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ABSTRACT conpeting objective functions. These techni ques have

received little attention in the electrical engineer-
In this paper we examne the problem of designing ing commnity. Lin [5] presented the first applica-
electronic circuits using Miltiple Criteria Optim za- tion of MCO ideas to a circuit design problem but his
tion. A new technique for generating solutions to the exanple was solved by hand and did not denonstrate the
MCO probl em based upon a famly of weighted p-norms is power of MCO methods. Fraser [7] used the theory of
presented. W concentrate on the max norm menber of MCO to systemmtically choose the weights for (1) when
this family (this gives a mnimax problem and propose designing several logic gates. However, Fraser did
a nmethod of solution based upon a new constrained op- not explore the use of nore powerful MCO techniques
tim zation method due to Powell. An exanple illus- for the design of electronic circuits. In this paper
trates this procedure. we will explore the use of the full power of MCO tech-

niques for the design of electronic circuits.
l. | NTRODUCTI| ON

Over the past decade many papers have appeared which 1. MULTIPLE CRITERI ON OPTI M ZATI ON

enpl oyed optim zation techniques for the choice of the

paraneter values of a design (see for exanple fl-Jj I'n discussing the ideas of MCO we will use the follow

anontf sellers). In spite of this work, and In spLte of ing notation. The n designuble parameters, x"» i-1.2,

wiJe industrial use ot other conputer aids such as ...,N, in the multiple criterion optimzation problem

circuit sinulation packages, industrial designers have wi |l be denoted by the n-vector x - (Xi, X?, .... Xn).

been npst reticent in accepting optimzation as a use- It is convenient to view$ as a point in trie

ful design aid. The basic reason for the lack of n-di mensional input space |. The mdesign objectives,

enthusiasm for optimization is that when applied to fi. J-1.2,....m will be denoted by the mvector

many realistic design problens, these conputationally £F=fx) - (fl(@. fz(.ﬁ). B R U s conven-

expensive algorithns have yielded little inprovenent ient to view f as a point in the m dimensional output

over the engineer's initial design. We feel that space 0. v R

Multiple Criterion Optimzation (MCO nmy overcome

this problem In general the optimzation problens under considera-
tion will be subject to certain constraints which will

To see why the MCO approach may be better consider the be expressed as £J(>‘<_‘) EQ and h(x) - 9 In general

typical situation in which a designer wants to choose these constraints will be nonlinear functions of :jc

the circuit parameter values, such as resistor and y

capacitor values, device geonetries, and processing The MCO problem can now be stated as

parameters, in order to achieve certain design objec-

tives. These design objectives could be, for exanple, mn f(x),subject to g(x) < 8 and h(x) = 9 (2

the minimzation of power, area, and propagation delay, s

maxim zation of gain, and the requirement of maintain- As previously nentioned, if some (usually all) of the

ing a certain noise margin. The main characteristic of conponents of £ are conpeting there will be no point §

these design objectives is that they cannot be simul- that sinultaneously minimzes of all the conponents ot

taneously achieved. That is, the design objectives are f‘

conpeting and the final design will be a trade-off

Instead of optimality, the concept of noninferiority
[8] is used to characterize a solution to the MCO
problem In order to concisely define noninferiority

anong the conpeting design objectives. To fornmalize
this situation assume that the soal is to mnimze the

objectives fj_(x), f2(x), ..., fH(x) simultaneously, - R S

Wn:are z *(x"J, (x-i>, ..(..)xn) are the( .)]esignable paraxeters. we introduce the following definition.

v?riyv?l iil._.»ap;:;a::r;s to choose weights wh, w,, Def i_nition. The feasibl§ region in input space _(3)

= - ft, is the set of all designable paraneters that satisfy
pxy =} wif (%) (1) the constraints, i.e. \l* (khix) = §- g S §-h

Now £(;<) is mnimzed by a standard gradient optim za- Definition. The feasible region in output space. A,

tion technique such as that described by Fletcher- s the image by f of the feasibl e__r'egi on in input

