* is a Pareto point, then there exists a vector w with
w > 0, such that x* is a minimizer of:

min max { wf.tx) }
x i it

(1.15)

Figure 1-2: Minimax approach into a two dimensional space.

It is obvious now that minimax optimization has an apparent advantage over

the weighted sum method. However there is a disadvantage as well. Namely,

the constrained optimization algorithms ( which are used to solve the minimax

problem ) are much slower, and more computationally expensive, than the

unconstrained optimization algorithms that are used to solve the weighted sum

problem. Furthermore, wfe have to state that there are approaches similar to

the weighted sum method that can reach all Pareto points and still be solved

as anvunconstrained optimization problem.

These methods are based on the observation that if we consider objective

functions of the form:
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fP Ot)_.fP (x) (1.16)
• n

then by increasing the parameter p, the realizable set in the output space tends

to become progressively convex along the line:

f* « f* *~« fj (1.17)j

Thus by formulating the sum consisting of factors { ( wf P }, and by

increasing p, we can transform the output space enough to become convex

near any image of a Pareto point. ( Note that if p -> oof the formulation

becomes that of the minimax problem.)

Lightner [Lightner 79] shows that for each Pareto point x*, there is a minimum

value of p, p* such that x* is the minimizer of:

minx { ( Z tw.f.MpV'** } (1.18)

and for each q t p*, there exists a set of weights w(q) such that x* is also

the minimizer of:

min { ( Z (w(q)f (x)) Q ) 1/Q } (1.19)
X I I

Finishing this part we present a theorem that will further clarify the relation

between weighted sum and minimax methods.

Theorem 7: Let { X } be the lagrange multipliers obtained in the
constrained minimization:

minimize : g (1.20)
such that : g-f (x) 20 i * 1,~.,r

( which is equivalent to minimax { f (x) } ). Let x* be the solution to
the previously defined constrained minimization problem, and suppose
f(x#) « iHid). Then:

min max{f(x)}*Z Xf(x*)«min Z Xf(x) (1.21)
x i i i i x i i

In other words, if x* is reachable by a weighted sum minimization,
then the Lagrange multipliers obtained from the minimax problem are
the correct weights to reach x*.
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On summary, we have shown that by the weighted sum methods ( or at least

by similar methods ) we can reach any point and still have to solve a

convenient unconstrained optimization problem. However, in almost all physical

design situations, there are constraints anyway. Thus we still have to solve a

constrained minimization problem. In the next part we are going to give an

overview of the constrained optimization techniques.

1.3 Methods for constrained Optimization

Most electrical engineering design problems are in fact Constrained

Optimization problems. The usual reason for this, is that there are always

physical limitations ( e.g. resistors with no negative values ) or practical

limitations ( e.g. limited resistor values on an IC due to restricted area ).

These limitations are the cause of the problem constraints.

The methods available to solve this problem are of quite a diverse spectrum

of mathematical interpretation. In this section we briefly survey these

methods. We start with the basic problem formulation along with two very

important theorems.

A typical constrained optimization problem can be stated as follows:

minimize : f(x) (1.22)
such that : g(x) £ 0 i * 1,~.,r

The region of feasibility i s f « { x | g £ 0 , i* 1,~.,r }. Now we will state a

fundamental theorem that deals with the necessary conditions for the existence

of the optimum solution of the problem presented here.

Theorem 8: (Kuhn-Tucker Necessity Theorem) If a) f and g are
differentiable at x* and b) if for any z for which zr (Ag(x*)/Ax ) £ 0
for all i where g(x*) « 0, we have z pointing into F from1 x#, then the
necessary conditions that x* be a local minimum of the problem
(1.22) is that there exist X\ j * 1,...,r, such that

(1.23)

x • ̂  o
dt/dx (x*) • I ^ AgVdx (x*) « 0
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The X*, i * 1,~,r, are called the Lagrange Multipliers.

If f(x) and g(x), i * 1,...,r are convex, ( convex programming problem ), the

Kuhn-Tucker conditions are both necessary and sufficient. This is stated in a

more formal way in the next Theorem:

Theorem 9: (Kuhn-Tucker Sufficiency Theorem) If f and g are convex
and continuously differentiate, then a sufficient condition that x# is
a global minimum of (1.22) is that there exist multipliers X* such that
the KT equations are satisfied. '

We have to admit though that most problems are not convex. However, if we

can solve the KT equations, local optima can be obtained. What follows is a

brief description of some of the existing methods to find this optima.

1.3.1 Methods of feasible directions

The problem basically consists of determining a point x € F, and then finding

a direction that goes through the acceptability region. Then we have to find

the step such that the function decreases. The most prominent disadvantage of

this method, is that we often encounter the so called zigzagging phenomenon,

meaning that we wander a long time around the solution before we hit it. A

remedy for this problem, is to take into account the a/most active constraints, a

method that tries to avoid wall bouncing while looking for the solution.

The disadvantage of this method is that the structure does not guarantee that

the sequence of points found will satisfy the first order optimality conditions.

However, if some parameters concerning the almost active constraints are

dynamically changed during the execution, a convergent algorithm is obtained.

Methods of this kind are particularly attractive in engineering design because,

once a feasible point has been produced, the sequence of points generated by

the algorithm remains feasible.
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1.3.2 Linear Programming Methods

The method is based on linearizing each function locally and using linear

programming to select a local best step. In this part of the method

description, for practical reasons we will use the minimax problem

formulation4:

min max { f (x) } (1.24)

The basic linear interpretation here is the following:

g « Af /Ax (xk) (1.25)
i i

( where xk is the current best point )

f (xk*h) r f (xk) • g rh i « 1,-.,r (1.26)
i i ii

In order to find a step h « ( h ,h ,...,h ) we have to apply the following linear
1 2 m

program :

minimize v (1.27)
y.n

such that f (xk) • g rh £ y i* 1,^r
-dk £ h ^ 'dk j * H.~,m.

j

After that, the step is tested if a decrease is achieved in the actual function.

If not, the step is rejected. Various tests are proposed for this part, the

performance depends on the specific problem, as well as the amount, both

that of the objective functions and design parameters.

The typical solution of this problem ( as a minimax problem ) can be expected

to be a point (x,y) where:

f (x) «~« f (x) « r (1.28)

This formulation preference does not by any means restrict the generality, since we have already
shown in theorem 7. m page 14 that both formulations ( minimax and weighted sum ) me equivalent
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for a subset of the objective functions.

A good observation may reveal that in some sense, the linear programming

methods can be thought to be a special case of the constrained Quasi-Newton

methods, to be discussed latter, but where the quadratic approximation B is

never updated.

1.3.3 Penalty-Multiplier Methods

In order to describe this family of methods in a brief and comprehensive way,

we have to present the case with only equality constraints. This of course is

not any kind of restriction for the problem.

minimize : f(x) (1.29)
such that : g(x) * 0
here gr(x) « ( g ^ x U ^ U ) )

The penalty-multiplier method combines the virtues of the penalty function

methods with the multiplier methods. We have first to explain what we mean

by penalty functions.

A good and simple way to eliminate the constraints of the problem, but still

have a good barrier that will keep us in the acceptability region, is the idea of

penalizing the main function for near constraint violation:

h a " 1 ! •(g(x)) <1.30)

and the penalty function • has the properties:

•(0) « 0. *(t) > 0 t#0. •'(0) « 0. *"(0) > 0 (1.31)

It is almost clear that the apparent role of the penalty function:

I *<g((x)) (1.32)

is that of making the function convex near the solution x*. Now we are ready

to introduce the penalty-multiplier concept: Simply, we have a combination of
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the well-known Lagrange multiplier method applied to the penalized problem.

