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ABSTRACT 

This paper contains the rounding error analysis for the Chebyshev method for the solution of large 

linear systems Ax+g = 0 where A = A is positive definite. We prove that the Chebyshev method in float­

ing point arithmetic is numerically stable, which means that the computed sequence {x^} approximates the 

solution a such that lim|k is of order C||a||.||A~ \\.\\y\\ where £ is the relative computer precision, 
k 

We also point out that in general the Chebyshev method is not well-behaved, which means that x^, k 

large, is not the exact solution for a slightly perturbed A or equivalently that the computed residuals 

r k = Axk+g are of order C||a|| II*"1 || ||or||. 

1. INTRODUCTION 

Direct methods of numerical interest for the solution of linear systems Ax+g = 0 are numerically 

stable. This means that they produce an approximation y of the exact solution a such that |(y-a|| is of 

order £||a|| ||a" || ||CY|| where Q is the relative computer precision. 

It might seem that the numerical accuracy of iterations for solving large linear systems can be 

better or even not depend on the condition number of A, k (A) = ||a|| ||a ̂  || . In this paper we consider 

the Chebyshev method which is one of the most effective iterations for the solution of large linear sys­

tems. We show that this method is stable and that the condition number of A is crucial for this itera­

tion. 

Moreover direct methods are also well-behaved which means that the computed y is the exact solution 

for a slightly perturbed A, i.e., (A+E)y+g = 0 where ||e|| is of order C||a|| . Unfortunately this does not 

hold for the Chebyshev method. Thus, from the numerical accuracy point of view direct methods seem to 

be better than Chebyshev. 

In Section 2 we briefly recall the main properties of the Chebyshev method T[a,b] for the solution 

of large linear systems Ax+g = 0 where A = A is positive definite, shortly denoted by A = A > 0. In 

the classical case, the interval [a,b] contains all eigenvalues of A. We consider the case where 

b £ ||a|| and a is an arbitrary positive number. We also propose an extension of the Chebyshev method 

for singular matrices A = A 2: 0. 

Section 3 deals with a perturbed Chebyshev method which generates a sequence {x^} such that 

for suitable p^ ^ and q^. We express the solution of (1.1) in terms of §^ and prove some asymptotic 
results. 

In Section 4 we present an algorithm for the computation of p^ ^ and q^. We prove that this 



algorithm in floating point arithmetic computes p^_^ and with high relative precision. 

Section 5 deals with the proof of numerical stability of the Chebyshev method. We prove that 

T[a,b] generates {x^} such that lim||xk-o/|| is of order C | | A | | | | A - 1 || whenever b/a is of order ||A|| | [ A 1 1 1 . 

In Section 6 we discuss well-behavior of the Chebyshev method. In general, the residual vectors in 

the Chebyshev method r^ = Ax^+S a r e °* order £||A|| |JA ^ || ||o/|| which contradicts well-behavior. However, 

sometimes r^ can be or order C L M I I M I * Such a case yields well-behavior. 

2. CHEBYSHEV METHOD 

Let us consider the numerical solution of a large linear system 

(2.1) Ax+g « 0 

where A *» A > 0 is a given complex nxn matrix and g is a given nxl complex vector. Suppose A is a 

sparse matrix of high order. Such systems commonly arise in the numerical solution of partial differen­

tial equations. Suppose we can only compute y 5 3 Ax for any vector x. Due to the sparseness of A the 
2 

vector y can be computed in time and storage proportional to n rather than n . For sufficiently large 

n, (2.1) can be solved only by iteration. Let X Q be an arbitrary initial approximation of the solution 

oi — A ^g and let 

(2.2) X Q - A - I C J V J 

j-1 
W H E R E A R E E I G E N V E C T O R S O F A A S S O C I A T E D W I T H E I G E N V A L U E S X ^ , 

A V . - X J V J , ( V ^ ) - 8 L J 

and without loss of generality we can assume c^ ^ 0, for 1 £ j ^ m and X̂  < < ... < Xffl, for m ^ n. 

We consider a class of iterative methods which generate the sequences {x^} of the approximation of 

a such that 

(2.3) A ^ - C R = W K ( A ) ( X 0 - C R ) 

where W f c is a polynomial of degree £ k. Since we only do know Ao+g • 0 than to eliminate or from (2.3) 

we have to assume 

(2.4) W k(0) - 1. 

Remark 
Another motivation of (2.3) and (2.4) is to consider a class of iterative methods such that 

x k = W k(A)x Q + Uk(A)g 



where and are arbitrary polynomials of degree ^ k. Assume that if x^ = a then x^ = a for any a. 

Then W k(x) - Uk(x)-x + 1 and 

x^-a = (I+Uk(A)A)(x0-or) =» Wk(A)(x0-Qf) 

which is equivalent to (2.3) and (2.4). • 

From (2.3) we get 

l^-al^ £ |^(A)|| 2 |hc0-c||2 * |Mk|| Iko-orllz 
where 

(2.5) max |w(X)| and [X X ] c [a,b]. 
k X 6 [a,b] k 1 m 

Let Pk(0,l) denote a class of polynomials P of degree £ k such that P(0) - 1. 

