NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

NUMERICAL STABILITY OF THE CHEBYSHEV METHOD FOR THE SOLUTION OF LARGE LINEAR SYSTEMS

H. Woźniakowski
Department of Computer Science
Carnegie-Mellon University
(On leave from University of Warsaw)
March 1975

This work was supported in part by the Office of Naval Research under Contract N0014-67-0314-0010, NR 044-422 and by the National Science Foundation under Grant GJ32111.

NUMERICAL STABILITY OF THE CHEBYSHEV METHOD FOR THE SOLUTION OF LARGE LINEAR SYSTEMS

H. Woźniakowski
Department of Computer Science
Carnegie-Mellon University
(On leave from University of Warsaw)
March 1975

ABSTRACT

This paper contains the rounding error analysis for the Chebyshev method for the solution of large linear systems Ax+g=0 where $A=A^*$ is positive definite. We prove that the Chebyshev method in floating point arithmetic is numerically stable, which means that the computed sequence $\{x_k\}$ approximates the solution α such that $\overline{\lim_k}|x_k-\alpha||$ is of order $\zeta|A||\cdot|A^{-1}||\cdot|\alpha||$ where ζ is the relative computer precision. We also point out that in general the Chebyshev method is not well-behaved, which means that x_k , k large, is not the exact solution for a slightly perturbed A or equivalently that the computed residuals $r_k = Ax_k + g$ are of order $\zeta|A|||A^{-1}|||\alpha||$.

1. INTRODUCTION

Direct methods of numerical interest for the solution of linear systems Ax+g=0 are numerically stable. This means that they produce an approximation y of the exact solution α such that $||y-\alpha||$ is of order $\zeta ||A|| ||A^{-1}|| ||\alpha||$ where ζ is the relative computer precision.

It might seem that the numerical accuracy of iterations for solving large linear systems can be better or even not depend on the condition number of A, $k(A) = |A| ||A^{-1}||$. In this paper we consider the Chebyshev method which is one of the most effective iterations for the solution of large linear systems. We show that this method is stable and that the condition number of A is crucial for this iteration.

Moreover direct methods are also well-behaved which means that the computed y is the exact solution for a slightly perturbed A, i.e., (A+E)y+g=0 where |E|| is of order $\zeta||A||$. Unfortunately this does not hold for the Chebyshev method. Thus, from the numerical accuracy point of view direct methods seem to be better than Chebyshev.

In Section 2 we briefly recall the main properties of the Chebyshev method T[a,b] for the solution of large linear systems Ax+g=0 where $A=A^*$ is positive definite, shortly denoted by $A=A^*>0$. In the classical case, the interval [a,b] contains all eigenvalues of A. We consider the case where $b\geq |A|$ and a is an arbitrary positive number. We also propose an extension of the Chebyshev method for singular matrices $A=A^*\geq 0$.

Section 3 deals with a perturbed Chebyshev method which generates a sequence $\{x_k\}$ such that $(1.1) \quad x_{k+1} = x_k + \{p_{k-1}(x_k^- x_{k-1}) - r_k\}/q_k + \xi_k, \quad r_k = Ax_k + g,$

for suitable p_{k-1} and q_k . We express the solution of (1.1) in terms of ξ_k and prove some asymptotic results.

In Section 4 we present an algorithm for the computation of \mathbf{p}_{k-1} and \mathbf{q}_k . We prove that this

algorithm in floating point arithmetic computes p_{k-1} and q_k with high relative precision.

Section 5 deals with the proof of numerical stability of the Chebyshev method. We prove that $T[a,b] \text{ generates } \{x_k\} \text{ such that } \overline{\lim_k} |x_k-\alpha|| \text{ is of order } \zeta |A|| ||A^{-1}|| ||\alpha|| \text{ whenever b/a is of order } ||A|| ||A^{-1}||.$ In Section 6 we discuss well-behavior of the Chebyshev method. In general, the residual vectors in the Chebyshev method $r_k = Ax_k + g$ are of order $\zeta ||A|| ||A^{-1}|| ||\alpha|| \text{ which contradicts well-behavior.}$ However, sometimes r_k can be or order $\zeta ||A|| ||\alpha||$. Such a case yields well-behavior.

2. CHEBYSHEV METHOD

Let us consider the numerical solution of a large linear system

$$(2.1)$$
 Ax+g = 0

where $A = A^* > 0$ is a given complex nxn matrix and g is a given nxl complex vector. Suppose A is a sparse matrix of high order. Such systems commonly arise in the numerical solution of partial differential equations. Suppose we can only compute y = Ax for any vector x. Due to the sparseness of A the vector y can be computed in time and storage proportional to n rather than n^2 . For sufficiently large n, (2.1) can be solved only by iteration. Let x_0 be an arbitrary initial approximation of the solution $\alpha = A^{-1}g$ and let

$$(2.2) \quad x_0 - \alpha = \sum_{j=1}^m c_j v_j$$

where v_j are eigenvectors of A associated with eigenvalues λ_j ,

$$Av_j = \lambda_j v_j, (v_i, v_j) = \delta_{ij}$$

and without loss of generality we can assume $c_j \neq 0$, for $1 \leq j \leq m$ and $\lambda_1 < \lambda_2 < \ldots < \lambda_m$, for $m \leq n$. We consider a class of iterative methods which generate the sequences $\{x_k\}$ of the approximation of α such that

(2.3)
$$x_k - \alpha = W_k(A)(x_0 - \alpha)$$

where W_k is a polynomial of degree $\leq k$. Since we only do know $A_{\Omega}+g=0$ than to eliminate α from (2.3) we have to assume

$$(2.4) W_{\nu}(0) = 1.$$

Remark

Another motivation of (2.3) and (2.4) is to consider a class of iterative methods such that

$$x_k = W_k(A)x_0 + U_k(A)g$$

where W_k and U_k are arbitrary polynomials of degree $\leq k$. Assume that if $x_0 = \alpha$ then $x_k \equiv \alpha$ for any α . Then $W_k(x) = U_k(x) \cdot x + 1$ and

$$x_k^{-\alpha} = (I+U_k(A)A)(x_0^{-\alpha}) = W_k(A)(x_0^{-\alpha})$$

which is equivalent to (2.3) and (2.4).

From (2.3) we get

$$\left|\left|\mathbf{x}_{\mathbf{k}}^{-\alpha}\right|\right|_{2} \leq \left|\left|\mathbf{w}_{\mathbf{k}}^{(\mathbf{A})}\right|\right|_{2} \left|\left|\mathbf{x}_{0}^{-\alpha}\right|\right|_{2} \leq \left|\left|\mathbf{w}_{\mathbf{k}}^{(\mathbf{A})}\right|\right| \left|\left|\mathbf{x}_{0}^{-\alpha}\right|\right|_{2}$$

Where

(2.5)
$$|\mathbf{w}_{k}|| = \max_{\lambda \in [a,b]} |\mathbf{w}_{k}(\lambda)|$$
 and $[\lambda_{1},\lambda_{m}] \subset [a,b]$.

Let $P_{L}(0,1)$ denote a class of polynomials P of degree $\leq k$ such that P(0) = 1.

In the Chebyshev method T[a,b], the W_k are defined as the polynomials of the smallest possible norms (2.5), i.e.,

(2.6)
$$\|W_k\| = \inf_{P \in P_{3r}(0,1)} \|P\|$$
,

and the solution of (2.6) is given by

(2.7)
$$W_k(z) = T_k(f(z))/T_k(f(0))$$

where $f(z) = \frac{b+a}{b-a} - 2\frac{z}{b-a}$ and T_k denotes the Chebyshev polynomial of the first kind of degree k. From (2.7) it follows that in the Chebyshev method T[a,b] we get

$$(2.8) \quad ||x_{k} - \alpha||_{2} \leq 2 \left(\frac{\sqrt{b} - \sqrt{a}}{\sqrt{b} + \sqrt{a}} \right)^{k} ||x_{0} - \alpha||_{2}$$

for all k whenever $\{\lambda_{1}^{},\lambda_{m}^{}\}\subset [a,b],$ and

(2.9)
$$x_{k+1} = x_k + \{p_{k-1}(x_k - x_{k-1}) - r_k \} q_k, \quad k = 0,1,...,$$

where $r_k = Ax_k + g$ and

(2.10)
$$p_{-1} = 0$$
, $p_{k-1} = \frac{b-a}{4} \cdot \frac{t_{k-1}}{t_k}$,

$$(2.11) \quad q_0 = \frac{b+a}{2}, \ q_k = \frac{b-a}{4} \frac{t_{k+1}}{t_k}, \quad t_k = T_k(f(0)), \quad k \ge 1.$$

(See, for instance, Stiefel (1958) and Rutishauser and Stiefel (1959).)