Powel | [4]. Based upon the results of mnimzing p(x) , space, i.e. A- (f|f - f(x), xeft} (4)

a new set of weights could be chosen and the mi nimza- L ]

tion repeated. The wei ghts have been chosen in an ad Definition. A point x* is a noninferior point if and

hoc fashion such as making v+ 10 tiaes greater than only if there does not  exist an x£?l such that

other w s because the designer felt strongly about f;

as an objective. However, the choice of weights Is fx(.X‘) £ fl(.?_ﬁ*) i-Lo.o..m (5)

critical and, nore often than not, in real exanples f.(x) < f.(x*) for soae j.

satisfactory trade-offs between design objectives could 3 A Ji»

not be generated using this technique. Thus the ill-

L R X K The inmage of a noninferior point is a noninferior
repute of optim zation with nany designers.

sol ution.
The class of optinization techniques, known as Miltiple In general there are an infinite number of noninferior
Criterion Optimzation (MCO) [5,6] has been devel oped points for a given MCO problem The collection of
specifically to deal with the problem of optinm zing noninferior points is the noninferior set. The I|nmage-
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of the noninferior set by f is called the noninferior
solution set, the noninferior surface, or the trade-
off surtace. As with scalar optimizacion procedures,
procedures for solving MCO problems in fact can only
gsenerate local noninferior points. However, in the
sequel whenever we discuss a noninferior solution we
will mean a global noninferior solution.

In solving an MCO problem we desire to find various
noninferior solutions. The designer will examine the
known noninferior solutions, choose one as a final de-
sign or request that more nonirferior solutions be
generated. We will discuss a method of generating
noninterior solutions based upon minimizing weighted
p-norns (2,10], {.e. we will consider the following
single objective optimization:

[X*]% o
mip |;U&l|p subject to xeu 6)

A

where

W= dlag(wlwz,..

p\l/p
H = 7 7
“w.f,'lp iﬁl (ulif!) 7

(Note:we assume, without loss of generality, that
D0, 1.e. £ oA :>E1> 0 for all i).

.,wm).wl > 0 and

It can_be shown ([11] that for each noninferior solu-
tion, f, there exists a p and a W such that [ is.the
solution to (6). Notice that for p=1 (7) 1s'equiva-
lent to minimizing a weighted sum and for p=w (6¥) 1is a
minimax optimization problem.

In order to understand the importance of the choice of
p let us consider the leve% sets for the weighted p-
noem: L§ (a) = (flllwf'lp < al}

The level sets for a 1-,2-, and max-norm, with W=] are
shown in Fig. la. The same level sets but for a dif-
ferent weight are shown in Fig. 1lb. Minimizing the
weighted p-norm shrinks the level set about the origin
as nuch as possible while still remaining in contact
with . In Fig. 2 we show the point found by minimiz-
ing a l-norm with weight W,. The problem inherent in
the l-norm method is indicated in Fig. 3 using weight
Wo, here because of the nonconvexity of the noninferior
surface there are many noninferior points that cannot
be found using the l-norm. However, the noninferior
solutions on nonconvex portions of the noninferior
surface can be found using higher p's. In particular
Fiz. 4 shows the use of the max-norm.

Clearly both the choice of p and W are important in
searching for various noninferior solutions. An im-
portant chavacterization of the weights can be found
as follows: let Q* be the {nward pointing normal
(assumed to exist uniquely) to the nouinferior surface
at §* such that T %

At

Further we require that for the p-norm the value of
]}w(p)fﬂlip be one. Then the canonic weight used to

find {‘ by minimizing !Iw(p){llp (assuming this can be
done) 1is defined as

n *
Wi o) = 7

£*
i

(3)

'GF D =
-

Notice for p=l, *
wii(l) =,
and for p=»
1
W (®) =2,
i1 f1
Also note that any positive multiple of the canonic

welght can be used to find the same noninfertior
solution.