In the Chebyshev method T[a,b], the W k are defined as the polynomials of the smallest possible 

norms (2.5), i.e., 

(2.6) Ik || » inf ||P|| , 
P € P k « U ) 

and the solution of (2.6) is given by 

(2.7) W k(z) - Tk(f(z))/Tk(f(0)) 

where f (z) • - 2-j~- and Tfe denotes the Chebyshev polynomial of the first kind of degree k. From 

(2.7) it follows that in the Chebyshev method T[a,b] we get 

k 

for all k whenever [X_,X ] c [a,b], and 
I m 

(2-9) \+i ° \ + ̂ W W i * - rk VV k • -0'1  

where r k • Ax̂ +̂g a n d 

(2.io) p., - o, P k_, - ̂  -jr*- , 
k 

(2.1D %'b-r: %'b-r^-, t k.T k(f(0)), k * l . 

(See, for instance, Stiefel (1958) and Rutishauser and Stiefel (1959).) 

Usually, the eigenvalues X, and X from (2.2) are equal to the smallest eigenvalue X . , and to the 
I m min 



largest eigenvalue, X , of A . Hence, the best convergence in T[a,b] is for a = X . and b *» X 6 & ' max* m m max 
However, in numerical practice X . and X are known only for a few problems. In many cases we can ' m m max 
easily find b ^ ^ m a x (setting for instance b • ||A|| where ||« || is any matrix norm, see Young (1971), page 

32). A much harder problem is to find a suitable approximation of X . . Without knowledge of X . one r m m ° m m 
can use the Chebyshev method T[a,b] for any values of a > 0 and b ^ ^ m a x ' Then instead of (2.8) we get 

(2.12) l^-oll * 2q(X m i n) k|^ 0- <,|l 2 

where 

v^X + V(a-X) r _ j-
(2.13) q(X) - ; ± ^ ^ 

for (a-X) + • a-X if a-X ^ 0 and zero otherwise. 

Note that 

(i) if X € (0,a> then q(X) < 1 which means the convergence of T[a,b], however for X -> 0 +, 

q(X)/ R , 

(ii) if a * X * b then q(X) = fi'fi > 

Jb + Ja 

(iii) if X < 0 then q(X) > 1. This implies that T[a,b] is divergence whenever X^ from (2.2) is 

negative. 
* 

One can also consider the Chebyshev method for a singular matrix A = A ^ 0. In such case by a we 

mean the normal solution of Ax+g 8 3 0, i.e., the vector of the minimal spectral norm which minimizes the 

spectral norm of the residual. Let g a g-j + g 2 where Ag^ • 0 and ĝ  is orthogonal to g 2. Note that 

Aa+g 2 - 0. It is straightforward to verify that {x^} defined by (2.9) in T[a,b] for a > 0 and b £ ^ m a x > 

satisfies 
(2.14) xk-cy - Wk(A)(x0-or) + \(0)g} 

for W k from (2.7) and 

wu<°> - " " F • '-^i • 
K Jab 1+q(a) Z K 

Let us rewrite (2.2) as 
n 

_ x Q-a « + I C j v . 
*" j-1 

where Av. • X.v., X, - 0, 0 < X. < X. < ... < X , (v., v.) - 6. .. Note that the normal solution or is 

orthogonal to v^. Let us discuss the two cases. 
Casel. Let gj a 0. This means that Ax+g » 0 is solvable. From (2.14) it follows 



|^-a||2 « | C l | + 2 q(X2)k||x0-a||2. 

Thus, if c.j 8 8 0 (which holds for instance if x^ = 0) the Chebyshev method is convergent and the best 

possible speed of convergence is for a = \^, i.e., 

k 

K-lk * 2 ( — — < ) ik0—it-

Case II. Let g 1 / 0. In that case the iterative process is divergent, although lim r^ - g^. This sug­

gests constructing y k = x^ - w^(0) rk' Then 

Vk-a = Wk(A)(x0-a) - W^(0)Wk(A)A(xQ-of) 

and for XQ - 0 we get 
L 2 K 

Jab l+q(a)2 

which once more implies the convergence of the Chebyshev method. 

3. PERTURBED CHEBYSHEV METHOD 

Recall we consider a large linear system 

Ax+g =• 0 

where A • A > 0. We want to solve it by the Chebyshev method T[a,b] where it is only assumed that 

b £ ^ m a x
 a n d a > °- The Chebyshev method generates a sequence [x^) defined by (2.9), (2.10) and (2.11). 

However a sequence computed in floating point arithmetic can at best satisfy a perturbed relation (2.9), 

i.e. 