Thus we minimize:

ffccKa"1! «g(x))*X.g.(x) (1.33)
I II

for some X. These of course must be repeated with X changing according to

some scheme. However we do have a very distinct advantage over the basic

penalty methods, meaning that in these methods we have to take an infinite

sequence a converging to 0 to get the correct answer. Some very important

theorems are stated by Bertsekas [Bertsekas 76] that provide proof that a

finite a* always exists such that for all a, 0 £ a £ a#, if we can choose the

correct Lagrange multipliers X , then we can find the desired solution to (1.30)

just by solving (1.33).

These methods seem to be promising, however we are not going to elaborate

more on them, because in this work other, even more powerful methods will

be used.

1.3.4 Quasi-Newton Methods for Constrained Optimization

These techniques allow one to mimic Newton's method for constrained

optimization, in a manner similar to unconstrained optimization. For the sake

of simplicity, we again discuss the constrained problem with equality

constraints. Namely:

minimize : f(x) (1.34)
such that : g(x) * 0 i « 1,~,r

According to the KT equations, there exist Lagrange multipliers X such that

h(x,X) « Af/Ax • I X Ag/Ax * 0 (1.35)

Note that the equations:

Af/Ax «• Z X Ag/Ax « 0 (1.36)
g. W • 0 i • 1,L,r
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constitute a system with m«r equations and m+r unknowns. The actual

Newton's method applied to this would give:

h(x.X)

g(x)

X.g g r

I IXX W X
Z .g

XX I IXX
Ax

AX
0.37)

Then, after finding Ax. AX, we should approximate by x*«x*Ax, X*»X*AX. The

Quasi-Newton approach consists of approximating the Lagrangian function:

L(x) > F(x) * Z X g(x) (1.38)

by a quadratic:

L(x*Ax.X) « 1/2AxrBAx*hr(x.X)Ax-«-L(x.X) (1.39)

Then the system we should solve is approximated by:

h(x.X)

g(x)

B g Ax

AX
(1.40)

That of course means that our original problem is actually approximated by:

minimize : 1/2AxrB Ax • hT(x.X)Ax • L(x.X)
such that : g(x) • grAx * 0

(1.41)

Clearly the problem is to approximate f • £ X g with B. and then solve the
XX i IXX

quadratic problem for each step. Another problem is that of the successful

calculation of Ax. We know the direction along which we search for the

minimum of some function. The question is which function. If we search along

Ax for the minimum of f(x). we may violate the constraints g(x) * 0. Han

( [Han ??]) has suggested searching along Ax to minimize the function:

f(x) * I m.| g( (x) | (1.42)

where m > | X + A X | . This is mot iva ted by the fact that if B is posi t ive
i i i

definite, then we can prove that Ax is a descent direction for (1.41).
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For a more detailed description on these methods, the user is urged to consult

[Hwang 80], [Powell 77], [Brayton 80a], [Brayton 80b] and numerous other

sources.

1.4 Decision Maker - Analyst interaction

As we often stated in the previous pages, the Multiple Decision Making

problem, is often too qualitatively defined to be solved without the

intervention of the Decision Maker. Thus almost all the existing Computer

Aided Design Algorithms permit this intervention. However, there are

substantial differences concerning the time, the quality and the quantity of the

information needed, as well as the way that this information is actually

passed to the Analyst*.

The situation can be described as the analyst taking information ( usually

concerning the preference criteria among the various objective functions ),

processing this information, solving the numerical problem and finally

presenting the response to the Decision Maker. Usually this response consists

of one or more noninferior solutions. After that the Decision Maker may accept

one of them as the final solution, or he may continue after giving information

to the analyst about his new area of interest.

We now give a brief overview of the various Computer Aided Design

Techniques as seen from the point-of-view of interactivity.

1.4.1 Classification of Interactive Computer Aided Design Algorithms

The classification we will present, has been made in three steps:

• The stage at which the preference information is needed by the
algorithm.

• The type of information needed.

• The major methods in any branch formed from the previous steps.

This classification can be represented by a tree-structure as can be seen in

See the footnote Jt page 7
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Fig. 1-3 In the following sections we give a brief description of the various

branches that are defined by the criteria given above.

Multiple
Objective I
Decision
Making
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Figure 1-3: Classification Methods ( [Hwang 80]).

Methods for no articulation of preference information given : By definition, the

methods following this approach do not need any information from the

Decision Maker once the problem constraints and objectives have been defined.

This means that the problem is formulated only once ( by determining the

weights or thex preference criteria in general ), before it is given to the analyst.

After that, the problem is passed to the analyst who will find the solution

based on these a priori set criteria.
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Various methods have adopted this scheme. Typical representative is the so

called global criterion method . According to this method an optimum vector is

a vector that minimizes some global criterion. This criterion is supposed to

embody the preference measure among the objective functions and is set by

the Decision Maker. The advantage of these methods is that the solution is

found without having the Decision Maker to make analytical justifications. On

The other hand* is often very difficult to make all the critical assumptions at

the beginning of the process.

Methods for a priori articulation of preference information given: A priori here

means that the preference information must be given to the algorithm before

the solution of the problem. This information may be either cardinal or mixed

( ordinal and cardinal ). The difference between cardinal and ordinal

information is defined to be the following: In the case of cardinal information,

the Decision Maker must give some judgement about specific objective

preference levels, or specific trade-off. If the information is mixed ( ordinal

and cardinal ), the Decision Maker must rank the objectives in the order of

their importance.

Methods in use to solve problems in this area, are the Utility Function methods

( weighted sum ) and the bounded objective functions for cardinal information.

For mixed ordinal and cardinal information, methods like the lexicographic,

goal programming and goal attainment are used.

The advantage here is that the Analyst has a better ( from the mathematical

formulation point-of-view )image of the Decision maker's preferences. On the

other hand, the Decision Maker must give some quantitative information to the

Analyst, and that is considered difficult.

Methods for Progressive articulation of preference information given (Interactive

methods) : These methods are what we general call Interactive Methods. They

rely on the progressive definition of the Decision Maker's preferences along

with the exploration of the criterion space. These methods assume that the

Decisioq Maker is unable to indicate a priori preference information due to the

complexity of the problems, but that he/she is able to give preference

information on a local level to a particular solution.
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It is obvious that with these assumptions, both the Analyst and the Decision

Maker have good and frequent feedback, thus they can drive the solution to

the preferred one. This is considered the great advantage of this method.

However, the way of communication between the Analyst and the Decision

Maker ( very often a CRT terminal ), is not efficient in conveying information

representing a multiple dimensional problem. Thus we are facing the task of

deriving efficient yet comprehensive ways of transferring and presenting this

information.

Methods for a posteriori articulation of preference information given: These

methods rely on the fact that they generate a set of nondominated solutions

and then the Decision Maker chooses the most satisfactory one. making

implicit trade-offs between objectives based upon some previous uninidicated

or nonquantifiable criteria.

The advantage here is that the Analyst does not require any assumptions from

the Decision Maker. The apparent disadvantage of this class of methods, is

that they usually generate a huge amount of nondominated solutions, making

the task of choosing among them often very difficult. This family has

members like the e-constraint, adaptive search and parametric method.

1.4.2 The code availability problem

In summary, the classification method presented here, can also include a very

important topic, that of the availability of the appropriate computer code. It is

true that all the methods presented have been implemented, however only few

of these software packages can deal with large scale problems. The main

reason is that the real-life problems have very often complicated non-linear

parts that make the need of efficient computer codes very apparent.

