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ABSTRACT

In this paper we examine the problem of designing electronic circuits
using Multiple Criteria Optimization where one of the competing criteria
is the circuit yield. A new technique for generating solutions to the MCO
problem based upon a family of weighted p-norms is presented. We concentrate
on the max norm member of this family (this gives a minimax problem) and
propose a method of solution based upon a new constrained optimization
method due to Powell. The yield and gradient of yield are estimated using
a method based upon Simplicial Approximation which is used to form a
piecewise linear approximation to the probability density function of the
designable parameters. An example illustrates that it may be possible to
significantly alter the values of various circuit criteria, over their
value at the maximum yield point, with very little change in the circuit
yield.

£• Introduction

Historically circuit design can be viewed as consisting of two broad

methodologies: performance design and statistical design. In performance

design the circuit designer chooses a circuit configuration, adjusts

parameters to attain a desired performance and then tests the circuit

yield. If the yield is too small the parameters are re-adjusted. Statistical

design arose mainly in response to integrated circuit design problems. In

statistical design a circuit configuration is chosen and then the parameters

are adjusted to achieve maximum circuit yield (worst case design being the

extreme of 100% yield).

These two methodologies can be unified by considering circuit design

as a Multiple Criteria Optimization (MCO) problem with yield as one of the



competing objectives. Specifically, after a circuic configuration is chosen,

we consider the following MCO problem:

Min

x

1-Y(xo)

(1)

subject to g±(xo)<p i= 1, . . . - , I

where x are the designable parameters, such as length, width, and various

component values; f.(x ) are various objectives to be minimized such as

power, area, propagation delay, insertion loss at a given frequency; Y ( X Q )

is the circuit yield at X Q; and the g^x^'s are circuit constraints such

as limits on parameter values, upper limits on propagation delay and

requirements on various voltage levels.

In this paper we intend to examine computationally effective means of

solving (1). To do this we will discuss the MCO problem and the yield

calculation problem separately. In the next section we present a new method

for generating solutions to the MCO problem and a suggestion for effective

implementation of this method. In Section III we present a method based upon

the Simplicial Approximation [1] for efficiently estimating the circuit

yield and the gradient of the yield with respect to the nominal point. In

Section IV we present a geometric example of a MCO problem with yield as a

criteria. Finally, Section V presents a summary and conclusion.
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II. Multiple Criteria Optimization

In this section we will consider the MCO problem in the following

form:

Min

fx(x)

f (x)
m

(2)

subject to
g±(x) 1 0 i - 1, I.

where x is in R . The set

a = {x|g;L(x) <p, i-i, . . ., i}

will be called the feasible region in input space. The image of ft

by f = (f.(x), , f (x)), i.e.,
1 m

A-{f|fef(G)},

will be called the feasible region in output space. The solution concept

for the MCO problem that we will use is that of noninferiority [2].

Definition. A point x e ft is called a noninferior point if and only

if there does not exist another point x1 e ft, x £ x1, such that

fi(x
I) £ f±v'x> for all i

< f/(x) for some j.

The image f(x) of a noninferior point x will be called a noninferior solution.



Alternate terminology for noninferiority is Pareto optimality'[3],

efficiency[4], admissability and a form of nondomination [5].

Many methods have been developed for generating noninferior solutions

[2-15], reviews are found in [9] and [10]. We will present two standard

methods in order to illustrate the problems and ideas of MCO, then a

new family of solutions will be described.

Historically the first method used to generate a noninferior solution

was to form a weighted sum of the objectives [11-12], i.e.,

m
w ± > 0. (3)F(x,w) = JVf (x) w± >_

i=lX ^
Then minimizing (3) subject to the given constraints would generate a

noninferior solution. In output space this method can be viewed as finding

a supporting hyperplane, with normal w, to the feasible region A. This is

illustrated in Figure 1. (Throughout this paper we will assume that the

feasible region in output space, A, is compact, and so without less of

generality we can always consider A in the positive orthant, i.e., A >_ 0.)

Figure 2 indicates the problem that arises in using the weighted sum method

when some noninferior solutions are on a non-convex portion of the surface

of A.

One method (of many) that overcomes the convexity limitation of the

weighted sum method, is the constraint method [13-15]. In this method one

of the objectives is minimized subject to the remaining objectives being less

than or equal to certain constraints, i.e.,



Min

x z ft
(4)

subjec t to f± (x) _< a. i = 2, . . . , m

where the cu's are chosen by the user. This method is illustrated in Figure 3.

The problem with the constraint method is that not every choice of a's

yield a noninferior solution and thus each solution must be checked for

noninferiority.