( 3 - 1 } *k+i " \ + ^ k - i ( V \ - i } - \V\ + *k' 

for suitable vectors ?k» A form of § k will be discussed in Section 5. In order to analyze the Chebyshev 

method in fl arithmetic we start to solve (3.1) for an arbitrary {? k} a n d find some asymptotical proper­

ties of the perturbed sequence t^l-

Let e k • ^ e the error of the kth approximant. Then from (3.1) we get 

( 3 - 2 ) e k + i - .•k + W - i ( e k - e k - r > ^ A e k ^ k + V 

Theorem 3.1 

Let T 5 K ) be an arbitrary sequence and let {xk} be a perturbed sequence generated by T[a,b] defined 

by (3.1), (2.10) and (2.11). Then 

5 



( 3 - 3 > E
K + 1 = W A ) E O + I \ , I « 2 - W \ - I ( A ) + ( W 1 ) R K - I ( A ) * I 

where 
i=0 

Pk-1 q 0 _ 0 b+a fck 
( 3 . 4 ) 3 ! + ^ - ^ - 2 ^ ^ , 1*^*2, 

k qk qk D Ck+1 K 

k-i-1 
(3.5) 

T (f(z)) U (f(z)) 
( 3 . 6 ) V . ) - ^(z) = J L _ , f(z) - g -
and T^, denote the Chebyshev polynomials of the first and second kind of degree k, respectively. 

Proof 

TnHnrtinn N N \e. T.*T- K = 0. S I N C E W_ =» R. =* 1 and W_ Cz> « 1 -Induction on k. Let k = 0. Since W Q - R Q =« 1 and (z) - 1 - ̂ — z, R1 - 2W ], then (3.3) is equal 

to £ 

e1 = V A ) e 0 + X O ^ L + P T ^ O 3 e0 - ̂  r 0 + «0 

which is equivalent to (3.2). 

Assume now that (3.3) holds for all i £ k. Let B k = ^ 1 - — A, W f c - Wfe(A) and R^ =» R ^ A ) . Note 
qk 

that (3.4) easily follows from (2.10) and (2.11) and it is easy to verify that 

(3.7) Wk+1 =BkWk + (1-fyWk_1, 
(3.8) B k - PkWr 

From (3.2), (3.3), (3.4), (3.7) and (3.8) we get 

K-1 

i«0 

k-2 

+ < * W 1 ) R K - I - I ^ I > + ( 1 ^ K ^ W K - I E O + i V2,J< 2 - E I + I ) W K-2 - I + « I + R , ) R K . 2 - L K I H 

I-0 
k-2 

+ ^k S WK+le0 + *k + \ « K-l + I t(2-3.+1){VniBkWk_Ui f ̂ .2^(1-^2^} 
i=0 

+ ( P
I + R 1 ) K . i , i B K V I . I + V Z . I ^ - V ^ . I ^ I -

We want to verify that 

6 



( 3 - 9 ) B
k - \ . k - i < ( 2 - B k ) , , i + ( V 1 ) R i ^ 

O.io) ( 2 - B 1 + 1 ) ^ M B k w k., + 1 + V Z / ' - V ^ - i ) + « W , ) K . i , A V i , i + V A . i ^ - V H c - A - i l 

- \ , i t < 2 - W V i + < pi+r 1 ) Rk-il- 0 s 1 4 k " 2 -

Since K K ̂  - 1 and R1 - 2W 1, (3.9) follows from (3.8). To prove (3.10) we use (3.7) which holds for 
Wk-i a n d ^t-i* B y c o m P a r i n 8 t h e coefficients at A W ^ ^ , W ^ ^ . , W ^ ^ , A R ^ ^ . , \ _ u ± and \ _ 2 _ ± we 

get three equations on K K ^, 

(3.11) ^^./q^.,, - V l . V V 

( 3 - 1 2 ) "\-l,i ek' 

( 3 ' 1 3 ) Y i 0 ^ . ] ' " \ - 2 , i ( 1 - V -

From (3.5) and (3.4) it follows 

LK-I-1 

V L . I BFE-I-I Q K 

W H I C H G I V E S (3.11) A N D (3.12). N E X T , O B S E R V E T H A T F R O M (3.4) A N D (2.10) W E G E T 

V I „ 3 K 3 K - 1 „ J K . V L - L ^ . V I - L V i V I 

V I - 2 *k-2,i ^ K - L - A ^ - I ^+1 ' ̂ -2-1' ^ - I - L Q K ' P K - I - 2 \+1 

W H I C H P R O V E S (3.13) A N D C O M P L E T E S T H E I N D U C T I V E P R O O F O F (3.3). T O P R O V E T H E L I M I T O F ^ I N O T E T H A T 

t r 2(I+2) 2 ( K - I ) 7 

_ CI+2 V I 1 (1+Q(A) ) ( L - F Q ( A ) ) Y (JS + SV ^ 1 

^ L K + 1 C L L + Q ( A ) 2 L + Q ( A ) 2 < K + 1 ) 2 ( B + * > 2 ' 

W H E R E Q ( A ) - ^ " J* . 

