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ABSTRACT

The basis of most engineering design is making trade-offs among competing

factors. This is especially true in the design of electronic circuits. In

this paper we examine Multiple Criterion Optimization (MCO), one aspect of the

Multiple Criterion Decision Making (MCDM) problem. After presenting relevant

definitions and the concept of a noninferior solution to the MCO problem we

develop a family of weighted p-norms for generating noninferior solutions.

The prime importance of the weighted p-norm methods is the interpretation of

the weights. We develop a canonic weight for the p-norm family. Interpretation

of the canonic weight allows the development of various weight selection

heuristics. Finally, the techniques of MCO are applied to the design of a

MOSFET NAND gate.
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I. INTRODUCTION

The essence of a large part of the practice of engineering and design

is decision making. Further the typical design situation faced by an engineer

is one involving many competing factors. In spite of this fundamental

aspect of design it has been, for the most part, economists, mathematicians,

operation researchers, and others who have studied and developed the ideas

of decision making under competing objectives [1-5]. In this paper we

propose to review the ideas of Multiple Criterion Optimization (MCO) and

develop new interpretations, techniques, and applications of MCO ideas

for the design of electronic circuits.

Multiple Criterion Optimization - one aspect or tool in the decision

making (design) process - addresses the simultaneous minimization (maxi-

mization) of several competing criterion or objectives. The ideas of

competing objectives are not new in the EE literature [e.g. 6-9], however,

in most cases the multiple objectives were assigned weights and summed to

form a single sealer objective. As will be shown, this weighted sum tech-

nique is only one, and the least powerful- of a family of methods for solving

MCO problems.

The area of MCO also provides a characterization of a "solution" to

problems with competing objectives. Further, using the ideas of MCO and

the family of methods developed in this paper it is possible to give a

definite meaning to the weights used in various MCO approaches. The inter-

pretation of weights allows the development of meaningful heuristics with

which to examine the various "optimal" trade-off solutions. It is our

hope that bringing the ideas and techniques of MCO to the attention of the

EE community will lead to a better use of optimization as a tool for circuit

design and a raising of the consciousness of engineers about an area of

potentially great application.



In the next section we introduce the fundamental concepts and terminology

of MCO. In Section III we present a family of methods, based upon weighted

p-norms, for generating various trade-off solutions to the MCO problem.

Section IV presents an interpretation and various selection heuristics for

the weights used in the weighted p-norm MCO methods. Section V applies the

ideas of MCO to the design of an MOSFET NAND using two different members of

the p-norm family of methods. Finally Section VI presents a summary and

conclusions.



II. MCO FUNDAMENTALS

The competition between multiple criterion gives rise to the

distinguishing difference between MCO and traditional single objective

optimization• In the traditional optimization of a single function

f(x), x* is a minimum if f(x#) £ f(x) for all x of interest. This

inequality is a statement of the fact that the real numbers can be

completely ordered by the fless than or equal to (.<.)f relation.

However, if several functions are considered simultaneously it is

possible that one function may decrease while another increases. Thus

multiple criterion cannot be completely ordered using a '<,' relation.

This lack of a complete order is the chief characteristic of MCO

problems.

In order to make the preceding ideas concrete, we will introduce

the following notation. The n designable parameters, x^ ,

is1,2,...,n, in the multiple criterion optimization problem will be

denoted by the n-vector x:

x = (x^, X2? • • • i Xj^) •

It is convenient to view x as a point in the n-dimensional input space

I. The m design objectives, fj , j=1,2,,,.,m, will be denoted by the



m-vecLor 1:

£ = £<*> = (^(x), f2
(i)f •••• V i

It is convenient to view f as a point in the m-dimensional output

space 0.

In general the optimization problems under consideration will be

subject to certain constraints which will be expressed as

gj(x) <. 0 i=1, ..., k

h.(x) = 0 j=1, ..., 1

or, more succinctly, as

g(x) 1 0

h(x) = 0,

The MCO problem can now be stated as

min f(x)

subject to g(x) <. 0

h(x) = 0.

That is, we wish to simultaneously minimize the individual components

of f subject to the given constraints. As previously mentioned, if

some (usually all) of the components of f are competing there will be

no point x that simultaneously minimizes all the components of f.



In other words, when objectives comp< te there is no 'optimal solution*

to the multiple criterion optimizati' n problem.

Instead of optimality, the concept of noninferiority [10,11]

(also known as efficiency [12]. Pareto optimality [13,14], minimality

[14,15] and nondominance [16,17]) is used to characterize a solution

to the MCO problem. In order to concisely define noninferiority we

introduce the following two definitions.

Definition. The feasible region in input space,

ft, is the set of all designable parameters that satisfy

the constraints, i.e.

n = U|h(x) = 0, g(x) <. 0} (2)

Definition. The feasible region in output space.

