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ABSTRACT

The basis of most engineering design is making trade-offs among competing
factors. This is especially true in the design of electronic circuits. In
this paper we examine Multiple Criterion Optimization (MCO), one aspect of the
Multiple Criterion Decision Making (MCDM) problem. After presenting relevant
definitions and the concept of a noninferior solution to the MCO problem we
develop a family of weighted p-norms for generating noninferior solutions.
The prime iméortance of the weighted p-norm methods is the interpretation of
the weights. We develop a canonic weight for the p-norm family. Interpretation
of the canonic weight allows the development of various weight selection

heuristics. Finally, the techniques of MCO are applied to the design of a

MOSFET NAND gate.
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I. | NTRODUCTI ON

The essence of a large part of the practice of engineering and design
is decision nmaking. Further the typical design situation faced by an engi neer
is one involving nmany conpeting factors. |In spite of this fundanental
aspect of design it has been, for the nost part, economnists, nathematicians,
operation researchers, and others who have studi ed and devel oped the ideas
of decision maki ng under conpeting objectives [1-5]. In this paper we
propose to review the ideas of Multiple CGriterion Qptimzation (MXO and
devel op new interpretations, techniques, and applications of MCO ideas

for the design of electronic circuits.

Miltiple Criterion Optimzation - one aspect or tool in the decision
nmaki ng (design) process - addresses the simultaneous m ninzation (naxi-

m zation) of several conpeting criterion or objectives. The ideas of
conpeting objectives are not newin the EE literature [e.g. 6-9], however,

in nmost cases the multiple objectives were assigned weights and sumred to
forma single sealer objective. As will be shown, this weighted sumtech-
nique is only one, and the least powerful- of a famly of nmethods for solving
MCO pr obl ens.

The area of MCO al so provides a characterization of a "solution" to
probl ens with conpeting objectives. Further, using the ideas of MCO and
the famly of methods developed in this paper it is possible to give a
definite meaning to the weights used in various MCO approaches. The inter-
pretation of weights allows the devel opnent of neaningful heuristics with
whi ch to exam ne the various "optimal" trade-off solutions. It is our
hope that bringing the ideas and techniques of MCO to the attention of the
EE community will lead to a better use of optimzation as a tool for circuit
design and a raising of the consciousness of engineers about an area of

potentially great application.




In the next section we introduce the fundanental concepts and terni nol ogy
of MCO. In Section Il we present a fanily of nethods, based upon wei ghted
p-norns, for generating various trade-off solutions to the MCO probl em
Section |V presents an interpretation and various selection heuristics for
the wei ghts used in the weighted p-normMCO net hods. Section V applies the
i deas of MCO to the design 6f an MOSFET NAND using two different nmenbers of
the p-normfamly of nethods. Finally Section VI presents a summary and

concl usi ons.




1. MO FUNDAMENTALS

The conpetition between multiple criterion gives rise to the
di stinguishing difference between MO and traditional single objective
optimzations In the traditional optimzation of a single function
f(x), x* is a mninumif f(x*) £ f(x) for all x of interest. This
inequality is a statement of the fact that the real nunmbers can be
conpletely ordered by the fless than or equal to (.<)' relation

However, if several functions are considered sinultaneously it is

possible that one function may decrease while another increases. Thus
multiple criterion cannot be conpletely ordered using a '<.' relation

-

This lack of a conplete order is the chief characteristic of MO

probl ens.

In order to nake the preceding ideas concrete, we will introduce
the following notation. The n designable paraneters, x" ,
1s1,2,...,n, in the nultiple criterion optimzation problem wll be

denoted by the n-vector x:

= (X X2 ee i Y

[ 2o

It is convenient to view x as a point in the n-dinensional input space

. The mdesign objectives, fj , j=1,2,,,.,m wll be denoted by the




m veclLor 1:

£:£<j>:(/\(x‘)’ f2(|)f YY) V |))

It is convenient to viewf as a point in the mdinensional output

space 0.