An alternate to either of these methods is to consider the family of

weighted Jlp norms,

and

|Wf|

Wf

m
f > 1 _< p < (5)

max
1=1,...,m

where W is a weight matrix with non-negative diagonal entries and all other

entries zero. Notice that in (5) we implicitly use the assumption that

A ̂  0, hence f. >_ 0. The least p method for generating a noninferior

solution is to

llWfllmin
x e 0,

(6)



For the I norm (6) is simply the weighted sum method. A geometric inter-

pretation of (6) in output space can be found by considering the level set

associated with the p norm i.e.,

Lp(a) = {f 1 ||wf||p < a} .

The geometric interpretation of the ^ norm method (minimax) is shown in

Figure 4, for two different weights. We now present two theorems concerning

the I method where we assume that the minimum of each function, considered

P

separately, is unique. The proofs of the theorems are straightforward and

will not be presented to conserve space, they can be found in [10].

Theorem 1 A solution f* e A is noninferior if and only if there exists a

diagonal weight matrix, W >_ 0, and a p, l<p<«, such that f* is the unique

minimizer of ||wf|| over A.

We know that if f* is a noninferior solution found by minimizing an I

norm, that the normal to the level set of the I norm at f* must be collinear

with the inward pointing normal, n*, of A at f*. .Let us normalize n* so that

T
n* f* = 1

A canonical weight, W(p), can now be defined such that if f* is found using

a I norm then ||w(p)f*|j = 1. This weight is

1

~FI (?)
*
f.
i

Note that for p = 1, w ± i(l) = n± as required, for p = ~ wii^co-) = "f* •



Definition A noninferior solution f* will be called a solution of degree p

when I is the smallest canonically weighted norm (i.e., smallest p) that can be

used to find f* uniquely. ~~

With the canonic weight and degree of solution defined we now have

Theorem 2 If f* is a noninferior solution of degree p, then f* can be found

by minimizing ||w(q)f|| over A, for all q >_ p, where W(q) is the canonic

weight for f*.

We will now discuss the computational implementation of the l^ method

for generating noninferior solutions. The l^ problem is the minimax problem

and is stated as

min max *wiifi* ^

x e ft i-1,. . . ,m

There are many methods available for solving the minimax problem [16-19].

We will use the simplest method which is to introduce an extra parameter

Y and rewrite (8) as

min y

(x e Q),Y
(9)

subject to

..f.j^

In order to solve (9) it is imperative that a powerful constrained

optimization method be available. We use the new method proposed by Powell

[20-22] which is similar to methods discussed by Han [23] and Tapia [24].

Powellfs method consists of solving a sequence of quadratic programs of the form



k T i T
min F(x ) + d G + i_d Bd
d l

(10)
subject to

dTVgi.(x
k) + g±(x

k) £ 0 i = 1, . . ., I

where F(xk) is the value of the function being minimized at x , G is the

gradient of F at xk, B is an estimate of the Hessian of the Lagrangian with

respect to x. The solution of (10) yields a search direction that tries

to simultaneously reduce F(x) and satisfy the constraints. The multipliers

from the quadratic program are used in the symmetric rank two update of B.

By linearizing all the constraints the active set strategy is completely

handled by the quadratic program. Further details of implementing this method

as well as a proof of R superlinear convergence can be found in the references.

In Powell's work he finds his method a factor of 3-5 times better than any

technique he compared it with. In experiments of our own [10] Powell's

method was found to be at least 3 times faster than the Augmented Lagrangian

methods [25-26].

The final problem associated with the generation of noninferior solutions

is the choice of the weights v±±- Clearly interactive heuristic methods for

choosing weights should be used in order to minimize the number of constrained

minimizations required to find a satisfactory noninferior design. Much work

needs to be done in developing these methods and we will only give some

suggestions to aid in developing specific heuristics.



In order to know the possible range of noninferior solutions we suggest

that the first step in a heuristic be the minimization of each objective

function separately. Using this information the designer might then select

a set of weights g. indicating his preference for each of these solutions.

Upon normalizing 3- so that £ 3. = 1 we generate the point f

* .th
where f. is the point found by minimizing the i objective. Now based

upon the ideas embodied in the canonic weight we choose the weight

W.. = - i = 1, . . ., m (12)

K
for the next I minimization. In succeeding iterations the designer will

pick known noninferior solutions among which he wishes to trade-off and gives prefer-

ences g.. Then the weights are generated using (11) and (12). This procedure

continues until the designer finds a noninferior design with which he is satisfied.

This I norm method of generating noninferior solutions has proved
oo

completely satisfactory on a number of examples. Furthermore, by using

Powell's method we'have found that the minimax approach is no more comput-

ationally expensive than the constraint method while being much more appealing.

