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ABSTRACT

This paper contains the rounding error analysis for the Chebyshev method for the solution of large
linear systems Axt+g = 0 where A = A* is positive definite. We prove that the Chebyshev method in float-
ing point arithmetic is numerically stable, which means that the computed sequence {xk} approximates the
selution o such that Iza“xk-au is of order g!h”-lh-]iﬂlbﬂ where [ is the relative computer precision.

3

We alse point out that in general the Chebyshev method is not well-behaved, which means that o k

large, is not the exact solution for a slightly perturbed A or equivalently that the computed residuals

7 = Axcvg are of order Clhll 7] flll

1. INTRODUCTION

Direct methods of numerical interest for the solution of linear systems Axtg = 0 are numerically

stable., This means that they produce an approximation y of the exact solution « such that fb-q” is of
-1 . . ..

order glhlilh If ”w“ where { is the relative computer precision.

It might seem that the numerical accuracy of iterations for solving large linear systems can be

-1 . .

better or even not depend on the condition number of A, k(a) = |h’||h Il . In this paper we consider
the Chebyshev method which is cne of the most effective iterations for tha solution of large linear sys-
tems. We show that this method is stable and that the condition number of A is crucial for this itera-

tiomn.

Moreover direct methods are alsoc well-behaved which means that the computed y is the exact solution

for a slightly perturbed A, i.e., (A+E)y+g = 0 where |E|[is of order /Al . Unfortunately this does not
hold for the Chebyshev method. Thus, from the numerical dccuracy point of view direct methods seem to
be better than Chebyshev.

In Section 2 we briefly recall the main properties of the Chebyshev method T[a,b] for the solution
of large linear systems Ax+g = 0 where A = A* is positive definite, shortly denoted by A = A* > 0. In
the classical case, the interval [a,b] contains all eigenvalues of A. We consider the case where
b 2 ihlf and a is an arbitrary positive number. We also propose an extension of the Chebyshev method

for singular matrices A = 4 = 0§,

Section 3 deals with a perturbed Chebyshev mechod which generates a4 sequence {xk} such that

(D ey =190+ o Oy y) - m /e, + g, n = A e,
for suitable Pr-1 and %, - We express the solution of (1.1) in terms of gk and prove some asymptotic

results.

In Section 4 we present an algorithm for the computation of Pl and q - We prove that this



algorithm in floating peint arithmetic computes Pl and % with high relative precision,
Section 5 deals with the proof of numerical stability of the Chebyshev method. We prove that
T{a,b] generates {xk} such that TE;|hk-u“ is of order C|h“ |h_1|||hH whenever b/a is of order |h|f[h-][L
In Section 6 we discuss well-behavior of the Chebyshev method. In general, the residual vectors in
the Chebyshev method T, = Axk+g are of order gih|[|h—]||lbn which contradicts well-behavior. However,

sometimes T, can be or order gthl||b”. Such a case yields well-behavior.
2. CHEBYSHEV METHOD

Let us consider the mmerical solution of a large linear system
(2.1) Axtg = 0

where A = A* > 0 is a given complex nxn matrix and g is a given nx! complex vector. Suppose A is a
sparse matrix of high order. Such systems commonly arise in the numerical solution of partial differen-
tial equations. Suppose We can only compute y = Ax for any vector x. Due to the sparseness of A the
vector y can be computed in time and storage proportiomal to n rather than nz. For sufficiently large
n, (2.1) can be solved only by iteration. Let X, be an arbitrary initial approximation of the solutien

o =-A-1g and let

m

(2.2) xy-a = Z cjvj
j=

where vj are eigenvectors of A assoclated with eigenvalues kj,

Avj = AV (vi,v

R [T

and without loss of generality we can assume cj #0, for 1 £j Smand 11 < lz < vee < Rm, for m s n.

We consider a class of iterative methods which generate the sequences {xk} of the approximation of

a such that
(2.3 X o= Wk(A)(xo-u)

where Wk is a polynomial of degree S k. Since we only do know Ag+g = 0 than to eliminate o from {(2.3)

we have to assume
(2.4} Wk(ﬂ) =1,

Remark

Another motivation of (2.3) and (2.4) is to consider a class of iterative methods such that

X = wk(A)x0 + Uk(A)g



where Wk and Uk are arbitrary polynomials of degree = k. Assume that if Xg =@ then X Ta for any .