Usually, the eigenvalues λ_1 and λ_m from (2.2) are equal to the smallest eigenvalue λ_{min} , and to the

largest eigenvalue, λ_{\max} , of A. Hence, the best convergence in T[a,b] is for $a=\lambda_{\min}$ and $b=\lambda_{\max}$. However, in numerical practice λ_{\min} and λ_{\max} are known only for a few problems. In many cases we can easily find $b \geq \lambda_{\max}$ (setting for instance b=|A|| where $||\cdot||$ is any matrix norm, see Young (1971), page 32). A much harder problem is to find a suitable approximation of λ_{\min} . Without knowledge of λ_{\min} one can use the Chebyshev method T[a,b] for any values of a>0 and $b\geq \lambda_{\max}$. Then instead of (2.8) we get

(2.12)
$$||\mathbf{x}_{k} - \alpha|| \le 2q (\lambda_{\min})^{k} ||\mathbf{x}_{0} - \alpha||_{2}$$

where

(2.13)
$$q(\lambda) = \frac{\sqrt{b-\lambda} + \sqrt{(a-\lambda)}_{+}}{\sqrt{b-\lambda} - \sqrt{(a-\lambda)}_{+}} \frac{\sqrt{b} - \sqrt{a}}{\sqrt{b} + \sqrt{a}}$$

for $(a-\lambda)_+ = a-\lambda$ if $a-\lambda \ge 0$ and zero otherwise.

Note that

(i) if $\lambda \in (0,a)$ then $q(\lambda) < 1$ which means the convergence of T[a,b], however for $\lambda \to 0^+$, $q(\lambda) \nearrow 1^-$,

(ii) if
$$a \le \lambda \le b$$
 then $q(\lambda) = \frac{\sqrt{b} - \sqrt{a}}{\sqrt{b} + \sqrt{a}}$,

(iii) if $\lambda<0$ then $q(\lambda)>1$. This implies that T[a,b] is divergence whenever λ_1 from (2.2) is negative.

One can also consider the Chebyshev method for a singular matrix $A = A^* \ge 0$. In such case by α we mean the normal solution of Ax+g = 0, i.e., the vector of the minimal spectral norm which minimizes the spectral norm of the residual. Let $g = g_1 + g_2$ where $Ag_1 = 0$ and g_1 is orthogonal to g_2 . Note that $A\alpha+g_2 = 0$. It is straightforward to verify that $\{x_k\}$ defined by (2.9) in T[a,b] for a > 0 and $b \ge \lambda_{max}$, satisfies

(2.14)
$$x_k^{-\alpha} = W_k(A)(x_0^{-\alpha}) + W_k'(0)g_1$$

for W_L from (2.7) and

$$W_k'(0) = \frac{k}{\sqrt{ab}} \cdot \frac{1-q(a)^{2k}}{1+q(a)^{2k}}$$

Let us rewrite (2.2) as

$$x_0^{-\alpha} = c_1^{v_1} + \sum_{j=1}^{n} c_j^{v_j}$$

where $Av_j = \lambda_j v_j$, $\lambda_1 = 0$, $0 < \lambda_2 < \lambda_3 < \ldots < \lambda_m$, $(v_i, v_j) = \delta_{i,j}$. Note that the normal solution α is orthogonal to v_1 . Let us discuss the two cases.

CaseI. Let $g_1 = 0$. This means that Ax+g = 0 is solvable. From (2.14) it follows

$$||\mathbf{x}_{k} - \alpha||_{2} \le ||\mathbf{c}_{1}|| + 2 ||\mathbf{q}(\lambda_{2})|^{k} ||\mathbf{x}_{0} - \alpha||_{2}.$$

Thus, if $c_1 = 0$ (which holds for instance if $x_0 = 0$) the Chebyshev method is convergent and the best possible speed of convergence is for $a = \lambda_2$, i.e.,

$$\left|\left|\mathbf{x}_{k}-\alpha\right|\right|_{2} \leq 2 \left(\frac{\sqrt{b}-\sqrt{\lambda_{2}}}{\sqrt{b}+\sqrt{\lambda_{2}}}\right)^{k}\left|\left|\mathbf{x}_{0}-\alpha\right|\right|_{2}.$$

Case II. Let $g_1 \neq 0$. In that case the iterative process is divergent, although $\lim_k r_k = g_1$. This suggests constructing $y_k = x_k - W_k^{\dagger}(0)r_k$. Then

$$y_{k}^{-\alpha} = W_{k}^{(A)}(x_{0}^{-\alpha}) - W_{k}^{(0)}W_{k}^{(A)}A(x_{0}^{-\alpha})$$

and for x0 = 0 we get

$$||y_k - \alpha|| \le 2q(\lambda_2)^k ||\alpha|| + \frac{2k}{\sqrt{ab}} \frac{1 - q(a)^{2k}}{1 + q(a)^{2k}} ||\alpha|| + \frac{2k}{\sqrt{ab}} ||\alpha|| + \frac{2k}{$$

which once more implies the convergence of the Chebyshev method.

3. PERTURBED CHEBYSHEV METHOD

Recall we consider a large linear system

$$Ax+g = 0$$

where $A = A^* > 0$. We want to solve it by the Chebyshev method T[a,b] where it is only assumed that $b \ge \lambda_{\max}$ and a > 0. The Chebyshev method generates a sequence $\{x_k\}$ defined by (2.9), (2.10) and (2.11). However a sequence computed in floating point arithmetic can at best satisfy a perturbed relation (2.9), i.e.

(3.1)
$$x_{k+1} = x_k + \{p_{k-1}(x_k - x_{k-1}) - r_k\}/q_k + \xi_k$$

for suitable vectors ξ_k . A form of ξ_k will be discussed in Section 5. In order to analyze the Chebyshev method in f1 arithmetic we start to solve (3.1) for an arbitrary $\{\xi_k\}$ and find some asymptotical properties of the perturbed sequence $\{x_k\}$.

Let $e_k = x_k - \alpha$ be the error of the kth approximant. Then from (3.1) we get

(3.2)
$$e_{k+1} = e_k + \{p_{k-1}(e_k - e_{k-1}) - Ae_k\}/q_k + g_k$$

Theorem 3.1

Let $\{\xi_k\}$ be an arbitrary sequence and let $\{x_k\}$ be a perturbed sequence generated by T[a,b] defined by (3.1), (2.10) and (2.11). Then

(3.3)
$$e_{k+1} = W_{k+1}(A)e_0 + \sum_{i=0}^{k} w_{k,i} \{ (2-\beta_{i+1})W_{k-i}(A) + (\beta_{i+1}-1)R_{k-i}(A) \} \xi_i$$

where

(3.4)
$$\beta_k = 1 + \frac{p_{k-1}}{q_k} = \frac{q_0}{q_k} = 2 \frac{b+a}{b-a} \frac{t_k}{t_{k+1}}, \quad 1 \le \beta_k \le 2,$$

$$(3.5) \quad \varkappa_{k,i} = \bigcap_{i=1}^{k-i-1} \frac{\beta_{i+i+1}}{\beta_{i}} \quad (\varkappa_{k,k} = \varkappa_{k,k-1} = 1), \frac{1}{2} < \varkappa_{k,i} \le 1, \lim_{k \to i \to \infty} \varkappa_{k,i} = \frac{(\sqrt{b} + \sqrt{a})^{2}}{2(b+a)},$$

(3.6)
$$W_k(z) = \frac{T_k(f(z))}{t_k}$$
, $R_k(z) = \frac{U_k(f(z))}{t_k}$, $f(z) = \frac{b+a}{b-a} - 2\frac{z}{b-a}$

and T_k , U_k denote the Chebyshev polynomials of the first and second kind of degree k, respectively.

