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ABSTRACT

In this paper we exam ne the problem of designing electronic circuits
using Multiple Criteria Optimization where one of the conpeting criteria _
is the circuit yield. A new technique for generating solutions to the MCO
probl em based upon a famly of weighted p-nornms is presented. W concentrate
on the max normnenber of this famly (this gives a mninax problen) and
propose a nethod of solution based upon a new constrained optim zation
met hod due to Powell. The yield and gradient of yield are estinmated using
a nmet hod based upon Sinplicial Approxinmation which is used to forma
pi ecewi se linear approximation to the probability density function of the
desi gnabl e paranmeters. An exanple illustrates that it nmay be possible to
significantly alter the values of various circuit criteria, over their
value at the maximumyield point, with very little change in the circuit
yi el d.

£ | nt roducti on

H storically circuit design can be viewed as consisting of two broad
nmet hodol ogi es: performance design and statistical design. In performance
design the circuit desi gner chooses a circuit configuration, adjusts
paraneters to attain a desired performance and then tests the circuit
yield. If the yield is too small the paraneters are re-adjusted. Statistica
design arose mainly in response to integrated circuit design problens. In
statistical design a circuit configuration is chosen.and then the paraneters
are adjusted to achieve maximumcircuit yield (worst case design being the

extrene of 100%yield).

These two net hodol ogi es can be unified by considering circuit design

as a Multiple Criteria Optim zation (MO problemwith yield as one of the




conpeting objectives. Specifically, after a circuic configuration is chosen,

we consider the following MO probl em

fl(xo)
M n (1)
X
o
fm (xo)
1- Y(Xo)

subject to g«(Xxo)<p i=1, . . . - I

wher e Xo are the designable paraneters, such as length, w dth, and various
conmponent val ues; fi(xo) are various objectives to be mnimzed such as

power, area, propagation delay, insertion loss at a given frequency; Y( Xg)
is the circuit yield at Xo; and the gA"x”'s are circuit constraints such

as limts on paraneter val ues, upper Iimts on propagati on delay and
requirements on various voltage |evels.
In this paper we intend to exam ne conputationally effective nmeans of
solving (1). ~To do this we will discuss the MCO problemand the yield
cal cul ation problem separately. In the next section we present a new net hod
for generating solutions to the MCO problem and a suggestion for effective

i mpl enentation of this method. In Section IIl we present a method based upon

the Sinplicial Approximation [1] for efficiently estimating the circuit
yield and the gradient of the yield with respect to the nominal point. In
Section IV we present a geonetric exanple of a MCO problemwith yield as a

criteria. Finally, Section V presents a summary and concl usi on.
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1. Miltiple Criteria Optimzation

In this section we will consider the MCO problemin the foll ow ng
form
f (%)
‘Mn
X
f (x) (2)
B m
subject to
g:(x) 10 i -1, - - ., |,
. . T1
where x is in R". The set
a={x|gux) <p, i-i, . . ., i}
will be called the feasible region in input space. The image of ft
by f = (f.(x),. . , (X)), i.e.,
1 m

A-{f|fef (G},

will be called the feasible region in output space. The solution concept

for the MCO problemthat we will use is that of noninferiority [2].

Definition. Apoint x eft is called a noninferior point if and only

if there does not exist another point x* eft, x £ x*, such that

fi(x') £f'x> for all i

Iy < f/ f j.
fj,(x ) ,J(x) or somne |j

The image f(x) of a noninferior point x will be called a noninferior solution.




Alternate termnology for noninferiority is Pareto optimality'[3],

efficiency[4], adnissability and a form of nondomination [5].

Many met hods have been devel oped for generating noninferior solutions
[2-15], reviews are found in [9] and [10]. W will present two standard
met hods in order to illustrate the problens and ideas of MCO, then a

new famly of solutions will be described.