Then Wk(x) = Uk(xyx + 1 aad
e = (I+Uk(A)A)(x0-q) = wk(A)(xu_a)

which is equivalent to (2,3) and (2.4). L ]

From (2.3} we get

b -all, = b 1l Theg-all, = I Tkg-cll,

where

(2.5 [ = max  |W, (0| and [*.,\ 1< [a,b].
i A € [a,b) ¥ e

Let Pk(O,I) denote a class of polynomials P of degree = k such that P(Q) = 1,

In the Chebyshev methed T[a,b], the Wk are defined as the polynomials of the smallest possible

norms (2.3), {i.e,,

2.6> Wl = inf  |lp|| ,
P e,

and the solution of (2.6) is given by

@.7) W (2) = T (£(z))/T, (£(0))

%%% - 25%; and ‘1‘k denotes the Chebyshev polynomial of the first kind of degree k. From

(2.7) it follows that in the Chebyshev method T[a,b] we get

where f{z) =

k
2.8 |h-oll, < %—7@ lkg-cl,

for all k whenever [11,Am] c [a,b], and

2.9 w . =x + o g% - Ve, k=01,

where LW Axk+g and

t
b-a k-1
@I py="0p " ¢
k
b+a b-a Tk+1 _
(2.11) q, i i T, £, = T (E(0), k=21,

(See, for instance, Stiefel (1958) and Rutishauser and Stiefel (1959).)

Usually, the eigenvalues AT and Am from (2.2) are equal to the smallest eigenvalue Amin’ and to the



, of A. Hence, the best convergence in T[a,b] is for a = X . and b = X .
min ma.

largest eigenvalue, A
X

max

However, in numerical practice Kmin and Kmax are known only for a few problems. In many cases we can

eagily find b 2 lmax (setting for instance b = |hﬂ where f-” is any matrix norm, see Young (1971), page
32), A much harder problem is te find a suitable approximation of Amin' Without knowledge of A . one
min

can use the Chebyshev method T[a,b] for any values of a > 0 and b 2 kmax' Then instead of (2.8) we get

k
(2.12) ”xk-o'“ < 2900, ) |b(0-cr”2

Tt

where
FX AV, £ &
B - JET, o + R

(2.13) q(\) =

for (a-l)+ = a-\ if a=-} =z 0 and zero otherwise.

Note that
(1) if M € (0,2> then g(}) < 1 which means the convergence of T(a,b], however for A\ = 0+,
a2,
if a S A £b then q(d) =u’
S+ e

(iii) if X < 0 then q{X) > 1. This implies that T[a,b] is divergence whenever k1 from (2.2} is

{ii)

negative.

One can also consider the Chebyshev method for a singular matrix A = A* 2 0. In such case by o we
mean the normal solution of Ax+g = 0, i.e., the vector of the minimal spectral norm which minimizes the
spectral norm of the residual, Let g = 24 + 8, where Ag] = ( and 8 is orthogonal to 8q- Note that
Actg, = 0. It is straightforward to verify that {xk} defined by (2.9) in T[a,b] for a > 0 and b 2 lmax’

satisfies
(2.14) X o = Wk(A) (xo-cx) + wl::(o)g1

for wk,from (2.7) and

-k 1-q@?*
Jab  1+qayZ

Let us rewrite (2.2) as n

¥
— xo-a - CIVT + L cjvj

-~ 421

Wé(o) =

where Avj a ljvj’ k1 =0, 0< Rz < A3 E Y km, (vi’vj) = si,j' Note that the normal solution ¢ is

orthogonal to vy Let us discuss the two cases.

Casel. Let g = 0. This means that Axtg = 0 is solvable. From (2.14) it follows

4



k
e -odl, s eyl + 2 qGhy) " lkey-adl,.

Thus, if ¢ = 0 (which holds for instance if Xy = 0) the Chebyshev method is convergent and the best

possible speed of convergence is for a = AZ’ i.€4,

k
b -
”xk'ailz = 2Q+—é> ”xu'allz'

Case II. Let 8 # 0. In that case the iterative process is divergent, although lim T8 This sug-
k

gests constructing y, = x - Wi(O)rk. Then
Yoo = Wk(A)(xo-a) - Wk(ﬂ)wk(A)A(xo-G)

and for Xy = 0 we get

2k
K 2k 1-q(a) k
Wy, -all = 2900, |lol] + == q(A,) " [Bedl,
x 2 RPNy L.

which once more implies the convergence of the Chebyshev method.
3. PERTURBED CHEBYSHEV METHOD

Recall we consider a large linear system

Axtg = 0

*
where A = A > 0, We want to solve it by the Chebyshev method T[a,b] where it is only assumed that
bz lmax and 2 > 0. The Chebyshev method generates a sequence {xk} defined by (2.9), (2.10) and (2.11).
However a sequence computed in floating point arithmetic can at best satisfy a perturbed relation (2.9},

i.e.

