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ABSTRACT

In this paper we examine the problem of designing
electronic circuits using Multiple Criteria Optimiza-
tion. A new technique for generating solutions to the
MCO problem based upon a family of weighted p-norms is
presented. We concentrate on the max norm member of
this family (this gives a minimax problem) and propose
a method of solution based upon a new constrained op-
timization method due to Powell. An example illus-
trates this procedure.

I. INTRODUCTION

Over the past decade many papers have appeared which
employed optimization techniques for the choice of the
parameter values of a design (see for example fl-Jj
amontf sellers). In spite of this work, and In spLte of
wiJe industrial use ot other computer aids such as
circuit simulation packages, industrial designers have
been most reticent in accepting optimization as a use-
ful design aid. The basic reason for the lack of
enthusiasm for optimization is that when applied to
many realistic design problems, these computationally
expensive algorithms have yielded little improvement
over the engineer's initial design. We feel that
Multiple Criterion Optimization (MCO) may overcome
this problem.

To see why the MCO approach may be better consider the
typical situation in which a designer wants to choose
the circuit parameter values, such as resistor and
capacitor values, device geometries, and processing
parameters, in order to achieve certain design objec-
tives. These design objectives could be, for example,
the minimization of power, area, and propagation delay,
maximization of gain, and the requirement of maintain-
ing a certain noise margin. The main characteristic of
these design objectives is that they cannot be simul-
taneously achieved. That is, the design objectives are
competing and the final design will be a trade-off
among the competing design objectives. To formalize
this situation assume that the soal is to minimize the
objectives fj_(x), f2(x), ..., fH,(x) simultaneously,
where z *(x^, x->, .... xn)are the Jesignable parameters.
A typical approach is to choose weights w^, w,, ...,
wir» vt > '-'» and fora

w tf t(x) (1)

Now £(;<) is minimized by a standard gradient optimiza-
tion technique such as that described by Fletcher-
Powell [4]. Based upon the results of minimizing p(x) ,
a new set of weights could be chosen and the minimiza-
tion repeated. The weights have been chosen in an ad
hoc fashion such as making v± 10 tiaes greater than
other w's because the designer felt strongly about fi
as an objective. However, the choice of weights Is
critical and, more often than not, in real examples
satisfactory trade-offs between design objectives could
not be generated using this technique. Thus the ill-
repute of optimization with many designers.

The class of optimization techniques, known as Multiple
Criterion Optimization (MCO) [5,6] has been developed
specifically to deal with the problem of optimizing

competing objective functions. These techniques have
received little attention in the electrical engineer-
ing community. Lin [5] presented the first applica-
tion of MCO ideas to a circuit design problem, but his
example was solved by hand and did not demonstrate the
power of MCO methods. Fraser [7] used the theory of
MCO to systematically choose the weights for (1) when
designing several logic gates. However, Fraser did
not explore the use of more powerful MCO techniques
for the design of electronic circuits. In this paper
we will explore the use of the full power of MCO tech-
niques for the design of electronic circuits.

II. MULTIPLE CRITERION OPTIMIZATION

In discussing the ideas of MCO we will use the follow-
ing notation. The n designuble parameters, x^» i-1.2,
...,n, in the multiple criterion optimization problem
will be denoted by the n-vector x - (xi, x?, ...t x n ) .
It is convenient to view $ as a point in trie
n-dimensional input space I. The m design objectives,
fj, J-1,2,...,m, will be denoted by the m-vector

f
m<^>>-

 U ls conven-

ient to view f as a point in the m-dimensional output

In general the optimization problems under considera-
tion will be subject to certain constraints which will
be expressed as £(x) £ 0 and h(x) - 0. In general

these constraints will be nonlinear functions of ;jc.

9. (2)

The MCO problem can now be stated as

min f(x),subject to g(x) < 8 and h(x)

As previously mentioned, if some (usually all) of the
components of £ are competing there will be no point $
that simultaneously minimizes of all the components ot

Instead of optimality, the concept of noninferiority
[8] is used to characterize a solution to the MCO
problem. In order to concisely define noninferiority
we introduce the following definition.