Historically the first nmethod used to generate a noninferior solution

was to forma weighted sumof the objectives [11-12], i.e.,
m
Hx,w = JVf.(x) w.>> 0. (3)
=l %A

Then minimzing (3) subject to the given constraints would generate a

noni nferior solution. In output space this method can be viewed as finding
a supporting hyperplane, with normal w, to the feasible region A, This is
illustrated in Figure 1. (Throughout this paper we will assune that ‘the
feasible region in output space, A is conpact, and so wthout |ess of
general ity we can always consider Ain the positive orthant, i.e., A> 0.)
Figure 2 indicates the problemthat arises in using the weighted sum nethod

when sone noninferior solutions are on a non-convex portion of the surface

of A

One nethod (of many) that overcones the convexity limtation of the
wei ghted sumnethod, is the constraint method [13-15]. In this nethod one
of the objectives is mninmzed subject to the remaining objectives being |ess

than or equal to certain constraints, i.e




fl(X)

Min
X zft
(4)
subject to f.(x) _< ay i=2 ..., m
where the cg‘s are chosen by the user. This nethod is illustrated in Figure 3.

The problemwith the constraint nethod is that not every choice of a's
yield a noninferior solution and thus each solution nust be checked for

noni nferiority.

An alternate to either of these methods is to consider the famly of

wei ghted Jdp nor s,

m . 1/p
and
| [W | Im =1r11?l_.x N (wiifi)

where Wis a weight nmatrix with non-negative diagonal entries and all other
entries zero. Notice that in (5 we inplicitly use the assunption that
A~ 0, hence filg__o. The | east Bh nmet hod for generating a noninferior

solution is to

mn WL,
P

X e 0,

(6)




For the Il norm (6) is sinply the weighted sumnethod. A geonetric inter-

pretation of (6) in output space can be found by considering the level set

associated with the p normi.e.,

Lo(a) = {f 1 [[wf]], < a}

The geonetric interpretation of the » normnmethod (mninax) is shown in
Figure 4, for tw different weights. W now present two theorens concerning

the I nethod where we assune that the m ni mum of each function, considered
P

separately, is unique. The proofs of the theorens are straightforward and

wi |l not be presented to conserve space, they can be found in [10].

Theorem 1 A solution f* e Ais noninferior if and only if there exists a
di agonal weight matrix, W>_ 0, and a p, |<p<«, such that f* is the unique

mnimzer of ||Wf||p over A

W know that if f* is a noninferior solution found by mnimzing an Ip
norm that the normal to the |level set of the Ip normat f* nust be collinear

with the inward pointing normal, n*, of A at f*. .Let us normalize n* so that

n*Tf* =1
A canoni cal wei ght, Wp), can now be defined such that if f* is found using

a Ip normthen ||[wWp)f*|j o = 1. This weight is

1
x P
I,
w.;{p) = A
~El (?)
* p
f..
i
Note that for p = 1, " (1) =n. as required, for p = ~ “inc) = "fr .

i




Definition A noninferior solution f* will be called a solution of degree p

when | _ is the snmallest canonically weighted norm (i.e., snallest p) that can be

used to find f* uniquely.

'Wth the canonic wei ght and degree of sol ution defined we now have

Theorem 2 |If f* is a noninferior solution of degree p, then f* can be found
by m ni m zi ng ||W(q)f||‘:1 over A, for all g > p, where Wq) is the canonic

wei ght for f*.

W will now discuss the conmputational inplenentation of the I~ method
for generating noninferior solutions. The I~ problemis the mninmax problem
and is stated as

mn max R
xefti-%...,m
There are many met hods avail able for solving the m ni max problem [ 16-19].
VW will use the sinplest nethod which is to introduce an extra paraneter

Y and rewite (8) as

mn y
(xeQ,Y

subject to

(9)
wilflj/\'f i=1, . . . ., M.

In order to solve (9) it is inperative that a powerful constrained
optim zation nethod be available. W use the new nethod proposed by Powel |
[20-22] which is simlar to nethods discussed by Han [23] and Tapia [24].

Powel | 's nethod consists of solving a sequence of quadratic prograns of the form

I .




min F(x5) + d°G + 1 4Tpq
4 2
10
subject to (10)
Tog, () + g X <0 i=1, ..., 2

where F(xk) is the value of the function being minimized at xk, G is the
gradient of F at xk, B is an estimate of the Hessian of the Lagrangian with
respect to x. The solution of (10) yields a search direction that tries

to simultaneously reduce F(x) and satisfy the constraints. The multipliers
from the quadratic program are used in the symmetric rank two update of B.