A, is the image by f of the feasible region 8 in input

space, i.e.

A = {f|f = f(x), x e «}. (3)

We are now in a position to define local and global noninferior

solutions.

Definition. A point x*ea is a local noninferior

point if and only if for some neighborhood of x there does not

exist a Ax such that (x +Ax) eQ and

+ Ax) < fjCx*) i=1, ..., m

f.(x* + Ax) < f.(x*) for some j.
J J

.(x
J "•



ihe image oi a local nuninlcrioi point iu a Ioc.a.1.

solution.

Definition. A point x*eQ is a global noninferior

point if and only if there does not exist an x eft such

that

q i ̂ (x*) i=1, ..., m
(5)

f*(x) < f,(x*) for some j.

In general there are an infinite number of noninferior points for

a given MCO problem. The collection of noninferior points is the

noninferior set. The image of the noninferior set by f is called the

noninferior solution set or, the noninferior or trade-off surface. As

with scalar optimization procedures, procedures for solving MCO problems

will only generate local noninferior points. However, in our discussion non-

inferior will imply global noninferior unless otherwise stated. Figures 1-2

illustrate the feasible regions in input and output space, an inferior solu-

tion and local and global noninferior solutions.

At this point it is useful to discuss how the typical weighted sum

approach fits into the MCO framework. As with most MCO methods, it is

best to consider the weighted sum technique in output space. Recall that

in the weighted sum approach a weight vector u ^ 0 is chosen and. the follow-

ing problem solved

T
min a) f (x)

s.t. (6)
g(x) £ 0

h;(x) = 0



In output space this becomes

min Co f /_ x
f - - (7)

subject to

f e A

If we examine (7) we see that the set of f in output space that yield a

constant value for the objective function, i.e.:

{f € 0 | 0) f = C>

is a hyperplane with normal OJ . Thus, in order to solve (7), we must find

the smallest value of c for which there exists an f e A. Clearly this is

the point where the hyperplane with normal u> just touches A as it proceeds

outward from the origin. This situation is illustrated in Figure 3.

A problem with the weighted sum technique arises when the lower boundary

of A is not convex, as illustrated in Figure 4, because not every noninferior

solution will have a supporting hyperplane. This situation corresponds to a

duality gap in the normal theory of Lagrange multipliers [18,19] and

historically indicated the first practical difference between the solution

of single objective and multiple objective optimization problems.

In many cases the uses of optimization for electronic circuit design

has been in the context of a weighted sum minimization. Clearly if the

noninferior surface is nonconvex the weighted sum method may yield poor

designs no matter what weight or optimization technique is used. For this

reason and for the insight gained into the decision making aspect of circuit

design we believe that the study of MCO techniques and ideas is very

important for circuit design and CAD in general.



111. GIJN_KKAT1NC: NONINFERIOR SOLUTION:, USINC; WKlcriim) p

In this section we will d( vclop a family of methods for

generating noninferior solutions. Because many existing techniques

are contained in this family of methods, its properties are useful in

unifying and extending existing methods of generating noninferior

solutions [20].

For the development in this section we will assume that Af the

feasible region in output space, is a compact simply connected set.

Vie also assume that the minimum of each component of f is unique.

Furthermore, we assume, without loss of generality, that A is in the

first quadrant, i.e., feA implies f > 0. (Note that since A is

compact we can translate A so that it is entirely within the first

quadrant . ) Finally, whenever the normal to the surface of A is employed

we assume that the surface of A is such that the normal is uniquely defined,

We begin by defining a class of utility functions [21] based upon

weighted p-norms (also known as £ norms), i.e.,

Up(f) =l|Wf||p 1 < p < « .

where W = diag(w^,W2t.•.fwm) w^ ̂  0 i=t,2,... ,m

and

*;1/P{I M j



Noninfcrlor points can now he fti:n"r;itf!(l by minitnJ v.\ n# U* . 'lhl:?

minimization can be interpreted &< ometrically by examining the JI_C_V_Q1

sets of UV/(f), i.e.

Lp(a) = {f| trj(£) <*). (9)

Figure 5 illustrates this level set for W=I and p=1,2 and °°. The

level sets for various weights are illustrated in Figure 6.

W
Minimizing U (f) over the feasible region A will generate at least one

W
point on the surface of A where the level set L (f) just touches A as

it expands about the origin. Figure 7 illustrates the minimization

of various weighted p-norms over A in terms of the level set of the

norm •

From the preceding discussion it should be clear that if we set

p=», i.e., if we use the max norm, we can generate all noninferior

solutions by varying the weights and minimizing the max norm subject

to the constraints. This is true because, as shown in Figure 8, the

level sets of the max norm act as translations of the nonpositive

orthant, and can be used for an alternate statement of the conditions

for Pareto optimal!ty or noninferiority. Because of the importance of

these utility functions we now formalize the preceding discussions.

