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ABSTRACT

In this paper we examine the problem of de-
signing electronic circuits using Multiple Criteria
Optimization where one of the competing criteria is
circuit yield. The yield and gradient of vield
are estimated using a method based upon Simplicial
Approximation which is used to form a piecewise
linear approximation to the probability density
function of the designable parameters. An example
illustrates that It may be possible to significant-
ly alter the values of various circuit criteria,
over their value at the maximum yield point, with
very little change in yield.

I. INTRODUCTION

Historically circuit design can be viewed as
consisting of two broad methodologies: performance
design and statistical design. In performance
design the circuit designer chooses a circuit con-
figuration, adjusts parameters to attain a desired
performance and then tests the circuit yield. If
the yield is too small the parameters are re-
adjusted. Statistical design arose mainly in
response to integrated circuit design problems.
In statistical design a circuit configuration is
chosen and then the parameters are adjusted to
achieve maximum circuit yield (worst case design
being the extreme of 100% yield).

These two methodologies can be unified by
considering circuit design as a Multiple Criteria
Optimization (MCO) problem with yield as one of
the competing objectives. In this way we can
investigate the possible tradeoffs. However, it
seems natural that there might exist a trade off
between the performance characteristics and the
statistical characteristics of a circuit. A
heuristic argument for this trade-off can be made
by noting that extremes of circuit behavior, e.g.,
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low power dissipation or fast switching times,
usually occur at the extreme limits of some
parameter values which makes the design very
sensitive to parameter variations - just what sta-
tistical design tries to avoid. In this paper we
will consider yield maximization and develop a
technique, which is an extension of the Simplicial
Approximation technique [1,2], that can be used
when yield and performance are to be traded-off in
an optimization procedure. (Note: the techniques
of Multiple Criterion Optimization (MCO) [3,4] will
be used to generate the trade-offs between yield
and other competing design objectives.)

II. REVIEW OF EXISTING YIELD
MAXIMIZATION PROCEDURES

Assume that the circuit under consideration
has n statistical parameters, denoted by x. The
specified value of these parameters, x^, is called
the nominal value and it is a point in the n dimen-
sional parameter space. A circuit is considered
to have acceptable performance if the following
constraints are satisfied:

The feasible or acceptable region 3 is the set of
all parameters that satisfy the constraints,

l
Given that the parameters have a joint probability
density function (p.d.f.), F(x.x ), the yield
associated with a circuit whose^nominal point is
ĉ- is given by

(3)

Note that since ?. is implicitly defined in terms
of x direct evaluation of (3) is impossible.
This fact In turn makes difficult the maximization
of y liv varying jĉ , oxpee L.illv within the context
of a multiple criterion optimization problem.
(Since we have limited our interest here to the de-
sign of integrated circuits only, we do not con-
sider tolerances as designable.)

Since our primary concern is the evaluation
and ultimate maximization of ^/(x^), we consider
some of the techniques which have been developed
for these purposes, and indicate -./here their
weaknesses lie. We begin with the Simplicial
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Approximation method [1]. This technique is an
iterative procedure for creating a piecewise linear
inner approximation, SA, of the feasible region, 2.
The feasible region is assumed convex. Thus we
have T

SA - < x | nt x <b,, i - 1,2,...,!^} (4)

and
SA < (5)

where n.,b., describe the hyperplanes that bound
the approximation. Assuming that at some stage,
SA is a good approximation to ."2, Director and
Hachtel propose a yield maximization procedure
which is based upon inscribing a convex body into
the SA. The convex body (yield body or norm body)
to be inscribed has the same shape as a level con-
tour of the p.d.f. This inscription is done using
a linear program and the center of the largest in-
scribed body is taken as the nominal point which
maximizes yield.

We now carefully examine the assumptions of
this procedure to see if it might be useful when
trading-off between yield and performance. An
underlying assumption of the Simplicial Approxima-
tion design centering scheme is that inscribing
the largest norm body in the approximation, SA, is
equivalent to maximizing yield over SA. (Note:
for the rest of this discussion the simplicial ap-
proximation will be taken as an adequate approxima-
tion of the feasible region, P., and the assumption
will be made that we must maximize yield over SA).
In order to show that the assumption used in Sira-
plicial Approximation design centering scheme is in
general invalid, we will assume that 0 _£ F(x,x )
_< M < » for all x̂ , x^, where (F(x,xQ) is the p\d.f.
and x Q the nominal point. Further, we assume that
each level set of F(x,x_)

(u)
x

|F(x, j<0) >_ u}, O j c u _<M} (6)

is a convex, connected set. Recall that the yield,
at a given nominal, over the simplicial approxima-
tion, SA, is p

Y(x_) - J F(x,x ) dx. (7)
SA

Let V(K (u)//SA> represent the Euclidean volume in
input ^0 space ot the intersection of the level
set K (u) with the approximation, SA. We now write
(7) So as a Lebesgue-Stieltjes integral [5,6,7],

M
/ F(£,xQ)d;£ = / V{K. (u)fiSA} du . (3)
SA 0 So

In order to relate (8) to yield body inscrip-
tion, we need the notion of the largest yield body-
level set- that can be inscribed in SA at a given
nominal point x . We define the level set of this
body as

u (x )
1 ^

min{u |K (U) rt3A
$0

K (u)}

So
(9)

The complementary idea of the smallest yield body,

at a given nominal, that just contains SA is given

by
uQ(x0) = max{u|Kx (u) fiSA- SA}. (10)

The fact that a small u in (6) corresponds to a
large yield body, and vice versa, accounts for the
rain and max in (9) and (10).