By linearizing all the constraints the active set strategy is completely
handled by the quadratic program. Further details of implementing this method
as well as a proof of R superlinear convergence can be found in the references.
In Powéll's work he finds his method a factor of 3-5 times better than any
technique he‘compared it with. In experiments of our own [10] Powell's
method was found to be at least 3 times faster than the Augmented Lagrangian

methods [25-26].

The final problem associated with the generation of noninferior sclutiomns
is the choice of the weights W,.. Clearly interactive heuristic methods for
choosing weights should be used in order to minimize the number of constrained
minimizations required to find a satisfactory noninferior design. Much work
needs to be done in developing these methods and we will only give some

suggestions to aid in developing specific heuristics.




In order to know the possible-range of noninferior solutions we suggest
that the first step in a heuristic be the mnimzation of each objective
function separately. Using this information the designer m ght then sel ect
a set of weights 9, indicating his preference for each of these solutions.

Upon normal i zi ng 3—l so that £ 3.1 = 1 we generate the point f

~ '_*
£= 18,8 (11)
* .th
where fa is the point found by minimzing the i obj ective. Now based

upon the ideas enbodied in the canonic weight we choose the wei ght

W. =3 i =1 . . ., m (12)
11 K
for the next |_ mnimzation. In succeeding iterations the designer will

pi ck known noni nferior solutions anmong whi ch he wishes to trade-off and gives prefer--
ences g.. Then the weights are generated using (11) and (12). This procedure

continues until the designer finds a noninferior design with which he is satisfied.

This I normnethod of generating noninferior solutions has proved
00

conpl etely satisfactory on a nunber of exanples. Furthernore, by using

Powel | s nmet hod we' have found that the m ninax approach is no nore conput-
ationally expensive than the constraint method while being nuch nore appealing.
Met hods simlar to the Ip normfanily have been proposed in £27-29]. In

the next section we will discuss a nethod for efficiently estimating yield

and it gradient so that it can be included in an MCO statenent of thé circuit

desi gn probl em .

I1l. Yield Maxi m zati on

In choosing a nethod to calculate yield nnd its gradient it is inportant .
to realize that in an MCO problem Lhc yield nnd gr-uiient of yield will hnve to be

estimated many times. Therefore, yield estimation nmust be efficient. This




efficiency may be obtained at the cost of a relatively |arge anount of
preprocessing and still be conputationally viable over the entire MCO
sol ution procedure. The basis of our method will be the Sinplicial

Appr oxi mation method [1].

The key feature of the Sinplicial Approximation which we use is the
generation of the piecew se-linear inner approximtion to the feasible
region 8 in input space. Although a relatively costly preprocessing step
this approxination has a two-fold beneficial effect in the MO probl em
first the nonlinear constraints on circuit behavior will be replaced by
pi ecewi se linear constraints making the constrained optim zation easier

Secondly, we will be able to estimate yield inexpensively using the Sinplicial

Appr oxi mat i on.

Let H(x., xo) be the p.d.f. of the parameters w th noni nal paraneter

vector x . Wth Qas the feasible region in ihput space we have
fi
Y(Xo) = ;F(x-xo)dx. (13)

"By replacing Qwith the sinplicial approximation, SA we have

Y(xo) ng(X'XO)dX. _ (14)

The key to the method is to realize that, by construction, each face of the
éinplicial approximation is a sinplex. Thus, as shown in Figure 5, each

nom nal point Xg induces a unique interior sinplicial deconposition of the
approximation SA. W w |l consider various nethods of approxinmating (14) over

each of these interior sinplices. Generically this approximtion will take

the form




L

Ai (XO} Nk F(xik)xo)} (15)
where A_(x,) is the hypervclune of the i thi nterior simplex, F(x., ,x ) is the
N th IK O
value of the p.d.f. at various points in the i rt%gi on and d, a wei ght. W

will approxinate the gradient of the yield over i region as the gradient

of the approximation over that region - which we can calcul ate exactly.