Definition. The feasible region in input space, (3)

ft, is the set of all designable parameters that satisfy

the constraints, i.e. \l (l h

Definition. The feasible region in output space. A,

is the image by f of the feasible region in input

space, i.e. A - (f|f - f(x), xeft} (4)

Definition. A point x* is a noninferior point if and

only if there does not exist an x£?l such that

i-1 mfx(x) £ fi(x*)

f.(x) < f.(x*) for soae j.
J ^ J i»

(5)

The image of a noninferior point is a noninferior

solution.

In general there are an infinite number of noninferior
points for a given MCO problem. The collection of
noninferior points is the noninferior set. The Image
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of the noninferior set by %t is called the nonlnferlor
solution se^, the noninferior surface, or the tjrjiJe-
off surface. As with scalar optimization procedures,
procedures tor solving MCO problems in tact can only
generate local noninferior points. However, in the
sequel whenever we discuss a noninferior solution we
will Dean a global noninferior solution.

In solving an MCO problem we desire to find various
noninferior solutions. The designer will examine the
known noninferior solutions, choose one as a final de-
sign or request that more noninferior solutions be
generated. We will discuss j method of generating
noninferior solutions based upon minimizing weighted
p-noras [9,10], i.e. we will consider the following
single objective optimization:

rain l|Wf|| subject to xctf (6)

where
W - dlag(W1W2,...1Wm),Wl > 0 and

>\l/p11 (7)

(>lote:we assume, without loss of generality, that
A>0, i.e. f z A = > f > 0 for all i) .

It can_be shown [11 ] that for each noninferior solu-
tion, f, there exists a p and a W such that f is the
solution to (6). Notice that for p=l (7) is equiva-
lent to minimizing a weighted sum and for p-^ (6) is a
rainimax optimization problem.

In order to understand the importance of the choice of
p let us consider the level sets for the weighted p-

norm: L* (a) - lfj||Wfl| p < a}

The level sets for a 1-.2-, and max-norra, with y-^ are
shown in Fig. la. The same level sets but for a'dif-
ferent weight are shown in Fig. lb. Minimizing the
weighted p-norm shrinks the level set about the origin
as much as possible while still remaining in contact
with A. In Fig. 2 we show the point found by minimiz-
ing a 1-norm with weight W . The problem inherent In
the 1-norm method is indicated in Fig. 3 using weight
VN, here because of the nonconvexity of the noninferior
surface there are many noninferior points that cannot
be found using the 1-norm. However, the noninferior
solutions on nonconvex portions of the noninferior
surface can be found using higher p's. In particular
Fig. 4 shows the use of the raax-norra.

Clearly both the choice of p and W are important in
searching cor various noninferior solutions. An im-
portant characterization of the weights can be found
as follows: let n* be the inward pointing normal
(assumed to exist uniquely) to the noninferior surface
at f* such that _ .

Further we require that for the p-norm the value of
||W<p)f * j j p be one. Then the canonic weight used to

find I* by minimizing ||w(p)f||p (assuming this can be
done) "is defined as

n * -

(8)

Notice for p-1,

and for p=*-»

VU<1) - n±

'ii* ' f*

Based upon our understanding of the MCO problem and
the interpretation of the canonic weight,we can now
discuss heuristics for weight selection. The first
step in an MCO should be the minimization of each
function separately. These minimizations give the
designer an idea of the possible range of values of
the objectives. The next step would be to generate a
weight that would provide a trade-off between these
extremes. Using the 1-norm we might consider finding
the plane through the m extreme or boundary points.
If £*• is the noninferior solution found by minimizing
the ith objective function then the normal to the
plane through the boundary points is found by solving

f1

(9)

The W that solves (9) is used as the weight in the
next 1-norm minimization. This sequence is illus-
trated in Fig. 5. This process can be continued as
follows: if the (m+1)3 noninferior solution was un-
satisfactory because the jth component was too large,
then fnH-Li-f]* (minimum of jth conponent) and m-2
further noninferior solutions could be chosen (perhaps
deleting the two noninferior solutions with highest
solutions of fj) and a weight normal to this plane
could be found using (9) . A minimization using this
weight should decrease the jth component of the objec-
tive function.