Another aspect that will be of interest later, is the lack of an efficient method

to compare the effectiveness of various interaction schemes. The only good

effort in this direction was made in [Wallenius 75] that compares three

algorithms. Forv more details on this subject the reader is referred to [Hwang

80].
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CHAPTER 2

THE RECTANGLE REPRESENTATION CONCEPT

In this chapter we will give the the description of a rather new family of

interactive algorithms for biobjective decision making. These algorithms were

originally presented in [Polak 80] and use graphical man - machine interaction.

The description is divided in three parts: We first introduce the biobjective

topological problem and we give some formal definitions, then we present the

rectangle elimination philosophy along with some optimality criteria, and

finally we describe the mathematical and numerical problem associated with

this method, combined with a general interactive algorithm based on this

philosophy.

By the end of the chapter, we propose some modifications to the algorithm

that will expand the interaction capability and will prepare the algorithm for

multiple objective problems.

2.1 Biobjective Decision Making: A Topological description

The simplest multiple objective optimization case is the biobjective case in

which there are only two objective functions. There are two reasons because

of which this case is of interest.

• First because the biobjective optimization problem has a very
convenient 2-dimensional representation that will greatly help both
the understanding from the Decision Maker and the interaction
between him and the Analyst*.

• Second, because an arbitrary n-dimensional problem can be fully
represented by n-1 two dimensional cross sections out of the initial
n-dimensional space and yet be reasonably comprehensible to
enable communication between the Decision Maker and the Analyst.

> See footnotes at page 7
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Thus* by working and understanding the two dimensional problem, we actually

working towards the solution of a higher-dimensional problem.

In biobjective decision making problem the Decision Maker has a set of

feasible alternatives x < X and a biobjective function f: X -> R2 representing

two conflicting decision objectives. In making the trade-off, the Decision Maker

need not consider the entire set of feasible objective values:

Y « { y « R2! y « f(x). x « X } (2.1)

but only the set of nondominated ( Pareto critical points ) objective values:

Definition 1: Consider the set defined by the relationship:

r • { y # Y ! y' # Y and y ^ y^, y ^ y'2 «> y « y' } (2.2)

The set F(y) will be called trade-off curve, or trade-off set in general
( since there are cases that F(y) is not a curve - see Fig. 2-1 ).

We have already discussed the / / / definition of the multiple objective problem

in the previous chapter. Thus it must be obvious, that since there is no

systematic way way to find the optimum point on F(y), what we need is an

approximation of F(y) from which the Decision Maker will choose a solution.

In this work we have chosen the rectangle elimination method as a tool of

approximating the trade off curve. As we will see, this method has the

following advantages:

• It yields a good representation of the trade-off curve, giving a
good image of both its shape and the accuracy of the
approximation ( by the area of the rectangle ).

• It is well suited for interaction between the Decision Maker and the
Analyst, because of the immediate information that is given by the
rectangle ( the two corners are known points, while the interior
contains an unknown segment of the curve ). If the Decision Maker
feeis that he must refine his image before he makes his choice, he
has just to indicate the rectangle of interest and the number of
curve points he wishes to find. No quantitative information is
needed.
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Y2

Yi Yi

Figure 2*1: Continuous and Non-continuous trade-off curves.

2.2 Rectangle Elimination Methods

In this section we will present the basic theory on which this new interaction

scheme is based. We will also present some optimization criteria and some

models based on them.

2.2.1 Rectangle Representation of Biobjective trade-off curve.

Before we go on we have to give some formal definitions. First we have to

define the terms strictly and general dominating points:

Definition 2: We say that y' dominates y if both components of y'
are greater or equal to those of y, and y' is not equal to y.
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Y i

Figure 2-2: One Rectangle Approximation to a trade-off curve.

Definition 3: We say that y' strictly dominates y if both relations y ^
y' and y < y' are true.

Definition 4: For any z. I. « R2 with 2 ^ ?1 and f 2 * 22, we denote
by [ f \ 2 ] the rectangle ( see also Fig. 2-2 )

[f\z] i R2 ! 2 (2.3)

From Definition 1, it is obvious that to find a point on the trade-off curve, we

either have to maximi2e y i while keeping y2 constant, or maximi2e y2 while

keeping y constant or deriving another scheme maximi2ing a function that

contains both. Of course we also have to be always consistent with the

physical constraints of the problem. We denote this class of operations (

especially the case when one of the two objectives is kept constant ) by the

term Argmax. So we have the proposition:
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Figure 2*3: The rectangle [ z \ z ] .

Proposition 5: If y < Argmax {y !y € Y} and y € Argmax {y !y *
Y}# then HY) c Cy\y). 2

Definition 6: Let R « ty \y ] and E « {y.y} where y € Argmax {y !y
# Y} and y # Argmax (y 2 ly ' T } . We then define the class1 of
nonempty trade-off sets T in R by

Q(R0) c RQ, T # / : y,y' # r and y ^ y' «> y « y' } (2.4)

What we have to understand here, is that if F C

dominates another point in F.
^ then no P° i n t in

From the generality of the previous definition we can understand that the

trade-off set F may be a connected curve or just a set of disconnected arcs

(see Fig. 2-1).

If the set F is a connected curve in R, then there are no points in R that
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strictly dominate or are strictly dominated by any point in F. However, since

discontinuity in F is permitted, there are such points.- This set of points is

defined:

E(r,RQ) « { y € RQ ! y' * F «> y < y' and y' < y } <2.5)_

In general E(F,R ) ^ F. When F « E(FrR ), the F is continuous and has not

vertical or horizontal segments.

T« be u de
E(f.Ro) = acu Audf

Figure 2-4: The set E{r,RQ).

Now consider the case that we have F C Q^r) a n d we f i n d a P° i n t V €

E(F.R ). From what we have said up to now, we know that F must have no

points that dominate y or are dominated by y. Thus F must be contained in

the subset of R obtained from R by removing these two sets, that is the

union of two rectangles [y \y ] U [ y \ y l . In the same way, we can see that by

defining * points, we end up by having k+1 rectangles whose union contains

F.
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Figure 2-5: N-Experiment rectangle representation of the trade-off set.

Proposition 7: Let T C
such that:

J and let E C E(I\R ) be a set of k points

y,y' € E thus y' < y and y < y' (2.6)

Then:

1. E can be ordered so that E « { y\y2,~.,yk } with y1 in ascending
order and y1 in descending order.

2. The following equation is valid:

U y * E

with y° « y and

R o ! y < y ' O r y ' < y } (2.7)

and from all this we can justify the following definition:

Definition 8: If we have an initial rectangle that contains F and we
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find k points that belong to E(I\R ) and no two of them are equal,
.then this set of points is said to De a set of experiments for F. Let
us refer to this set with E. When E U E « { y ° ,y \~ .y k - M > »s such
that we have y1 in ascending order and y in descending order for i «
0,1 ,...,*•/, the k+1 rectangles [y'Xy1*1], i « 0,1,...,* are said to give a
k-experiment rectangle representation of F.

Proposition 9: Let F C Q<fU and R(E) be any rectangle in the
rectangle representation of F defined by a set of experiments E. If
E' g R(E) ( a new set of experiments for F ), then E U E' is a set of
experiments for F.

2.2.2 The Rectangle Elimination Model

Now we are ready to describe the mechanism with which the interaction

between the Decision Maker and the Analyst takes place.

Our goal is to derive a procedure for interactively approximating and/or

exploring F(Y) for an estimate of a preferred objective value y*. We will call

the procedure to be described the Rectangle Elimination Method.

We assume that the Decision Maker initially knows that F(Y) is contained in a

rectangle7 R . What the Decision Maker is supposed to do, is to derive some

experiments8 in R in order to refine his image of F(Y), then choose a smaller

rectangle in R ( that is derived from the new set of experiments ). This new

rectangle ( called the area of interest ) will serve as a new initial rectangle,

inside of which the Decision Maker will derive a new set of experiments for

further refinement of the F(Y) in this region.