T H I S C O M P L E T E S T H E P R O O F O F T H E O R E M 3.1. • 

U S I N G T H E O R E M 3.1 W E P R O V E A B O U N D O N T H E P E R T U R B E D E R R O R S . R E C A L L T H A T X . I S T H E S M A L L E S T E I G E N -
rain 

V A L U E O F A A N D Q ( X ) I S D E F I N E D B Y (2.13). 

C O R O L L A R Y 3.1 

L E T 

Jb^K - . / ( A - X ) , ^ ( K + 1 ) 
(3.14) 6 » - = - T — ' \ « - — - j F O R K » 0,1,..., A N D Q = q(X n l n) f 

^ X + 7 ( A T X T + * I - * 2 . . . . . . . , V W 

T H E N 

7 



k 
(3.15) | | e k + 1 I H 2 q

k + 1 | ^ | | + 2 ^ q1*"1 V J M . Ck+T 
i=0 

(3.16) e • l*. suplhjl * 2 lllHl , ) US + < * W « ? X < W ) « 
k ^ v~' "min 

where § - lim sup||? ||. • 
k K 

Proof 

First of all observe that 

1 £ u £ k+1 and TL - k+1 whenever X . £ a, k k m m 

|^|| * 2q k and |^|| S 2q k T^. 

From (3.3), (3.4) and (3.5) it follows 
k k 

l|e k + 1IH2 q
k + 1||e 0|| + I m a x d ^ . l l . l ^ J D I f e J I ^ q ^ l l e J I + a ^ q ^ V J f e J I 

i=0 i=0 

which proves (3.15). 

Let c be any positive number. There exists k Q such that ||̂ k|| £ £ + e for all k > k Q. From (3.15) 

we get k Q k 

e * 2 lim sup( £ q ^ V j I S j l + i ^ V i ^ + e ) ) . 
k i=0 i a k o + 1 

k-i 
Note that q \ m m ± -» 0 for i « 0,1,...,kQ and 

k 0 0 

i • V Y 1 / 1 6 2 x „ (*/b + ^a")2(2-q(a)6) _ 2b 
k i=k0+l i-0 u * m l n 

which proves (3.16) • 

Corollary (3.2) 

(i) If lim ^ - 5 then lim e k - (JLtJ£) A " 1 ? , 

(ii) If lim sup H^-^.-jll 8 8 * t h e n l i m S U P INk'^k k̂'l ̂  x^*3**) • 
k k 

Proof 

Note that lim q k
 8 q* = (f^\ ^ ) • Let - e k - q*A~V From (3.2) it follows 

2 k + i - z k + K-^\r\-J - A z k ^ \ + k ' ̂  " A ^ -

Applying Corollary 3.1 and Theorem 3.1 to we get 

8 



li» sup ||Zk|| * 4 a l n ( « ^ i a ) U m ltek-?+(l-l/qk)lll = 0 

which proves conclusion (i). 

To prove conclusion (ii) we rewrite (3.2) as follows: 

A e k - qk 3 P k - i W ^ - qk ( ek-fr ek>-

Since V V l - V V l and lim P k « P* - (Ĵ f̂ ) then 

lim sup ||Aek-qk?k|| ̂  (q*+p*)n - n(b+a) 
k 

which completes the proof of Corollary 3.2. • 

4. ALGORITHM OF p ^ AND qfe 

In this section we deal with the computation of p k ^ and q k which appear in the Chebyshev method 

T[a,b] in (2.9). Recall that 

(4.2) q Q . _ q k . _ _ , U m q k - q 

\ k 

uk k 

where - , k * 1. 

Let 

(4.3) c - d - dp^) and Y f c - q* - q k for k * 0. 

From the recurrence formula of the Chebyshev polynomials it follows 

(4.4) q k - ^ 2 ( | £ t k - t k _ X - C - d / V l ' k * 2 ' 

From (4.2), (4.3) and (4.4) we get 

y k « q* - c + d/q k - 1 =• d / q ^ - d/q* - d Y k. 1/(q k. 1q*> » k ^ 2. 

Note that (4.1) and (4.2) gives pfc • d, k 2> 2. 

This suggests the following"algorithm for the computation of p k ^ and qk» 

Algorithm 4.1 

(4.5) c - — , d - \-£-J , q o 7T~y 

(4.6) p_ 1 - 0, q Q - c, 



(4.8) - d / V l > 

(4.9) Y k - p k - 1 Y k./q*. 

(4.10) q k
 3 3 q* - Y k-

Let us consider the above algorithm in t digit floating point arithmetic, fl, and let rd(x) denote 

the numerical representation of any real number x and fl(xDy) denote the computed result of an arithmetic 

operation • € {+, -,/,°}. Then 

rd(x) = x(l+e), |e| = |e(x)| £ C, 
for x a rd(x) and y « rd(x), 

fl(xQy) » (xqy)(l+e), |e| » |e(x,y,d) <: £ 

where £ • 2 

We also assume that for x » rd(x), flCv/x) = Jx(l-e), | e| £ £. (See Wilkinson (1963).) To simplify 

the further estimations of roundoff errors we shall use the relation ~, i.e., if a(t) and b(t) are 

bounded functions of t, t ̂  t^ > 0 then a(t) ~b(t) iff there exists K independent of t such that 

a(t) « b(t)(1+€(t)2"t) where |e(t)| £ K for t £ t Q. 