Proof

Induction on k. Let k = 0. Since $W_0 = R_0 = 1$ and $W_1(z) = 1 - \frac{1}{q_0}z$, $R_1 = 2W_1$, then (3.3) is equal to

$$e_1 = W_1(A)e_0 + \kappa_{0,0}\{2-\beta_1 + \beta_1-1\}\xi_0 = e_0 - \frac{1}{q_0} r_0 + \xi_0$$

which is equivalent to (3.2).

Assume now that (3.3) holds for all $i \le k$. Let $B_k = \beta_k I - \frac{1}{q_k} A$, $W_k = W_k(A)$ and $R_k = R_k(A)$. Note that (3.4) easily follows from (2.10) and (2.11) and it is easy to verify that

(3.7)
$$W_{k+1} = B_k W_k + (1-\beta_k) W_{k-1}$$
,

(3.8)
$$B_k = \beta_k W_1$$
.

From (3.2), (3.3), (3.4), (3.7) and (3.8) we get

$$\begin{split} \mathbf{e}_{k+1} &= \{(1 + \frac{\mathbf{p}_{k-1}}{\mathbf{q}_{k}})\mathbf{I} - \frac{1}{\mathbf{q}_{k}}\mathbf{A}\}\mathbf{e}_{k} - \frac{\mathbf{p}_{k-1}}{\mathbf{q}_{k}}\mathbf{e}_{k-1} + \mathbf{g}_{k} = \mathbf{B}_{k}\{\mathbf{W}_{k}\mathbf{e}_{0} + \sum_{i=0}^{k-1} \mathbf{w}_{k-1,i}\{(2 - \beta_{i+1})\mathbf{W}_{k-1-i} + (\beta_{i+1} - 1)\mathbf{g}_{k-1-i}\}\mathbf{g}_{i}\} + (1 - \beta_{k})\{\mathbf{W}_{k-1}\mathbf{e}_{0} + \sum_{i=0}^{k-2} \mathbf{w}_{k-2,i}\{(2 - \beta_{i+1})\mathbf{W}_{k-2-i} + (\beta_{i+1} - 1)\mathbf{g}_{k-2-i}\}\mathbf{g}_{i}\} + \\ &+ \mathbf{g}_{k} = \mathbf{W}_{k+1}\mathbf{e}_{0} + \mathbf{g}_{k} + \mathbf{B}_{k}\mathbf{g}_{k-1} + \sum_{i=0}^{k-2} \{(2 - \beta_{i+1})\{\mathbf{w}_{k-1,i}\mathbf{B}_{k}\mathbf{w}_{k-1-i} + \mathbf{w}_{k-2,i}(1 - \beta_{k})\mathbf{w}_{k-2-i}\} \\ &+ (\beta_{i+1} - 1)\{\mathbf{w}_{k-1,i}\mathbf{B}_{k}\mathbf{w}_{k-1-i} + \mathbf{w}_{k-2,i}(1 - \beta_{k})\mathbf{w}_{k-2-i}\}\mathbf{g}_{i}. \end{split}$$

We want to verify that

(3.9)
$$B_k = \kappa_{k,k-1} \{ (2-\beta_k) W_1 + (\beta_k-1) R_1 \},$$

$$(3.10) (2-\beta_{i+1})^{\{\mu_{k-1,i} \mid B_k \mid W_{k-1+i} \mid + \mu_{k-2,i}(1-\beta_k)W_{k-2-i}\}} + (\beta_{i+1}-1)^{\{\mu_{k-1,i} \mid B_k \mid R_{k-1,i} \mid + \mu_{k-2,i}(1-\beta_k)R_{k-2-i}\}}$$

$$= \mu_{k,i}^{\{(2-\beta_{i+1})W_{k-i} \mid + (\beta_{i+1}-1)R_{k-i}\}}, \quad 0 \leq i \leq k-2.$$

Since $n_{k,k-1} = 1$ and $R_1 = 2W_1$, (3.9) follows from (3.8). To prove (3.10) we use (3.7) which holds for W_{k-1} and R_{k-1} . By comparing the coefficients at AW_{k-1-1} , W_{k-1-1} , W_{k-2-1} , AR_{k-1-1} , R_{k-1-1} and R_{k-2-1} we get three equations on $n_{k,1}$,

(3.11)
$$\kappa_{k,i}/q_{k-i-1} = \kappa_{k-1,i}/q_{k}$$

(3.12)
$$\mu_{k,i}^{\beta_{k-i-1}} = \mu_{k-1,i}^{\beta_{k}}$$

(3.13)
$$\kappa_{k,i}(1-\beta_{k-i-1}) = \kappa_{k-2,i}(1-\beta_k)$$
.

From (3.5) and (3.4) it follows

$$\frac{\kappa_{k,i}}{\kappa_{k-1,i}} = \frac{\beta_k}{\beta_{k-i-1}} = \frac{q_{k-i-1}}{q_k}$$

which gives (3.11) and (3.12). Next, observe that from (3.4) and (2.10) we get

$$\frac{\varkappa_{k,i}}{\varkappa_{k-2,i}} = \frac{\beta_k \beta_{k-1}}{\beta_{k-1-i} \beta_{k-2-i}} = \frac{t_k}{t_{k+1}} \cdot \frac{t_{k-1-i}}{t_{k-2-i}}; \quad \frac{1-\beta_k}{1-\beta_{k-i-1}} = \frac{p_{k-1}}{q_k} \cdot \frac{q_{k-i-1}}{p_{k-i-2}} = \frac{t_{k-1}}{t_{k+1}} \cdot \frac{t_{k-i}}{t_{k-i-2}},$$

which proves (3.13) and completes the inductive proof of (3.3). To prove the limit of $\kappa_{k,i}$ note that

$$\kappa_{k,i} = \frac{t_{i+2} t_{k-i}}{t_{k+1} t_{1}} = \frac{1}{1+q(a)^{2}} \frac{\frac{2(i+2)}{(1+q(a))} \frac{2(k-i)}{(1+q(a))}}{\frac{1+q(a)}{2(k+1)}} \bigvee \frac{(\sqrt{b} + \sqrt{a})^{2}}{2(b+a)} \ge \frac{1}{2}.$$

where

$$q(a) = \frac{\sqrt{b} - \sqrt{a}}{\sqrt{b} + \sqrt{a}}.$$

This completes the proof of Theorem 3.1.

Using Theorem 3.7 we prove a bound on the perturbed errors. Recall that λ is the smallest eigenvalue of A and $q(\lambda)$ is defined by (2.13).

Corollary 3.1

(3.14)
$$\delta = \frac{\sqrt{b-\lambda} - \sqrt{(a-\lambda)}_+}{\sqrt{b-\lambda} + \sqrt{(a-\lambda)}_+}, \quad \eta_k = \frac{1-\delta^2(k+1)}{1-\delta^2} \quad \text{for } k = 0, 1, \dots, \text{ and } q = q(\lambda_{\min}),$$

Then

(3.15)
$$||\mathbf{e}_{k+1}|| \le 2q^{k+1}||\mathbf{e}_{0}|| + 2\sum_{i=0}^{k} q^{k-i} \eta_{k-i}||\mathbf{g}_{i}||,$$

$$(3.16) \quad e = \lim_{k} \sup \left| \left| e_{k} \right| \right| \leq \frac{2 - q(a) \delta}{2 \min(a, \lambda_{\min})} \left(\sqrt{b} + \sqrt{a} \right)^{2} \xi \leq 4 \frac{b}{\min(a, \lambda_{\min})} \xi$$

where $\xi = \lim_{k} \sup_{k} \|\xi_{k}\|$.

Proof

we get

First of all observe that

$$1 \le \eta_k \le k+1$$
 and $\eta_k = k+1$ whenever $\lambda_{\min} \ge a$, $||W_k|| \le 2q^k$ and $||R_k|| \le 2q^k$ η_k .

