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ABSTRACT

In this paper we exanine the problem of de-
signing electronic circuits using Multiple Criteria
Optimzation where one of the conpeting criteria is
circuit yield. The yield and gradient of vield
are estimated using a method based upon Sinplicial
Approxi mation which is used to forma piecew se
l'inear approximtion to the probability density
function of the designable paraneters. An exanple
illustrates that It may be possible to significant-
ly alter the values of various circuit criteria,
over their value at the maxinumyield point, with
very little change in yield.

. I NTRODUCTI ON

Hi storically circuit design can be viewed as
consisting of two broad met hodol ogi es: perfornance
design and statistical design. In performance
design the circuit designer chooses a circuit con-
figuration, adjusts paraneters to attain a desired
performance and then tests the circuit yield. |If
the yield is too small the paraneters are re-
adjusted. Statistical design arose mainly in
response to integrated circuit design problens.

In statistical design a circuit configuration is
chosen and then the paraneters are adjusted to
achi eve maximumcircuit yield (worst case design
being the extreme of 100%yield).

These two methodol ogi es can be unified by
considering circuit design as a Miltiple Criteria
Optimzation (MO problemwth yield as one of
the competing objectives. In this way we can
investigate the possible tradeoffs. However, it
seens natural that there nmight exist a trade off
between the perfornmance characteristics and the
statistical characteristics of a circuit. A
heuristic argument for this trade-off can be nade
by noting that extremes of circuit behavior, e.g.,
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| ow power dissipation or fast switching tines,
usual Iy occur at the extreme linmts of sone
paraneter val ues which nakes the design very
sensitive to parameter variations - just what sta-
tistical design tries to avoid. In this paper we
wi Il consider yield maxinzation and develop a
technique, which is an extension of the Sinplicial
Approximation technique [1,2], that can be used
when yield and perfornance are to be traded-off in
an optimzation procedure. (Note: the techniques
of Miltiple Criterion Optinization (MO [3,4] wll
be used to generate the trade-offs between yield
and other conpeting design objectives.)

Il. REVIEWCF EXISTING YIELD
MAXI M ZATI ON  PROCEDURES

Assune that the circuit under consideration
has n statistical parameters, denoted by x. The
specified value of these paraneters, x*, s called
the nominal value and it is a point in“the n dimen-
sional parameter space. A circuit is -considered
to have acceptable performance if the follow ng
constraints are satisfied:

2lx,) <
-\.?‘50 2

gy = 9. _ (1)

The feasible or acceptable region 3 is the set of
all parameters that satisfy the constraints,

2= (x| 8> <9 hGxgy) = 9} @

Gven that the paranmeters have a joint probability
density function (p.d.f.), F(x.x ), the yield
associated with a circuit whosé foninal point is
’:%- is given by

1"(’50) = é F(ifo”ﬁ)d% . (3)

Note that since ?. is inplicitly defined in terns
of X, direct evaluation of (3) is inpossible.

This fact In turn makes difficult the maxim zation
of y liv varying jc", oxpeelillv within the context
of a multiple criterion optinization problem
(Since we have limted our interest here to the de-
sign of integrated circuits only, we do not con-
sider tolerances as designable.)

Since our primary concern is the eval uation
and ultimate maximzation of ~/(x"), we consider
some of the techniques which have been devel oped
for these purposes, and indicate -./here their
weaknesses lie. W begin with the Sinplicial
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Approximation method [1]. This technique is an
iterative procedure for creating a piecewise linear
inner approximation, SA, of the feasible region, 2.
The feasible region is assumed convex. Thus we
have T

sa = {x | L by 1= l,2....,nF} (4)

a7

and sac (5)

where p,,b,, describe the hyperplanes that bound
the apﬁrox mation. Assuming that at some stage,
SA is a good approximation to ), Director and
Hachtel propose a vield maximization procedure
which is based upon inscribing a convex body into
the SA. The convex body (yield body or norm body)
to be inscribed has the same shape as a level con-
tour of the p.d.f. This inscription is done using
a linear program and the center of the largest in-
scribed bodv is taken as the nominal point which
maximizes yield.