At each stage of the process, the Decision Maker learns more about F(Y), and

his preferences should become increasingly better defined. The process stops

after N stages, when the Decision Maker eliminates all rectangles except one

that contains his preferred point y \ yet is small enough that any point oh T(Y)

in this rectangle will be accepted instead of y .

Before we close this part, we give two useful definitions. One to formally

The procedure of establishing this initial rectangle is described later in the chapter.

The term experiment means "the procedure of deriving a new point on the trade-off curve*. This
term will be formally defined later in this chapter.
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define the Decision Maker Response Function, and another to define a very

important figure of merit, the uncertainty.

Definition 10: A correspondence that will connect a set of
experiments E with a rectangle selection R(E) that will satisfy the
assumptions:

1. For any set of experiments E for I\ R(E) is a rectangle
representation of T defined by E, and

2. If E and E' are sets of experiments for T such that E C E\
then R(E') Q R(E)

is said to be a Decision Maker Response Function. This class of
response functions is denoted by R.

Definition 11: Let T £ Q ( R J and R # R. Given a set of experiments E
for r, R(E) is said to be the rectangle of uncertainty for E, and the
area of R(E) a(R(E)) is said to be the uncertainty.

2.2.3 Sequential Search Strategies

Generally, the procedure followed by the Decision Maker in exploring the trade*

off curve is as follows:

The session starts with an initial rectangle of uncertainty R «[y \y] . The

Decision Maker decides on a number of experiments to be executed in this

rectangle by employing the Analyst. After the experiments are executed and

the points are displayed,, the Decision Maker makes his choice among the

rectangles that are formatted both from the new points and the initial

rectangle's upper left and lower right corners. This procedure is repeated N

times until the final rectangle is small enough.

A quite important aspect is that the experiments must be in the rectangle

defined in the previous stage. This assumption9 is only made because

experiments outside this rectangle do not help in reducing the uncertainty.

Definition 12: Any map Z defined on Q(RJ X R by any procedure of
the form we just described, creating a mapping from (I\R) into a
sequence { E ,E ,.... E } of sets of experiments for I\ is said to be
a N-stage sequential search strategy. For given integers k >0, i«l,2,...,
N. Nwe let S (k ,k ,-., k ) or S (k ) denote the class of 'all N-stage

g
This assumption will be relaxed later.
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sequential search strategies for which the number of experiments in E.
is k.

i

Definition 13: For Z < S (k.)9
 t h e w o r s t case uncertainty A( £ ) is

defined by:

The last definition suggests that the worst case uncertainty depends only upon

the search strategy, and not upon the specific problem or the Decision Maker

response. Thus it makes sense to compare strategies by comparing the worst

case uncertainty.

Definition 14: An optimal S <k) search strategy is the one that gives
the lowest worst case uncertainty, for all the families that belong to
the same family.

Since the computational cost of deriving a point on the trade-off curve is

high, we have good reason to use an optimal strategy that will give us good

accuracy with a low number of experiments.

We will present without proof the following theorem which suggests a lower

limit for the optimum worst case uncertainty:

Theorem IS: For all I * S^kJ we have:

A0 I1!g«i / ( V 1 > 2 * A ( Z > f W h e r e A0* t f < R0 ) ( 2 # 9 )

Consider now a partition of R' * [ z \ z ] defined by k parallel lines which have

slope (f -z )/(z - z ^ ( parallel to the first diagonal ) and which cut the second

diagonal into k+1 segments of equal length ( see fig. 2-6 ). These lines are

defined by the family of equations:

g(y;z.z) « b. i « 1,2,~, k (2.10)

where

<f2- y2>/«2-12) an)

and
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(2.12)

We can prove (see [Polak 80]) that any rectangle defined by the intersection

of two lines and the actual trade-off curve, is smaller that the one defined-by

the intersection of two lines and the diagonal P. thus the partitioning derived

in (2.10) has as an upper limit of uncertainty the case when the trade-off curve

coincides with the second diagonal of the rectangle. All other cases give a

smaller ( better ) uncertainty.

Figure 2-6: A 3-line partitioning of the initial rectangle.

Thus, in order to get an optimal strategy, we have to employ the partitioning

method described in the previous section. Thus the appropriate step of the

algorithm that implements an optimal search strategy will be:

Compute a set of experiments E.«{y\~. ykl) C E(I\RJ and R such that:
i o •— i
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g(y:z.z) « 2i/(k*1) i « 1,2,~. k§ (2.13)

This is an optimal strategy and we have the theorem:

Theorem 16: The minimum worst case uncertainty for an S (k.)
strategy is:

V(k.) « Aft nN /(k-1)2 (2.14)
N i 0 i«1 I

And also we can state that at stage i of £ (k) , it is guaranteed that the
n i

uncertainty is reduced by a factor at least (k+1)2.

2.3 A General Rectangle Elimination Algorithm

In the previous sections we discussed the concepts "biobjective-trade-off sets",

"rectangle representation", "search strategies" and "optimal search strategies". We

also used the term "experiment", to mean the act of finding the intersection

of a known line ( usually parallel to the main10 diagonal of a rectangle

approximating the curve ) and the unknown trade-off curve. Now we will

formally define the concept of experiment and we will also state the reasons

why we delayed this definition.

2.3.1 The generalized Experiment

In the previous sections we avoided further discussion of the term experiment,

simply because there is a possibility (see Fig. 2-1) to have a gap in the trade-

off curve, and so the desired point ( defined as the intersection of the

unknown trade-off curve and a known line ), may not exist. Thus we must give

a careful formal definition to cover this case, and this really deserves a

separate part of this chapter. We start by determining the problem we have to

solve:

Problem 17: Given R' * [ z \ z ] and b t (0,2). find a y « E(r(Y).R0) A
R', satisfying g(y;z.z) * b.

This problem always has a solution because the set E(F(Y)#R ), ( see equation

1 0 W e call MAIN DIAGONAL the one with the positive slope. We are going to refer to the other
one by the term SECONDARY DIAGONAL
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(2.5) ) will always have a common point with the line that is defined by this

equation.

u(y,b;z,z) * c>u(b;z,z)

v(y,b;f,z) « v(y,b;z,z) » v(b;z,z)

Figure 2-7: The generalized experiment concept.

Our problem now takes the following form:

Problem 18: Find a convenient way of deriving a point on the trade-
off curve, provided that you have a solution of the problem 17 and
this solution is not a point on the trade-off curve.

In order to* pursue our goal, .we define the function u(,b;z;z): R2 -> R by:
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u(,b;z;z) « max { b - (y^zJHz^zJ. (z2«y2)/(z2~zJ } (2.15)

Level sets of u(,b;z;z) are shown in Fig. 2-7 along with the line defined by the

equation: g(y;z,z) * b. Note that g(y;z,z) * b if and only if the two maximands

in (2.15) are equal. And now we can give a more convenient definition of the

problem:

Problem 19: Given R' * [ z \ z ] , and b < (0,2), minimize u(,b;z;z) subject
to y i Y.

It is easy to prove ( see [Polak 80] ), that if there is a y * TCY) that satisfies

g(y;z,z) * b, then y is the unique solution of Problem 19.

If the solution of the problem gives a y that satisfies g(y;z,z) * b but is not

on the trade-off curve, then there is a y * F(Y) such that y £ y with y « y

or y * y2.( See Fig. 2-7. )

From the previous statements we can make the following useful observation:

by finding y and y and seeing if y # y, we can detect the existence of gaps in

the trade-off curve.