From (3.3), (3.4) and (3.5) it follows

$$\|\mathbf{e}_{k+1}\| \le 2q^{k+1}\|\mathbf{e}_{0}\| + \sum_{i=0}^{k} \max(\|\mathbf{w}_{k-i}\|, \|\mathbf{R}_{k-i}\|) \|\mathbf{g}_{i}\| \le 2q^{k+1}\|\mathbf{e}_{0}\| + 2\sum_{i=0}^{k} q^{k-i} \eta_{k-i} \|\mathbf{g}_{i}\|$$

which proves (3.15).

Let ϵ be any positive number. There exists k_0 such that $\|\xi_k\| \le \xi + \epsilon$ for all $k > k_0$. From (3.15)

$$e \leq 2 \lim_{k} \sup_{i=0}^{k_0} \left(\sum_{i=0}^{k-i} \eta_{k-i} ||\xi_i|| + \sum_{i=k_0+1}^{k} q^{k-i} \eta_{k-i} (\xi + \epsilon) \right).$$

Note that $q^{k-i}\eta_{k-i} \rightarrow 0$ for $i = 0,1,...,k_0$ and

$$\lim_{k} \sup_{i=k_0+1} \sum_{q^{k-i}}^{k} q^{k-i} \eta_{k-i} = \sum_{i=0}^{\infty} q^{i} \eta_{i} = \frac{1}{1-\delta^{2}} (\frac{1}{1-q} - \frac{\delta^{2}}{1-q(a)\delta}) = \frac{(\sqrt{b} + \sqrt{a})^{2} (2-q(a)\delta)}{4 \min(a, \lambda_{\min})} = \frac{2b}{\min(a, \lambda_{\min})}$$

which proves (3.16)

Corollary (3.2)

(i) If
$$\lim_{k} \xi_{k} = \xi$$
 then $\lim_{k} e_{k} = \left(\frac{\sqrt{b} + \sqrt{a}}{2}\right)^{2} A^{-1} \xi$,

(ii) If
$$\limsup_{k} \|x_k^{-x}\| = \kappa$$
 then $\limsup_{k} \|Ae_k^{-q}\| \le \kappa (b+a)$

Proof

Note that
$$\lim_{k \to \infty} q_k = q^* = \left(\frac{\sqrt{b + \sqrt{a}}}{2}\right)^2$$
. Let $z_k = e_k - q^*A^{-1}\xi$. From (3.2) it follows

$$z_{k+1} = z_k + \{p_{k-1}(z_k^{-2}z_{k-1}) - Az_k\}/q_k + \xi_k - \xi + (1-q/q_k)\xi.$$

Applying Corollary 3.1 and Theorem 3.1 to z_k we get

$$\limsup_{k} ||z_{k}|| \le 4 \frac{b}{\min(a, \lambda_{\min})} \lim_{k} \sup_{k} ||\xi_{k} - \xi + (1 - q/q_{k})\xi|| = 0$$

which proves conclusion (i).

To prove conclusion (ii) we rewrite (3.2) as follows:

$$Ae_k - q_k \xi_k = p_{k-1}(e_k - e_{k-1}) - q_k(e_{k+1} - e_k).$$

Since
$$x_k^-x_{k-1} = e_k^-e_{k-1}$$
 and $\lim_k p_k = p^* = \left(\frac{\sqrt{b} - \sqrt{a}}{2}\right)^2$ then

$$\lim_{k} \sup_{k} \|Ae_{k} - q_{k} \xi_{k}\| \le (q^{*} + p^{*}) \kappa = \kappa(b+a)$$

which completes the proof of Corollary 3.2.

4. ALGORITHM OF Pk-1 AND qk

In this section we deal with the computation of p_{k-1} and q_k which appear in the Chebyshev method T[a,b] in (2.9). Recall that

(4.1)
$$p_{-1} = 0$$
, $p_{k-1} = \frac{b-a}{4} \frac{t_{k-1}}{t_k}$, $\lim_{k} p_k = p^* = \left(\frac{\sqrt{b} - \sqrt{a}}{2}\right)^2$,

(4.2)
$$q_0 = \frac{a+b}{2}$$
, $q_k = \frac{b-a}{4} \frac{t_{k+1}}{t_k}$, $\lim_{k \to \infty} q_k = q^* = \left(\frac{\sqrt{b} + \sqrt{a}}{2}\right)^2$,

where
$$t_k = T_k \left(\frac{b+a}{b-a}\right)$$
, $k \ge 1$.

Let

(4.3)
$$c = \frac{a+b}{2}$$
, $d = \left(\frac{b-a}{4}\right)^2$ and $\gamma_k = q^* - q_k$ for $k \ge 0$.

From the recurrence formula of the Chebyshev polynomials it follows

(4.4)
$$q_k = \frac{b-a}{4} 2(\frac{b+a}{b-a} t_k - t_{k-1})/t_k = c - d/q_{k-1}, \quad k \ge 2.$$

From (4.2), (4.3) and (4.4) we get

$$\gamma_k = q^* - c + d/q_{k-1} = d/q_{k-1} - d/q^* = d \gamma_{k-1}/(q_{k-1}q^*), k \ge 2.$$

Note that (4.1) and (4.2) gives $p_{k-1}q_{k-1} = d$, $k \ge 2$.

This suggests the following algorithm for the computation of p_{k-1} and q_k .

Algorithm 4.1

(4.5)
$$c = \frac{a+b}{2}$$
, $d = \left(\frac{b-a}{4}\right)^2$, $q^* = \frac{a+b+2\sqrt{ab}}{4}$,

$$(4.6)$$
 $p_1 = 0, q_0 = c,$

(4.7)
$$p_0 = \frac{2d}{c}$$
, $q_1 = \frac{a+b}{4} + \frac{ab}{a+b}$, $y_1 = \frac{2\sqrt{ab}}{a+b} \frac{d}{q^*}$,

(4.8)
$$p_{k-1} = d/q_{k-1}$$

(4.9)
$$\gamma_k = P_{k-1} \gamma_{k-1}/q^*$$
,

(4.10)
$$q_k = q^* - \gamma_k$$
.

Let us consider the above algorithm in t digit floating point arithmetic, fl, and let rd(x) denote the numerical representation of any real number x and fl(xOy) denote the computed result of an arithmetic operation $Ooldsymbol{O} \in \{+,-,/,\circ\}$. Then

$$rd(x) = x(1+\epsilon), |\epsilon| = |\epsilon(x)| \le \zeta.$$

for x = rd(x) and y = rd(x),

$$fl(x\Box y) = (x\Box y)(1+\epsilon), |\epsilon| = |\epsilon(x,y,\Box) \le \zeta$$

where $\zeta = 2^{-t}$.

We also assume that for x = rd(x), $f1(\sqrt{x}) = \sqrt{x}(1-\epsilon)$, $|\epsilon| \le \zeta$. (See Wilkinson (1963).) To simplify the further estimations of roundoff errors we shall use the relation \geq , i.e., if a(t) and b(t) are bounded functions of t, $t \ge t_0 > 0$ then $a(t) \ge b(t)$ iff there exists K independent of t such that

$$a(t) = b(t)(1+\epsilon(t)2^{-t})$$
 where $|\epsilon(t)| \le K$ for $t \ge t_0$.

Next a(t) < b(t) iff $a(t) \le b(t)$ or $a(t) \ge b(t)$. (For more details see e.g. Wozniakowski (1974).)

Let us denote any computed value x in Algorithm 4.1 by \tilde{x} and let $\tilde{x} = x(1+\eta_{\tilde{x}})$. Thus $\eta_{\tilde{x}}$ is the relative error of x.