The assumptions stated at the beginning of the section are still

valid. Further, when <j>(f*) < 4>(f) for all feasible f we call f* the

unique minimizer of <J>.



f*eA is noninferior if and only if there exists a

W=diag (w), w >_ 0 such that f* is the unique minimizer

of I I Wf I I over A .
1 1 - 'no

Proof. (Sufficiency) If for seme w > 0 f* uniquely

minimizes I IWf|| over A and f* is not noninferior then
- CO -

there would exist some f e A such that

f. < 1* for all i

f < f* some j.
j .)'

This implies

wi fi 1 wi £i* f o r a 1 1 l

Hence

which is a contradiction.

(Necessity) Alternately, if f* is a noninferior

point, let W=diag(l/f*,l/f*,....,l/fm*).. Then I I Wf*| |^

< I I Wf| I for all f e A for if this were not true
•>» C O •*»

there would exist a f e A, f/f* such that

11 vvrl I < 11 wi-»| 1 = 1

or f. < f* for all i .
3 i

(11)



But since i/f* this implies f. < f * for some j and
"*" *" J J

hence f* would not be noninferior, which is a

contradiction, thus establishing the result.
Using the notation

U M . i l l T l l J X12)

we can restate the preceding theorem as

Corollary 2.2. A point f * is noninferior if and only

if there exists a VIM) such that

LW (f»)H A = {f»}.



We cut j/orHM'.'i 1 j /.(? th<: prrci 'dinf . ' i ::i:u:;:; i on l.o any we i/r,hl.i:d p-norm

as f o l l o w s .

Theorem 2 . 3 .

A point f* £ A is noninferior if and only if there

exists a W >, 0 and a 1 <. p <. "° such that

\tj

L p U * ) n A = {£*}• (14)

Proof. (Sufficiency) Clearly by the prucrding

corollary if f* is noninferior this condition is

satisfied.

(Necessity) If

L;Vp(f*)n A = {f*} 1 i p < ao

*
and J* was not noninferior then there would exist a f r f,

f £ A such that

q <. fi* for all i

f. < f.* some j

but then

v/. f. < w. f. * for all i
l l "~ i l

w > 0

Thus ||Wf|| < ||Wf*|| , and so

f e LW (f*)nA
P -

which is a contradiction, thus establishing the result.



Various aspects of the preceding discussion have been mentioned

by others. Bowman [22] discusses the use of • ̂  to generate

noninferior solutions as does Benayoun F23 ]. Xu [24], Zeleny [26],

and others [ 25,27] in the theory of compromise solutions use families

of p norms. The use of general utility functions to find noninferior

solutions is discussed by Geoffrion [12,29], Beeson [30] and others

[ 21,28}. General least p optimization has been used in the

electrical engineering literature [6,7 ]4 However, the development of a family

of weighted I norms (with the weight interpretation of the next section)

to generate noninferior solutions has not, to our knowledge, been

presented previously. We feel this method is an excellent bridge between

the traditional approach taken by electrical engineers using single ob-

jective optimization and the view of circuit design as a multiple criterion

optimization problem.



IV. INTERPRETATION AND SELECTION OV WE[CUTS

In any optimization technique, where different solutions are generated

by varying a set of weights, the interpretation and selection of these

weights is critical. In this section we will give a precise interpretation

to the weights used in the weighted p-norm generation of noninferior solutions.

Based upon this interpretation we will discuss weight selection heuristics

for the 1- and «-norms. Finally we will present an example comparing £..

and I methods on a simple two criterion problem.

IV.1 Canonical Weights for p-Norms

We know that if the point f* is noninferior and is found by minimizing

a weighted p-norm, then (without loss of generality) we require the gradient

of the p-norm at f* be equal and opposite to the outward pointing normal to

the noninferior surface at f*. Let n* be the inward pointing normal to the

noninferior surface at f* and normalize n* so that

T
n* f* = 1.

Thus if f« were on a convex portion of the noninferior surface and

min| |w(1)f| \^ = 1, the minimum would occur at f=f* when W(1)=n* (assuming f* is a

unique minimizer of ||w(l)f||2).

We now develop a formula for a canonical weight W(p) for each p

norm so that if f* was noninferior and could be found by minimizing

l|W(p)f|| then the minimum would be 1 and occur at f=f«. We require

Vf||W(p)f|
P f=f*

= n* (15)

which implies

|W(p)f*|| *
p



But we assumed that

|w(p)f*||p = 1,

thus

n
TT > i = 1, 2, .... m .