And now some notes on the mathematical formulation of our problem. Clearly,

this problem has an inherent minimax formulation. This is deceiving though,

because in every engineering problem there are also physical constraints to be

met by the designer. Thus the actual form of the mathematical problem which

we will have to solve, is the one of constraint optimization. In this work we

will solve the constrained optimization form of the problem by using the Han-

Powell algorithm. The reasons for this choice are explained later.

2.3.2 General Rectangle Optimization Algorithm

The generalized optimal11 search strategy that is based on the previous

observations, can be described with algorithmic steps:

• We start with an initial rectangle R and a maximum number of

with the criteria derived in the beginning of this chapter
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experiments allowed k12.

a The Decision Maker decides on the number of experiments to be
executed in this rectangle. This number must be less or equal to the
number of remaining experiments.

For each line defined inside our rectangle ( one per experiment ),
we solve the mathematical problem derived in the previous
subsection ( we find both y and y (see Fig. 2-7 ) and by comparing
them we can decide if there are any gaps ).

• The decision maker now has the following alternatives:

1. Decide that what he has is a good approximation of the trade*
off curve and thus terminate the algorithm without more
additional.

2. Choose a nondegenerate13 rectangle that represents his new
area of interest, and go back to the previous step for this
rectangle.

3. Choose an arbitrary rectangle outside the initial one.

4. Choose an arbitrary14 line and conduct a single experiment by
finding the intersection of this line and the unknown trade-off
curve.

2.4 Remarks on the Generalized Algorithm

It must be clear to the reader by now, that the algorithm presented in the

previous section is not always an optimal strategy. It really depends to what

alternatives the Decision Maker will choose at the last step.

Actually, only alternatives 1 and 2 preserve the optimality. The other two

alternatives ( initially forced by the fact that we can end up trying to define

experiments in a rectangle that has interior points not in common with the

trade-off curve, thus we would like to recover by choosing another rectangle ),

eventually are to help the decision maker to recover from previous

misjudgements and of course to set the very, first rectangle to start the

algorithm.

This Yestriction is based of course on the ultimate CPU time restrictions.

Meaning that is a rectangle contained m the initial and defined by two adjacent points

14
It must have nonnegattve slope
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The reader must note that the original algorithm presented by Polak and Payne

[Polak 80], provides only the "arbitrary rectangle choice" ( apart from the

main optimal strategy implementation ). The term "arbitrary" means here:

"another rectangle that was found in a previous stage and has been rejected".

In our implementation though, we found it convenient for the user to be able

to choose an arbitrary rectangle ( defined by old couples of points not

necessarily adjacent, or by new points or by one old and one new point ).

Finally, the last alternative that involves the definition of lines with

nonnegative slope, is simply a feature to support the previously discussed

"arbitrary rectangle definition". It also can serve to give the user the way out

from a "complete loss" ( for instance, initial rectangle defined on a gap ).

Closing this chapter, we have to add that the same algorithm can be used to

explore multidimensional spaces ( one 2-dimensional cross-section of the

space at a time ). This possibility will be discussed further later. In the

following chapter we will present an implementation of the general algorithm

described here.
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CHAPTER 3

RECTANGLE ELIMINATION ALGORITHM IMPLEMENTATION

In this chapter we describe the implementation of the general algorithm

presented in Chapter 2. All the software is written in APL and the graphics

package is compatible with the HP 2647A graphics terminal.

The presentation is divided into three major parts. The first part is devoted to

the description of the general structure of the program and it's subsystems.

The second part describes the supporting software, that is the numerical

package and the circuit simulator to be attached to our program. The third part

is devoted to a sample run of the algorithm ( for a "real-life" engineering

problem ), simply to point out the various features.

3.1 Main Structure

This part is to be divided into three subparts. We will first describe the way

that the program is constructed, then we will discuss the APL graphics package

and finally we will elaborate on the interaction capabilities of the package.

3.1.1 The Command Level Concept

For ease of construction and maintenance, the whole program is written in a

hierarchical manner. We used six main levels called Command Levels. There is

one Command Level for each separate form of Decision Maker - Analyst^

interaction.

The main part of each Command Level, is the set of commands available to

the user. This is what distinguishes one Level from the other. At present the

six levels available are:

See footnotes at page 7.
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1. Level one The user will decide if he wants to continue a saved
problem16, or if he wants to clear the buffer to use it for a new
purpose. In a later version of the problem the user will decide
which saved problem to continue or to inspect, and he will also
decide on where the current problem is to be saved.

2. Level two: The user is prompted for the definition of the axis for
the 2-dimensional space to be inspected. We can always come back
at this level and redefine the axis. The first time through the
program this level cannot be skipped.

3. Level three: This level is to help the user to set up the first
rectangle. This is done with numerical input, by defining two
vertical or two horizontal lines to include the first rectangle. This
level can be skipped, or can be revisited whenever the user wishes.

4. Level four. Here the user will be prompted to define the maximum
number of experiments17 allowed. This level can be skipped or
revisited, however, if the number of experiments is exhausted, we
have to pass through this level to continue. This part can be
considered as being a watch-dog in order to spare CPU time.

5. Level five: This is the main Command Level of the implementation,
meaning that here the rectangle elimination algorithm is actually
implemented. Here the user has a wide variety of choices, starting
from the ones that constitute the main algorithm, ( choice of a
nondegenerate rectangle, arbitrary line definition, local experiments
number ) up to some special aides to improve the interaction ( like
the plus or minus zooming capability ).

All the information here is passed back and forth via the graphics
screen and the graphics cursor position. This is found to be very
helpful for the Decision Maker - Analyst interaction.

6. Level six: This is the "special facilities" level. Since the "interaction
convenience" can only be seen from a personal point-of-vtew, this
level provides the opportunity the decision maker to "adjust" some
of the features of the program to his personal taste. Things like
grid existence, zooming power, point labeling can be adjusted from
this Command Level.

In general, the user is expected to follow a default logical path through the

modes, however he is free to move within the level structure arbitrarily. ( see

Fig. 3-1 ).

All problems solved are saved into an internal buffer.

17See the definition of the term at Problems 17 and 19.
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During the progress of this work, the mode construction seemed to be helpful

for both the user and the programmer. From the programmer point-of-view, it

gives a clear image of the code, and so helps both in construction and

maintenance. From the user point-of-view, it gives a clear image of the logical

structure and it helps during the execution because the user is not distracted

from commands that belong to a different level.
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J
Level
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Level

Level
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Figure 3-1: The level structure.
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3.1.2 The APL Graphics Package

The term graphics package is used here to indicate all the commands and

construction designed to drive the special functions of the HP 2647A terminal.

Since the functions are not necessarily graphical ( functions like "read

keyboard" or "change page" are also used ), this term might be misleading.

However, we will use the term graphics since the main purpose of this

package is to drive the graphic functions.

The graphics package has been built and initialized outside our main program.

This is done to help us transfer it, modify it, and even use it as a general

purpose package ( with minor modifications ).

The initialization has a tree-like logical structure with progressive

specialization. At the root we define the escape "$" variable to be used for all

the commands in the package. Around the root we define some low-level

general purpose commands. As we are moving from the root to the remote

branches, we find more complicated specialized functions ( see figure 3-2 ).

Effort has been made for the complete documentation of the package, that will

permit easy maintenance and transferabiiity.

3.1.3 Interaction Capabilities

Since the purpose of this package is to implement a highly interactive

algorithm, special care has been taken to make this interaction as convenient

as possible. We assume that the convenience of interaction depends mainly on

three features of the software. These features are: The logical structure to be

learned and followed by the user, the information form to be exchanged

between the Decision Maker and the Analyst, and the error tolerance of the

program. We will elaborate now on these topics.
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cross-sections

Figure 3-2: The graphics package tree construction.

3.1.3.1 Logical Structure

We have already discussed the logical structure of our program in 3.1.1. Here

we will discuss the mode structure from the user point-of-view.