Theorem 4.1

Let a = rd(a) and b = rd(b). The computed values \tilde{p}_k and \tilde{q}_k are equal to

(4.11)
$$\tilde{p}_{k} = p_{k}(1+\eta_{p_{k}}), |\eta_{p_{k}}| < (4+L_{k})\zeta,$$

$$(4.12) \quad \tilde{q}_{k} = q_{k}(1+\eta_{q_{k}}), \quad |\eta_{q_{k}}| \leq L_{k} \zeta,$$

where
$$0 \le L_k \le 15.5 + 64 \pi$$
 for $\kappa = \sqrt{a/b}/(1+\sqrt{a/b})^2$ and $\lim_{h \to \infty} L_k = 3.5$

Theorem 4.1 means that we compute p_k and q_k with high relative precision for all values of a and b. There are some other algorithms for computing p_k and q_k but usually for these algorithms one can prove (4.11) and (4.12) with L_k which is proportional to b/a. (For instance, an algorithm based on (4.4) and (4.8).)

Proof

We verify (4.11) and (4.12) for k = 0 and k = 1. From (4.5), (4.6) and (4.7) we get

 $\tilde{q}_0 = \tilde{c} = \frac{a+b}{2}(1+\epsilon_1) = c(1+\eta_c), \quad |\eta_c| \le \zeta,$

$$\vec{a} = \frac{\left(\frac{(b-a)(1+\epsilon_2)}{4}\right)^2 (1+\epsilon_3) = d(1+\eta_d), \quad |\eta_d| \leq 3_{\zeta},}{\vec{a}^* = \frac{(a+b)(1+\epsilon_1) + 2\sqrt{ab(1+\epsilon_4)}(1+\epsilon_5)}{4} (1+\epsilon_6) = q^* \left(1 + \frac{\epsilon_1(a+b) + \sqrt{1+\epsilon_4}(1+\epsilon_5) - 1\sqrt{2ab}}{a+b + 2\sqrt{ab}}\right) (1+\epsilon_6) = q^*(1+\eta_{q^*}), \quad |\eta_{q^*}| \leq \frac{5}{2}\zeta,$$

$$\begin{split} \widetilde{p}_{0} &= \frac{2\widetilde{d}}{\widetilde{c}}(1+\varepsilon_{7}) = \frac{2d}{c}\frac{(1+\eta_{d})}{(1+\eta_{c})}(1+\varepsilon_{7}) = p_{0}(1+\eta_{p_{0}}), \quad |\eta_{p_{0}}| \leq 5\zeta, \\ \widetilde{q}_{1} &= \frac{\left(a+b\right)(1+\varepsilon_{1})}{4} + \frac{ab(1+\varepsilon_{4})}{(a+b)(1+\varepsilon_{1})}(1+\varepsilon_{8}) + \left(1+\varepsilon_{9}\right) = q_{1}(1+\eta_{q_{1}}), \quad |\eta_{q_{1}}| \leq 4\zeta. \\ \widetilde{q}_{1} &= \frac{2\sqrt{ab(1+\varepsilon_{4})}(1+\varepsilon_{5})d(1+\eta_{d})(1+\varepsilon_{b})}{(a+b)(1+\varepsilon_{1})q^{*}(1+\eta_{d})(1+\varepsilon_{b})} + \left(1+\varepsilon_{12}\right) = q_{1}(1+\eta_{q_{1}}), \quad |\eta_{q_{1}}| \leq 11\zeta. \end{split}$$

where $|\epsilon_i| \leq \zeta$ for i = 1, 2, ..., 12.

Hence (4.11) and (4.12) hold for k = 0 and 1. Let us analyze (4.8), (4.9) and (4.10). We get

$$(4.13) \quad \tilde{p}_{k-1} = \frac{d(1+\eta_d)}{q_{k-1}(1+\eta_{q_{k-1}})} \quad (1+\epsilon_{k,1}) = p_{k-1}(1+\eta_{p_{k-1}}), \quad |\eta_{p_{k-1}}| \leq 4\zeta + |\eta_{q_{k-1}}|,$$

$$(4.14) \quad \tilde{v}_k = \frac{p_{k-1}(1+\eta_{p_{k-1}})\gamma_{k-1}(1+\eta_{q_{k-1}})}{q^*(1+\eta_q)} \quad (1+\epsilon_{k,2}) = \gamma_k(1+\eta_{\gamma_k}), \quad |\eta_{\gamma_k}| \leq 8.5\zeta + |\eta_{\gamma_{k-1}}| + |\eta_{q_{k-1}}|,$$

$$(4.15) \quad \tilde{q}_k = (q(1+\eta_q) - \gamma_k(1+\eta_{\gamma_k})) \quad (1+\epsilon_{k,3}) = q_k \left(1+\frac{q^*\eta_q + \gamma_k \eta_{\gamma_k}}{q_k}\right) \quad (1+\epsilon_{k,3}) = q_k (1+\eta_q),$$

$$|\eta_{q_k}| \leq (1+2.5\frac{q}{q_k})\zeta + \frac{\gamma_k}{q_k} |\eta_{\gamma_k}|.$$

Substituting (4.15) to (4.14) we get

$$(4.16) \quad |\eta_{v_{k}}| \leq \left(12 + 2.5 \frac{\gamma_{k-1}}{q_{k-1}}\right) \zeta^{-\frac{1}{2}} \left(1 + \frac{\gamma_{k}}{q_{k}}\right) |\eta_{\gamma_{k-1}}|.$$

Note that

$$\frac{Y_{k}}{q_{k}} = \frac{d}{q_{k}q^{*}} \cdot \frac{Y_{k-1}}{q_{k-1}} = \left(\prod_{i=2}^{k} \frac{d}{q_{i}q^{*}}\right) \frac{Y_{1}}{q_{1}} = 4_{k} \frac{q^{2k}}{1+q^{2k+2}} \le 4_{k}$$

$$\kappa = \sqrt{a/b} \left(1 + \sqrt{a/b}\right)^{2} \text{ and } q = (\sqrt{b} - \sqrt{a})/(\sqrt{b} + \sqrt{a}).$$

11

where

Thus, (4.16) becomes

(4.17)
$$|\eta_{\gamma_{i\kappa}}| \leq (12 + 10\kappa)\zeta + (1 + 4\kappa)|\eta_{\gamma_{k-1}}|$$

Since $|\eta_{\gamma_1}| < 11$ C, the solution of (4.17) is given by

$$|\eta_{\gamma_k}| < (1 + 4\kappa)^{k-1} |1| + (12 + 10\kappa) \frac{(1+4\kappa)^{k-1} - 1}{4\kappa}$$

Coming back to η_{q_L} we have

$$|\eta_{q_k}| \lesssim 3.5\zeta + 10\pi q^{2k}\zeta + 44\pi q^{2k}(1+4\pi)^{k-1}\zeta + (12+10\pi)q^{2k}\{(1+4\pi)^{k-1}-1\}\zeta = L_k\zeta.$$

Note that

$$q^2(1 + 4\pi) = \frac{(\sqrt{b} - \sqrt{a})^2(b+a+4\sqrt{ab})}{(\sqrt{b} + \sqrt{a})^4} < 1.$$

Thus,

$$L_k \le 3.5 + 10\pi + 44\pi q^2 + (12 + 10\pi)q^2 \le 15.5 + 64\pi,$$

and

Finally, from (4.13) it follows

$$|\eta_{\mathbf{p}_{\mathbf{k}}}| \lesssim 4\zeta + L_{\mathbf{k}}\zeta$$

which completes the proof of Theorem 4.1.

5. NUMERICAL STABILITY OF THE CHEBYSHEV METHOD

In this section we deal with numerical stability for the Chebyshev method. Let us briefly recall that an iterative method for the solution of the linear equation Ax+g = 0 is numerically stable if it produces a sequence $\{x_k\}$ such that

(5.1)
$$\limsup_{k} ||x_{k} - \alpha|| \le \zeta K ||A|| ||A^{-1}|| ||\alpha|| + O(\zeta^{2})$$

where K can only depend on the size n (see Wozniakowski (1975)).

We propose the following algorithm of the Chebyshev method (see (2.3) and Rutishauser, Stiefel and others (1959)).