An alternate procedure for weight selection C3n be

generated for use with the max-nora. As was discussed

previously, the canonic weight associated with a non-

inferior solution f* for I is

»u.jL n

Clearly any positive multiple of W* is also a valid
weight. Thus we can take any set of m previously
found noninferior solutions (initially the points
found by the boundary search) and ask the user to
assign a weight, ot̂  > 0f to each point indicating how
much he favors that particular solution. The weights
a can be normalized so that £a^ • 1 and then we form

f - Tot, f .
% L i A,

f will be in the plane specified by the m points. We

now form the weight

ii
1, ..., m.

If there is a noninferior solution along the ray^ex-
tendlng through ^, the weighted II method using yA will
find it. If C is not a scaled canonic weight for any
noninferior solution, a noninferier solution will
still be found (unless the noninferior surface has
pathological irregularities) and we have the valuable
information that a noninferior solution does not
exist in the direction specified. Notice that this
method of weight selection Is much more direct than
the 1-norm method because we are not specifying
a normal to the support plane at the desired solutiuti,
but an actual value, f, for the solution which, if the
weight is a scaled canonic weight, will be a scaled
version of the solution.

Also note that any positive multiple of the canonic
weight can be used to find the same noninfcrior
solution.

A number of variations on this method are clearly
possible. For instance, if the user examined the
existing noninferior solutions he could pimply specify
.1 now dcslreil solution ^, then a weight W^^ • l/fj_ is
irnmccl l;itclv generated.



III. EXAMPLE

In this section we apply the ideas developed in Section
2 to the optimization of an MOSFET HAND gate circuit
[7]. The designable parameters will be the width, W^,
of transistor Tl, the width of the bottom devices, W23,
(constrained to be the same) and the flat band voltage
Vp«. The objectives in our design will be: to mini-
mize the area used by the transistors, to minimize the
switching time of the gate, and to require the ON
voltage VQ to be as close to zero as possible. The
switching tine is dominated by the turn OFF time which
is approximated by a first order approximation (7).
Thus to evaluate the objective functions we only need
to analyze the gate in the ON state.

The MCO we want to solve Is

<P. = propagation delay

$~ » area
rain

(10)

subject to

<t1 <_ 110 nsec

-?2 £ 2500 mils2

<J>- <_ .7 volts

-2 < V_n < -1 volts

5 <_ W. <_ 50 microns

50 1 W 7 3 1 -50 microns

In order to reduce coramutational effort we employed
the Simplicial Approximation algorithm [12] to approxi-
mate the constraints of (10) by the linear constraints:

«l'<- i - 1,2, . .., 38 (11)

where r, arid b. define the bounding hyperplanes of the
approximation of the feasible region.

We will generate noninferior solutions to (11) using
the weighted •., and weighted I.* techniques. Thus we
solve two problems:

Problem 1

subject to

Problem 2

min (W1J1 + W ^ , + W3 >3) (12)

1, x < b. i«l,...,38

min y

subject to

V i i '<

V 2 -Y

«y3 < v

"I*i bi 1"1 38-
Both of these problems will be solved using Powell's
constrained variable metric method [4]. (The program
of problem 2 is one method of solving the minimax
optimization problem.)

III.2 Problem 1

Our first three optimizations were to find the minimum
of !>| ,!>••>,'P-j separately. The weight for the next opti-
mln.it ion v.is the normal ox the pi.mo p.issin^ through

the solutions of these minimizations (in output space).
Our starting point for these four runs was the de3ign
center «»iven by the Simplicial Approximation algorithm;

W, - 10.6

W
23

VFB

209

-1.47

The objective function values at the nominal were;

$x - 86.23

J>2 - 2258.06

P3 - .56423

The results of the first four optimizations are pre-
sented in Table 1. Notice that by choosing the
weights normal to the plane defined by the boundary
search point, the minimization gave an interesting
solution showing a reasonable trade-off between all
objectives. Next we decided to try and reduce the
propagation delay by choosing, as the weight, the normal
to the plane through the first, second and fourth non-
inferior solutions (see Table 1). The result of this
minimization did reduce the propagation delay, at a
high cost in area and many function evaluations. In an
effort to reduce the computational expense of finding
this solution, our sixth optimization used the same
weights. However, we now started at W, « 15.46,
W ? 3 - 226.74, and Vp5 » -1, which was a point on the
plane used to determine the weights for this run. The
same final solution was found using considerably fewer
function evaluations.