Next a(t) < b(t) iff a(t) £ b(t) or a(t) ~b(t). (For more details see e.g. Wozniakowski (1974).) 

Let us denote any computed value x in Algorithm 4.1 by x and let x • xO+1^). Thus 1^ is the rela­

tive error of x. 

Theorem 4.1 

Let a •» rd(a) and b =» rd(b). The computed values p k and q k are equal to 

(4.11) p k - p k ( i + N P K H P J < < * + Y C . 

(4.12) q k - q k ( ^ q k ) , L \ J < I* C . 

where 0 £ 1^ ^ 15.5 + 64K for K - Ja/b/O+Jajb) and lim 1^-3.5 • 
k 

Theorem 4.1 means that we comput«wDk and q R with high relative precision for all values of a and b. 

There are some other algorithms for computing p k and qfc but usually for these algorithms one can prove 

(4.11) and (4.12) with 1^ which is proportional to b/a. (For instance, an algorithm based on (4.4) and 

(4.8).) 

10 



Proof 

5 0 - 5 - ̂ o+V - c(i+y, hj * c, 
2 

a 
(b - A)(l+ C 2y 

5 —) d+e3) « d(l+^), hd| < 3 C, 

. (a+b)(1+e_) + 2,/ab(l+EZ) (1 + C . ) * / C L < * + * > > + {A/ I+C 7(1+C-) - 1 }2„/£b \ 
q*- 5 * L - ( 1 + € ) - Q 1 4 J * _ J . ) ( ! + « ) 

= Q*d+Y)j IV' ~ 2 ^ 

AA+b)(l+e ) ab(l+e ) \ 
V ( ( a + b K l + V 0 + e 8 > ) a

 q l ( 1 + V > \\\ < 4^ 
V A B ( l + € )(l+C )d(l+T] ) (l+ C O ) 

V ( A + b ) ( R C l ) Q V ^ V ) ( I + C N ) < 1 + « I 2 > • V I + y . ^ ^ " C 

where | | £ £ for i » 1,2 12. 

Hence (4.11) and (4.12) hold for k - 0 and 1. Let us analyze (4.8), (4.9) and (4.10). We get 

d ( 1 + V 

< 4 - , 3 ) ?k-i • — j < I + « M > • p k-i ( 1 +v ?• 1V ' - 4 C + 'V '* 
K — I Q K™ 1 K— 1 K~ I 

N K - 1 

pk-i ( , + 1 1p ^ k - i ^ 

(4.15) q k - ( q ( l + V ) - <1+«k.3> - <±\» O+^J - \ ^ \ ^ 

H Q J < ( 1 + 2 . 5 £ ) C + ^ H Y J . 

Substituting (4.15) to (4.14) we get 

(4.16) H | * M 2 + 2 . 5 ^ ^ C - ^ M + | , 

Note that „ 
'k 

% ' %_i ILl Q , " K ,^2k+2 
s 4 K 

^k V ^k-1 ^i-2 4 i M J Hl 1+q' 

where K » v̂7b (l+AYS7B) 2 and q = (Jb - Ja)/{Jb + Ja). 
11 

We verify (4.11) and (4.12) for k » 0 and k - 1. From (4.5), (4.6) and (4.7) we get 



Thus, (4.16) becomes 

(4.17) |ll | < (12 + 10K) C + 0 + 4H)|T1 . I 
Uc ~ vk-l 

Since | f\ ^ \ < 11C» the solution of (4.17) is given by 

hYJ < (1 + 4H)k-'l1C + (12 + I O K ) 0 ^ " 1 - 1
 C . 

Coming back to 1) we have 
qk 

(4.18) |TlQ J < 3.5C + 10Hq 2 K C + 44Kq2k(1 + 4K) k~ 1£ + (12 + 10K)q 2 k{(l+4 H) k' 1 -1 } C - L^. 

Note that 
q 2 ( 1 + 4 K ) - ^) Z(b +a44^b) < ^ 

Thus, 
1^ £ 3.5 + 10K + 44 Kq 2 + (12 + 10n)q2 £ 15.5 + 64 H, 

and lim L, = 3.5. 
k K 

Finally, from (4.13) it follows 

which completes the proof of Theorem 4.1. • 

5. NUMERICAL STABILITY OF THE CHEBYSHEV METHOD 

In this section we deal with numerical stability for the Chebyshev method. Let us briefly recall 

that an iterative method for the solution of the linear equation Ax+g * 0 is numerically stable if it 

produces a sequence {x^} such that 

(5.1) lim sup |k-<y|| * CK|MI |"11| ||a|| + 0(Q2) 
k K 

where K can only depend on the size n (see Wozniakowski (1975)). 