Algorithm 5.1

The Chebyshev method T[a,b], 0 < a and $|A|| \le b$.

x₀ is a given initial approximation,

for k = 0, 1, ...

compute q_k and p_{k-1} by Algorithm 4.1,

(5.2)
$$r_k := Ax_k + g;$$

Proof

We verify (4.11) and (4.12) for k = 0 and k = 1. From (4.5), (4.6) and (4.7) we get

$$\begin{split} \vec{q}_0 &= \vec{c} = \frac{a+b}{2}(1+\epsilon_1) = c(1+\eta_c), \quad |\eta_c| \leq \zeta, \\ \vec{q} &= \frac{\left((b-a)(1+\epsilon_2)\right)^2}{4}(1+\epsilon_3) = d(1+\eta_d), \quad |\eta_d| \leq 3_\zeta, \\ \vec{q}^* &= \frac{(a+b)(1+\epsilon_1) + 2\sqrt{ab(1+\epsilon_4)}(1+\epsilon_5)}{4}(1+\epsilon_6) = q^*\left(1 + \frac{\epsilon_1(a+b) + \left[\sqrt{1+\epsilon_4}(1+\epsilon_5) - 1\right]2\sqrt{ab}}{a+b + 2\sqrt{ab}}\right)(1+\epsilon_6) = q^*(1+\eta_a*), \quad |\eta_a*| \leq \frac{5}{2}\zeta, \end{split}$$

$$\begin{split} \widetilde{p}_{0} &= \frac{2\widetilde{d}}{\widetilde{c}}(1+\varepsilon_{7}) = \frac{2d}{c}\frac{(1+\eta_{d})}{(1+\eta_{c})}(1+\varepsilon_{7}) = p_{0}(1+\eta_{p_{0}}), \quad |\eta_{p_{0}}| \leq 5\zeta, \\ \widetilde{q}_{1} &= \frac{\left(a+b\right)(1+\varepsilon_{1})}{4} + \frac{ab(1+\varepsilon_{4})}{(a+b)(1+\varepsilon_{1})}(1+\varepsilon_{8}) + \left(1+\varepsilon_{9}\right) = q_{1}(1+\eta_{q_{1}}), \quad |\eta_{q_{1}}| \leq 4\zeta. \\ \widetilde{\gamma}_{1} &= \frac{2\sqrt{ab(1+\varepsilon_{4})}(1+\varepsilon_{5})d(1+\eta_{d})(1+\varepsilon_{10})}{(a+b)(1+\varepsilon_{1})q^{*}(1+\eta_{d})(1+\varepsilon_{11})} + \left(1+\varepsilon_{12}\right) = \gamma_{1}(1+\eta_{\gamma_{1}}), \quad |\eta_{\gamma_{1}}| \leq 11\zeta. \end{split}$$

where $|\epsilon_i| \leq \zeta$ for i = 1, 2, ..., 12.

Hence (4.11) and (4.12) hold for k = 0 and 1. Let us analyze (4.8), (4.9) and (4.10). We get

$$(4.13) \quad \tilde{p}_{k-1} = \frac{d(1+\eta_d)}{q_{k-1}(1+\eta_{q_{k-1}})} \quad (1+\varepsilon_{k,1}) = p_{k-1}(1+\eta_{p_{k-1}}), \quad |\eta_{p_{k-1}}| \leq 4\zeta + |\eta_{q_{k-1}}|,$$

$$(4.14) \quad \tilde{\gamma}_{k} = \frac{P_{k-1}^{(1+\tilde{\eta}_{p_{k-1}})\gamma_{k-1}}(1+\tilde{\eta}_{q_{k-1}})}{q^{\tilde{\eta}_{k}}(1+\tilde{\eta}_{q_{k}})} (1+\varepsilon_{k,2}) = \gamma_{k}(1+\tilde{\eta}_{\gamma_{k}}), \quad |\tilde{\eta}_{\gamma_{k}}| < 8.5\zeta + |\tilde{\eta}_{\gamma_{k-1}}| + |\tilde{\eta}_{q_{k-1}}|,$$

$$(4.15) \quad \tilde{q}_{k} = (q(1+\eta_{q}^{*}) - \gamma_{k}^{(1+\eta_{q})})(1+\epsilon_{k,3}) = q_{k} \left(1 + \frac{q^{*}\eta_{q}^{*} - \gamma_{k}\eta_{q}}{q_{k}}\right)(1+\epsilon_{k,3}) = q_{k}^{(1+\eta_{q})},$$

$$|\eta_{q_{k}}| \leq (1+2.5\frac{q^{*}}{q_{k}})\zeta + \frac{\gamma_{k}}{q_{k}}|\eta_{\gamma_{k}}|.$$

Substituting (4.15) to (4.14) we get

$$(4.16) \quad | \eta_{V_{k}} | \leq \left(12 + 2.5 \frac{Y_{k-1}}{q_{k-1}} \right) \zeta + \left(1 + \frac{Y_{k}}{q_{k}} \right) | \eta_{V_{k-1}} |.$$

Note that

$$\frac{Y_{k}}{q_{k}} = \frac{d}{q_{k}q^{\frac{2}{k}}} \cdot \frac{Y_{k-1}}{q_{k-1}} = \left(\prod_{i=2}^{k} \frac{d}{q_{i}q^{\frac{2}{k}}} \right) \frac{Y_{1}}{q_{1}} = 4\kappa \frac{q^{2k}}{1+q^{2k+2}} \le 4\kappa$$

$$\kappa = \sqrt{a/b} (1+\sqrt{a/b})^{2} \text{ and } q = (\sqrt{b} - \sqrt{a})/(\sqrt{b} + \sqrt{a}).$$

where

Thus, (4.16) becomes

(4.17)
$$|\eta_{\hat{Y}_{ik}}| \leq (12 + 10\pi)\zeta + (1 + 4\pi)|\eta_{\hat{Y}_{k-1}}|$$

Since $|\eta_{\gamma_1}| < 11\zeta$, the solution of (4.17) is given by

$$|\eta_{\gamma_k}| \leq (1+4\kappa)^{k-1} |11\zeta| + (12+10\kappa) \frac{(1+4\kappa)^{k-1}}{4\kappa} \zeta.$$

Coming back to η_q we have

$$|\eta_{q_k}| \leq 3.5\zeta + 10\kappa q^{2k}\zeta + 44\kappa q^{2k}(1+4\kappa)^{k-1}\zeta + (12+10\kappa)q^{2k}\{(1+4\kappa)^{k-1}-1\}\zeta = L_k\zeta.$$

Note that

$$q^2(1 + 4\kappa) = \frac{(\sqrt{b} - \sqrt{a})^2(b+a+4\sqrt{ab})}{(\sqrt{b} + \sqrt{a})^4} < 1.$$

Thus,

$$L_k \le 3.5 + 10\pi + 44\pi q^2 + (12 + 10\pi)q^2 \le 15.5 + 64\pi,$$

and

$$\lim_{k} L_{k} = 3.5.$$

Finally, from (4.13) it follows

$$|\eta_{\mathbf{p_k}}| \leq 4\zeta + L_{\mathbf{k}}\zeta,$$

which completes the proof of Theorem 4.1.

5. NUMERICAL STABILITY OF THE CHEBYSHEV METHOD

In this section we deal with numerical stability for the Chebyshev method. Let us briefly recall that an iterative method for the solution of the linear equation Ax+g = 0 is numerically stable if it produces a sequence $\{x_k\}$ such that

(5.1)
$$\limsup_{k} ||x_{k} - \alpha|| \le \zeta K ||A|| ||A^{-1}|| ||\alpha|| + O(\zeta^{2})$$

where K can only depend on the size n (see Wozniakowski (1975)).

We propose the following algorithm of the Chebyshev method (see (2.3) and Rutishauser, Stiefel and others (1959)).