This weight will be called the canonical weight associated with f*_ for

the p-norm. Examining (16) shows that if p=l, W(p)=diag(n*) as expected,

Hirthermore

1J£L wii(P> " T T (f±* > 0)

and we have the canonical weight associated with the max norm.

Various interpretations of (16) will be discussed below and used to generate

weight selection heuristics. We note in passing that many MCO techniques and

weight selection methods can be shown to be related either directly or

indirectly to the 1- and <»-norm generation scheme [20]. However, use of

intermediate norms has not been pursued and both weight selection heuristics

and the usefulness of these intermediate methods remains an open area for

research. (For a group decision making interpretation of the unity weighted

norms see [24,25].)

IV.2 Weight Selection Heuristics

Using the canonic weight for the p-norm we now have a tool for choosing

weights to generate various noninferior solutions. However, we have also

seen that, in general, there are an infinite number of noninferior solutions.

The designer must choose one design from among the set of noninferior designs.

Various techniques [e.g. 30-36] have been presented for generating a representative



set of noninferior solutions in order to aid the designer in making his

final choice of noninferior design. A discussion of some of these methods

can be found in [ 20]. Ibr the purposes of this paper we will discuss some

heuristics for the 1-norm method, our suggestions for °°-norm heuristics and

present a compurational comparison of the 1- and »-norm generation methods,

a. £- Weights

We first discuss weight selection heuristics for the 1-norm or

weighted sum method. One of the early workers in interactive weight selec-

tion was Dyer [ 31,32] who assumed that an unknown utility function U(f)

existed but could not be specified by the decision maker.

Dyer considered the following:

3 f l ' 3 f 2 ' " ' ' 3fn,

If we could approximate this gradient direction we could take a step

in output space to minimize U(f). Consider the following vector which

is collinear with VfU(f):

3U/3fo 3U/3f
2 tn

3U/3f,
\ * ]

or

2 m

i.e., w is a vector of marginal substitution rates. At a given point



in A, Dyer aaks the decision maker ln<w much he would give up in i, lor

an increase in f^ and approximates

3fl , A fl

Using this approximation to V U(f), Dyer takes a steepest descent

step searching for a better solution and queries the user again on his

preferences.

We can easily apply Dyer's method to weight selection by noting

that if we choose | | Wf| |j as a utility function (for generating

noninferior solutions) that

VfU(f) = w .

So we could pick a W=diag(w), minimize | | Wf| | j, and then ask the user

how much of fj he would give up to decrease f^ and form a new weight

A f 1 A f2

and again minimize | | Wf| L to find a new noninferior solution. This

allows the user to fine tune the choice of weights as he learns more

about the problem. However, in a method such as this where it is possible

that only a small portion of the noninferior surface will be explored, there

is the danger of the decision being made based upon grossly incomplete

information.



Another weight selection heuristic suggested by lirayton and Director

[37] and developed and extended by Fraser [36] is based upon the concept of

the weight being normal to the supporting hyperplane at the noninferior

solution. Suppose that we first minimize each function separately in order to

find the extremes or boundaries of the noninferior surface in output space.

Let these points be f , f ,..., fm . These points can now be used to

define a plane in output space by solving the following set of equations

f

?2* w - l . <22>
fm*• • • • • x • • • • •

The plane implied by this set of equations and the noninferior solution

found by using this weight are shown in Fig. 9.

Fraser begins with a boundary search and an extra minimization

using the normal to the plane defined by the boundary search as does

Brayton. A vector is now formed whose entries are the minimum values found

for each criterion.

-min (f min
fi » f

min
• , f

rain\
m j (23)

Similarly a vector of maximum values is formed

F
-max

max f max\
m j (24)

If the designer is not satisfied with the newly found noninferior

solution f , he is asked to specify which components of f he would



like to reduce say, i and j. Then the differences

Af «= f k - F a = i J

Af = F - f k „ ,» lfj
 (25)

m max in *J
m

are formed and the new weight vector becomes

k+1
w

A fi A fi
i — - — -
1 ' Af, ' Af * ••' • Af (26)

m

The similarity of this procedure with Dyer's (21) should be clear. The

weight vector (26) attempts to use existing information and designer

preference to assess the marginal substitution rates.

b. I Weights

Although the use of minimax optimization is relatively common in the

EE literature ([e.g. 6,7,38,39]), it has not been viewed as a tool for

generating noninferior solutions to an MCO problem. Further, the overt

use of minimax methods to solve MCO problems is very limited. Bowman 22

showed that a weighted minimax could be used to generate all noninferior

solutions but he gave no indication as to how to choose the weights.



If we write the minimax problem

min max { w. f . (x) }
xeft i

as the equivalent

min Y
Y, x eft (28)

s.t. auf^x) <^ Y i=l,...,m

Then minimax methods can be related [20] to the Goal Attainment method [40]

a variant of Goal Programming [41]. But again no discussion of weight

selection has been presented for this approach.