Generically the gridi ent will have the form 2

Ajlx) (49, Flegox )} + ¥ A (x) (] 4 FGe, %))
k=l o] o) k=l
By examining (15) and (16) we see that to be able to efficiently

estimate yield and its gradient over the ith region we nust efficiently

eval uat e A.l(xo) and Vx A.I(xo}. Let X.I be a matrix whose colums are the

0 th

coordi nates of the vertices of the i interior sinplex exclusive of x9,
the nominal. This matrix is independent of the nominal. It can be shown

[10] that

|

A(x) =-% 1 det(X) {1-x"X. "'e} ( (17)
i o n! ' | o | vy

and Vx VX3 7 h SS" Uet(X }{I-x "X “S}] (X e (18)
is. X U 1. X UX X

o}
where n is the nunber of designable paraneters det(X.l) is the determnant of

of X.l, eis a c_oiurm vector of all ones, and sgn is the sign function. Thus we -

need to find X* e and det(X?'). This can be easily done for each x* by

sol vi ng

Xiy= e

or
L.| Uly, = e
- nnl II-II/\ - nl
y U.I Loy XI. e

n
det(X.) = H u...
1 i=1 X*

wher e L':_ and U.1 are determined by triangular factorization of X .

(16)




Note that this is a preprocessing step that only needs to be done once for

each X . A'so as we progress fromthe i '" face to its neighbor only one
i
colum of X changes and so further economes are possible in these cal culations-
1
For this paper we will consider breaking each interior sinplex into a

nunber of segments by cutting the i'" sinplex with hyperplanes parallel
the face of the i '" sinplex on the boundary of the SA The integra

the yield over each segment will be found by using a piecew se |inear

to

estimate of the p.d.f. over the segnent. This division is shown in Figure 6.

Using Figure 6 with

' k > m= 1, « « - -, 10
= + — -
Bk =% "7 im - %) , . 3
. Krly "y
where | is the nunber of segnents desired, x",the vertices of the SA we

: : .th
estimate the yield over the i simpl ex as

1 1 7
YyXo) = A Gy (E0xxg) +kzlf(eikl,xo)}
+ i .n_;._lzn i ,i o)
=2 gD Ai(xo)—i? { [ I);=lf(:‘imk’ xo)]}'

k=3t

The gradient of the yield over the il-'h sinplex is estimated by taking the

gradient of (19), i.e€e.,

(19"




1 1 3 ¥ ki *o)

VxDYi(xO) = A Ai(xo)'m) {onf(xo,xo) + 1}
1 AN X o) 1 ( n
tw Ta D (FHlyx > +k§lf(gikl’xo)}
[ n ,. ol ] n af(g, . )
T I e g A(%o - a /; '2(_ —1}
j=2 Lo i k=j~1 m=1l 0
2 .n,. ..n 3A. (x ) ] n
+7- (20)
=2 L

Notice that (20) is the exact gradient of (19). Further since we have reduced
the work of calculating Ajgx() to an inner product, and Y{ Ai(xo) to checking
a sign, the mgjor work in evaluating (19) and (20) is the evaluation of
f(x,xo) and ¥: f(x,xo) . at various points over the sinplex. Sunmng (19)

0
and (20) over all interior sinplices gives the estimates of yield and

gradient of yield for the sinplicial approxinmation.

For a particular sinplicial approximation- (Fig. 7) we conpared a
1000 sanple Monte Carlo estinmate of yield to the method described above
using 10 segnents per interior sinplex. For a gaussian p.d.f. with equa
variance and no correlation the results are shown in Table 1. Conpari sons

are made for two different standard deviations and for several nom na

~ points throughout the approxi mation.

In this section we have presented a new nethod based upon the Sinplicia
Approxi mation for estimating yie]d and its gradient. Because nuch of the
work involved is preprocessing and because the Sinplicial Approximation

reduces the work involved in solving a constrained optim zation problemwe




feel that this is a conputationally viable approach for use when adding

yield as an objective function in a Multiple OGriteria Optimzation circuit

desi gn probl em

I'V. Nunerical Exanple

In order to illustrate an MCO problem including yield we will

consider the follow ng problem

M n fo- (XM.5)2 4 (X, - 3)72
X1>-X2
fo - (X, 7)2 + (xp-3.5)2 | (21)
- Y(x)
subj ect to
(0-6)2 (X»-6) 2
N (22)
(5.5)7 (2)°

where Y(x) is the yield and X| and x, are independent gaussian with equa
variance. The first step is to generate a sinplicial approxinmation to the
feasible region in input space defined by (22). This is shown in Figure 7.