Now using (9) and (10), we rewrite (8) as

M
/ V{K (u) HSA} du =» u (x )V{SA} ( l la)
0 So

X

/

V{K (u)0SA}du

$0

V(K (u))du

So

(lib)

(lie)

Examining (lie) we recognize that inscribing the
largest yield body into SA is equivalent to mini-
mizing u (x_) and thus maximizing (lie). However
in order to maximize (lla) we must maximize
uO^So^ w n i c n implies finding the smallest yield
body that contains SA. If the nominal point which
maximizes (lla) coincides with the maximizer of
(lie) then we have a maximum yield. Anderson [7]
has shown that if the level sets of F(^,x~) are
symmetric about the nominal and If the SA is sym-
metric about some point j< , then maximum yield
occurs when x^ - x . However, in the general case,
(lib) will detemiine the maximum yield as a trade-
off between (lla) and (lie). In fact, direct
differentiation of (11) shows

ui(So}

-^- Y(x ) - f
d o JU J

V{K (u)f»SA}du (12)

Thus we see that the Simplicial Approximation de-
sign centering scheme of inscribing the largest
yield body into SA only maximizes (lie) and in
general does not maximize the yield. Further, it
seems likely that this method of approximating the
maximization of yield becomes less accurate as we
move away from the center oc the largest inscribed
yield body and therefore will not be useful for
generating trade-offs between yield and performance.
But the concept of Simplicial Approximation does
form the basis of the technique to be described
below.

Other yield estimation procedures have been
proposed by Tahira and Spence [8] and Bandler and
Abdel-Malek [9-11], amongst others. Space limi-
tations preclude discussion of these techniques
here. Suffice it to say that the heuristic
nature of [8] and the computational complexity
of [9-11] limit the usefulness of these methods
for MCO problems [3].

III. A NEW YIELD MAXIMIZATION PROCEDURE

We will describe a new yield maximization
procedure based upon the Simplicial Approxima-
tion, SA, to the feasible region. Using this



approximation we can replace the original nonlinear
constraints of the optimization with the linear
constraints of the simplicial approximation, thus
reducing the work involved in solving the optimiza-
tion problem.

By construction, each face of the approxima-
tion, SA, is an (n-1) dimensional simplex. Thus,
as shown in Fig. 1, each nominal point X Q , interior
to SA, induces a unique interior simplicial decora-
position of SA. Our method estimates the yield by
first dividing each interior simplex into a number
of segments (Fig. 2). A piecewise linear approxi-
mation of the p.d.f. is then made over each segment
and the total yield is found by estimating the
yield integral using these piecewise linear approx-
imations to the p.d.f.

Specifically, the Integral over each segment
is found as follows: first, using Fig. 2, with

lirnk
k.
i

(13)

where i is the number of segments desired, x the
vertices of SA., we estimate the yield over the
i t n simplex as

The gradient of the yield over the ic inter-
ior simplex is estimated by taking the gradient
of (14) (similar to the Bandler Abdel-Malek
approach) i.e.,

Y.

(15)

Note that (15) is the exact gradient of (14).
Where V vSA.(x )'k represents the Euclidean volume
of the i t n interior simplex. Notice that to cal-
culate (14) and (15) we need the volume of the i t n

simplex and its gradient. It can be shown [3,12]
that

\ " n!

where J(. is a matrix whose columns are the
coordinates of the vertices of the i t n interior
simplex excluding the nominal and e is a vector of
all ones. Notice that XT^e and det(Xi) can be cal-
culated once, independent of the nominal point, and
then the evaluation of (16) and (17) and therefore
(14) and (15) becomes straightforward. The total
yield and the gradient of yield are found by sum-
ming (14) and (15) over all interior simplices.

IV EXAMPLE

As an example of uaing the vie id estimation
procedure lit a Multiple Criteria Optimization to
trade-off between yield .mil two other objectives
we consider the following problem:

MIN

subject to

(18)

l2 '

1 -

(X2 "

(19)

where Y(^c) is the yield and x, and x- are indepen-
dent Gaussian variables with equal variances. t»{*}
indicates that we will rotate the ellipse de-
fined by the inequality 45° to define the feasible
region. Note that minimizing l-Y(x) is equivalent
to maximizing Y(x).

The results of this example are presented in
Figs. 3 and 4. In each figure we have shown the
piecewise linear approximation to the feasible re-
gion, the points 1,2, and 3 which are the minimum
of f., f? and maximum of yield respectively and a
dashed line which consists of the trade-off solu-
tions for f and f? independent of yield. Notice
that if we considered only f. and f9, any trade-off
solution we found would be far from*"the maximum
yield point. Points 4 and 5 in each figure are
trade-offs between yield, f , and f0 which were
generated using the techniques of Multiple Criter-
ion Optimization [3], These trade-off points
indicate that if we allow yield to decrease slight-
ly we can achieve a marked difference in the values
of the other objectives. This indicates the use-
fulness of considering trade-offs among all the
objectives in a design, including yield, at the
same time.

V CONCLUSIONS

We have presented a new method of estimating
yield based upon the Simplicial Approximation to
the feasible region. This method is suitable for
use in a Multiple Criterion Optimization design
where yield and other design objectives are trade-
off. An idealized example was used to illustrate
the important point that it raay be possible to
achieve significant improvement in the value of



some objectives, over their value at the maximum yield point, with only a slight degradation in yield.
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Fig. 1 An interior simplicial decomposition of the
simplicial approximation induced by a nominal point.
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Fig. 2 Division of the i t h interior simplicial
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Fig. 3 Noninferior points for example including
vield with standard deviation of 1.

Fig. 4 Noninferior points for example including
yield with standard deviation of 2.