We propose the following algorithm of the Chebyshev method (see (2.3) and Rutishauser, Stiefel and 

others (1959)). 

Algorithm 5.1 

The Chebyshev method T[a,b], 0 < a and ||A|| £ b. 

XQ is a given initial approximation, 

for k » 0,1,... 

compute q^ and p^-j by Algorithm 4.1, 

(5.2) r k Ax k+g; 

12 



Proof 

«o • z* 2r(1+6i) * c(1+V> l\l * C' 
/(b-a)(1+« 5\2  

ff"V" 4 M 0+«3) - dd+V' l\l < V 
(a+bXl+ĝ  + 2Vab(l+e4) 0+«5> ^ *(*+*>) + t</1+«4<1+«5> - 1 )2*ySb 

a+b + ijab q (1+e6) - , , 4 l(1+.6) 
- q*(1+Y>. \\*\ < fc. 

7 A 2d(1+V 
P 0 - f-d+«7> - r(i^7<1+«7> - "o(1+V' 1 V ~5C' 

/(a-H>)(1+e ) ab(l+e ) \ 

Vab(1+e, ) (l+< )d(l+TU (1+e,0) V (a+bUlV qVl^)0 T̂1> <̂12> " V"\>. I\I<,,C 
where |«J S C for i - 1,2,...,12. 

Hence (4.11) and (4.12) hold for k - 0 and 1. Let us analyze (4.8), (4.9) and (4.10). We get 

d ( 1 +V , , 
<4-i3> gk-i-Vl<»nd ) ̂ .p-Pk-i^v/' 'V.'-^'V,1, 

<4-14) \ ^uw*)—— (1+ek,2> = \ ( 1 +V' i\J <8-5C + 'Vi'+ 'V,1, 

(4.15) qk - (q(l+V) - Vk(HHYk» d+ f̂3) " qkh+ — ^ (1+ê ) = , 

Substituting (4.15) to (4.14) we get 

(4.16) h |.s (l2 + 2.5̂ Ĉ̂ (l + —)h |, 
Note that X \ 

^--^.^-fn -OIL- 4K - 4 ^ , 4K 
"k v vt W-2 vy qi iVk+2 

where K - ,v/£7b (.\+*fflb)2 and q » (v^ - J*)/(Ja + J*) • 

We verify (4.11) and (4.12) for k - 0 and k - 1. From (4.5), (4.6) and (4.7) we get 

11 



Thus, (4.16) becomes 
(4.17) 111 | < (12 + 10k)C + (1 + 4k)|T] I 

*k ~ vk-1 
Since | T| ̂  | < 11C» the solution of (4.17) is given by 

hY]| < (i + 4H)k-'nc + 02 + I O H ) 0 ^ " 1 - 1
 C . 

Coming back to T| we have qk 
(4.18) |TlQ J < 3.5C + 10nq2KC + 44Kq2k(l + + (12 + 10H)q2k[(HAh)*"1 -1 } C - \C 

Note that 2 

q2(1+4K)-^-^ (b̂ 44̂ b)<: ̂  
(^ + jiy 

Thus, 
1̂  * 3.5 + 10h + 44nq2 + (12 + 10n)q2 * 15.5 + 64h, 

and lim L, s 3.5. 
k * 

Finally, from (4.13) it follows 
which completes the proof of Theorem 4.1. • 
5. NUMERICAL STABILITY OF THE CHEBYSHEV METHOD 

In this section we deal with numerical stability for the Chebyshev method. Let us briefly recall 
that an iterative method for the solution of the linear equation Ax+g - 0 is numerically stable if it 
produces a sequence {x̂} such that (5.1) lim sup l̂-crll * ĈIMI II*'1 II IHI + 

k 

where K can only depend on the size n (see Wozniakowski (1975)). 

We propose the following algorithm of the Chebyshev method (see (2.3) and Rutishauser, Stiefel and 

others (1959)). 

Algorithm 5.1 

The Chebyshev method T[a,b], 0 < a and ||A|| £ b. 

Xq is a given initial approximation^, 

for k » 0,1,... 

compute q k and p j by Algorithm 4.1, 

(5.2) r k Aa^+g; 

12 



< 5 - 3 > V H : " \ + K - ^ W P - \ ) / Q K -

T H E O R E M 5 . 1 

L E T ( X ^ } B E T H E S E Q U E N C E C O M P U T E D I N F L A R I T H M E T I C B Y A L G O R I T H M 5 . 1 . I F 

( 5 . 4 ) F L ( A X K + G ) » ( I + 6 I K ) ( ( A + E K ) X K + G ) 