Algorithm 5.1

The Chebyshev method T[a,b], 0 < a and $|A| \le b$.

x0 is a given initial approximation,

for k = 0,1,...

compute q_k and p_{k-1} by Algorithm 4.1,

(5.2)
$$r_k := Ax_k + g;$$

(5.3)
$$x_{k+1} := x_k + \{p_{k-1}(x_k - x_{k-1}) - r_k)/q_k$$

Theorem 5.1

Let $\{x_k^{}\}$ be the sequence computed in fl arithmetic by Algorithm 5.1. If

(5.4)
$$fl(Ax_k^{+g}) = (I+\delta I_k)((A+E_k)x_k^{+g})$$

where $|E_k| \leq K_1 \zeta ||A||$ and $||\delta I_k|| \leq K_2 \zeta$, $K_i = K_i(n)$ for i = 1,2,

where
$$||E_k|| \ge |K_1|^{-1}$$
 then for small ζ ,

then for small ζ ,

$$||K_k|| \le |K_k|| \le |$$

Note that assumption (5.4) holds for the standard algorithm for the computation of Ax_k^+ g and $K_1 \leq n\sqrt{n}$, K_2 = 1 for any matrix A and any vector g (see Wilkinson (1963), p. 83). Due to sparseness of A the constant K_1 usually depends on the maximal number of nonzero elements in rows of A.

Proof

From Theorem 4.1 and (5.5) the computed x_{k+1} is equal to

where D_k^i denotes a diagonal matrix and $\|D_k^i\| \leq \zeta$, i = 1,2,3. After some transformations, (5.6) becomes

where
$$p_k$$
 generally $p_k + (p_{k-1}(x_k^{-x_{k-1}}) - (Ax_k^{+g}))/q_k + g_k$

$$(5.7) x_{k+1} = x_k + (p_{k-1}(x_k^{-x_{k-1}}) - (Ax_k^{+g}))/q_k + g_k$$

where

where
$$\begin{cases}
1 & 1 \\
(5.8) & \xi_k = D_k^1 \alpha - q_k E_k^{\alpha} + \Theta_k
\end{cases}$$

and
$$\|Q_k\| \le \zeta^{(10 + L_k + L_{k-1} + (3 + L_k + K_1 + K_2) \|A\| \|Q_k\| \|e_k\| + C_{k-1}\|e_{k-1}\| + \frac{2}{\zeta}K_1(3 + K_2 + L_k) \|A\| \|\alpha\| \|Q_k\|$$

Here, as always, $e_k = x_k^{-\alpha}$ and L_k is defined in Theorem 4.1. Since $\lim_{k \to \infty} q^k \ge b/4 \ge |A|/4$ and 1im L_k = 3.5 we get

$$\lim_{k} \sup_{\|x\| \le \zeta \|\alpha\|} (1 + 4K_1) + \zeta \lim_{k} \sup_{\|x\| \le \zeta \|\alpha\|} (59 + 4(K_1 + K_2)).$$

Finally, applying Corollary 3.1 we get, $e = \lim_{k} \sup_{k} ||e_k||$,

$$e \le \frac{4(1+4K_1)\zeta b}{\min(a,\lambda_{\min})} ||\alpha|| + \frac{4b(59+4K_1+4K_2)}{\min(a,\lambda_{\min})} \zeta e.$$

Hence, (5.5) follows from the last relation which completes the proof.

From Theorem 5.1 we can easily get (5.1). Since $A = A^* > 0$ then $||A|| ||A^{-1}|| = \lambda_{\max} / \lambda_{\min}$. It leads us to Corollary 5.1

If there exists a constant L = L(n) such that for every matrix $A = A^* > 0$ we use the Chebyshev method T[a,b] where

(5.9)
$$\frac{b}{\min(a,\lambda_{\min})} \le L \frac{\lambda_{\max}}{\lambda_{\min}}$$

then the Chebyshev method is numerically stable. Specifically T[a,b] produces a sequence $\{x_k^-\}$ such that (5.10) $\limsup_{k} ||\mathbf{x}_{k} - \alpha|| \le \zeta 4(1 + K_{1})L ||\mathbf{A}|| ||\mathbf{A}^{-1}|| ||\alpha|| + o(\zeta^{2})$

Proof

From Theorem 5.1 and from the definition of the relation \leq it follows

$$e \le 4(1 + 4K_1)L ||A|| ||A^{-1}|| ||\alpha|| \zeta(1 + O(\zeta))$$

which gives (5.10).

If ζ is small then one can prove that the constant which appears in the "O" notation in (5.10) only depends on $(\|A\| \|A^{-1}\|)^2$, K_1 and K_2 (see (5.4). Note that if $b \le L*\lambda_{\max}$ then for any $a \ge \lambda_{\min}$, (5.9) holds; however, for increasing a the convergence of T[a,b] is getting worse, see (2.13) and (3.15).

We want to show that without additional assumption on D_k^1 , E_k and Θ_k in (5.8), the estimate (5.10) is sharp which means that the condition number of A is crucial for the accuracy of the solution of linear equation solving by iteration.

Let us assume for simplicity that $a = \lambda_{min}$ and $b = \lambda_{max}$. From (5.4) and (5.6) we know that D_k^{\dagger} and E_k are small but arbitrary. Assume theoretically that $D_k^1 = 0$, $C_k = 0$ and $\lim_k E_k = E$ where $|A^{-1}E\alpha|| = |A^{-1}|| |E|| ||\alpha||$ and $|E|| = K_1 \zeta ||A||$. From Corollary (3.2) we get

$$\lim_{k} e_{k} = -A^{-1} E_{\alpha} \quad \text{and} \quad e = \zeta K_{1} ||A|| ||A^{-1}|| ||\alpha||$$

which is essentially the righthand side of (5.10). Furthermore, if $E_k = 0$, $\Theta_k = 0$ and $\lim_{k \to 0} \frac{1}{k} = 0$ where

$$\lim_{k} e_{k} = \frac{\sqrt{b} + \sqrt{a}}{2} A^{-1} D\alpha, \quad e = \zeta((1 + \sqrt{a/b/2})^{2} ||A|| ||A^{-1}|| ||\alpha||.$$

This implies that even using the double precision for the evaluation of Ax+g, $\|\mathbf{E}_{\mathbf{k}}\| \lesssim K_{\uparrow} \zeta^2 \|\mathbf{A}\|$, we cannot guarantee the high relative precision of the computed $\{x_k^{-}\}$.

Thus, (5.10) is sharp. Although, from (5.8) we get

$$\lim_{k} \sup_{k} ||x_{k} - \alpha|| \le 4 ||A|| ||A^{-1}|| \lim_{k} \sup_{k} ||p_{k}^{1} \alpha - \frac{1}{q_{k}} E_{k}^{\alpha}|| (1 + O(\zeta))|$$

and if $||\mathbf{p}_{\mathbf{k}}^{\dagger}\alpha - \frac{1}{\mathbf{q}_{\mathbf{k}}} \mathbf{E}_{\mathbf{k}}\alpha|| << \zeta ||\alpha||$ we can expect a better result.

6. WELL-BEHAVIOR OF THE CHEBYSHEV METHOD

Let us briefly recall that a method for the solution of linear systems Ax+g = 0 is said to be well-behaved if a slightly perturbed computed approximation y is the exact solution of a slightly perturbed problem, i.e.,

$$(6.1)$$
 $(A + \delta A)(y + \delta y) + g + \delta g = 0$

where $\|\delta A\| < \delta |c_1||A||$, $\|\delta y\| < \zeta |c_2||y||$ and $\|\delta g\| < \zeta |c_3||g||$, $|c_1| = |c_1|(n)$.

Let Δy and Δg be matrices defined by

$$(I + \Delta y)y = y + \delta y$$
; $(I + \Delta g)g = g + \delta g$

and

$$||\Delta y|| < \zeta c_2$$
, $||\Delta g|| \leq \zeta c_3$.

Hence, (6.1) becomes

(6.2)
$$(A + \Delta A)y + g = 0$$

where
$$||\Delta A|| \le \zeta c_4 ||A||$$
 for $c_4 = c_1 + c_2 + c_3$.

Thus, without loss of generality, a method is well-behaved if the computed y is the exact solution of the problem with a slightly perturbed matrix A.

Let r = fl(Ay + g) be the computed residual vector. Assume

(6.3)
$$r = (I + \Delta I)((A+E)y + g)$$

where $||\Delta I|| \leq \zeta c_5$ and $||E|| \leq \zeta c_6 ||A||$.

It is easy to verify that a method is well-behaved iff r satisfies

(6.4)
$$\|\mathbf{r}\| \leq \zeta c_7 \|\mathbf{A}\| \|\mathbf{y}\|$$
.