Based upon our understanding of the MCO problem and
the intcerpretation of the canonic weight,we can now
discuss heuristics for weight selection. The first
step in an MCO should be the minimization of each
functlon separately. These minimizations give the
designer an idea of the possible range of values of
the objectives. The next step would be to generate a
weight that would provide a trade-orff between these
extremes. Using the l-norm we might consider finding
the glane through the m extreme or boundary points.
If £ is the noninferior solution found by minimizing
the 1th objective function then the normal to the
plane thrcugh the boundary points is found by solving

d
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= “' i I N

The W that solves (9) is used as the weight in the
next l-norm minimization. This sequence {s illus-
trated in Fig. 3. This _process can be continued as
follows: if the (m+l)”  noninferior solution was un-
satisfactory because the jth component was too large,
then fm+l*fj* (pinimum of jth ccmponent) and m-2
furthér noninferior solutions could be chosen (perhaps
deleting the two noninferior solutions with highest
solutions of ;) and a weight normal to this plane
could be found using (9). A minimizacion using this
weight should decrease the jth component of the objec-
tive function.

An alternate procedure for weight selection can be
generated for use with the max-norm. As was discussed
previously, the canonic weignt associated with a non-
inferior solution 5*, for x»_ 1is

R R C R
Clearly any positive multiple of W* is also a valid
weight. Thus we can take any set of m previously
found noninferior solutions (initially the points
found by the boundary search) and ask the user to
assign a weight, ay > Oz to each point indicating how
much he favors that particulag soluction. The weights

o, can be normalized so that )aj = 1 and then we form

f = .

n loy £

f will be in the plane specified by the m points. We
now form the weight

W L 121, ..., m.
£y

If there 1is a noginferior solution along the ray ex-
tending through f, the weighted Qw method using W will
find it. If is not a scaled canonic weight for any
noninferior solution, a noninfericr solution will :
still be found (unless the noninferior surface has
pathological irregularities) and we have the valuable
information that a noninferior solution does not

exist In the direction specified. MNotice that this
method of weight selection is much more direct than
the l-norm method because we are not specifying

a normal to the suppogt plane at tle desired solutiua,
but an acctual value, f, for the solution which, {f the
weight {s a scaled canonic weight, will be a scaled
version of the solution. ’

A number of varfations on this method are clearly
possible. For instance, if the user examined the
existing noninferior solutions he could sgimply specify
a new desired solution g, then a weligint uii - l/fl is
fomcdiately wenceraced.




111, EXAVPLE

In this section we apply the ideas devel oped in Section
2 to the optimzation of an MOSFET HAND gate circuit
[7]. The designable parameters will be the width, W,
of transistor Tl, the width of the bottomdevices, W3,
(constrained to be the same) and the flat band vol tage
Vpg. The objectives in our design will be: to mni-
ni'ze the area used by the transistors, to mninize the
switching tinme of the gate, and to require the ON
voltage Vo to be as close to zero as possible. The
switching tine is domnated by the turn OFF tinme which
is approximted by a first order approximtion (7).
Thus to evaluate the objective functions we only need
to analyze the gate in the ON state.

The MO we want to solve Is
<f. = propagation del ay
rain
2 » area

X (W) Wy Veg? .
3y =~y | (10)

subject to

<t < 110 nsec
% £ 2500 mils?
< <_.7volts
-2 < V_, < -1 volts
5< W < 50nicrons
5 1 W7, 1 -50 nmicrons
In order to reduce coranutational effort we enployed

the Sinplicial Approximtion algorithm[12] to approxi-
mate the constraints of (10) by the linear constraints:

((l I <'hi i- 1,2,

wher e Fog arid bl define the bounding hyperplanes of the
approxi mation of the feasible region.

