
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



SPECIFICATION, SIMULATION AND AUTOMATED DESIGN
OF INTERFACES AND DIGITAL CIRCUITS

by

Alice Parker

DRC-18-5-79

January 1979

Department of Electrical Engineering
Carnegie-Mellon University
Pittsburgh, PA 15213

Army Contract #DAAG29-76-G-0024



20.

THE FINDINGS IN THIS REPORT ARE NOT TO BE

CONSTRUED AS AN OFFICIAL DEPARTMENT OF

THE ARMY POSITION, UNLESS SO DESIGNATED

BY OTHER AUTHORIZED DOCUMENTS.



SECURITY CLASSIFICATION OF THIS PAGE (Whon Dmtm Enttod)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

A, TITLE (and Subtitlo)

Specification, Simulation and Automated^'Design'

of Interfaces and Digital Circuits

5. TYPE OF REPORT & PERIOO COVERED

: Final;*; *£ayv>l, 1976-
May 30, 1978

PERFORMING ORG. REPORT NUMBER

7. AUTHORO)

Alice C. Parker

8. CONTRACT OR GRANT NUM8ERO)

DAAG29-76-G-0024

9. PERFORMING ORGANIZATION NAME ANO AOORESS

Alice C. Parker
Electrical Engineering Dept., -Carnegie-Mellon Univ
Pittsburgh, PA 15213 .

1O, PROGRAM Ei. EM EN I, PROJECT, TASK
AREA 4 WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME ANO AOORESS

U.S. Army Research Office
Post Office Box 12211
Research Triangle Park, NC 27709

12. REPORT DATE

July 31, 1978
13. NUMBER OF PAGES

14. MONITORING AGENCY NAME & AOORESSff/ dltimrmnl Controlling O til GO) 15. SECURITY CLASS, (oi thtm roport)

Unclassified
15«. OECL ASS! Ft CATION/ DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (oi thim Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (oi thm mbotrmct ontmrod in Block 20, it dittmrmnt from Rwport)

NA

16. SUPPLEMENTARY NOTES

The findings of this report are not to be construed as an official
Department of the Army position, unless so designated by other
authorized documents.

19. KEY WORDS (Continum on rormrmo midm it nocmmmmty and idtMtty by block numbor)

I/O, Interface, Design Automation, Simulation, Logic Design,

Hardware Descriptive Language, Bus Specification, Computer-Aided Design.

2O. ABSTRACT fC«t£au« « wf I tdooittr *r block number)

This report describes research done in hardware description, simulation,
and design automation. Although the basic thrust of the work has been aimed
at I/O and interface problems, most of the results are more general.

The efforts in formal hardware description have produced a language for
bus, I/O and interface specification, GLIDE. GLIDE is supported by a
compiler which performs syntactic and semantic checks. A translator to
the ISPL language has also been written. The resulting code and

FOR*
\ JAM 73

EDITION OF 1 NOV SS IS OBSOLETE
Unclassified

SECURITY T*.S

CARNfelE-MELLON UNIVERSITY
PITTSBURGH, PENNSYLVANIA 15213



unclassified
SECURITY CLASSIFICATION OF THIS PAGZ(Whma Dmim Sntmr^d)

20. (cont.)

non-translatable GLIDE semantics forced abandonment of ISFL either directly
or indirectly from GLIDE for I/O description. An example of GLIDE describing
the UNIBUS*31 is included here.

In order to simulate I/O and bus transactions, changes were made to the
ISP simulator to allow specification of timing and independent PROCESSES.
A further experiment in simulation was done with ISP descriptions of micro-
code execution for a dozen commercial processors.

The major research reported here is design automation work, part of a
larger design automation project at Carnegie-Mellon University. This grant
has supported synthesis research - the mapping from a functional description
of the system (ISP) to be designed to the structure. Automated design of
the control circuitry is in the early stages, but a working program designs
the data paths, registers and memories. An early design the program produced
came within 25Z of the cost of the design a human designer produced. The
PDP-8/E design, included here, has a chip count within 50% of that commercial
design, but the design program produced an entirely different design.