GoD xyy xR e ) - Ve + g

for suitable vectors §k. A form of gk will be discussed in Section 5. In order to analyze the Chebyshev
method in fl arithmetic we start to solve (3.1) for an arbitrary {gk} and find some asymptotical proper-
ties of the perturbed sequence {xk].

Let e, = X @ be the error of the kth approximant. Then from (3.1) we get
(3.2) ey =y + oy (oo A g + 8.

Theorem 3.1
Let [§k] be an arbitrary sequence and let {xk} be a perturbed sequence generated by T[a,b] defined

by (3.1), (2.10) and (2.11}. Then



k

(3.3) ey yq = Wy Bleg ¥ Z M, 1 2By W s (B + (B; - DR AV IE,
i=0
where
p q t
(3.4) Bk=]+k_q1=-_q.=2l:_f-:_tl_., ]SBksz,
% % k+1
k-i-1 2
= L = a 1 L Wb+ )T
3.5 = F ] EE e e s g S, He = SRR
J='| 3 k ~j—re ’
T, (£{z)) U (£(2))
ke k b+a z
(3.6) W (z) & ———, (z) = ———— |, f(2) 3 — - 22—
k Ex Rk te b-a b-a
and Tk’ Uk denote the Chebyshev polynomials of the first and second kind of degree k, respectively. .
Proof

Induction on k. Let k = 0, Since Wo = R0 = ] and W1(z) =] - %" z, R] = ZWT, then (3.3) is equal
0

to {‘i
e, = W, (Ade, +xn, o{2-B, + B,-1E =e - L r, +E
1 1 0 0,0 1 1 0 0 q 0 0
which is equivalent to (3.2).
1
Assume now that (3.3) holds for all i Sk, Let B = EkI - % A, W= Wk(A) and R = Rk(A)- Note
that (3.4) easily follows from (2.10) and (2.11) and it is easy to verify that

(3.7) W4 o= BM + Q-B)W .,

From (3.2), (3.3), (3.4), (3.7) and (3.8} we get

k=T
P P
k-1 1 =1
e = L+ a1 i""}ek T ket P RT B (e + Z Moo, 1 L@ B Wy *
i=0
k-2
.
+ By DR S+ QB M e+ )y (L@ W o+ By DR T8 3
{=0
T k-2
A
L S S A AR (I L LRI AP I RLWEIRS:
1=0

B DBy B R P ez, 1T BORe g Y

We want to verify that



(3.9) B, = "k,k-I{(z'Bk)”1 + (ak-l)R]],

G0 @B by g B Meorns F ez, s BN 3 B Dby BR e  (O-BOR L]

- uk’i{(Z-B Wi+ By q-DR L), 051 s k-2,

i+1

Since 1 = 1 and R, = 2W (3.%) follows from (3.8). To prove (3.10) we use (3.7) which holds for

k,k-1 1 1*
wk-i and Rk-i‘ By comparing the coefficients at Awk-T-i’ wk_1_i, wk-Z-i’ ARk-l-i’ Rk-1-i and Rk-z-i we

get three equations on Hye i
o1
C IR AP A TR IL L P RIL

B2 g et T M, B

.13 “k,i(l'ak-i-1) - nk_z,i(I-Bk).

From (3.5) and (3.4) it follows

Mot o B %eia
Meetl,i Bieeiod 9

which gives (3.11) and (3.12)}. VNext, observe that from (3.4) and (2.10) we get

"Lt PP L Sersn R Pt Geeror | St Beed

. P . . ,
2,1 Peet-tPlzer Skt Pkezei UBeiol % Proioa Besd e-1-2

which proves (3.13) and completes the inductive proof of (3.3). To prove the limit of n, ; hote that
»

. 2(i+2) 2(k-1) 2
Nt IS B B E O M YU TO NS A T S
tet1 & T+q(a)2 ]+q(a)2(k+l) 2(b+a) 2

where q{a) = ME—:—QE

+ V’a_

1

This completes the proof of Theorem 3.1. | ]

Using Theorem 3.1 we prove & bound on the perturbed errors. Recall that A in is the smallest eigen-
m

value of A and q(A) is defined by (2.13).