In general the optimzation problens under consideration will be

subject to certain constraints which will be expressed as
gi(x) =0 i=1, ..., kK
hJ(gg) =0 =1, ..., 1
or, nore succinctly, as
9(x) 10

h(x) =0

The MXO probl em can now be stated as

mn f(x)

(1)
subject to g(_-x)_ < 9
h(x) =0

That is, we wsh to simultaneously mnimze the individual conponents
of f subject to the given constraints. As previously nentioned, if
sone (usually all) of the conponents of f are conpeting there will be

no point x that simultaneously mninizes all the conponents of f.




In other words, when objectives conp< te there is no 'optimal solution*

to the nultiple criterion optimzati' n problem

Instead of optinality, the concept of noninferiority [10,11]

(also known as efficiency [12]. Pareto optinmality [13,14],
[16,17]) is used to characterize a solution

mnimlity

[ 14,15] and nondom nance

to the MO problem In order to concisely define noninferiority we

introduce the follow ng two definitions.

Definition. The feasible region in input space,

ft, is the set of all designable paraneters that satisfy

the constraints, i.e.

n = ULN(X) =0, g(x) < O}

- =

Definition.- The feasible region in output space.

A, is the image by f of the feasible'region 8 in input

space, i.e.

A={flf=1(%), xe«}. (3)

W are nowin a position to define local and global noninferior

sol utions.
Definition. A point X*ea is a Jlocal noninferior
point if and only if for some nei ghborhood of §* there does not

exist a A>§_ such that (x*+Ax) eQ and
g0+ A) SO =L
(4)

f.(x + A) < f.(x*) for sone j.
] 3
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irhe image oi a local nuninlcrioi point iu a local nuninlericr

[
i
i

solution

Definition. A point x*eQ is a global noninferior
point if and only if there does not exist an X gt such

t hat

q (X A(x%) i=l, ..., m
(%)
fr(x) < f,(x*) for some j.
In general there are an infinite number of noninferior points for

a given MO problem The collection of noninferior points is the

noninferior set. The image of the noninferior set by f is called the

noninferior solution set or, the noninferior or trade-off surface. As

Wﬂth scal ar optimzation procedures, procedures for solving MCO probl ens
will only generate |ocal noninferior points. However, in our discussion non--
inferior will inply global noninferior unless otherwi se stated. Figures 1-2
illustrate the feasible regions in input and output space, an inferior solu-
tion and local and global noninferior solutions.

At this point it is useful to discuss how the typical weighted sum
approach fits into the MCO framework. As with mst MCO nethods, it is
best to consider the weighted sum technique in output space. Recall that

in the wei ghted sum approach a weight vector u” 0 is chosen and. the follow

ing problem sol ved

s.t. (6)

(= o)
t <
N—r
th

to 1o

—~
[
1

t




In output space this becones

—
-

subject to

-

If we examine (7) we see that the set of f in output space that yield a

constant value for the objective function, i.e.:
{f €0 O°f =C

is a hyperplane with normal Q1 . Thus, in order to solve (7), we nust find

-

the smallest value of ¢ for which there exists an f e A Cearly this is

-

the point where the hyperplane with normal u> just touches A as it proceeds
outward fromthe origin. This situation is illustrated in Figure 3

A problemwith the weighted sum techni que arises when the |ower boundary
of Ais not convex, as illustrated in Figure 4, because not every noninferior
solution will have a supporting hyperplane. This situation corresponds to a
duality gap in the normal theory of Lagrange multipliers [18,19] and
historically indicated the first practical difference between the solution
of single objective and nultiple objective optinmzation problens.

In many cases the uses of optimzation for electronic circuit design
has been in the context of a weighted summinimzation. Cdearly if the
noninferior surface is nonconvex the weighted sum nethod may yield poor
designs no matter what weight or optimzation technique is used. For this
reason and for the insight gained into the decision making aspect of circuit

design we believe that the study of MCO techniques and ideas is very

inportant for circuit design and CAD in general




111. GJINKKATING _NONINFER QR SQLUTI.QN, WBSLNG. VKL criin), p=NOkHS

In this section we wll d( vclop a famly of nethods for
generating noninferior solutions. Because many existing techniques
are contained in this famly of methods, its properties are useful in
unifying and extending existing methods of generating noninferior

sol utions [20].