SECURITY CLASSIFICATION OF THIS PAQZ(Wh*a Dmtm Enfrmd)



TABLE OF CONTENTS

1.0 Scope of the Investigation 1

2.0 Summary of Results 3

2.1 The GLIDE Language 3

2.2 Design Automation 4

3,0 Publications Produced ' 14

4,0 Personnel Supported 15

5.0 Bibliography 16

6.0 Appendix I The GLIDE Language 17

7.0 Appendix II The GLIDE UNIBUS™ Description • 64

8.0 Appendix III The Data-Memory Allocator 70

9.0 Appendix IV The PDP-8/E Design 77



1

1.0 SCOPE OF THE INVESTIGATION

The motivation behind the research described in this report is to

enhance the digital designer's capabilities by producing more powerful

design tools. Digital logic design has progressed to the point that

the operation of the logic can be functionally expressed by a variety

of hardware descriptive languages, ISP being one of the more widely

used ones. Functional simulators exist and are useful for verifying

system operation and performance measurements (Barb77a). Thus, the

state of the art in digital design is such that the next addition to

design aids should be synthesis, a program that can design the

STRUCTURE of a digital system, given its FUNCTION or BEHAVIOR as

input. Along with the synthesis of hardware comes the problem of

producing optimal or near optimal designs to meet the design

constraints. The research reported on here is aimed at understanding

the design or synthesis process so that it can be automated. One of

the goals of this project is to produce logic-level hardware designs

from ISP descriptions in a non-optimal fashion to better understand

automated design. (A parallel goal of related research by the same

group is to develop discrete optimization algorithms and technique to

be applied in a more complex and powerful package.

Unfortunately, the area of I/O interface and bus design is not as

well organized or developed as digital design. In order to produce

design aids for this kind of problem, much more background effort has

been necessary. First of all, specification of bus and I/O operation

is a different, more difficult problem than logic description.



Second, simulation is more complex due to timing dependencies which

affect the logical operation of the interfaces to I/O and buses• So,

in order to automate interface design, the remaining effort on this

grant has been aimed at the problem of I/O interface and bus

description. The goal here has been to produce a language suitable

for I/O description and simulation, with the automation of complex

interface design a more distant goal. At the same time, the synthesis

programs described above have been constructed so that reasonable,

simple interfaces to the hardware being designed can be specified and

included in the design.

In the course of pursuing the above goals, seme other areas have

been investigated. These include the specification of a module set

data base for interface designs, the comparison of the interface

specification language (GLIDE) with ISPL, and the description and

simulation of microcode execution for a number of processors. In the

area of I/O design, some further specifications of a general-purpose

programmable I/O processor were produced, and a programmable FIFO

buffer chip design was investigated. Publications and technical

reports in these areas are listed in Section 3«



2.0 SUMMARY OF RESULTS

We are presenting here two main research results - the GLIDE

language, and a working synthesis program, the data-memory allocator.

Related conclusions and results are also briefly enumerated.

2.1 The GLIDE Language

A summary of the GLIDE language progress is presented here.

Since the complete language has not been published elsewhere, a

pre-publication report is attached as Appendix I. The GLIDE language

has now been completely specified, and a compiler supports the

language. Early effort went into the comparison of GLIDE and ISPL,

and this work produced a compiler which translated GLIDE into ISPL.

The result of this was a better understanding of the limitations of

ISPL, and the introduction of the PROCESS concept in the ISPS language

and simulator. By PROCESS we mean the set of register-transfer

operations which exist in a control environment independent from the

control environment of other operations. In addition, timing

capabilities were added to the ISPS simulator. Some of the GLIDE

control structures could not be translated accurately into ISPL, and

some primitive GLIDE operations expanded into large blocks of ISPL

code. In particular, the GLIDE memory constructs include FIFO queues

and associative memories, which expand into long routines when

translated to ISPL. Also, the semantics of GLIDE contain the notion

of synchronous data I/O, which cannot be described in ISPL. Other

Primitive operations which translate to routines include parity bit

generation and checking, data formatting, and packing and unpacking of



words. The major conclusion to be drawn from the comparison is that

GLIDE and ISP are different languages for describing different

entities, and that the problems with I/O description force the

existance of both languages - GLIDE for I/O and ISP for digital

systems.

The maor output of the GLIDE effort so far is two partial bus

descriptions - the military computer GYK/12 I/O bus and the PDP-11

UNIBUS™. The UNIBUS description is attached as Appendix II. Three

main conclusions can be drawn from these two examples. First, the

control structures for nesting PROCESSES have some undefined

semantics, and it is not obvious the effect the PROCESS priority

structure should have on the execution of a GLIDE program. Second,

the control structures inside processes are not block structured, and

hence unwieldy. However, the descriptions seem to accurately reflect

the logical operation of the two buses, and therefore, the language is

viable for bus and I/O description. (Attempts to describe the UNIBUS

with ISPL and ISPS have not resulted in complete descriptions).