We now carefully examine the assumptions of
this procedure to see if it might be useful when
trading-off between vield and performance. An
underlying assumption of the Simplicial Approxima-
tion design centering scheme is that inscribing
the largest norm bodv in the approximation, SA, is
equivalent to maximizing yield over SA. (Note:
for the rest of this discussion the simplicial ap-
proximation will be taken as an adequate approxima-
tion of the feasible region, 2, and the assumption
will be made that we must maximize yield over SA).
In order to show that the assumption used in Sim-
plicial Approximation design centering scheme is in
general invalid, we will assume that 0 < F(§'§O)
<M <= for all ¥, Xy where (F(§’¥O) is the p.d.f.
and ¥, the nominal point. Further, we assume that
each”?evel set of F(§.§O)

E§0(u) = {x !F(§,§O) >u}, 0 <u <M} (6)

is a convex, connected set. Recall that the yield,
at a given nominal, over the simplicial approxima-
tion, S\, 1is

.{(;‘EO) = _SI;F(;\(I,;{IO) d;S. (€M)

Let V(K (u)ﬁSAl represent the Euclidean volume in
X .
input *0 space ot the intersection of the level
set K (u) with the approximation, SA. We now write
(7) X0 as a Lebesgue~Stieltjes integral (5,6,7],
N§
I OF(x,x.)dx = 7 Y{K_ (u) iSA} du . (8)
\‘ k] ‘v K‘ o
sA 0 0 X0

In order to relate (8) to vield body inscrip-
tion, we need the notion of the largest vield body-
level set- that can be inscribed Ln SA at a given
nominal point %o We define the level set of this
body as

u (%) = min{u |K_ (u) nA3a = K_ (W} . (9
Lo b

1'%0
The complementarv idea of the smallest vield body,
at a given nominal, that just contains SA is given
by
uo(¥0) = max\ulkz

i

(u) fisa= sal. (10)
0

The fact that a small u in (6) corresponds to a
large vield body, and vice versa, accounts for the
min and max in (9) and (10).

Now using (9) and (10), we rewrite (8) as

M
f V{K_ (u) NSA} du = u0(§0)V(SA} (11a)
o] 0
u1(§0)
VI{K_ (u)nSA}du (11b)
%0
u0(§0)
M
VK  (u)ldu (11c)
o
“I(to)

Examining (llc) we recognize that inscribing the
largest yield bodv into SA is equivalent to mini-
mizing u_(x.) and thus maximizing (llc). However
in order to maximize (lla) we must maximize

u0(§0) which implies finding the smallest vield
body that contains SA. If the nominal point which
maximizes (lla) coincides with the maximizer of
(1lc) then we have a maximum vield. Anderson [7]
has shown that if the level sets of F(E’K ) are
symmetric about the nominal and if the ‘SA is sym-
metric about some goint *, then maximum yield
occurs when x. = X However, in the general case,
(11b) will défermine the mavimum vield as a trade-
off between (11a) and (llc). In fact, direct
differentiation of (11) shows

ul(ﬁo)
3_3x Y(":{,o) - f V[Kx (u)nSAldu (12)
0 0
u0(§0)

-

Thus we see that the Simplicial Approximation de-
sign centering scheme of inscribing the largest
yield bodv into SA only maximizes (llc) and in
general does not maximize the yield. Further, it
seems likely that this method of approximating the
maximization of yvield becomes less accurate as we
move away from the center of the largest inscribed
yield body and therefore will not be useful {or
generating trade-offs between vield and performance.
But the concept of Simplicial Approximation does
form the basis of the technique to be described
below.

Other vield estimation procedures have been
proposed by Tahim aud Spence [8] and Bandler and
Abdel-Malek [9-11], amongst others. Space limi-
tations preclude discussion of these techniques
here. Suffice it to say that the heuristic
nature of [3] and the computational complexity
of [9-11] limit the usefulness of these methods
for MCO problems (3].