For the development in this section we will assume that A the
feasible region in output space, is a conpact sinply connected set.
Ve also assune that the mininumof each conponent of f is unique.
Furthermore, we assunme, without |oss of generality, that Ais i, the
first quadrant, i.e., feA inpliesi> _Q (Note that since A is
conpact we can translate A so that it is entirely within the first

quadrant . ) Finally, whenever the normal to the surface of Ais enployed

we assune that the surface of Ais such that the normal is uniquely defined,

W\ begin by defining a class of utiljiy functions [21] based upon
wei ghted p-norns (also known as £pnorrrs), i.e.,

Bie) =i, Lspsc.

where W= diag(\/\_rf‘,\/\_zt.o.fwm_) W‘_"O i=t,2,...,m

[|w£[|p | M*;]JP

and




Noni nfcrlor points can now hefti:n"r;itfl(l by mnitnJv.\ n# LF;. Ih:?
mnimzation can be interpreted & ometrically by examning the Jcva

sets of UY(f), i.e.
pn-

Ba) = {£] ti(e) <). (o

> illustrates this level set for Wl and p=1,2 and °°. The

Figure

| evel sets for various weights are illustrated in Figure 6

oo W . : .
M ni m zi ng Lb (f) over the feasible region A wll generate at l|east one

. W .
point on the surface of A where the level set Lp (f) just touches A as
it expands about the origin. Figure 7 illustrates the mnimzation
of various weighted p-nornms over Ain ternms of the level set of the

nor e

From the preceding discussion it should be clear that if we set
p=», i.e., if we wuse the max norm we can generate all noninferior
solutions by varying the weights and mnimzing the mx norm subject
to the constraints. This-is true because, as shown in Figure 8, the
| evel sets of the max normact as translations of the nonpositive
orthant, and can be used for an alternate statement of the conditions
for Pareto optimal!ty or noninferiority. Because of the inportance of
t hese utility functions we now formalize the preceding discussions.
The assunptions stated at the beginning of the section are still

valid.  Further, when 4X{f*) < 4>(f) for all feasible f we call f* the

uni gue mninzer of <>




freA is noninferior if and only if there exists
Wediag (w), w > 0 such that f* is the unique mnimzer
of I W] I overA.
Proof. (Sufficiency) |If for senme w2>0 f* uni quel y
mnimzes | IW|| over A and f* is not noninferior then
- [e0) -
there would exist some f e A such that
1 - g
f. < 1* for all i
f o< f* sone j.
i )
This inplies
wifi 1W| Ei* for all |
Hence
lwell, < [Iwext ],
which is a contradiction.
(Necessity) Alternately, if f* is a noninferior
point, let v¢diag(llf*gf /f*,z. oo f).. Then I 1 W*[ |2
<l I W I for all fe,A for if this were not true

there would exist a i e A f/f* such that
Wt | <] =1
— o - e

or f., < f* for all i
i

a

(10)

(11)




But since i/f* this inplies f.. < f,* for some | and
o J J

hence f* would not be noninferior, whhich is a

contradiction, thus establishing the result.
Using the notation

W .
Vo s el UM TTIT) X
we can restate the preceding theorem as

Corollary 2.2. A point f* is noninferior if and only

if there exists a M) such that

L (E2)HA = {D9). 13




We cut jlorHM.i1j/(? th<: prrci'dinf. "i:iiu:;:ion Lo any we i/,hli:d p-norm

as follows.
Theorem 2.3.

A point f* £ A is noninferior if and only if there

existsa W>_0and a1 <_p < "° such that
LpUr) " A = {E)e (14)

Pr oof . (Sufficiency) dearly by t he prucrdi ng
corollary if f* is mnoninferior this condition is

sati sfi ed.