In our discussion of weight selection for minimax methods we will work

under the assumption that any weight used will end up being a multiple of a

canonic weight. This means that the solution will occur at the positive corner

of the hyperrectangular level set associated with the weighted I

norm, or, alternately, at the solution we have

wlfl* = W2f2* = ••" = Vm*- (29)



The case where this holds and an example of where it does not hold are

shown in Figure 10. We make this assumption without loss of

generality because under the conditions previously given, any point

which is a unique minimizer that is found using a weighted ^ method

will be noninferior. Furthermore, if the weight is not canonic we

know there exists a canonic weight which will generate that point.

Assuming a canonic weight, the effect of the minimax method is to

find a minimum solution on a line specified by the weights. If

w. =**2S* • •=wm=1 then the line of search is a ray 45° from each axis,

otherwise a different angle is specified. This is illustrated in

Figure 11. So, one way of choosing weights would be to ask the

decision maker to specify a direction of search and then transform

this direction into a weight. However, the range of possible angles

is not clear. Also, specifying angles in higher dimensions is not intuitively

obvious and has little direct connection to the problem being solved. There-

fore we now consider an alternate weight selection heuristic.

As was discussed previously, the canonic weight associated with a

noninferior solution P} for *« is

w*ii " 7~* 1 - 1, ..-, m.

Clearly any positive multiple of w* is also a valid weight. Thus we

can take any set of m previously found noninferior solutions



(initially the points found by the l-undary search) ;ind ask the uncr

to assign a weight, cx± > 0, to each point indicating how much he

favors that particular solution. The weights a can be normalized so

that l<*± = 1 and then we form

f = la±f . (30)

f w i l l be in t h e p lane s p e c i f i e d by the m p o i n t s , i . e . , i f

7r = { f | c T f = 1 } , where c i s t h e normal to the p l a n e , then

Tf L VcTf = L c V = 1 (3D

alternately f is in the cone of directions specified by the m

solutions. At this point f can be shown to the user to see if f is the

type of trade-off he desires. If not, then the a.'s can be readjusted. This

consistency check prior to any optimization can be very useful in preventing

excessive optimization runs.

If f passes the consistency check we form the weight

w.. = |- i = l,...,m (32)

fi

f there is a noninferior solution along the ray extending through f,

the weighted l^ method using w will find it. If w is not a scaled

canonic weight for any noninferior solution, a local noninferior solution

will still be found (assuming the minimum is unique) and we have valuable

information concerning the noninferior surface in the direction specified.

Notice that this method of weight selection is much more direct than weighted

sum methods because we are not specifying a normal to the support plane at the

desired solution, but an actual value, f, for the solution which, if the

weight is a scaled canonic weight, will be a scaled version of the solution.



A number of variations on thiy \ ethod arc clenrly por.nible. For

instance, if the user examined the existing noninierior solutions he

could simply specify a new desired solution f - this assumes the user

has some understanding of noninferior solutions - then a weight

w . • -5- is immediately generated. Also the cone in which the user

specifies a direction (solution) does not have to be m dimensional.

Any two or more noninferior solutions that the user prefers can be

weighted to give a new value, f, which automatically specifies a

weight.

Thus we see that the i^ methods lend themselves to a more direct

and flexible specification of a weight and the weight (when a scaled canonical

weight) is intimately associated with the value of the noninferior

solution and not the normal to the surface of A at the noninferior

solution. Clearly more computational experience with l^ methods is needed

in order to further refine the weight selection process and provide more

user oriented methods. But we feel that the weighted lm methods have been

shown to be exceptionally powerful and intuitively direct methods for solving

MCO problems.



V. NAND GATE EXAMPLE

In this section we apply the ideas developed in the previous sections

to the optimization of an MOSFET NAND gate circuit. The particular

circuit we consider has been used as a time domain optimization

example by Director and Brayton [47], an example for Simplicial

Approximation by Director and Hachtel [48], and as an example for

weighted sum Multiple Criterion Optimization by Fraser [36] .

The two input MOSFET NAND gate used as an example is shown in

Figure 14. The first step in designing the NAND gate is to choose

a model for the transistors. Based upon the work of Fraser [36]

we chose a four terminal model that includes the effect of substrate

bias. This model and its defining equations are presented in

Figure 15.

There are many possible sets of designable parameters that could

be used in designing the NAND gate, for example, the lengths and widths

of all the devices as well as the flat band voltages of the devices.

We choose (as do Director and Hachtel [48]) the flat band voltage, V _ , the
Ftf

width of the bottom two transistors, W2~, (constrained to be the same) and

the width of transistor T^ V^, as the designable parameters. Table 5 presents

the range of values of the designable parameters as well as other constants

needed to analyze the NAND gate (these are the values used in [48]).