III. A NEW YIELD MAXIMIZATION PROCEDURE
We will describe a new vield maximization

procedure based upon the Simplicial Approxima-
tion, SA, to the feasible region. Using this




approxi mati on we can replace the original nonlinear
constraints of the optim zation with the linear
constraints of the sinplicial approxinmation, thus
reducing the work involved in solving the optim za-
tion problem

By construction, each face of the approxi ma-
tion, SA, is an (n-1) dinensional sinmplex. Thus,
as shown in Fig. 1, each nominal point XQ, interior
to SA, induces a unique interior sinplicial decora-
position of SA Qur nmethod estimtes the yield by
first dividing each interior sinplex into a nunber
of segments (Fig. 2). A piecewi se |linear approxi-
mation of the p.d.f. is then nade over each segnent
and the total yield is found by estimating the
yield integral using these piecew se |inear approx-
imations to the p.d.f.

Specifically, the Integral over each segnent
is found as follows: first, using Fig. 2, with
- k m=l,...,n
v + — - ] L
lirk = &% 7 7 (“dm %) k=l,....2 (13)
the
e

where i is the nunber of segments desired, X
vertices of SA we estimate the yield over
i t" sinplex ast

b4 (xo) = = V{SA i{x,) } ey {F(xﬁ’xﬁ)

n
1
Z FCE,, 0 %)} +Jzz J_ii_

tn

SA{x) E
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% L Pl %) (14)
The gradient of the yield over the iEh inter-

ior sinmplex is estimated by taking the gradient
of (14) (simlar to the Bandl er Abdel - Mal ek

approach) i. e
1 :
{5“ “0} ( oL ){7x0“?-‘n'§n)

VxOY.L(xO) .
+ 15 ylsa L=
n

k=1 ] [ 0
0 .n(._l)ﬂ
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?}F(-..k_._.xn) , 1
0 ntl

A
=15

. E mk.xn)] . (15)

Note that (15) is the exact gradient of (14).

" Vhere V §A.(x )' represents the Euclidean vol ume
of the i'" intérior sinplex. Notice that to cal-,
culate (14) and (15) we need the volume of the i'"
sinmplex and its gradient. It can be shown [3,12]
t hat

1 T -1
VISA (ko) = 3y | det(r) 1~y X, g} (1)

. 1 T,-1 -1
\ HEA Ged b § Sgn[det()‘gi){l-%h eli-X, ") (17)

wher e {(. is a matrix whose colums arge the
coordindtes of the vertices of the i'"™ interior
simpl ex excluding the nomnal and e is a vector of
all ones. Notice that XT"e and det(x.) can be cal -
cul ated once, |ndependen of the nomnal point, and
then the evaluation of (16) and (17) and therefore
(14) and (15) becones straightforward. The total
yield and the gradient of yield are found by sum
mng (14) and (15) over all interior sinplices.

IV EXAMPLE

As an example of uaing the vieid estimation
procedure lit a Multiple Criteria Optimization to
trade-off between yield mil two other objectives
we consider the following problem:

. "
MN By = € - 1.5)2+(x.,-3}" (18)
2 2
FZ. (xl -7+ (X9 .3}
1-Y(gy
subject to
2 2
xl—ﬁ x,-6
XysXy € % {(—5'5 ) +(———2 ) 211 (19)
where Y("c) is the yield and x, and x. are indepen-
dent Gaussian variables with equal variances. t»{*}
indicates that we will rotate the ellipse de-

fined by the inequality 45° to define the feasible
region. Note that minim zing |-Y(x) is equivalent
to maxim zing Y(x).