(Necessity) |If

LY%(*)n A= {f*} 1ip<ao

and J* was not noninferior then there would exist a f r

I £ A Such that
qg < fi* for all i

. .
f'} < f,,- Some |

but then

vl . <w. 1|‘ * foralli

w >0
Thus W < W * , and so
T, < T

f e LY (f*)nA ,
- P_

which is a contradiction, thus establishing the result.




Various aspects of the preceding discussion have been mentioned
by  others. Bowrman [22] discusses the wuse of =« " to generate
noninferior solutions as does Benayoun F23]. Xu [24], Zeleny [26],
and others [ 25,27] in the theory of conprom se solutions use famlies
of p norms. The use of general utility functions to find noninferior
solutions is discussed by Geoffrion [12,29], Beeson [30-] and ot hers
[ 21,28}. General |east 'p'h optim zation has been wused in the
electrical engineering literature [6,7 |4 However, the developnent of a famly
of wei ghted Ip norns (with the weight interpretation of the next section)
to generate noninferior solutions has not, to our know e.dge, been
presented previously. W feel this nethod is an excellent bridge between
the traditional approach taken by electrical engineers using single ob-
jective optimzation and the view of circuit design as a multiple criterion

optim zation problem




IV. | NTERPRETATI ON AND SELECTI ON OV W[ CUTS

In any optimzation technique, where different solutions are generated
by varying a set of weights, the interpretation and sel ection of these
weights is critical. In this sectionwe will give a precise interpretation
to the weights used in the weighted p-norm generation of noninferior solutions.,
Based upon this interpretation we will discuss weight selection heuristics
for the 1- and «-norns. Finally we will present an exanple conparing £l

and I nethods on a sinple two criterion problem

V.1 Canoni cal Wi ghts for p-Norns

VW know that if the point f* is noninferior and is found by mnim zing
a weighted p-norm then (without [oss of generality) we require the gradient
of the p-norm at 1‘_* be equal and opposite to the outward pointing nornal to
the noninferior surface at 11*. Let n* be the inward pointing norrmal to the

noni nferior surface at f* and normalize n* so that

n*Tf* = 1.

Thus if f« were on a convex portion of the noninferior surface and
mnl |W1)f] \* = 1, the mnimumwould occur at f=f* when W1)=n* (assuning f* is a
uni que mnimzer of | |[w(l)f]][2).

We now develop a fornula for a canonical weight Wp) for each p

norm so that if #* was noninferior and could be found by minimzing

I|Wp)#| | p then the mninmumwould be 1 and occur at £=L«. V& require

Vil [Wp) ] ] = n* (15)

Pli=tr T

which inplies
*(P-l)
__ ~1
liwpt+| Pt
p




But we assumed that

thus

n.*l/p
i
p-1°’
£x

i=1,2, ..., m. (16)

This weight will be called the canonical weight associated with f* for

the p-norm. Examining (16) shows that if p=1, W(p)=diag(n*) as expected.

Rirthermore

1
lim wii(p) = ?;; (fi* >0)

p-no

gnd we have the canonical weight associated with the max norm.

Various interpretations of (16) will be discussed below and used to generate
weight selection heuristics. We note in passing that many MCO techniques and
weight selection methods can be shown to be related either directly or
indirectly to the 1l- and w—norm generation scheme [20]. However, use of
intermediate norms has not been pursued and both weight selection heuristics
and the usefulness of these intermediate methods remains an open area for
research. (For a group decision making interpretation of the unity weighted
norms see [24,25].) |

IV.2 Weight Selection Heuristics

Using the canonic weight for the p-norm we now have a tool for choosing
weights to generate various noninferior solutions. However, we have also
seen that, in general, there are an infinite number of noninferior solutioms.
The designer must choose one design from among the set of noninferior designs.

Various techniques [e.g. 30-36] have been presented for generating a representative




set of noninferior solutions in order to aid the designer in naking his

final choice of noninferior design. A discussion of some of these nethods
can be found in[ 20]. Ibr the purposes of this paper we will discuss sone
heuristics for the 1-normnmethod, our suggestions for °°-norm heuristics and
present a conpurational conparison of the 1- and »-norm generation nethods,

a. £1 Wei ght s

W first discuss weight selection heuristics for the 1-norm or
wei ghted sumnethod. One of the early workers in interactive weight selec-
tion was Dyer [ 31,32] who assunmed that an unknown utility function WUf)

existed but could not be specified by the decision maker.