The first important feature in this structure, is that we have a good separation

among commands that belong to different areas. Thus the user is not

distracted by them, and at each specific point has specific tasks to perform.

This provides both convenience and ease of understanding. It is also easy to

provide on line documentation ( giving two levels of help, both local and

general ).
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The second important feature is that we can guide the user to move within the

structure in the way which is suggested by the algorithm, and yet leave the

user free to move within wider limits of choice. We found that in this way we

can provide the greatest flexibility, a really important aspect in the

implementation of an interactive algorithm.

3.1.3.2 Information Form

Since the interaction is actually an information exchange, the form of the

information to be transferred is of great importance. This information must be

both accurate and concise, both for the Decision Maker and for the Analyst.

However, for the Decision Maker "concise" information is a piece of

information that is comprehensible, easy to understand and to process. On the

other hand, the Analyst prefers information expressed in numerical form.

Thus, there is an obvious trade-off that must take place here between accuracy

and convenience. It is accurate to type a number on the keyboard, or to read a

number on the screen, but it is not convenient, especially when one has to do

that repeatedly. It is convenient to read graphics information and to pass

information just by pointing at a certain position on the graphics screen. There

are cases though in which this is not accurate enough.

In our case we went midway. This was possible because the algorithm we

implement does not ask the decision maker to make explicit quantitative

judgments ( see paragraph 2.1 ), and this leaves us enough room to use the

graphics screen as the interaction media. So, a big portion of the information

is passed through the graphics screen. When accuracy was important, we

simply used numerical form of information. In this implementation, numerical

information is used to define the diagram axis and to set up the first

rectangle. Graphical information is used to choose a new nondegenerate

rectangle, to set up single experiments and to use some of the graphics

facilities like the zooming facility.



47

3.1.3.3 Error Tolerance

A good interactive program, must include error recovery techniques, so no

matter what the user types on the terminal, the program can sustain operation.

This feature has been difficult to implement in the APL environment.

However, since an APL user is expected to have a certain level of

sophistication, he should be satisfied with a program not fully error proofed.

The precautions we have taken to improve the error tolerance of this package

can be divided into two main categories. The first is defined at points where

non-numerical information is expected. The second is defined at all the points

when numerical information is expected as input. In cases that belong to the

first category, the error tolerance support includes extended help upon request,

local help in case of error and ( using a special function of the HP 2647A

terminal ) reading and reflecting of the command without hitting <cr>. In all

other cases ( numerical input ), error checking is more "loose", since the only

feature that is checked is the dimensionality of the input. We found however

that it is a rare case to make another error here. In both cases the error

tolerance is improved by providing adequate prompting information.

3.2 Supporting Software

It should be obvious to the reader that this algorithm normally needs the

support of at least two other software packages. We are going to refer to

these packages by the term supporting software. The supporting software

discussed here, includes the numerical package to solve the problem posed by

the experiment ( see Problems 17 and 19 ), and the circuit simulator to

"transform" the problem from the circuit form, to the equations form.

The coupling of all the supporting software to the main algorithm

implementation, is of great importance, and in the "ultimate" version will

provide us a really automated computer aided circuit design tool. However, in

the current version of the program, only the numerical package is really

integrated to the algorithm, mainly because the proper circuit simulator was

not available by the time this work was completed. In the rest of this

section we are going to discuss the choice and the use of these two

supporting software packages.
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3.2.1 Numerical Package

On the development of the numerical package, three subjects are of

importance: The mathematical formulation of the problem, the choice ( and

the criteria for that choice ) of the appropriate algorithm, and the

implementation problems that are posed by the previous aspects.

3.2.1.1 Problem Formulation

Recall Problem definitions 17 and 19 and the equation (2.15) that is derived

from these problems. The form of the problem is:

min max { b - (y (p) - z ) / (z - z >. (z - y jp) ) / (z - zj ) (3.1)
p 1 I I I 2 2 2 2

subject to : g £ 0 i * 1,wr

where p is the vector of n designable parameters. y(p), i*1,2 are the two

objective functions that we have to maximize. ( From now on we will use the

term "maximize" in order to achieve a minimal level of consistency with the

graphical interpretation ). The rest parameters have to do with the line that is

supposed to cut the trade-off curve ( see Fig. 2-7 ).

For reasons of hand/ing convenience, it is useful to transform this constrained

mini max problem to an equivalent constrained minimization problem. This

transformation is fully justified by the theorem 7. The new form is:

min y (3.2)
P.T J

such that:

y - ( b - (y (p) - z ) / (z - z ) ) ^ 0

and

g(p) S 0 i*1,~,r

This is the form that eventually we will use to solve the problem. This

specific subject is discussed next.
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3.2.1.2 Numerical Algorithm Choice

It should be obvious that if we really want this to be an interactive program,

what we need is a fast numerical algorithm to find the noninferior points.

Thus the first constraint in our choice is posed: it is speed. Another fact that

we should take note of is the observation made in 1.2. This tells us that the

point we are looking for is actually on the boundary, that means that at least

some of the constraints are active at the solution.

The previous two observations rule out of our choices the method of Feasible

Directions ( see 1.3.1 ) and the Penalty * Multiplier methods ( see 1.3.3 ).

Another observation is that the equations extracted from a circuit

representation are usually strongly non-linear. This rules out the Linear

Programming Methods ( see 1.3.2 ).

Thus we what we finally have, is the Quasi - Newton Methods ( see 1.3.4 ). The

numerical package we are going to use is a version of the one written by Luis

Vidigaf and Tariq Samad. The problems of coupling this package to the main

program are discussed next.

3.2.1.3 Coupling Problems

Our requirement of having an interactive algorithm poses an implementation

problem in the coupling of the numerical package to the main program.

Specifically, operation of the numerical package must be invisible to the user.

However, there is always the possibility that the numerical algorithm will not

converge to the proper solution. Thus the user must have a level of attendance

over this part. This attendance starts with the selection of the appropriate

initial values and ends with the inspection of the solution to assure proper

convergence. We now describe how these two cases have been covered:

Initial Values Selection : We created a separate routine to perform this task.

This is done by reading the buffer ( where all the previous solutions are

stored ) and finding the closest one in case of single experiments, or

calculating a linear approximation in multiple experiments cases. We found that

this scheme performs well when we are in a small region on the trade-off

curve. More complicated schemes may improve this performance, however we
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found that the Han-Powell algorithm is not very sensitive to the initial

solution selection.

Solution Inspection : A straightforward way to inspect the validity of a new

point, is to observe its position on the screen. Points that are clearly out of

position ( on the graphics screen ) mean that the algorithm did not converge.

We provide the opportunity to the user to "reject" such points ( by erasing

them from the buffer ) and repeat the experiment with manually selected initial

values and error tolerance.

3.2.2 Circuit Simulator

The existence of the appropriate circuit simulator is of great importance. This

circuit simulator should be used only once to initially define the circuit, and

then will be called as an invisible subroutine every time the parameters are

changed, in order to eliminate the volume of unnecessary calculations, the

"parameter update" must be done after the equations of the specific circuit are

formed.

At the time that this work was about to be submitted, the only close approach

( in our working environment ) to the simulator we just described, was the one

under development by G. Jordan. This simulator is written in APL and can

solve reasonably big circuits in a reasonable amount of CPU time. It has an

interactive input for initially defining the circuit, and there is a rather

straightforward way of coupling it to our program in a way that will satisfy

the requirements discussed in the previous paragraphs.

However, there is always the problem of how fast the system will respond to

calculate a new experiment. With simple calculation we have seen that a fairly

small circuit needs 5 to 10 seconds of CPU time to be solved by the

simulator. If we assume that we need 5 to 10 iterations to conclude one

experiment ( that is to find a new point on the screen ), it is obvious that we

need about one minute of CPU time per point. If the system is loaded this

could very easily be 10 minutes of real time.