Methods similar to the I norm family have been proposed in £27-29]. In

the next section we will discuss a method for efficiently estimating yield

and it gradient so that it can be included in an MCO statement of the circuit

design problem.

III. Yield Maximization

In choosing a method to calculate yield nnd its gradient it is important

to realize that in an MCO problem Lhc yield nnd gr.uiient of yield will hnve to be

estimated many times. Therefore, yield estimation must be efficient. This



efficiency may be obtained at the cost of a relatively large amount of

preprocessing and still be computationally viable over the entire MCO

solution procedure. The basis of our method will be the Simplicial

Approximation method [1].

The key feature of the Simplicial Approximation which we use is the

generation of the piecewise-linear inner approximation to the feasible

region 8 in input space. Although a relatively costly preprocessing step

this approximation has a two-fold beneficial effect in the MCO problem:

first the nonlinear constraints on circuit behavior will be replaced by

piecewise linear constraints making the constrained optimization easier.

Secondly, we will be able to estimate yield inexpensively using the Simplicial

Approximation.

Let F(x., x ) be the p.d.f. of the parameters with nominal parameter

vector x . With Q as the feasible region in input space we have
n

Y(x ) = JF(x-x )dx. (13)

n
By replacing Q with the simplicial approximation, SA, we have

Y(x ) = 'F(x,x )dx. (14)
SA

The key to the method is to realize that, by construction, each face of the

simplicial approximation is a simplex. Thus, as shown in Figure 5, each

nominal point x induces a unique interior simplicial decomposition of the

approximation SA. We will consider various methods of approximating (14) over

each of these interior simplices. Generically this approximation will take

the form



Ai ( xo } ^ / k

where A.(x ) is the hypervclume of the i interior simplex, F(x., ,x ) is the

-̂  *-' IK O

value of the p.d.f. at various points in the i region and d, a weight. We

will approximate the gradient of the yield over i region as the gradient

of the approximation over that region - which we can calculate exactly.

Generically the gradient will have the form

k=l o o k=l

By examining (15) and (16) we see that to be able to efficiently

estimate yield and its gradient over the i region we must efficiently

evaluate A.(x ) and V A.(x ). Let X. be a matrix whose columns are the
1 o x I o I

o ,

coordinates of the vertices of the i interior simplex exclusive of x ,

the nominal. This matrix is independent of the nominal. It can be shown

[10] that

A.(x ) = -1-. I det(X.) {1-x TX."1e} (17)
i o n! ' I o I v y

a n d Vx V X J = h s S n Uet(X ){l-x TX "S}] (-X "Xe) (18)
is. X U II. X U X X

o

where n is the number of designable parameters det(X.) is the determinant of

of X., e is a column vector of all ones, and sgn is the sign function. Thus we

need to find X. e and det(X.). This can be easily done for each X. by

solving

or
L.U.y = e
I i"7

y = U.""1!,.""̂  = X."1eJ i I I
n

det(X.) = H u...
1 X 1

where L. and U. are determined by triangular factorization of X..



Note that this is a preprocessing step that only needs to be done once for

each X . Also as we progress from the i t h face to its neighbor only one
i

column of X. changes and so further economies are possible in these calculations

For this paper we will consider breaking each interior simplex into a

number of segments by cutting the i t h simplex with hyperplanes parallel to

the face of the i t h simplex on the boundary of the SA. The integral of

the yield over each segment will be found by using a piecewise linear

estimate of the p.d.f. over the segment. This division is shown in Figure 6.

Using Figure 6 with

k , >. m - 1
F = X + — (X. - X )
Hmk o I im o , _ ,

K " l

where I is the number of segments desired, x^m the vertices of the SA, we

estimate the yield over the i simplex as

Y.(XO)

The gradient of the yield over the i simplex is estimated by taking the

gradient of (19), i.e.,



3 3f(?iki'xo)

^x )
{f(V*o>T

.n ,. nii . j n af(£. . ,x )
o-» A ( ^ a i ^ 2
n i

o

2, .n ,. ..n 3A.(x ) j n

Notice that (20) is the exact gradient of (19). Further since we have reduced

the work of calculating A.(x ) to an inner product, and V A.(x ) to checking
o

a sign, the major work in evaluating (19) and (20) is the evaluation of

f (x,x ) and V f (x,x ) . a.t various points over the simplex. Summing (19)
o

and (20) over all interior simplices gives the estimates of yield and

gradient of yield for the simplicial approximation.

For a particular simplicial approximation- (Fig. 7) we compared a

1000 sample Monte Carlo estimate of yield to the method described above

using 10 segments per interior simplex. For a gaussian p.d.f. with equal

variance and no correlation the results are shown in Table 1. Comparisons

are made for two different standard deviations and for several nominal

points throughout the approximation.