Dyer considered the follow ng:

T
U U _au
v't'u(-f-) = 3f| ' 3f2 Vo 3fn (17>

If we could approximate this gradient direction we could take a step
in output space to minimze U(f). Consider the follow ng vector which

is collinear with ViU(f):

( 3U/3f, 3U/3f
ve L osgmer .3U/3ft],l' (18)
\ *
or
of of
o[ 2
- > ml

i.e., wis a vector of nmarginal substitution rates. At a given point




in A Dyer aaks the decision maker Inw nuch he would give up in i,l I"or

an increase in f* and approxi mtes

3f| Afl

Using this approxination to VfU(f), Dyer takes a steepest descent

step searching for a better solution and queries the user again on his

pr ef erences.

We can easily apply Dyer's nethod to weight selection by noting
that if we choose | | W| |j as a utility function (for generating
noni nferior solutions) that

ViU(f) = w.

-

So we could pick a Wediag(w), minimze | | W| | ], and then ask the user

how much of fj he would give up to decrease f* and form a new wei ght

Af Af
- 1 2
H 1’ ﬂfz 'y -ew ] &f (21)
m
and again mnimze | |A-}_N|, l'L to find a new noninferior solution. Thi s

allows the wuser to fine tune the choice of weights as he |earns nore

about the problem However, in a nethod such as this where it is possible
that only a small portion -of the noninferior surfa_ce will be expl_ ored, 'there
is the danger of the decision being nade based upon grossly inconplete

i nformation.




Anot her wei ght selection heuristic suggested by lirayton and Director
[37] and devel oped and extended by Fraser [36] is based upon the concept of
the wei ght being normal to the supporting hyperplane at the noninferior
solution. Suppose that we first mnimze each function separately in order to
find the extrenes or boundaries of the noninferior surface in output space.
2

These poi nts can now be used to

Let these points be fl*,

define a plane in output space by solving the follow ng set of equations

..... 2w, <22

RS TR
The plane inplied by this set of equations and the noninferior solution
found by using this weight are shown in Fig. 9.
Fraser begins with a boundary search and an extra ninimzation
using the normal to the plane defined by the boundary search as does
Brayt on. A vector is now formed whose entries are the m ni numval ues found

for each criterion.

- m n mn rain\
F . ( FI ))fz 3 see fmJ (23)

Simlarly a vector of maximum values is formed

- (flm o E,EX L, \ (24)

!:max mma>j

If the designer is not satisfied with the newy found noninferior

solution f , he is asked to specify which conponents of f" he would




like to reduce say, i and j. Then the differences

Af « fk-F a=1i1J
e (25)
- _ ) 25

Afm - Fn.axm fln ” 1» | f*J

are formed and the new wei ght vector becones

k+1 ) Afi Afi ﬁfl

Vo T AR Al e e AT, (26)

The simlarity of this procedure with Dyer's (21) should be clear. The
wei ght vector (26) attenpts to use existing infornation and desi gner

preference to assess the nargi nal substitution rates.

b. 1 Wights

Al 't hough the use of minimax optimzation is relatively common in the
EE literature ([e.g. 6,7,38,39]), it has not been viewed as a tool for
generat'i ng noninferior solutions to an MCO problem Further, the overt
use of mininmax methods to solve MCO problens is very linmted. Bowran 22
showed that a weighted minimax could be used to generate all noninferior

solutions but he gave no indication as to how to choose the weights.




If we wite the m nimx problem

mnmax {w . (x)}
xeft i Sl 27
as the equivalent
mn v
Y, x dt (28)
s.t. ag_f"k_)' % i=l,...,m

Then m ni max methods can be related [20] to the Goal Attainnment method [40]
a variant of Goal Programming [41]. But again no discussion of weight
sel ection has been presented for this approach.