It is obvious that the slow reaction of the system does not favor the
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interactivity of our program. Thus the need of rewriting all the software in a

faster language ( like Pascal ) seems to be vital for the real-life application of

the algorithm.

3.3 Example

In order to illustrate the application of the algorithm presented in Chapter 2,

we will present and solve a sample engineering design problem in this section.

The problem consists of making the "best" decision on the values of some

designable parameters in order to achieve the "best" output characteristics in a

MOSFET NAND gate design [Lightner 79] .

3.3.1 Problem Description

The problem is defined by a given circuit topology ( see Fig. 3-3 ), the given

model we are going to use to represent the MOSFET transistor element ( see

table 3-1 ), and the set of preset parameter values ( see table 3-2 ).

The design objectives are to minimize the delay and the area of the gate,

while satisfying a set of constraints on the range of the designable

parameters, the maximum allowable delay and area, and the maximum minimum

allowable ON output voltage to ensure the proper noise immunity18.

3.3.2 Mathematical Formulation

The mathematical formation of the problem is derived by the following

equations:

1. Objectives

a. The first objective is the time delay ( minimize ) 1 9

• 1 * Ap( L ^ ) re (3.3)

V

ON output voltage was the third objective in the original problem. Hwrm we take care of it
just by usmg it as a constraint to ensure that it will not take values close to the OFF output voltage.

1 8 T h .

19
For more details on the methodology used to determine and calculate the delay, the reader should

consult Lightner79 ( pages 1 5 5 - 1 5 7 ).
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Figure 3-3: The NAND gate topology.
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JDS « GM'WL'fVGS-VT)2 above pinch-off

JDS * GM»WL*VDS»(VGS-VT-VDS/2) below pinch-off

YTsV +k*(VSSUB + PSlf
FB

where

GM = Normalized transconductance

WL = Width-to-length ratio of the device

VT s Gate threshold voltage

VGS s Gate-to-substrate voltage

YDS s Drain-to-source voltage

VFB = Flat band voltage
k s constant
PSI = Electrostatic potential on surface

VSSUB s Source-to-substrate voltage

Table 3-1: MOSFET model equations.

b. The second objective is the area occupied by the integrated
gate ( minimize )

W 1 L 1 * 2 L23W23

2. Constraints

a. The first constraint is to secure the lower limit of the ON
output voltage. The calculation is based on an iterative DC
analysis of the circuit.

V * -0.7 Volts (3.5)
o

b. The second constraint is to limit the maximum delay time
allowed.

• £ 110 nsec (3.6)
1

c. The third constraint is to limit the maximum integration area
allowed.
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PSI s .5771

* " •* Designable parameters
GM s.006
. , - • , • VFB.W1.W23
LI «12.7 microns

L23 s 5.08 microns

V00 s -6.5 volts

VG6*-14.5 volts

Vinx. 14.5 volts

Af« 1.03657

CLsSpF

Table 3-2: Problem Parameters.

•2 * 2500 mils2 (3.7)

d. The fourth constraint has to do with physical limits on the
Flat-Band Voltage values

•2 i Vff l S -1 (3.8)

e. The fifth constraint in to restrict the width of the load
transistor (1).

5 £ W1 £ 50 (3.9)

f. And the last constraint is to restrict the width of the gate
transistors ( 2 and 3 ).

50 £ W2 3 £ 250 (3.10)

In order to make this form suitable for solution by the Han-Powell algorithm,

we rewrite the objectives:

•' * 110 - •1 (3.11)
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•*2 « 2500 - *2 (3.12)

After that we have to rewrite the constraints to be of the form proposed in

(3.1). To get to the final form of the problem ( see equation (3.2) ) . we have

to add one more variable y and two more constraints. This final form is: -

m i n r w w v y ( 3 ' 1 3 )

7.w1.w23.vpB

such that:

r - ( b - {+\ - l y ) I ( z , - I J ) * 0

V • 0.7
o

•^ i. 0

• • i 0

0

V 2 i 0

50 - W1 * 0

W - 5 ^ 0

250 - W 2 3 2

W - 50 2 0

3.3.3 Sample Run

We present here two sample runs of the rectangle elimination algorithm. In

both cases we have the limit of deriving our preference with at most 10

points. In Fig. 3-4 we have followed a strictly optimal strategy. The initial

rectangle is derived by the points 1 and 2. These points were obtained as the

cross section of two ( Decision Maker defined ) vertical lines and the trade-

off curve. Points 3 to 7 are the result of a 5-partitioning of the initial

rectangle. Then the Decision Maker had chosen the rectangle derived from

points 5 and 6 as the new area of interest and devoted the three experiments

left in a 3-partitioning of this rectangle. The formal definition of this sequence

( except of points 1 and 2 ) is S (k ,k ) ( see Definition 12 at Chapter 2 ).
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In Fig. 3-5 we still have the same restriction* but the decision maker now

follows a heuristic scheme. Thus, points 1, 2, 3, 9 and 10 are results of

independent experiments. The rest points are results of two optimal sequences

( S (k ) and S (k ) with initial rectangles 1-3 and 3-2 respectively ).

In the next section we will apply the same example to discuss the expansion

of this algorithm to multidimensional spaces.
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Figure 3-4: Nand gate sample run - Optimal strategy.
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Figure 3-5: Nand gate sample run - Non optimal strategy.
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CHAPTER 4

MULTIDIMENSIONAL APPLICATION

In this chapter we consider expansion of this algorithm by presenting an

example of a multiple dimensional application. We begin with a short

discussion of the concept of a multiple dimensional experiment.

4.1 The Multiple Dimensional Experiment

In order to move from the two dimensional space to the multiple dimensional

one, we have to consider some new aspects. The first is the problem of

adequate representation or user perception of the multidimensional space.

The Decision Maker will have to perceive the information concerning the

multiple dimensional space through the use of a two dimensional screen. In

order to simplify this task, we decided to have the user explore this space by

means of two dimensional cross sections of it. These cross sections can in

general be oriented in an arbitrary way in the n-dimensional space. However,

in order both to make our programming task easier, and to keep the

information on the screen clear and consice, we will use cross sections

orthogonal to all the non displayed axis. This simply means that we keep all

other objectives ( except the two we are trading ) constant20.

Another problem is that of storing and retrieving the multiple dimensional

points calculated thus far. This problem is solved by storing this information

by groups. Each group contains the points which belong to a separate plane.

The group is stored along with a label identifying the plane it represents. The

user will be able to retrieve these groups, and, even superimpose groups which

represent parallel planes.

There is the opportunity to keep an objective not constant but limited with upper and lower
bounds that are close enough to be considered essentially the same from the Decision Maker.
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The last aspect that we have to tackle is that of the mathematical formulation

of the problem. We need a proper way of informing the numerical package

about the current "plane of interest" without having to rewrite the equations.