Efforts are underway to validate the GLIDE UNIBUS description.

2.2 Design Automation

In order to discuss the results of the design automation effort,

an overview of the RT-CAD (Register-Transfer level

Computer-Aided-Design) system is presnted here. This overview was

originally published in (Snow78a).



RT-CAD OVERVIEW

The ulmate goal of -the RT-CAD project is to provide a

technology-relative, structured-design aid to help the hardware

designer explore a larger number of possible design implementations.

Inputs to the system are a behavioral description of the system to be

designed, an objective function which specifies the user's

optimization criteria, and a library specifying the hardware

components available to the design system. The components of the

RT-CAD system are shown in Figure 1 and discussed below.

ISPS t

(Sob*

Slyl«
Sctoctor

ftf* ttyim

to *U parts
ot tha systam

Partllw

fta*o*md via* tr%cm

0+f

Control
Allot alor

Cvuroi fr«M

Mtt Lbrmry

Uyoul
Processor

figure I: fK-CAO System Overview



The RT-CAD system differs from other design automation systems in

that it operates from a behavioral specification. Such specification

provides a model that, while accurately characterizing the

input-output behavior of a piece of hardware, does not necessarily

reflect its internal structure. The design process is one of binding

implementation decisions in a top-down manner as a design proceeds

through the RT-CAD system. More and more structural detail is frozen

at each level until a complete hardware specification is obtained, the

most influential design search space. The functions of the design

system components which bind these implementation decisions are

described below.

GLOBAL OPTIMIZER. The global optimizer applies high-level

transformations to a design's behavioral representation after

translating it from ISPS notation (Barb77b) to an abstract design

representation called the value trace (Snow78b). The transformations

have a significant impact on the cost, performance, and other

parameters of the designs to which they are applied. The research

described in this paper centers around the design representation, the

transformations upon it, and the strategy guiding their application in

the search for an optimal implementaion.

DESIGN STYLE SELECTOR. By considering the various module sets

that can be used (e.g., TTL vs. a microprocessor), the design

constraints imposed (e.g., cost, speed), and the structure of the

algorithm to be designed (e.g., pipeline data flow), the design style

selector decides on the specific style of design to be employed (e.g.,



bitislice microprocessor, MOS microprocessor, SSI/MSI logic). Earlier

work (Thom77b) shows this to be an influential decision in terms of

cost and speed tradeoffs. When the style is selected, the design is

passed to an allocator specific to the design style. Initial research

into the design style selection process has been completed (Thorn 77a)

and an automatic design style selector is currently being programmed.

PARTITIQNER. The partitioner groups operations from the abstract

design representation into control steps. This effectively binds the

control flow for the design. Tradeoffs between the data and control

parts are made at this level.

DATA/MEMORY (DM) ALLOCATOR. The function of the DM allocators is

to decide the number and type of data operators, muliplexors, and

registers needed to implement the data part of the design. They are

style specific in that they embody analytic and heuristic knowledge

about a style (e.g., the trade-offs involved in the design of a TTL

system), but they do not have access to the specific details of each

module set. The output of the allocator is a data path graph whose

nodes are elements such as adders or registers. An initial

implementation of an allocator for the TTL design style is reported in

(Hafe78).

CONTROL ALLOCATOR. The control allocator generates a sequential

state machine to control the data paths produced by the DM allocator.

The control allocator has the option of designing the control unit

around control philosophies such as microprogramming, programmed logic

arrays, random logic, etc. The output of the control allocator is a



control path graph whose nodes represent control states.

MODULE BINDER. The module binder selects physical modules from

the module set library to implement a design's data and control path

graphs. The library contains descriptions of the components available

to the design system and may be freely updated so that it is kept

current with respect to advances in module technology. This dynamic

aspect of the module set library provides for the technology-relative

aspects of the RT-CAD system.

PHYSICAL LAYOUT PROCESSOR. This component partitions the system

into printed circuit boards or chips, decides the placement of

components, routesinterconnections, and prepares engineering

documentation.

Research is currently underway into the design of all of the

system components described above. In addition, the problem of

integrating them into a coherent design system is being investigated.