Corollary 3.1-
Let
VRNEINV(CE VN 152 (kH1)
Q10 8 S+ SEawn e 1-52 for k= 0,1,..., and q = 404, )
+

Then



[~

(3.15)

k+1 k-1
eyl 28 gl + 2 2 @7yl I

0

1

M—(ﬁg.‘.ﬁ)zasaw.b__)g

3.16 = 11 <
{ ) e ;m sup|kk“ 2 min(a,lmin) min(a,lmin
where £ = lim sup||§k”. ]
k
Proof

First of all observe that

1= T\k < k+1 and ﬂk = k+] whenever lmin za,

bl < 2° and R, ]| = 2° 7.

From {(3.3), (3.4) and (3.5) it follows

k k
gyl % 285 gl + ) maxCll_ LR Dl Il 5 28 gl + 2 2 a7l I
i=0 i=0

which proves (3.15).

Let & be any positive number. There exists ko such that |]§k|l < E + ¢ for all k > ko. From (3.15)

we get ko k
e <2 lim sup( Z qk'ink_ill%ill + z qk'i'ﬂk_i(gﬂ)).
ke ok +1

Note that qk-ink_i =0 for i = 0,1,...,k, and

k e
- 2 2
_ R e . 5 o L L+ A (2-q(@)8) _ __ 2b
lim sup Z. q nk-i q T\i Z\7-q - 1_q(a)5) 4 min(a,x , ) min{a,\ )
. 1-8 min min
1.=k0+'l i=0
which proves (3.16) n
Corollary (3.2)
2
(i) If lim £, = € then lim e, = ( * Ja A"g,
k k 2
k k
(ii) If limksup |kk-xk—1” = u then limksup ”Aek-qk §k” < w(bta) |

Proof

*
" = e'k -qA lg. From (3.2) it follows

i
& o (Y e s

Note that limlq =
K k

2 =2 o (27 ) - Az Y + & -8+ (1-a/q,)E.

Applying Corollary 3.1 and Theorem 3.1 ro z we get



b

1im sup |[zk]| s4 TR lim sup ”Ek'g"‘(]'Q/qk)EH =0
k ’“min k

which proves conclusion (i).
To prove conclusion (ii) we rewrite (3.2) as follows:

Ae, - q B = o qlepeyg) - (8-

2
- " - - .ja
Since X1 " o0 and lim P, =P (”LZJC) then

k

* K
1im sup ”Aek-quk” < (q +p In = u(bta)
k
which completes the proof of Corollary 3.2. |
4. ALGORITHM OF p__, AND q

In this section we deal with the computation of PL_g and 9 which appear in the Chebyshev method

T[a,b] in (2.9). Recall that

2
'%.—‘5‘;’ a g, = o = (B,

(4.]) P_-l - 0, pk-] Pl
k
£ 2
a+b b-a “k+1 * + .Ja
(4.2) qo - 7 ! qk 4 I » lim qk =gq ( Pl »
k k
+a
where L - Tk(-::;) , k21,
Let

2

a+h b-a *
(4.,3) c-z,d (4) andyk-q-qkforkzﬂ.
From the recurrence formu:la of the Chebyshev polynomials it follows

b-a ,/b+a
(.4) g =~ 2(533 % - tk-{)/tk =c-dlq_y k=2
From (4.2), (4.3) and (4.4) we get

* % *
v "= a -c+dfe_y=d/q_-dfa =dy Sl 9) k=2

Note that (4.71) and (4.2) gives Py 1%t ™ d, k 22,

This suggests the fcllowin?"algorithm for the computation of Pk 1 and q -

Algorithm 4.1
2
a+b b 9 +b+
4.5) c =5 d-(—4—>, q = 2 < ab'

(4.6) p_, =0, q; = c,



2d atb . ab 2./ab d
(4.7) PD c ? ql 4 + a+b’ 'V'-l = ath T ?

for k=2,3,...
%.8) p_, = d/qk_r,

/ *
(53 ¥ = Py Y/
" *
{4.10} G =T - VY-

Let us consider the above algorithm in t digit floating point arithmetic, fl, and lec rd(x) denote
the numerical representation of any real number x and fl({xay) denote the computed result of an arithmetic
operation 0O € {+,-,/,°}. Then

rd(x) = x(1+¢), |e| = |ex)| = ¢,
for x = rd(x) and y = rd(x),
El(xOy) = (xOv) (M+e), el = |e(x,y,0) =¢

where = Z-t.