Vm=-6 volts (in ON state)

A =1.03657

C L =5 pF

Table
tents, and

NAND gate

PSI=.5771

k=.5

GM=.OO6

^ =12.7 microns

L =5.08 microns -2<VFB<-1
23 ~ Jm

VDD=-6.5 volts 5<W <50



The objectives in our design will be: to minimize the area used

by the transistors, to minimize the switching time of the gate, and to

require the ON voltage Vo to be as close to zero as possible. The

desire to minimize area is obvious since we are considering that this

gate will be a part of a more complex integrated circuit ana thus

should take up as little chip ai")a as possible. Because we would like

to include the NAND gate as part of a larger logic circuit, reducing

the switching time of the gate increases the potential speed of the

logic circuit. Finally, in order to have an adequate noise margin as

well as to be able to drive the stages connected to the NAND gate, we

would like the ON voltage to be as close to zero as possible.

Reducing the power dissipated by the gate would also seem to be a

reasonable objective, however, our own simulations as well as reports

in the literature [36]indicate that power dissipation tracks with the

area and thus it is only necessary to consider one of these an an

objective.

We must now consider the evaluation of these objectives. The

evaluation of the area of the gate is, of course, independent of the analysis

of the operation of the gate. To find the ON voltage of the gate we only

need a d.c. analysis of the NAND gate in the ON state. Thus the only

remaining objective to evaluate is the switching time.

The switching time of the gate is a function of the time it takes

for the circuit to turn ON and the time it takes the circuit to turn

OFF, But the turn OFF time is much larger than the turn ON time and

thus we can consider minimization of the turn OFF time - turn OFF

propagation delay tp - instead of the entire switching cycle. In

general, the evaluation of tpD will require a transient analysis, but



fur tho class ol" MUSKET gates wo ro concvM-nod with an approximation

to t dons exist.

The approximation to tpn is based upon the assumption that the

output » node is dominated by a single load capacitance (independent of

voltage). This assumption is used in several analysis programs [49,50],

was used by Fraser [36], and is adequate for static MOSFET logic.

Fraser develops this approximation assuming that the lower transistors

are out of the circuit and the ON state value of the output voltage

was zero. The approximation is

Li
fcrD = AF w7 Tot ' C33)

where

with A, a multiplicative constant,used to match (33) with the delay

found using an accurate transient simulation. Using (33)-(35), the

turn OFF propagation delay can be approximated (to first order) without

performing a circuit simulation (except once to estimate A_).

Therefore, in order to evaluate the objectives of our design we

simply need to perform a d.c. analysis of the NAND gate in the ON

state. The final form of our performance objective functions for the

MCO design of the NAND gate is



*2 = Wl"Ll + 2 L23'W23 U r e a ) (37)

4). = -V (ON output voltage) (38)
3 o

where the designable parameters are Wj, W , and V (see Figure 15)

Besides the constraints on designable parameters given in Table 5

an upper limit of 2500 mil^was placed upon the area, 110 nsec. was

the maximum acceptable propagation delay, and -.7 volts the smallest

acceptable ON.output voltage (see [36]).

The gradients of <J>, and <f>̂  were found by considering the circuit

equations as equality constraints and adding them via Lagrange

multipliers to (36) and (37). Direct differentiation of the resulting

equations and proper definition of the multipliers gave the gradients

of <{>, and (J>3 (this is essentially the approach taken by Hachtel,

Brayton and Gustavson [51] and is also equivalent to the adjoint

network [52]. method of calculating gradients).



Tims, l iu» MCO problem wo want U :.<>l vr;

min (39a)

subject to

• j <. 110 (nsec.)

*2 -£ 2500 (mils2)

4>3 <. .7 (volts)

-2 <. ̂ B <_ -i (volts)

5 <L Wj <_ 50 (microns)

50 £ W 2 3 £ 250 (microns) .

For notational convenience we will let ft be the feasible region in

input space defined by (39b), and x = (Wn ,WOO,V__) .

We will generate noninferior solutions to (39) using the

weighted iL- and weighted %^ technique. Thus we solve two problems:

(39b)

Problem 1
min
x

X Z ( 4 Q )

Problem 2
min Y

(x,Y)

S.t. X G 0,

(41)

W3*3 i Y

A number of different constrained optimization methods could be

used to solve problems 1 and 2. We will use the constrained variable

metric method of Powell [43,44] (using the quadratic program of Canon,

Cullum and Polak [46]). In other experiments [20] we have compared

Powells1 method with an Augmented Lagrangian technique which used a



first-order update and dynamic stopping criteria [42,43,45]. In all our

experiments we found Powells1 method to be markedly superior. However, as

in the choice of which p-norm to use, the choice of the best constrained

optimization method is likely to be problem dependent.