The results of this exanple are presented in
Figs. 3 and 4. In each figure we have shown the
pi ecewi se linear approximtion to the feasible re-
gion, the points 1,2, and 3 which are the m ni num
of f., f, and maxi num of yield respectively and a
dashéd |i'ne which consists of the trade-off solu-
tions for f, and f, independent of yield. Noti ce
that if we Considered only f. and fg, any trade-off
solution we found would be far front"the maxi mum
yield point. Points 4 and 5 in each figure are
trade-offs between yield, and fo which were
generated using the techni qa‘es of Miltiple Criter-
ion Optim zation [3], These trade-off points
indicate that if we allow yield to decrease slight-
ly we can achieve a marked difference in the val ues
of the other objectives. This indicates the use-
ful ness of considering trade-offs anobng all the
objectives in a design, including yield, at the
sanme tinme.

VvV CONCLUSI ONS

We have presented a new nethod of estinmating
yield based upon the Sinplicial Approximtion to
the feasible region. This method is suitable for
use in a Multiple Criterion Optimzation design
where yield and other design objectives are trade-
off. An idealized exanple was used to illustrate
the inportant point that it raay be possible to
achi eve significant inprovement in the value of




sone objectives, over their value at the maximumyield point, with only a slight degradation in yield.
REFERENCES

[11 Director, SW and G D. Hachtel, "The Siraplicial Approxi mati on Approach to Design Centering,"
| EEE Trans., CAS-24, 7, July 1977.
[2] Brayton, RK et al., "Arbitrary Norns for Statistical Designvia Linear Programm ng, Troc JEEE 1978 | SCAS,
[3] Lightner, MR, "Miltiple Criterion Optimzation and Statistical Design for Electronic Circuits," Ph.D.
Di ssertation, Carnegie-Mllon University, Pittsburgh, PA 1979.
[4] Director, SSW and MR Lightner, "Miltiple Criterion Optim zation for Electronic Circuits,
Proc. CADMECS, July 3-6, University of Sussex, Sussex, England.
[5] Shilovi G E. and B.L. Gurevich, lntegral Measure and Derivative: A linified Approach~ Dover Pub. NY, 1977.
[6] Karafin, B., "The Gen. Conponent Tol erance Assignment Probl. in Electrical Networks,"Ph.D. Diss.L".Pa1974.
[7] Anderson, T.W,"The Integral of a Symmetric Uninodal Function Over a Symmetric Convex Set & Sone Prob-
ability Inequalities," Proc. Am Math. Soc., 170-176, April 1955.
[8] Tahim K. S. & R Spence, "An Integrated Approach to Manufacturing Yield Estinmation and Design
Centering," Proc. 1978 | SCAS.
[9] Abdel -Malek, H L. and J.W Bandler, "Yield Optimzation for Arbitrary Statistical Distributions - Part
I: Theory," Proc. |EEE 1978 | SCAS.
[10] Abdel -Mal ek, H L. and J.W Bandler, " - Part 11: Inplenmentation,"” Proc. |EEE 1978 | SCAS.
[11] Bandler, J.W & H L. Abdel-Mlek, "Optical Centering, Tolerancing and Yield Determ nation via Updated
Approxi mations and Cuts," |EEE Trans., CAS-25, 10, October 1978.
[12] Chien, MJ., "Piecew se-Linear Theory and Conputation of Solutions of Horaeoraorphic Resistive
Networ ks, " 1EEE Trans., CAS-24, 3, March 1977.

A
x'l
- X,
Fig. 1 An interior sinplicial deconposition of the Fig. 2 Division of the i'" interior sinplicial
sinplicial approximtion induced by a nominal point.
NONI NFERI OR POl NTS NONI NFERI OR POl NTS

PT H F2 Y ELD PT Fl F2 YI ELD

1 . 3195 24.58 37.68 1 . 3195 24.58 . 26.97

2 ' 27.26 . 2935 46.78 2 27.26 . 2935 42.9

3 29. 25 7.25 96. 44 3 29.25 7.25 62. 47

I'x 16. 39 6.57 93.23 4 25.28 2.41 56. 61

5 12.72 7.29 90. 24 5 13. 36 6.53 60.62

X X1
L
i
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Fig. 3 Noninferior points for exanple including Fig. 4 Noninferior points for exanple including

vield with standard deviation of 1. yield with standard deviation of 2.