Next we find the mnimumof f~y f~ and |-Y(x) separately, these points are

indicated in Figure 7. W note in passing that, because of the symretries
i nvol ved, no matter what standard deviation is chosen the nmaxi mumyield

poi nt remai ns the sane.




As an analog of the MCO circuit design without yield we indicate in
Figure 8 the set of noninferior points associated with mnimzing f..l and fﬁ
simul taneously. Al of these points are quite far fromthe maxi rumyield
point. This indicates that if we consider only performance criteria and
not yield in an MCO design problem no matter how many noninferior points

for tl and ff we find, the yield could still be unacceptable.

Next we consider the full MCO problem (21). Figure 9 indicates two non-
inferior points generated using the mininmax method. Yield was evaluated as
described in section Il using 10 segnments per interior sinplex. A standard
devi ation of 1 was used for the exanple in Figure 9. Exam ning the val ues
of the objective functions shown in Figure 9 we see the nost inportant feature
of MCO including yield: it is possible to significantly alter the val ues of

performance criteria at the cost of a minor change in yield.

Figure 10 shows the sane exanple as Figure 9 except the standard deviation
is now 2 instead of 1. Again, two noninferior solutions were generated using
the wei ghted mni max met hod. Exam ning the objective function values we
again see that significant changes in tl and fﬁ, over their values at the

maxi mumyi el d point can be found without significant reduction in yield.

The phenonenon noted above has been denonstrated in exanpl es using
smal |l filter networks, in our talk we will present an exanmple of MCO circuit

design, including yield, on an MOSFET | ogic gate.




V. Summary and Conclusions

In this paper we have briefly reviewed multiple criteria optimization
and presented a new method of generating noninferior solutions. The weighted
minimax generation method, together with Powells' new algorithm, is a powerful

technique, with appealing heuristics, for interactively generating noninferior

solutions to the MCO circuit design problem.

Further, a method for estimating yield and its gradient, based upon
Simplicial Approximation, has been discussed. This method provides a
computationally viable method for including yield as an objective function

in an MCO problem.

Finally, a numerical example embodying the above ideas has been
presented which illustrates the MCO problem including yield. This example
illustrates the most important feature of using MCO to trade-off between
performance and yield: that it is possible to achieve significant variation of
performance criteria, over their values at the maximum yield point, without

significantly effecting the yield of a particular circuit.
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Ceonetric Interpretation in Qutput Space of Wighted Sum
M ni m zati on.

Noni nferior Solutions Not Attainable by Weighted Sum M nim zation
Due to Nonconvexity.

Constraint Method for Findi ng all Noninferior Solutions.
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with Two Different Noninferior Solutions.

Interior Sinplicial Deconposition of the Sinplicial Approximation
to the Feasible Region in Input Space.

Di vi sion of the ith Interior Sinplex into Regions for Piecew se
Li near Approxi mation of the Yield.

Sinplicial Approxination of Eqn. (22) Showi ng Extrenmes of f 1’
fE’ and Yi el d.

Noni nferior Points for f,

n and ff}f excl usi ve of Yield.

Noni nferior Points for a Standard Deviation of 1, for the MCO

“Probl em I ncluding Yield.

Noni nferior Points for a Standard Deviation of 2, for the MCO
Probl em I ncl udi ng Yi el d.




PL_Appr oxi mat i on } Monte Carlo (1000 Sanpl es)

Standard Deviation = 1

37. 68 42. 2
46. 78 48. 8
96.44 94.9
93. 22 93.5
90. 24 91.8

St andard Deviation_= 2

26.97 29. 1
42.9 44.9
62.47 63. 7
56. 61 56..2
60. 62 60. 8
Table 1 Conpari son of Piecew se Linear Approximtion of Yield

Using 10 Divisions of Each Interior Sinmplex with a 1000
Sanmpl e Monte Carlo Over the Sinplicial Approximation.
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NONINI-IiRIOR I'Oi NTS

Fi F2 YI ELD
.3195 24. 58 37.68
27. 26 . 2935 46.78
29.25 7.25 96. 44
16. 39 6. 57 93. 23
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MJININ'FKRIOK VL ' NTS

Fl F2 YI ELD
. 3195 24.58 26. 97
27.26 . 2935 42.9
29. 25 7.25 62. 47
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