W H E R E \ ^ \ \ < K ^ I M A N D | | 6 I K | | < K 2C, K . » K . ( N ) F O R I - 1 , 2 , 

T H E N F O R S M A L L £ , 

/ 4 B ( 5 9 + 4 K + 4 K ) \ 
( 5 . 5 ) L I M S U P \^a\\ < 4 ( 1 + 4 1 ^ M I N ( A > X , > 1 H I / U - M L N ( A > X . ) C ) » • 

K M M X M M / 

N O T E T H A T A S S U M P T I O N ( 5 . 4 ) H O L D S F O R T H E S T A N D A R D A L G O R I T H M F O R T H E C O M P U T A T I O N O F A X ^ + G A » D K 1 £ O Y / A , 

K 2 - 1 F O R A N Y M A T R I X A A N D A N Y V E C T O R G ( S E E W I L K I N S O N ( 1 9 6 3 ) , P . 8 3 ) . D U E T O S P A R S E N E S S O F A T H E C O N ­

S T A N T K . J U S U A L L Y D E P E N D S O N T H E M A X I M A L N U M B E R O F N O N Z E R O E L E M E N T S I N R O W S O F A . 

? R O O F 

F R O M T H E O R E M 4 . 1 A N D ( 5 . 5 ) T H E C O M P U T E D X ^ + 1 I S E Q U A L T O 

( 5 . 6 ) X ^ - ( I + D ^ ) ^ + ( I + 2 L £ > [ P K _ 1 < L + U X I + 2 D J J ) ( X K - V L ) - ( I + 6 ^ ) ( A ^ E ^ ) ] / 

/ Q K 0 + ) J . 

W H E R E D £ D E N O T E S A D I A G O N A L M A T R I X A N D \\v*\\ < Q, I - 1 , 2 , 3 . A F T E R S O M E T R A N S F O R M A T I O N S , ( 5 . 6 ) B E C O M E S 

< 5 ' 7 > * K + L " * K + ^ - I ' Y V L ' - ( A X K + G ) } / Q K + § K 

W H E R E 

( 5 . 8 ) ? K - ^ - Q K \ - + E K 

C ( 9 + 1 ^ + L ^ ) FLE^, | | + ( 3 + K 2 + 1 ^ ) I K H | M | / Q K . 

H E R E , A S A L W A Y S , E ^ - \ ~ A A N D ^ I S D E F I N E D I N T H E O R E M 4 . 1 . S I N C E L I M Q F C » Q 2 B / 4 2 L L * ! ^ A N D 

1 1 M 1 ^ » 3 . 5 W E G E T 

L I M • U P - J J S K | | < C L M I ( 1 + 4 K , ) + C L I M S U P \ \ ^ \ \ ( 5 9 + 4 ( K 1 + K 2 ) ) . 

K K 
F I N A L L Y , A P P L Y I N G C O R O L L A R Y 3 . 1 W E G E T , E » L I M S U P | J ^ I ^ I J » 

K 
4 ( L + 4 K 1 ) C B 4 B ( 5 9 4 4 ^ + 4 ^ ) 

6 t M I N ( A , X 4 ) M L + M I N ( A , X . ) ^ 
M I N M M 

H E N C E , ( 5 . 5 ) F O L L O W S F R O M T H E L A S T R E L A T I O N W H I C H C O M P L E T E S T H E P R O O F . • 
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" - n ~ ~ . . . l , B e ( 3 I ) 

m a * min* X t leads us 

6 X l s t s a co„ s ta„ c L - L ( N ) FC  

T F A > B ] W H E R E
 ( N ) « « * « - T F O R E V E R Y M A T R I X 

* > 0 we use t h e C H E B Y S H E V 

(5.9) b \ (5.9) -
m i n min 

sPecifical l y T r a h 1 

(5-'°> lim sup Ik < r
 1 * t J P r o d«ces a s e q , 

W h e ~ K , is d e f i n e d b y ( 5 4 ) >  

Proof 

From Theorem 5.1 and from the definition of the relation < it follows 

e *4<1 + 41^)1. ||A|| I I A " 1 ! ) ( H I C O + 0(Q) which gives (5.10). • 

If C is small then one can prove that the constant which appears in the "0" notation in (5.10) only 
— 1 2 

depends on (||A|| || ) , K and K 9 (see (5.4). Note that if b £ L*X . then for any a 2> X . , (5.9) 
• ^ max m m 

holds; however, for increasing a the convergence of T[a,b] is getting worse, see (2.13) and (3.15). 
We want to show that without additional assumption on D^, E k a n d © k in (5.8), the estimate (5.10) 

is sharp which means that the condition number of A is crucial for the accuracy of the solution of linear 
equation solving by iteration. 

Let us assume for simplicity that a « X . and b • X . From (5.4) and (5.6) we know that D] and 
J m m max ' k 

are small but arbitrary. Assume theoretically that • 0, © f c « 0 and lim E f c
 a E where 

llÂ Ecll « I J A " 1 ) ! ||E|| ( H I and ||E|| - I ^ C L M . F r o m Corollary (3.2) we get 

lim e k - -A^Eo and e « ff, Ml I I * " 1 I I Ml 
which is essentially the righthand side of (5.10). Furthermore, if E k - 0 > © k

 3 0 and lim D k - D where 

2 

lime - S*A A - V , e - C ( (1 + J^b/l)1
 ||A|| \ ^ || ||«||. 