We also assume that for x = rd(x), flCJ;) = Jg(l-e), |e| £ [. (See Wilkinson (1963).) To simplify
the further estimations of roundoff errors we shall use the relation ~, i,e,, if a(t) and b(r) are

bounded functions of t, t 2 £y > 0 then a(t) ~ b(t) iff there exists K independent of t such that
a(t) = b(t)(T+e(£)2"") where |e(t)| <K for t = £q-

Next &(t) < b(t) iff a(t) < b(t) or a(t) ~b(t). (For more details see e.g. Wozniakowski (1974).)

Let us denote any computed value x in Algorithm 4.1 by X and let ¥ = x(l+ﬂx). Thus ﬂx is the rela-

tive error of x.

Theorem 4.1

Let a = rd(a) and b = vd(b). The computed values Ek and Ek are equal to
CRIPEN- S pk(1+npk), ]npk| < (441)¢,

o~

@12) G = (g )5 I <1y G

vhere 0 < L < 15.5 + 64x for x = Ja75/ (1+/a75)% and lli;m L =35 o

Theorem 4.1 me&ns that we compute.p, and . with high relative precision for all values of a and bh.
There are some oth;r algorithms for computing 128 and % but usually for these algorithms one can prove
(For instance, an algorithm based on (4.4) and

(4.11) and (4.12) with Lk which is proportional to b/a,

(4.8).)

10



Proof

We verify (4.11) and (4.12) for k = 0 and k = 1. From (4.5), (4.6) and (4.7) we get

Gy = @ = S20He) = e, ) s,

(b-a) (1+¢,\*
7« (——F—2) (+ep) = a0y, 7yl < I

(a+b) (1+e,) + 2./ab(1+¢,) (1+e.) . e (a+b) + [Ji+e, (1+e ) - 1)2./ab
ﬁ*' 1 4 5 (1+e6) agq 1+ 1 4 5 (+e ) =
4 a+b + 2,/ab 6

* b
=g (1+T]q*), |'ﬂq*| < EC,

g (1+'nd)
Bom T ey = Sy (e T Py & ITIF‘ol 236

. (a+b)(1+e1) ab(1+ea)

6= % " @) (i+e,)

() (14eg) = @ (47 ), Inqll < 4¢.

2.fab(1+cl+) (1+¢5)d(7+'nd) (1+e,)

Ry ey @ (Fi 0 (196, )

(+ey) = v em, ). inY]I <1g

where Isil =g for i = 1,2,,..,12.

Hence (4.11) and (4.,12) hold for k = 0 and 1, Let us analyze (4.8), (4.9) and (4.10). We get

i I l<scsin, |
4.13) § =" T 3 (e ) = p (040 ), T <4g+ M s
k=1 gy “qk_l) 17 Tkl ey Pe1 - |
P, _, {1+ Iy (1
k=1 P K~
ORISR oy O ) =y (0 0, | [ [+ |,
q ’ Yk Yo Yi=1 Te-1
:"rn * TLY
q 1 *-v
415§ = (N9 - "k‘”“vk””*‘k-3’ = q {1+ h (T+e, 4) = qk(1+ﬂqk),
* Y
In | < s+ X | .
Y - % L "
Substituting (4.75) to (4.14) we get
“.16) |n | = Qz + 2, 5 )C“LQ+—— |n
Vie® -1 "’k-
Note that &
¥ Vi ¥ 2k
o4 kT _d,_‘.,gm_qmszm
e HI Her =2 I/ 9 1+q

where n= Ja?b (1+Ja7b)2 and q = Qﬁ; - Jg)/(JE + 453.