V.I1 Problem 1 ,

The first three optimizations were to find the minimum of <j>.. , <J>2, <j>~

separately. The weight for the next optimization was the normal of the

(22)
plane passing through the three boundary points in output space.

The results of these runs as well as the initial starting point (from [48])

and initial objective function values are given in Table 6.

Notice that the noninferior solution found using the weight plane

generated from the boundary search is a reasonable trade-off between the

extreme points. It is quite possible that this would not be the case.

For the next run a weight normal to the plane through the first, second,

and fourth noninferior solution was chosen. This optimization resulted

in an excellent trade-off between propagation delay and area but at the price

of output voltage. (At this point the designer might want to consider

alternate designs for later stages that would make the value of output

voltage acceptable).

To test the effect of starting value on the optimization we used the

weight plane from the fourth run but used the final solution of the fifth

optimization as the starting point. Using these values of weight and

starting point we found a solution close to that of run four (the difference

could be due to the optimization, or more likely slight nonconvexities in

the noninferior surface) but with considerably fewer function evaluations.

Further computational experience [20] has indicated that a starting point

in the plane defining the weights for a particular run tends to decrease

the computational expense of generating new noninferior solutions.

Next we choose a weight based upon the results of runs one, three,

and five. The results of this run showed good values for delay and voltage

but a high value for area. Thus we experience the typical complaint with



weighted sum minimization: the inability to choose weights to get new,

good trade-offs between all the objectives.

The last two optimizations carried out with the £- method used a

weight based upon runs two, four, and seven. Run eight terminated ab-

normally. Run nine using the same weight as run eight but starting from

(8.5, 165, -1) also terminated abnormally, although at a different stopping.

The results of these two runs (and others 20 ) have two possible explanations:

first, we have detected a nonconvexity on the noninferior surface and the

ambiguity of solution is a result of this nonconvexity. Second, we could

have found a region of the noninferior surface that is a plane segment

parallel to the weight plane thus admitting multiple solutions to the &-

minimization and causing computational difficulties. Either one of these

problems can be circumvented by going to a higher norm - as will be seen

below.

V.2 Problem 2

We now use a weighted lm method to generate noninferior solutions to

the NAND gate. First we generate boundary points using an I method. (Usually

we start with y = Q9 however in run two we required y = 2258 = <fu(x )• The

second boundary point was more expensive using I than &.. methods, but the

remaining boundary searches cost the same. The fcw results are reported

in Table 7. The next optimization was performed using a weight that was

the inverse of the centroid of boundary solutions. The result of this run

was remarkably close to the result obtained using the £, method though the

Z^ method was less expensive. Comparing the fourth £- and lm runs gives

insight into the convexity and shape of the feasible region in the vicinity

of this noninferior solution.

Next in order to compare the computational expensive for finding a

particular noninferior solution using £, and l^ we used the result of the

fifth £,- run (Table 6) to generate the weight for the fifth lm run.



1

2

3

4

5

6

7

8

9

1

0

0

.0036

.004662

.0036

.00469

,00318

.00318

WGHT

0

1

0

.00016

.000205

.00016

9.066 x

io-5

.000207

.000207

0

0

1

.5651

.3217

.5651

.7283

.5518

.5518

*
F

56.18

110

110

88.55

78.62

88.43

78.505

103.99

98.787

2500

1277.22

2500

1992.26

1786.99

1998.01

2500

1599.57

1787.166

.7

.7

.3536

.5549

.7

.5541

.4979

.5891

.5545

15.46

7.896

7.825

9.775

11.05

9.787

11.008

8.33

8.7618

*
X

226.74

115.84

236.28

183.873

162.07

183.42

232.3

147.02

164.95

-1

-1

-1

-1

-1

-1

-1

-1

-1

ITER

5

5

15

•24

16

5

19

23

6

NF

6

7

16

25

17

6

20

27

12

NG

6

6

16

25

17

6

20

22

5

10.6, 209 -1.47

= 86.28 2258.06 .56423

Table 6 Results of weighted sum

optimization of NAND gate



The result of the £ minimization was identical to the £.. result at the

cost of one extra iteration thus indicating that the power of £

methods does not require excessive computational effort.

The sixth run is the same as the fourth except the starting point

was the solution to the third run, i.e. x = 7.825, 236.28, -1. The

results of the sixth run again point out the importance of using a reason-

able heuristic for starting point selection in order to reduce computational

expense. The seventh and last run uses a weight based upon the eighth and

ninth £- runs which ran into difficulty. No computational problems were en-

countered using the £ method, clearly indicating the practical value of £

techniques, in particular, and £ methods, p > 1, in general, for the solu-

tion of MCO problems.