This is accomplished by creating a "flexible" mathematical form that wi l l be

internally modified. Suppose that our original problem has the form:

max { y,(p),yjp),~.,y (p) ) (4.1)

such that : g(p) * 0 i * 1,_,r

where p i * 1,~,m are the designable parameters. Now assume that we decide

to move into the s,t plane of interest. This means that we wil l be allowed to

vary only the y and y objectives while keeping all other constants at

predefined values. The form of the problem now becomes:

max { y$(p), y^p) } (4.2)

such that :

g(p) 2 0 i • 1,~.,r
y'(p) * V j « 1,~.. s-1, s * 1 _ . t - 1 , t*1,~,n ( 1 S s < t £ n )

If this problem is put in the form we discussed in the previous chapter, it wi l l

be:

min y (4.3)

such that :
b - ( y ( p ) - z ) / ( z - z ) * 0

$ s ~s $

( z - yt(p) 1 / l f ^ l i O

and :
g.(p) i 0 i « U r

y (P) r v. j « 1,~, s-1. s+1,..., t - 1 , t+1,.~.n ( 1 £ s < -t £ n )
j J

Another form similar to this, but computationally more convenient, can be

derived. This riew form is based on the fact that very often the Decision

Maker is not interested on exact values for some secondary objectives. Thus,

these objectives can be taken into account by defining an area of tolerance ,

rather than specific values. The formulation of the problem now becomes:
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max { y (p), yt(p) ) (4.4)

such that :

g(p) i O i « 1_.r

y (p) « V j f S

V £ y £ V q € S'
- q Q q

with S U S' * { 1,-.. s-1. s *1 .~ . t - 1 , t*1,.~.n }

and 1 £ s < t £ n

And the final form is ( the one proposed in (3.2) h

min y
p.y7

such that

b - <

( V
and :

9S<P)

yXp)

V £
—q

with

and

y$<p)

yt<p)

*0i

* V
J

y Q 2S

s u

1 ^

•

- 2

) / (

j «

V

S' *

s <

) / ( 2 - f :
s ~s s

K *!> * °

s

q « S'

{ 1,.... s-1,

t £ n

t - 1 ,

These formulations are used in the the multidimensional example that follows.
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4.2 Three Dimensional Example

We wi l l now present the solution of the NAND gate which is described in

Chapter 3. The search is now performed in the three-dimensional space with

objectives: the delay time ( to be minimized ) the area ( to be minimized ) and

the ON output voltage ( to be maximized ). The mathematical formulation of the

problem is basically the same as the one described in (3.13). The main

difference is that now we consider a third objective • :

•_ « -V (4.6)

Since we want all objectives to be in a maximizable form, we rewrite • to

get a new objective. This objective is derived in a way that wi l l simplify the

expression of the constraint:

V * -0.7 (4.7)
o

that ensures the noise immunity of the gate. The third objective of our final

formulation is:

• '3 « 0.7 - *3 (4.8)

We now have three21 alternative constraint sets and every one of them

represents a search in a different group of parallel planes.

Thus we have one set of constraints that represents all the planes orthogonal

to the Delay ( group A ), a group for planes orthogonal to the Area ( group B )

and a group for planes orthogonal to Output Voltage. In every group plane

definition there is a parameter ( in direct correspondence with the non-defined

objective ) that specifies the specific plane out of the group. These ( three )

parameters have the name P where s and k are the subscripts of the variable

objectives in each group. The formulation is:

min y (4.9)

It is obvious that there ere six possible sets. However we assume that the sequence of the
two objectives in one group definition is not important and we arbitrarily choose one of the possible
two.
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such that:

Group A ( Trade-off between area and output voltage. The delay is
kept constant at 110 - P ns. )

y ' ( b - <*'3 - f3) / <i3- 23) ) * 0

y - < ( i 2 - • j ) / < V 22> ) * 0

• 2 *

- 1 -

50 -

wr
250 •

W23"

0

0

VFB

2 2

5 i

- W

50

*

: 0

0

23

0

0

* 0

0

Group B ( Trade-off between delay and output voltage. The area is
kept constant at 2500 - P mils2. )

T ~

V
* 3 :

- 1 -

VFB^

50 v

wr
250

( b -

( ( f 3

i 0

B P

t 0

VFB

• 2 *

W i

5 2

- W

M

0

0

^3 }

0

0

2 0

/ (2^ 2 ^ ) ^ 0

3 - 2 3 ) ) ^ 0
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3 - 50

Group C ( Trade-off between delay and area. The output voltage is
kept constant at P - 0.7 volts. )

•• * o

•1 - V^ i 0

V 2 * °
50 - W, 2 0

W - 5 * 0

250 - W 2 3 * 0

W 2 3 - 50 * 0

In the next pages we present a sequence of screen snapshots from this three-

dimensional search. This search is done with the optimality criteria we

discussed in Chapter 3. Specifically, we present three groups of parallel planes.

The search at every single plane is done by an arbitrary initial rectangle

definition ( points 1 and 2 ) followed by a S (k ) strategy.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this work we have presented methods for exploring the trade-off curves

associated with multiobjective optimization. In this chapter we will summarize

our work and we will give our conclusions and some proposals for future

work in this direction.

5.1 Brief Description of Work

In this work we presented the rectangle elimination family of methods for

biobjective optimization. In the first two chapters, these methods where

associated with the current mathematical background on multiobjective

optimization, and the algorithm for optimal biobjective search ( originally

presented in [Polak 80] ) is expanded.

In the third Chapter we discuss the implementation of the scheme using APL,

and we present and solve a two dimensional example. Then, in the fourth

Chapter, the same scheme is expanded for multiple dimensional use and a

three-dimensional example is presented and solved.

5.2 General Conclusions

The main problem in this area is found to be the perceptibility of the image

we present to the decision maker. For good interaction, the decision maker

must be able to interpret the information quickly and preferably on a

qualitative basis. However, the complexity of the information rises rapidly as

the dimensionality of the problem increases and at some point no decision can

be made without quantitative considerations.
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5.2.1 Rectangle Elimination Scheme

What was said in the previous paragraph holds true for the algorithm we

presented in this work. The user must not think that one can explore a set of

two-dimensional cross-sections. Very soon this task will get very confusing

and pointless.

In order to cope with the high dimensionality of the problem in real life

engineering design, we still have to use some of the methods described in

chapter 1, methods like weighted sum or minimax approach. The designer may

use these methods to make up his mind for some not very important objective

functions, and then ^use a more interactive method ( like the one presented

here ) to perform the trade-off between the rest.

It is our belief that a more general scheme must be devised to employ both

interactive and non-interactive methods. This scheme will first apply a non

interactive method for multi objective optimization, to reduce the

dimensionality of the problem to a more comfortable level, and then we can

apply the interactive method for "fine tuning" our decision on the most

important objectives. This can be repeated like an iterative procedure, until the

decision maker has a good combination of all objectives.

5.3 Future Work Proposals

5.3.1 Multiple Dimensional Cross Sections

Sometimes it may be favorable for the user who is trying to accomplish an n-

dimensional trade-off, if he explores this space by using three-dimensional

cross sections instead of two-dimensional ones. This will obviously reduce the

necessary number of cross sections, and it may also provide the opportunity

for more fine decisions.

However, in order to implement this scheme, we must devise a way of

exploring threev dimensional spaces. This may be based on an extrapolation of

the existing 2-dimensional search. The scheme will include a three-dimensional

•projection on the graphics screen, a more sophisticated way of interaction and
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probably an optimal strategy for approximating the trade-off surface using

orthogonal parallelepipeds.

The three-dimensional search will be ideal for three dimensional problems and

should also be very convenient for small dimensionalities like 4 or 5. For

dimensionalities higher than these though, the information presented to the

user will be rather difficult to process.

5.3.2 Point Filtering and Curve Estimation

While exploring a trade-off space, the user may find it convenient to have a

way of uniformly spreading points over the entire surface. This may be done

using the Point Filtering Techniques described in [Steuer 80]. These

techniques have to do with an optimal point generation strategy and a "point

rearrangement strategy". The method may be useful when we do not really

want to find a specific point on the curve, but would rather gain an insight

into the general shape of the curve.
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[Bertsekas 76]

[Brayton 80a]

[Brayton 80b]

[Han ??]

[Hwang 80]

[Lightner 79]

[Polak 80]

[Powell 77]

[Steuer 80]
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