11



Thus, (4.16) becomes

@.an fn

| <02 +100¢+ O+ &0l |
ik ”

k-1

Since |11Y| 117, the solution of (4.17) is given by
I

A

k-1
In | <+ w T g+ a2 + i<l
Y ~ (73

Coming back to ﬂq we have
k

2 . B}
%.18) lnqkl < 3,50 + 100a2%¢ + 8007 (1 + w10+ 2 + 100 (0 ) - L&
Note that 2

20+ by = (h - Ja) (h+aZAJa'b') 1.
Wb+ 2
Thus,
L, S3.5+ 10k + bhng + (12 + 10k)q> < 15.5 + 6bx,

and Lim Lk = 3,5.

k

Finally, from (4.13) it follows

T
N

which completes the proof of Theorem 4.1, B

A

&g + LG,

5, NUMERICAL STABILITY OF THE CHEBYSHEV METHOD

In this section we deal with numerical stability for the Chebyshev method. Let us briefly recall
that an iterative method for the solution of the linear equation Ax+tg = 0 is numerically stable if it

produces a sequence {xk] such that

R e 7 llell + 0c¢®

where K can only depend on the size n (see Wozniakowski (1975)).

We propose the following algorithm of the Chebyshev method (see (2.3) and Rutishauser, Stiefel and

others (1939)).

Algorithm 5.1
The Chebyshev method T(a,b], 0 < a and |h” <b.

x, 1s & given initial approximation,

0
for k = 0,1,.,..

compute q and L by Algorithm 4,1,

(5.2) r, = Axk+g;

12



Proof

We verify (4.11) and (4.12) for k = 0 and k = 1. From (4.5), (4.6) and (4.7) we get

§p = T = TR0+ = O+, [T <,

(b-a)('l+c2) 2
3 = \——7—=) (+ep) = d0+7), [Nyl <3,

L, (a¥0) (e)) + 2/BB0TFE) (1+e,) . o (a+b) + §Tve (14s) - 112/a0

= (1+e. ) = q (1 +
q AY
4 6 a+b + 2./ab

(]+e6) =
* 5
= q (1+T]q*)l |'ﬂq*| S ‘2"1;:

- (1+11d)
. 2d 24
Bom () = g (He) = (4 ), lnpol < 5¢,

(a+b) (T+e. ) ab{1+e,)
- LN 4
9 4 (a+b) (1+e

S (+eg)) (1+eg) = q](1+nq]), Inq1| < 4¢.

Z./ab(‘l+ea) (1+e5)d(1+nd) (1+e,?}
Y= (a+b; (1+e,) q"(1+nq*)(:+.”)

(ep) = vy (141 ), Inyll < g

where Icil s£¢ for L= 1,2,...,12.

Hence (4.11) and (4.12) hold for k = 0 and 1., Let us analyze (4.8), (4.9) and (4,10}, We get

. d('|+T]d)
%.13) By * W (1+sk,.|) = Pk_l(T+T1Pk_]), Iﬂpk-ll < 4t + l'nqk_l|,
le=1

p,_, {1+ Iy, O
ket {1 Vi T
q"(|+‘ﬂq*)

CRTSIE A (e, 5 = %), Invki <8.5¢+ | _TI +n 1,

k e

%
q qu*'YkTg,

%

19 G = @A - (D (e ) = g (14 (Fe 3) = (1412,
k ’ ! k

*
v
n | < ae2539c+ X n [,

Substituting (4.15) to (4.14) we get

¥ ¥
.16y |1 |.< Qz+z.5—“'—);‘=—€+—“)|n |.
Vi Y- W/ Yoy

Note that k
v Yic- Y 2k
_k - —d? . -—IE-—-I— o= —-—i' —-1- & 4y . < 4u
G YA Gy \ez 49/ 9 T+q K+
where w = .Ja/b (1+./a;b)2 and q = (ﬁ - Ja_)/(ﬁ + ,fa-).
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Thus, {(4.16)} becomesg

@an n | <0z+og+ O+ lm)lﬂ"fk rl
K -

Since |“.Y| < 11¢, the solution of (4.17) is given by
| -
k-1
-1 -
.| <+ g+ a2+ 1ol <1
Y ~ 4y,

Coming back to 'ﬂq we have
k

2 - -
(4.18) fnqkl < 3.5 + 'IanZk; + 44ng k(1 + 4w)E ’; + (12 + 10x)q2k{(l+4n)k T-13(; = LC-
Note that 2
qz('l + 4u) = ("/E_- '\/;) (b+ar‘*/a_b) < 1,
(/o + /)
Thus,
L, % 3.5+ 10 + 4hng? + (12 + 100)q> < 15.5 + 6hu,
and Lim Lk = 3.5.

k

Finally, from (4.13) it follows
+
Iﬂpkl <4g+LC,

which completes the proof of Theorem 4.1, |
5. NUMERICAL STABILITY OF THE CHEBYSHEV METHOD

In this section we deal with numerical stability for the Chebyshev method. Let us briefly recall

that an iterative method for the solution of the linear equation Axtg = 0 is numerically stable 1if it

produces a sequence {x, } such that

5.1 tim sup ol = IR IR [kl + 0¢%

where K can only depend on the size n (see Wozniakowski {1975)).