., 38 (11)

W will generate noninferior solutions to (11) using
the weighted «', and weighted |.* techniques. Thus we
solve two problens:

Problem 1
mn (WJy + W, o+ W >g) (12)
x - .
subject to
l? X < b. i«l,..., 38
Problem 2
mn y
3
subject to
Vii'<
v2sY
«y3<.V

" | *i bi Wl 3
Both of these problems will be solved using Powell's
constrained variable netric nethod [4]. (The program
of problem 2 is one nmethod of solving the m ni max
optimzation problem)

I11.2 Problem 1
Qur first three optimzations were to find the m ninum

of 1Y ,I>>'Rj separately. The weight for the next opti-
mnition v.is the normal ox the pi.no p.issin® through

the solutions of these minimzations (in output space).
Qur starting point for these four runs was the de3ign
center ¢iven by the Sinplicial Approximationalgorithm

W - 10.6
ES

\/\é3 = 209

VER T -1.47
The objective function values at the nominal were;
$ - 86.23
J» - 2258.06
P; - .56423

The results of the first four optinizations are pre-
sented in Table 1. Notice that by choosing the

wei ghts normal to the plane defined by the boundary
search point, the minimzation gave an interesting
solution showing a reasonabl e trade-off between all
obj ectives. Next we decided to try and reduce the
propagation delay by choosing, as the weight, the normal
to the plane through the first, second and fourth non-
inferior solutions (see Table 1). The result of this
mnimzation did reduce the propagation delay, at a
high cost in area and many function evaluations. 1In an
effort to reduce the conputational expense of finding
this solution, our sixth optimzation used the sane
wei ghts. However, we now started at W « 15. 46,

W3 - 226.74, and Vps » -1, which was & point on the
prane used to determne the weights for this run. The
sane final solution was found using considerably fewer
function eval uations. :

W next decided to forma wei ght based upon noninferior
solutions, two, four and five. Using this weight and
a starting point equal to the fourth noninferior
point, we achieved the results shown. However, the

al gorithm appeared to have difficulty in choosing the
correct final step size. Using the sanme wei ght, but
starting at W ¢ 8.5, US3 * 165, Vpr- -1, we con-
verged, albeit with the“same difficulty, to a differ-
ent solution. Finally we used the endpoint of the
last (eighth) optinmization as the initial point for
the ninth optinmization (see Table 1). The conclusion
we draw from these results is that we have found indi-
cations of a nonconvexity on the noninferior surface.
Thus there are many (possibly infinite solutions to
the 1} minimzation with this weight and that this
anbiguity of solutions in a small region of the non-
inferior surface was the cause of the problens in the
optim zations. Therefore we have indication of the
need to use nore powerful MCO techniques on this

probl em

111.3 Problem 2

W now find noninferior solutions to (11) using the

m ni max approach in [13]. The results of the boundary
search are presented in Table 2. The starting point
was again the design center predicted by the Sinpli-
cial Approximation algorithm wth the addition of y
which was assumed initially zero. The interesting
point, in conparing the boundary searches of Problem 1
and Problem 2, is to notice the difference in conputa-
tional effort. Experience indicates that whether the
wo I chtod :;um nethod of Mc mnimx method Is nore
efficient i:5 probl em dependent.

The fourth noninferior solution to Problem 2 was based
upon an equal weighting of the boundary sol utions and
uses the m ni ma* wei ght description cf Section II.
Notice how closely the results of run four match In
Problems 1 and 2. This indicates a convex region of
the noninferior surface and that the solution to this
mnimzation lies near the centroid of the three
points used to define the weights. The next minimza-
tion vns pertoneed with weights which are equal com
bination:! of tiie first, second and fourth noninferior
sol utions.
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Tn order to test the effect of starting point on the
mnimix method, we used tin, weights of run five with
the starting point W - 9.84, W3 - 134.2, Vg =+ -1,
che noninferior point corresponding to the fourth non-
inferior solution. Again, a significant .reduction In
conput ational expense was achieved supporting the idea
of choosing a starting point sonewhere in the plane
specified by the noninferior solutions used to cal cu-
late wei ghts.