Indeed, if (6.2) holds then $\|\mathbf{r}\| \leq \zeta(c_4 + c_6) \|\mathbf{A}\| \|\mathbf{y}\|$. If (6.4) holds then

$$\left(A + E - (I + \Delta I)^{-1} \frac{ry^*}{||y||^2} \right) y + g = 0.$$
Thus, $\Delta A = E - (I + \Delta I)^{-1} \frac{ry^*}{||y||^2}$ and $||\Delta A|| \le C(c_6 + c_7) ||A||$.

We wish to consider the well-behavior problem for the Chebyshev method T[a,b]. This means we must

verify if the computed vectors $\mathbf{r}_{k} = \text{fl}(\mathbf{A}\mathbf{x}_{k} + \mathbf{g})$ satisfies condition (6.4) for large k. From (5.4) we get

$$||\mathbf{r}_{k} - \mathbf{r}_{k}^{*}|| \leq K_{1} \zeta ||\mathbf{A}|| ||\mathbf{x}_{k}||$$

where $r_k^* = Ae_k$.

Thus the Chebyshev method is well-behaved iff r_k^* satisfies (6.4). Let us assume for simplicity that $a = \lambda_{\min}$ and $b = \lambda_{\max}$. Note that $\{r_k^*\}$ satisfies similar recurrence formula as $\{x_k^*\}$, see (5.7), i.e.,

(6.5)
$$\mathbf{r}_{k+1}^{*} = \mathbf{r}_{k}^{*} + \{\mathbf{p}_{k-1}(\mathbf{r}_{k}^{*} - \mathbf{r}_{k-1}^{*}) - A\mathbf{r}_{k}^{*}\}/\mathbf{q}_{k}^{*} + A\mathbf{g}_{k}^{*}.$$

Applying Theorem 3.1 and Corollary 3.1 we have

$$\limsup_{k} \|\mathbf{r}_{k}^{\star}\| \leq 4\|\mathbf{A}\| \|\mathbf{A}^{-1}\| \lim_{k} \sup \|\mathbf{A}\boldsymbol{\xi}_{k}\|.$$

Unfortunately, $\limsup_{k} \| \mathsf{A} \xi_k \|$ is of order $\zeta \| \mathsf{A} \| \| \alpha \|$ and

(6.6)
$$\limsup_{k} \|\mathbf{r}_{k}^{\star}\| \leq 4\zeta(1 + 4K_{1})\|\mathbf{A}\| \|\mathbf{A}^{-1}\| \|\alpha\|.$$

Numerical tests of Algorithm 5.1 confirm that (6.6) is sharp which means that in general the Chebyshev method is not well-behaved. Note that direct methods for small dense systems such as Gaussian elimination with pivoting, the Householder method and the Gram-Schmidt reorthogonalization method are well-behaved (see Wilkinson (1965) for two first, Kielbasinski (1974), Kielbasinski and Jankowska (1974) for the last). The lack of well-behavior for the Chebyshev method makes the termination of iteration which is based on $\{r_k\}$ difficult. For instance, if we want to find x_k such that $||r_k|| \le \varepsilon ||r_0||$ then, in general, we can guarantee the exitence of such x_k only if ε is of order $\zeta ||A|| \, ||A^{-1}|| \, ||\alpha|| /||r_0||$.

However, it can happen that (6.4) holds. Let us mention only two examples (rather theoretical). If $\{\xi_k\}$ from (6.5) is convergent to ξ , $\|\xi\|$ is of order $\zeta\|\alpha\|$, then applying Corollary (3.2) we get

$$\lim_{k} r_{k}^{*} = \left(\frac{\sqrt{b} + \sqrt{a}}{2}\right)^{2} \xi$$

from which the well-behavior holds.

Next if $\limsup_{k} |\mathbf{k}_{k} - \mathbf{x}_{k-1}|| \le K_3 \zeta ||\alpha||$ then from condition (ii) of Corollary (3.2) we have

$$\lim_{k \to \infty} \sup_{k} ||r_{k}^{*}|| \leq \zeta(2K_{3} + 4(1 + 4K_{1}))||A|| ||\alpha||.$$

ACK NOW LEDGMENT

I would like to thank H. T. Kung and J. F. Traub for their comments on this paper.

REFERENCES

- A. Kielbasinski (1974)
- A. Kielbasinski and J. Jankowska (1974)
- H. Rutishauser, E. Stiefel and others (1959)
- E. Stiefel (1958)
- J. H. Wilkinson (1963)
- J. H. Wilkinson (1965)
- H. Wozniakowski (1974)
- H. Wozniakowski (1975)
- D. Young (1971)

- "Numerical Analyses of the Gram-Schmidt Orthogonalization Algorithm," Mat. Stosowana 2, 1974, 15-35 (in Polish).
- "Fehleranalyse der Schmidtschen und Powellschen Orthonormalisierungsverfahren," $\underline{\text{ZAMM}}$ 54, T223 (1974).
- Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Boundary Value Problem
- "Kernel Polynomials in Linear Algebra and their Numerical Applications," NBS. Appl. Math., Series 49, 1958, 1-22.
- Rounding Errors in Algebraic Processes, Prentice-Hall, Englewood Cliffs, N. J., 1963.
- The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.
- "Rounding Error Analysis for the Evaluation of a Polynomial and Some of its Derivatives," <u>SIAM J. Numer. Anal.</u>, Vol. 11, No. 4, September, 1974.
- Numerical Stability for Solving Nonlinear Equations, Department of Computer Science Report, Carnegie-Mellon University, 1975.
- Iterative Solution of Large Linear Systems, Academic Press, New York, 1971.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM			
1. REPORT NUMBER 2. GOVT ACCESSION N	O. 3. RECIPIENT'S CATALOG NUMBER			
4. TITLE (and Subtitie)	5. TYPE OF REPORT & PERIOD COVERED			
NUMERICAL STABILITY OF THE CHEBYSHEV METHOD	Interim			
FOR THE SOLUTION OF LARGE LINEAR SYSTEMS				
	6. PERFORMING ORG. REPORT NUMBER			
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(s)			
H. Wozniakowski	N0014-67-A-0314-0010,			
9. PERFORMING ORGANIZATION NAME AND ADDRESS	NR 044-422			
Carnegie-Mellon University	AREA & WORK UNIT NUMBERS			
Dept. of Computer Science				
Pittsburgh, PA 15213				
11 CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE			
Office of Naval Research	March 1975			
Arlington, VA 22217	13. NUMBER OF PAGES			
1	20			
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office,	15. SECURITY CLASS. (of this report)			
	UNCLASSIFIED			

	154. DECLASSIFICATION DOWNGRADING SCHEDULE			
I CONTROLL OF TAXABLE PROPERTY (ALL PROPERTY AND PROPERTY	<u> </u>			
16. DISTRIBUTION STATEMENT (of this Report)				
Approved for Public Release; Distribution unl	imited.			
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)				
18. SUPPLEMENTARY NOTES				
19. KEY WORDS (Continue on reverse side if necessary and identify by block numb	97)			
·				
4				
20. ABSTRACT (Continue on reverse side if necessary and identify by block number	• •			
rounding error analysis for the Chebyshev method	for the solution of large			
linear systems $Ax+g = 0$ where $A = A^*$ is positive definite. We prove that the				
Chebyshev method in floating point arithmetic is numerically stable, which				
means that the computed sequence $\{x_k\}$ approximates the solution α such that				
$\frac{ \mathbf{x} _{\mathbf{k}}}{ \mathbf{x} _{\mathbf{k}}}$ is of order $\zeta \mathbf{A} \cdot \mathbf{A}^{-1} \cdot \alpha $ where ζ is the relative computer precision				
We also point out that in general the Chebyshev method is not well-behave,				
	CONTINUED			

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. abstract CONTINUED	<u> </u>			
which means that x ,k large, is not A or equivalently that the computer	the exact residuals	solution for a $r_k = Ax_k + g$ are	slightly of order	perturbed
C A A ⁻¹ .		-		
,				