Research supported under this grant has focused on the synthesis

routines - the data-memory and control allocators. Although the

control allocation effort is just beginning, some ideas as to the

nature of the problems to be solved have been posed. The generation

of control hardware is analogous to the problem of generation of

microcode, with its inherent computational complexity, but there is

one difference. Generation of hardware introduces another set of

variables into the optimization routines. Not only are

microinstructions generated, but the control hardware itself must be



designed and optimized.

More progress has been made on the data memory allocation

problem. A non-optimizing allocator has been written and reported in

(Park78) and (Hafe78). In order not to duplicate these publications,

(Hafe78) is attached as Appendix III, and the results are summarized

here. This allocator produces a distributed logic design of the data

paths and storage locations for a given ISPL description). (The

program uses ISPL instead of ISPS because of the ISPS development

timetable. It is being modified to accept ISPS). It performs some

error checking to indicate to the user potential resource conflicts

and design errors, and functions independently of the actual

integrated circuits used to implement the logic diagram it produces.

Preliminary checks indicate that the designs are capable of performing

the functions present in the original description. Two designs have

been done by the allocator. The first is part of an elevator

controller and is described in Appendix III. The second is the

PDP-8/E. A non-optimal hand mapping of integrated circuits onto the

allocator output logic diagram has been done, and estimate of chip

count made. It is difficult to compare the automated design with the

original DEC design for three reasons. First, the ISPL description

input to the allocator declares as registers some values the PDP-8E

uses but never stores explicitly in registers, such as the effective

address. These show up as registers in the allocator's design. Also,

the allocator designs distributed logic, and the DEC design was done

in the central-accumulator design style (For a discussion of design

styles, see (Thom77)). Finally, the DEC design has assumed a boundary



10

between the control and data-memory parts of the design, but the

boundary is different from that imposed' on the allocator by the ISPL

description. Thus some tests, flags, and registers which must be

declared explicitly in the ISPL description are part of the control in

the DEC design. In spite of these differences, estimates of chip

count indicate that the allocator uses 50% more integrated circuit

chips than the human designers for the data paths and registers. Of

course, these estimates were made using the same 1970 technology chip

set the DEC designers had to deal with. The 50% excess hardware can

be found in muliplexers which connect the registers, the extra

registers declared in the ISPL description, and duplicated operators

like increment, add, and compare. Much of this can be attributed to

the way in which the ISPL description had to be written, and some of

these constraints will not be present in future ISPS descriptions.

However, other chips can only be eliminated when optimization

algorithms operate at some stage of the design process. The complete

allocator output can be found in Appendix IV, along with the

implementation information used to make the chip count estimates, and

the PDP-8/E ISPL description.

One interesting point to be illustrated is the differences in the

design seen even from the block diagram level. This is shown in

Figure 2. There are two reasons for the differences. First, as

stated previously, the design styles are different. Second, the

multiplexing is used in different ways. In the DEC version, the

operators are shared, and are even used to provide no-op paths from

one register to another. In the CMU version, only registers are



11

shared and use multiplexed inputs. The ISPL language is partially the

source of this disparity. In ISPL, the user can repeatedly use

register A as a destination from various sources• However, the

expressions A+B and C+D do not imply (or discount) a single adder.

Other differences in the design include the use of multiplexers for

shifting in the DEC design, and use of true/complement 0/1 chips for

creating complements. "Oring" of the MQ and AC registers in the DEC

version is done within the multiplexing hardware. Constants are often

created in one place and gated over already existant data paths to the

registers. In the CMU version, these constants are multiplexed at the

register inputs.

One final difference is the treatment of the Link FF and

Accumulator register as a single register in the CMU version. This is

done because of the way the PDP-8/E ISPL description was written.

Further analysis of this design is in progress and includes an

implmentation of the control by hand. Comparisons of the DEC and CMU

speeds will then be possible.



12

\

EADD<0:11>

1 ' [INCREMENT
V

1

1
g

MAR<O:ll>

LAST.P<O:1I> X<O:ll>

I'

MDR<O:11>

i

SWITCHES

OR

1 "
AND

71

a g
MEMORY

o
ADDER

Figure 2a. Sleek Biagraa of O31 ?D?-3 Design.



13

MEMORY DATA

Figure 2b. Basic Data Paths,



14

3.0 PUBLICATIONS

"An Investigation of Glide - A Generalized Language for Interface
Description and Evaluation," Andrew Nagle, M.S. Project Report,
Carnegie-Mellon Universty, Electrical Engineering Department, August,
1976.