A nunber of runs were made usin-g mni max method, all
of themworked well; in fact, better than the weighted
sra nethod. The last experinent we will report was
suggested by the possible: nonconvex region detected in
Problem 1. W found the centroid of the noninferior
solutions in runs seven, eight and nine of Table 2.
This point could possibly be in nonconvex portions of
the noninferior surface. This point is tp, * 93.3,
AREA » 1791, -V, = .55. The results of thi's run are in
Table 3 and the final function values were incredibly
close to che desired val ues.

Based upon the comparison of Table | and Table 2, as
wel | as our subjective evaluation of using both
veighted sum and mi ni max nethods on the same MCO prob-
lem ve feel that the nminiraax nethods were far superior
(at least on this problem.

IV. _SUMVARY AMD CONCLUSI ONS

The ideas of Miultiple Criterion Optimization have been
introduced and shown to be a natural way of starting
the problemof electronic circuit design. The weighted
p-norm method for finding solutions to the MCO problem
has been presented. The canonic weight for the p-nonn
and heuristics based on the canonic weight have been
discussed. Finally the techniques of MCO have been
used for the design of an MOSFET NAM) gate.

W feel that the use of MCO ideas for circuit design
has the potential for making optimzation a powerful
and useful design* aid. Further, the interpretation of
least pth methods in light of MCO nethodol ogy should
revive interest and pronote the proper use of these
classical and much abused methods. Finally, it should
be possible ro consider an extended MCO probl em where
one of the objectives is to maxim ze the yield of the
design [13]. This extended MCO problemwould truly
capture the major trase-offs faced by the designer of
an electronic circuit.
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: ! FITIA. PARAMETERS FINAL FUNCTI ON
15 W w |
,_ WEI CHT L n Vg tl, AREA v | NI TER i NFUNC | N CGRaD
] H .
TS S L o g 1 15.66  226.76 1 | 56. 2 2500 7 2 | 3 3
I ] 1
2 0 1 o | 7.8%6 1158 -1 | 110 2500 7 S S
Coa 0 0 1 I 73 w2 1 1w 2500 .35 15 6 1o
Lol 0109  .0005 1.71 i 9.85 186 .2 -1 87.9 1997 . 557 7 18 18 ]_
f | !
i 5 .0118  .0005  1.53 10.52 1.5 -1 82.4  1373.5 .635 7 18 B
. 61 .0113 0005  1.53 10.52  171.%5 -l 82.6 1873.5  .635 9 10 0|
b 0102 .0005  1.81 8.788 165 .6 1 98.66 1793.97  .554 19 21 20 [1
I
TABLE 1. Results of minimax optimzation of NAND gate.
-
FINAL PARAVE. TF. RS FINAL FUNCTint1S
RN i WEI GHTS w3 Ve ™ AREA |vO NITER | MUIC| NCRAD
\
I 1 0 0 15.66  220.76 -1 56. 2 2500 .7 5 6 6
2 I o 1 0 i 7.896 1158 -1 110 2500 .7 3 6 6
3 [ o 0 I 1 7R 2v.28 -1 § 10 2500 .35 13 i 1
6 | .0036 .0QO6 .5651 | 9.86 186.62 -1 | 87.9 1999  .557 VA] w6
I 1
5 ! .0067 8.96X10"° 731 2J2.3 -1 78.5 2500 .5 27 | 7 8 I
6 L0067 8.96X107 .731 1 1 2J2.3 -1 78.5 2500 .5 2 2 | 2 I
7 | .0032 .0002 .552 9. 167 186.3 -l 96.31 19H 52 2 8 23 |
j 8 | .0032 .0002 .552 3.76 165 -1 1 98.77 1787 .5 7 .U 7 1
_' 9 0032 .002 .552 f1.33 167 -l 1103.99 1600 =539 6 1 18 ]
— A
TABLE 2. Results of weighted sirr optimization of MAND gate.