This implies that even using the double precision for the evaluation of Ax+g, | } E K | | < K^ C I M I » w e cannot 

guarantee the high relative precision of the computed { ^ 1 -

74 



T H U S , ( 5 . 1 0 ) I S S H A R P . A L T H O U G H , F R O M ( 5 . 8 ) W E G E T 

L I M S U P | K - « | | * 4 | | A | | HA"11| L I M S U P \\a!a - J - E » | | ( 1 + 0 ( 0 ) 
* ir k 

and if \\[)}a - — E CY | | « C L N I w e c a n expect a better result, k q k k 

6 . WELL-BEHAVIOR OF THE CHEBYSHEV METHOD 

Let us briefly recall that a method for the solution of linear systems Ax+g a 0 is said to be well-

behaved if a slightly perturbed computed approximation y is the exact solution of a slightly perturbed 

problem, i.e., 

( 6 . 1 ) ( A + 6A)(y + 6y) + g + 6g - 0 

where | | 6 A | | < 6 c^\\9 \\by\\ < C C 2 | | Y | | and ||6g|| < C 3̂IblU C T - C ^ N ) . 

Let Ay and Ag be matrices defined by 

(I + Ay)y - y + 6y; (I + Ag)g - g + 6g 

and ||Ay|| < C C 2 > \\tg\\ < C V 

Hence, ( 6 . 1 ) becomes 

( 6 . 2 ) ( A + AA)y + g - 0 

where ||AA|| < C ̂  IMI for c 4 - c} + c 2 + c 3. 

Thus, without loss of generality, a method is well-behaved if the computed y is the exact solution of 

the problem with a slightly perturbed matrix A . 

Let r • fl(Ay + g) be the computed residual vector. Assume 

( 6 . 3 ) r - (I + A I ) ( ( A+E)y + g) 

where ||AI|| < C * 5 and ||E|| < Q c 6 |(A||. 

It is easy to verify that a method is well-behaved iff r satisfies 

( 6 . 4 ) |HI < C c ? ||A|| M. 

Indeed, if ( 6 . 2 ) holds then | | R | | . ^ C < C 4 + C 6 ) | | A | | ||y||. If ( 6 . 4 ) holds then 

(1 + E - (I + A D " 1 IJL^\y + g - 0 . 

Thus, M - E - ( I + A I ) - 1 ^ 3 N D 1'AALL < C ( C 6 + C 7 ) IKH . 
We wish to consider the well-behavior problem for the Chebyshev method T[a,b]. This means we must 
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verify if the computed vectors r^ = fl(Ax^+g) satisfies condition (6.4) for large k. From (5.4) we get 

Hrk-r*||<KlC \M IfccJI 
where r^ = Ae^. 

Thus the Chebyshev method is well-behaved iff r^ satisfies (6.4). Let us assume for simplicity that 

a = X . and b = X . Note that fr. } satisfies similar recurrence formula as fx, 1, see (5.7), i.e., m m max L k * L k.J ' ' 

(6-5) Vi ' rk + K-i(rk-rk-i} " + AV 
Applying Theorem 3.1 and Corollary 3.1 we have 

lim sup ||r*||< 4|M| IK"1 || lim sup ||. 
k ~ k 

Unfortunately, lim sup ||Ag || is of order £||A|| IM| and 
k K 

(6.6) lim sup ||r*||< 4C(1 + 4̂ )̂ 11 1| ||»||. 
k 

Numerical tests of Algorithm 5.1 confirm that (6.6) is sharp which means that in general the Chebyshev  

method Is not well-behaved. Note that direct methods for small dense systems such as Gaussian elimina­

tion with pivoting, the Householder method and the Gram-Schmidt reorthogonalization method are well-

behaved (see Wilkinson (1965) for two first, Kielbasinski (1974), Kielbasinski and Jankowska (1974) for 

the last). The lack of well-behavior for the Chebyshev method makes the termination of iteration which 

is based on [r^l difficult. For instance, if we want to find x^ such that ||TJJ| ^ ell̂ H then, in general, 
we can guarantee the exitence of such x^ only if e is of order £||A|| |JA ̂  || ||r̂  ||. 

However, it can happen that (6.4) holds. Let us mention only two examples (rather theoretical). 

If {g ] from (6.5) is convergent to g, ||g|| is of order C||all» t h e n applying Corollary (3.2) we get 

from which the well-behavior holds. 

Next if lim sup llxjc"x
k.i II ^ K

3 C IMI t n e n f r o m condition (ii) of Corollary (3.2) we have 
k 

liryup ||r*|| < C(2K3 + 4(1 + 4K 7 ) ) | | A | | |H|. 
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