We next decided to form a weight based upon noninferior
solutions, two, four and five. Using this weight and
a starting point equal to the fourth noninferior
point, we achieved the results shown. However, the
algorithm appeared to have difficulty in choosing the
correct final step size. Using the same weight, but
starting at W^ • 8.5, US 3 * 165, VpR - -1, we con-
verged, albeit with the same difficulty, to a differ-
ent solution. Finally we used the endpoint of the
last (eighth) optimization as the initial point for
the ninth optimization (see Table 1). The conclusion
we draw from these results is that we have found indi-
cations of a nonconvexity on the noninferior surface.
Thus there are many (possibly infinite solutions to
the 1} minimization with this weight and that this
ambiguity of solutions in a small region of the non-
inferior surface was the cause of the problems in the
optimizations. Therefore we have indication of the
need to use more powerful MCO techniques on this
problem.

III.3 Problem 2

We now find noninferior solutions to (11) using the
minimax approach in [13]. The results of the boundary
search are presented in Table 2. The starting point
was again the design center predicted by the Simpli-
cial Approximation algorithm, with the addition of y
which was assumed initially zero. The interesting
point, in comparing the boundary searches of Problem 1
and Problem 2, is to notice the difference in computa-
tional effort. Experience indicates that whether the
wo Ichtod .;um method of Mic minimax method Is more
efficient i:5 problem dependent.

The fourth noninferior solution to Problem 2 was based
upon an equal weighting of the boundary solutions and
uses the minima* weight description cf Section II.
Notice how closely the results of run four match In
Problems 1 and 2. This indicates a convex region of
the noninferior surface and that the solution to this
minimization lies near the centroid of the three
points used to define the weights. The next minimiza-
tion vns perto need with weights which are equal com-
bination:! of tiie first, second and fourth noninferior
solutions.



Tn order to test the effect of starting point on the
minim.ix method, we used tin; weights of run five with
the starting point W^ - 9.84, W23 - 134.2, V f B • -1,
che noninferior point corresponding to the fourth non-
inferior solution. Again, a significant reduction In
computational expense was achieved supporting the idea
of choosing a starting point somewhere in the plane
specified by the noninferior solutions used to calcu-
late weights.

A number of runs were made usin-g minimax method, all
of them worked well; in fact, better than the weighted
sura method. The last experiment we will report was
suggested by the possible: nonconvex region detected in
Problem 1. We found the centroid of the noninferior
solutions in runs seven, eight and nine of Table 2.
This point could possibly be in nonconvex portions of
the noninferior surface. This point is tpn * 93.3,
AREA » 1791, -Vo = .55. The results of this run are in
Table 3 and the final function values were incredibly
close to che desired values.

Based upon the comparison of Table I and Table 2, as
well as our subjective evaluation of using both
veighted sum and minimax methods on the same MCO prob-
lem, ve feel that the miniraax methods were far superior
(at least on this problem).

IV. SUMMARY AMD CONCLUSIONS

The ideas of Multiple Criterion Optimization have been
introduced and shown to be a natural way of starting
the problem of electronic circuit design. The weighted
p-norm method for finding solutions to the MCO problem
has been presented. The canonic weight for the p-nonn
and heuristics based on the canonic weight have been
discussed. Finally the techniques of MCO have been
used for the design of an MOSFET NAM) gate.

We feel that the use of MCO ideas for circuit design
has the potential for making optimization a powerful
and useful design* aid. Further, the interpretation of
least pth methods in light of MCO methodology should
revive interest and promote the proper use of these
classical and much abused methods. Finally, it should
be possible ro consider an extended MCO problem where
one of the objectives is to maximize the yield of the
design [13]. This extended MCO problem would truly
capture the major trase-offs faced by the designer of
an electronic circuit.
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TABLE 1. Results of minimax optimization of NAND gate.
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