We propose the following algorithm of the Chebyshev method (see (2,3) and Rutishauser, Stiefel and

others (1959)).

Algorithm 5.1
The Chebyshev method T[a,b], 0 < a and |AJl = b.

X, is a given initial approximatian,

0
for k = 0,1,...

compute g, and Pr-1 by Algorithm 4.1,

(5.2) L Axk-l-g‘,

12



L i"k-\("k"ﬁc-ﬂ - rk)/qk°

(5.3) Fpel ©
Theorem 5.1
Let [xk} be the sequence computed in £1 arithmetic by Algorithm 5.1. 1f

(5.4) fl(Axk+g) = (I+61k)((A+Ek)xk +g)

where \ﬁkﬂ < K1guau and “Blku < Kol Ky 7 K, () for i = 12

then for small G,

4b(59+4K +ﬂK }
s - e ot ). .
min

im sup \hk-au < a1 + 4K)DEC min(a
* m;n
xk-fg and K1 = n,Jr_l,

£ A the con-

(5.5 1
e computation of A

ption (5.4) holds for the grandard algorithm for th
e to sparseness o

Note that agsum|
1963), P- 83y, Du

Kz = 1 for any matrix A and any yector 2 {see Wilkinson (
gtant K1 usually depends on the maximal numbeT of nonzerc elements in rows of A.

Proof

from Theorém 4.1 and (5.3 the computed L ig equal te

(5.6) Faq ™ (T Db+ 2yt O+ g 20 ) © Brgern0 Y
k-1

o (1 + 1)
.3 @
where D; denotes & diagonal matrix and ]b;u f ¢, £ = 1,2,3. After some transform&tions, (5.6) becomes

y - ax ) Vo + 5

5.1 Fe " %k + {py 0%

where
1 1
5.8 B " Do - qkﬁka-+C)k

PSR SR RY il ) ey I+

s NG <00 TR
¢, + el el

QLo+ L + Lk-1)“°k-1n + 3'&1(3 +
Here, as always, & L and L, is defined in TheoTed 4.1. Since Mm 9 = 4* z b/t 2 \%‘V“ and

| (59 + A(I(1H(2)).

1lim Lk - 3.5 we get
1in sup=dE < cllad] Q1 + 8K F ¢ 1lim sup ey |
k - k
Finally, applying Corollary 3.1 we get, © = lim Sup \bkﬂ,
k
4 (144K ED 4 (S HK)
€ 7 min(a, k ) “1“ * Tainda, R ) Ce.
proof. a

(5.5} follows from the last relation which completes the

Hence,
13



From Theorem 5.1 we cap edsily gar (5.1), Since 4 = 2% > 0 then Ih” !h']” = max/hmin' It leadg yg to
the following

then the Chebyshev method jg humerically stable,

Specifically T[a,b] Producey g Sequence {xk] Such thap

G190 Lin sup fy, I e+ g2

ol s Caa sk h”

Where K]| is defined by (5.4),

esur+wpnmnm*umnna+wo)
which giveg (5.10), ]

llo"
2 (see (5.4),

for increasing a the convergence
We want 4, show

Rotation {n (5.10) only
holds; however,

Note thar if b =< L*Amax then for any a » lmin’ (5.9)
of Tfa,h] 4, getting wor » See (2,.93) gpq (3.15),

v By and@k in (5.8)
that the conditjon number of A 1s crucy

se
is sharp which meang

s the estimate (5.10)
al for the 2ccuracy of the solution gf linear
equatiop solving by iteration.