"Hardware/Software Tradeoffs in a Variable Word Width, Variable Queue
Length Buffer Memory,11 A.C. Parker with A.W. Nagle,. Proceedings of
the 4th Annual Computer Architecture Symposium, March, 1977.

"Register Transfer Level Digital Design Automation: The Allocation
Process," Louis Hafer and Alice Parker, Proceedings of the 15th Annual
Design Automation Conference, June, 1978.

"The Application of a Hardware Descriptive Language for Design
Automation," Alice Parker and Louis Hafer, Proceedings of the Third
Jerusalem Conference on Information Technology, August, 1978.

"Data-Memory Allocation in the Distributed Logic Design Style," Louis
Hafer, M.S. Project Report, Carnegie-Mellon Universty, Electrical
Engineering Department, December, 1977.

"Automatic Design of Sequencers for the Control of Digital Hardware,"
Andrew Nagle, Thesis Proposal, Carnegie-Mellon University, Electrical
Engineering Department, January, 1978.

"The Development of a Hardware Descriptive Language for Interfacing,"
1 Alice Parker, Andrew Nagle, and Bill Lyden, Carnegie-Mellon
University, Electrical Engineering Department Technical Report,
August, 1977.

"Digital Interface Description," Alice Parker, Proceedings, COMPCON,
February, 1978.

"Description and Simulation of Microcode Execution," Alice Parker and
Andrew Nagle, Proceedings of the 5th Annual Symposium on Computer
Architecture, April, 1978.

"Structure and Function of a General Purpose Input/Output Processor,"
Alice Parker, Andrew Nagle, and James Gault, Carnegie-Mellon
University, Electrical Engineering Department, unpublished paper,
August, 1977-

"The Development of GLIDE: A Hardware Descriptive Language for
Interfacing and I/O Port Specification," Alice Parker, Carnegie-Mellon
University, Electrical Engineering Department, unpublished paper,
August, 1978.



15

4.0 PERSONNEL SUPPORTED

Alice C. Parker, Principal Investigator

Daniel Siewiorek, Associate Investigator

Andrew Nagle, Research Assistant, MSEE, December, 1976

Louis Hafer, Research Assistant, MSEE, December, 1976



16

5.0 BIBLIOGRAPHY

(Barb77a) Barbacci, M.R., et. al, "Architecture Research
Facility: ISP Descriptions, Simulation and Data Collection,"
•Proceedings, 1977 National Computer Conference, Dallas, Texas,
June 1977.

(Barb77b) Barbacci, M.R., Barnes, G.E., Cattell, R.G. and Siewiorek,
D.P., "The ISPS Computer Description Language," technical
report, Computer Science Department, Carnegie-Mellon
University, Pittsburgh, Pennsylvania, 1977.

(DEC72) Digital Equipment Corporation, "PDP-8/E Maintenance Manual,
vol. 1, no. DEC-8E-HR1B-D, 1972.

(Hafe78) Hafer, L.J. and Parker, A.C., "Register-Transfer Level
Automatic Digital Design: The Allocation Process," Design
Automation Conference Proceedings, vol. 15, 1978.

(Park78) Parker, A.C. and Hafer, L.J., "The Application of a
Hardware Descriptive Language for Design Automation,"
Proceedings of the Third Jerusalem Conference on Information
Technology, August 1978.

(Snow78a) Snow, E.A., Siewiorek, D.P. and Thomas, D.E., "A
Technology-Relative Computer-Aided Design System: Abstract
Representations, Transformations and Design Tradeoffs,"
Proceedings of the 15th Design Automation Conference, Las
Vegas, Nevada, June 1978.

(Snow78b) Snow, E.A., "Automation of Module Set Independent
Register-Transfer Level Design," Ph.D. dissertation,
Electrical Engineering Department, Carnegie-Mellon University,
Pittsburgh, Pennsylvania, 1978.

(Thom77a) Thomas, D.E., "The Design and Analysis of an Automated
Design Style Selector," Ph.D. dissertation, Electrical
Engineering Department, Carnegie-Mellon University,
Pittsburgh, Pennsylvania, 1977.

(Thom77b) Thomas, D.E. and Siewiorek, D.P., "Measuring Designer
Performance to Verify Design Automated Systems," Design
Automation Conference Proceedings, vol. 14, pp. 411-418,
1977.