The overall conclusion of many I optimizations is that the weight

selection heuristic, ease of use, and lack of computational difficulties

and expense make the weighted lm method a very attractive tool for the MCO

design of electronic circuits. However verification and modification of all

£ methods await the use of MCO techniques on a variety of design problems.



RUN

1

2

3

4

5

6

7

1

0

0

.01086

.01272

.01086

.01017

WGHT

0

1

0

.00048

.000559

.0048

.000558

0

0

1

1.7107

1.4286

1.7107

1.8182

56.97

110

110

87.87

78.62

87.87

98.656

*
F

8500

1277.22

2500

1997.08

1786.995

1997.08

1797.5

.7

.7

.3536

.5579

.7

.5579

.552

15.46

7.899

7.825

9.85

11.05

9.85

8.77

*
X

226.74

115.837

236.28

184.25

162.07

184.25

165.95

-1

-1

-1

-1

-1

-1

-1

ITER

5

12

15

17

17

11

18

NF

6

13

16

18

18

12

19

NG

6

13

16

18 .

18

12

19

Table 7 Results of minimax optimization of NAND gate.



VI. SUMMARY AND CONCLUSIONS

In this paper we have discussed the concepts of Multiple Criterion

Optimization. In particular, noninferior solutions were defined and their

significance in engineering design situations discussed. Next the family

of weighted p-norms was presented as a way of generating various noninferior

solutions to an MCO problem. Based upon the weighted I norms a canonic

weight for each noninferior solution was defined. The interpretation of

this canonic weight allowed reasonable weight selection heuristics to be

developed. Finally, the ideas of MCO were applied to the design of an

MOSFET NAND gate circuit.

Based upon the theoretical and computational work reported in this

paper, we feel that the techniques of MCO are a natural and long overdue

extension to the traditional optimization techniques applied in the design

of electronic circuits. With the ideas and concepts of MCO we feel optimi-

zation can be made a computationally viable, user oriented, and powerful

partner in the design process.

An aspect of circuit design which has not been mentioned is the yield

of the design. Many techniques [e.g. 48] have been developed for considering

the yield of a design. It would seem natural based upon the ideas of MCO

to include yield (i.e. failure rate) as one of the competing design objectives -

which it certainly is. Adding yield as an MCO objective has been discussed in

[20]. The combined MCO yield problem can be computationally expensive, how-

ever, because it is a natural statement of the circuit design problem and

because of potential gain both in results and understanding we feel the

combination deserves further consideration.



Finally, and most importantly the development of user oriented heuristics

for weight selection and the meta-problem of choosing one particular design

from among many noninferior designs deserves continuing research. The work

done in economics, operations research, etc. should prove a fruitful source

of ideas and methods for the development of MCO as a tool for circuit and

system design.
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;r;?jT SPACE

Fig. 1 f maps input space into output space.



Local noninferior
solutions

Global noninferior
solutions

Fig. 2 Global and local noninferior solutions in output space.



Fig. 3 TWO NONINFERIOR SOLUTIONS FOUND BY CHANGING
THE WEIGHTS IN THE WEIGHTED SUM METHOD.



FIG. 4 THE CROSS HATCHED PORTION OF THE NONINFERIOR

SURFACE CANNOT BE FOUND USING A WEIGHTED SUM APPROACH.



p = CO

P = 2

P =

Fig. 5 Level sets of the l-,2-,and a,-norms

with unity weights.



p = 1

Fig. 6 Level sets of the 1- ,2- and w -norms

with nonunity and nonequal weights.



1-norm solution

2-norm
solution

Fig. 7 Noninferior solutions found by minimizing

1- and 2- norms over the feasible region.



Fig. 8 Noninferior point on nonconvex portion of

noninferior surface found by minimizing max norm.



Fig. 9 Weight plane based upon two boundary points

and the new noninferior solution found using this weight



Fig. 10 Noninferior solutions at the comer and at

the face of the max norm level set.



Fig. 11 The angles associated with two different

max norm level sets.
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Fig. 14 Two input MOSFET NAND gate used in example.
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JDS=GM*WL*(VGS-VT) above pinch-off

JDS=GMs.WL*VDS*(VGS-VT-VDS/2) below pinch-off

.5
VT=V_O+MVSSUB+PSI)

where

GM=Mormalized transconductar.ee

WL=Widih-to-length ratio of the device

VT=Gate threshold voltage

VGS=Gate-to-substrate voltage

VD3=Drain-to-source voltage

VFB=Flat band voltage

k=constant

PSI=Electrostatic potential on surface at the onset of conduction

VSSUB=Source-to-substrate voltage

SUB
Fig. 15 Model of MOSFET device used

in example.