Let uys 2ssume for simpliciey that a =

min
Ek aTe smay) but arbitrary.

and b = Ama

% FTOm (5.4) and (5.6) we know that p! ana
Assume theoretically that Dﬂ =9, ()k = 0 and 1in E. ™ E where
k
W%WWWMMMmm%ﬁanmwmmmwwnc
Une o A"y ang o Kyl B
k
which ig éssentially phe tighthand side of (5 io), Furthermore, if Ek - O,C)k = 0 and 11 D; = D vhare
k
™ oo = sty I llell, s = €, ve baye
. 2
lime = °L;‘@ A7be, o
k

T+ BT/ T

This implieg that evep using the double Precision for rhe evalua

ad [xk].

14
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Thus, (5.10) is sharp. Although, from (5.8) we get

- 1
tin sup [k -all < o[BIl 87| Lim swp [pye - =500 O+ 0@)
k k K k 9 k
and if |b;a - &- Eka” << ;Hd| we can expect a better result.

6. WELL-BEHAVIOR OF THE CHEBYSHEV METHOD

Let us briefly recall that a method for the solution of linear systems Ax+g = 0 is said to be well-

behaved if a slightly perturbed computed approximation y is the exact solution of a slightly perturbed

problem, i.e.,
6.1y (A + 8A)(y + 6y) +g+ bg=0
where |lsall < 8 c,[all, llyll < € e, livll ana Jlsg]l < € <;llell, o5 = e (m).

Let Ay and Ag be matrices defined by

(I + Aydy =y + 6y; (I+Ag)g =g+ &g
and oyl < ¢ <y gl < € ey

Hence, {(6.71) becomes

(6.2) A+ M)y+g=20

where [|aall <Le, '\l for ¢, = ¢, + ¢y + cye

Thus, without loss of generelity, a method is well-behaved if the computed y is the exact solution of

the problem with & slightly perturbed matrix A,

Let r = fl(Ay + g) be the computed residual vector. Assume

(6.3) T = (I+ AL)({A+E)y + g)

vhere oLl < € g and [E|l < € ¢ [AIL

It is easy to verify that a method is well-behaved iff r satisfies

6.4 el < €<y B

Indeed, if (6.2) holds then |[[j<C(c, + ¢} Al Ilrll. If (6.4) holds then
1 *
E - (1 +aD" Py +g=o.

iy

A

+

C(Cﬁ + c7) !hll'

1A

*
Thus, M = E - (I + AI)-]ﬁfﬁE and [|pA]

We wish to consider the well-behavior problem for the Chebyshev method T[a,b]. This means we must

15



verify if the computed vectors r, = fl(Axk+g) satisfies condition (6.4) for large k. From (5.4) we get

k

e el < &¢Il ik

*
where r = Aek.
*
Thus the Chebyshev method is weil-behaved iff 2% satisfies (6.4). Let us assume for simplicity that

*
a=} . andb= Mgy Note thac {rk] satisfies similar recurrence formula as [xk}, see (5.7), i.e.,
s # % o *}/ N
- - -
(6.5) mpy = Tt o (Menly) - A e+ Ag

Applying Theorem 3.1 and Corollary 3,) we have

I

* -1 .
tin sup [l wlhl 1K 1im s fh,
k

Unfortunately, lim sup lhng is of order C!hll'h” and
k

6.6) 1im sup [l | < 6cCt + ax w7 o
g <

Mumerical tests of Algorithm 5.1 confirm that (6.6) is sharp which means that in genmeral the Chebyshev
method 18 not well-behaved, Note that direct methods for small dense systems such as Gaussian elimina-
tion with pivoting, the Householder method and the Gram-Schmidt reorthogonalization method are well-
behaved (sea Wilkinson (1965) for two first, Kielbasinski (1974), Kielbasinski and Jankowska (1974) for
the last). The lack of well-behavior for the Chebyshev method makes the termination of iteration which
is based on {r, } difficult. For instance, if we want to find x_ such that Ikk” = s”rou then, in general,

-1
we can guarantee the exitence of such LN only if ¢ is of order glh{l!h |||b1VHr0
However, it can happen that (6.4) holds. Let us mention only two examples (rather theoretical).
1f {gk} from {6.5) is convergent to £, |[g]| is of order tlia|, then applying Coroilary (3.2) we get
*

limr, = (ﬁiﬁ)g

k k 2
from which the well-behavior holds.

Next if lim sup Ikk-xk_]” <K, lle|]] then from conmdition ({ii) of Corollary (3.2) we have
k
lim sup Ih*il< g2k, + 401 + 4K D[R]l el
k k'YL 3 1
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