In this section we have presented a new method based upon the Simplicial

Approximation for estimating yield and its gradient. Because much of the

work involved is preprocessing and because the Simplicial Approximation

reduces the work involved in solving a constrained optimization problem we



feel that this is a computationally viable approach for use when adding

yield as an objective function in a Multiple Criteria Optimization circuit

design problem.

IV. Numerical Example

In order to illustrate an MCO problem including yield we will

consider the following problem

Min f± - (x^l.5) 2 + (x2 - 3 )
2

X1 > X2

f2 - ( x r 7 )
2 + (x2-3.5)

2 (21)

l-Y(x)

subject to

(Xl-6)
2 (x?-6)

2

1
 9 + - ^ < 1 (22)

(5.5)Z (2)Z

where Y(x) is the yield and x, and x2 are independent gaussian with equal

variance. The first step is to generate a simplicial approximation to the

feasible region in input space defined by (22). This is shown in Figure 7.

Next we find the minimum of f^9 f^ and l-Y(x) separately, these points are

indicated in Figure 7. We note in passing that, because of the symmetries

involved, no matter what standard deviation is chosen the maximum yield

point remains the same.



As an analog of the MCO circuit design without yield we indicate in

Figure 8 the set of noninferior points associated with minimizing f.. and f«

simultaneously. All of these points are quite far from the maximum yield

point. This indicates that if we consider only performance criteria and

not yield in an MCO design problem, no matter how many noninferior points

for f.. and f« we find, the yield could still be unacceptable.

Next we consider the full MCO problem (21). Figure 9 indicates two non-

inferior points generated using the minimax method. Yield was evaluated as

described in section III using 10 segments per interior simplex. A standard

deviation of 1 was used for the example in Figure 9. Examining the values

of the objective functions shown in Figure 9 we see the most important feature

of MCO including yield: it is possible to significantly alter the values of

performance criteria at the cost of a minor change in yield.

Figure 10 shows the same example as Figure 9 except the standard deviation

is now 2 instead of 1. Again, two noninferior solutions were generated using

the weighted minimax method. Examining the objective function values we

again see that significant changes in f.. and f«, over their values at the

maximum yield point can be found without significant reduction in yield.

The phenomenon noted above has been demonstrated in examples using

small filter networks, in our talk we will present an example of MCO circuit

design, including yield, on an MOSFET logic gate.



V. Summary and Conclusions

In this paper we have briefly reviewed multiple criteria optimization

and presented a new method of generating noninferior solutions. The weighted

minimax generation method, together with Powells1 new algorithm, is a powerful

technique, with appealing heuristics, for interactively generating noninferior

solutions to the MCO circuit design problem.

Further, a method for estimating yield and its gradient, based upon

Simplicial Approximation, has been discussed. This method provides a

computationally viable method for including yield as an objective function

in an MCO problem.

Finally, a numerical example embodying the above ideas has been

presented which illustrates the MCO problem including yield. This example

illustrates the most important feature of using MCO to trade-off between

performance and yield: that it is possible to achieve significant variation of

performance criteria, over their values at the maximum yield point, without

significantly effecting the yield of a particular circuit.
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FIGURE CAPTIONS

Fig. 1 Geometric Interpretation in Output Space of Weighted Sum
Minimization.

Fig. 2 Noninferior Solutions Not Attainable by Weighted Sum Minimization
Due to Nonconvexity.

Fig. 3 Constraint Method for Finding all Noninferior Solutions.

Fig. 4 Portions of the Level Sets of the Weighted I Norm Associated
with Two Different Noninferior Solutions.

Fig. 5 Interior Simplicial Decomposition of the Simplicial Approximation
to the Feasible Region in Input Space.

Fig. 6 Division of the i Interior Simplex into Regions for Piecewise
Linear Approximation of the Yield.

Fig. 7 Simplicial Approximation of Eqn. (22) Showing Extremes of f ,
f~, and Yield.

Fig. 8 Noninferior Points for f, and f« exclusive of Yield.

Fig. 9 Noninferior Points for a Standard Deviation of 1, for the MCO
Problem Including Yield.

Fig. 10 Noninferior Points for a Standard Deviation of 2, for the MCO
Problem Including Yield.



PL Approximation Monte Carlo (1000 Samples)

Standard Deviation = 1

37.68

46.78

96.44

93.22

90.24

42.2

48.8

94.9

93.5

91.8

Standard Deviation = 2

26.97

42.9

62.47

56.61

60.62

29.1

44.9

63.7

56.2

60.8

Table 1 Comparison of Piecewise Linear Approximation of Yield
Using 10 Divisions of Each Interior Simplex with a 1000
Sample Monte Carlo Over the Simplicial Approximation.
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