In our discussion of weight selection for mnimx methods we will work
under the assunption that any weight used will end up being a multiple of a
canonic weight. This means that the solution will occur at the positive corner
of the hyperrectangular level set associated wth the weighted I

norm or, alternately, at the solution we have

R /AN PR V]| (29)




The case where this holds and an exanple of where it does not hold are
shown in Figure 10. VW make this assunption without |oss of
general ity because under the conditions previously given, any point
which is a unique minimzer that is found using a weighted " nethod
will be noninferior. Furthernore, if the weight is not canonic we

know there exists a canonic weight which will generate that point.

Assuming a canonic weight, the effect of the mnimx method is to
find a mnimm solution on a |line specified by the weights. If
\ML:**Z& « «*"ni! then the line of search is a ray 45° from each axis,
otherwise a different angle is specified. This is illustrated in
Figure 11. So, one way of choosing weights would be to ask the
decision maker to specify a direction of search and then transform
this direction into a weight. However, the range of possible angles
is not clear. Also, specifying angles in higher dinmensions is not intuitively
obvious and has little direct connectidn to the problembeing solved. There-

fore we now consider an alternate weight selection heuristic.

As was discussed previously, the canonic weight associated with a
noninferior solution P} for *« is
Wei: w o1
1 71~* 1-1, ..-; m
i

Clearly any positive nultiple of w is also a valid weight. Thus we

can take any set of m previously found noninferior solutions




(initially the points found by the |-undary search) ;ind ask the uncr
to assign a weight, c¢x. > 0, to each point indicating how much he
favors that particular solution. The weights a can be normalized so

that | <*, = 1 and then we form
I=laf . (30)

f will be in the plane specified by the m points, i.e., if

7r = {f|c"f =1}, where_c is the normal to the plane, then
df = LkW= 1 (3D

alternately f is in the cone of directions specified by the m
sol utions. At this point f can be shown to the user to see if f is the
type of trade-off he desires. |If not, then the ai‘s can be readjusted. This

consi stency check prior to any optim zation can be very useful in preventing

excessive optim zation runs.

If f passes the consistency check we form the weight

=|- i =1,...,m (32)

f there is a noninferior solution along the ray extending through f,

the weighted |~ nethod using @\MII find it. If wis not a scaled

canoni ¢ weight for any noninferior solution, a local noninferior solution

will still be found (assunming the minimumis unique) and we have val uabl e

i nformati on concerning the noninferior surfage in the direction specified.
Notice that this nethod of weight selection is much nore direct than wei ghted
sum net hods because we are not specifying a nornal to the support plane at the
desired solution, but an actual value, f, for the solution which, if the

weight is a scaled canonic weight, will be a scaled version of the solution




Vi1 T F

A number of variations on Lhis iethod arce clearly possible. For
instance, if the uscr examined the ecxisting noninferior solutions he
could simply specify a new desired solution f ~ this assumes the user
has some understanding of noninferior solutions - then a weight

A~

1 . .
= x— 1is immediately generated. Also the cone in which the user
i
specifies a direction (solution) does not have to be m dimensional.
Any two or more noninferior solutions that the wuser prefers can be

weighted to give a new value, f, which automatically specifies a

weight.

Thus we see that the £_ methods lend themselves to a more direct
and flexible specification of a weight and the weight (when a scaled canonical
weight) is intimately associated with the value of the noninferior
solution and not the normal to the surface of A at the noninferior
solution. Clearly more computational experience with % methods is needed
in order to further refine the weight selection process and provide more
user oriented methods. But we feel that the weighted £ _methods have been

shown to be exceptionally powerful and intuitively direct methods for solving

MCO problems.




V. NAND GATE EXAMPLE

In this section we apply the ideas developed in the previous sections
to the optimization of an MOSFET NAND gate circuit. The particular
circuit we consider has been used as a time donmain optimzation
exanple by Director and Brayton [47], an exanmple for Sinplicial
Approximation by Director and Hachtel [48], and as an exanple for
wei ghted sum Multiple Criterion Optimzation by Fraser [361.

The two input MOSFET NAND gate used as an example is shown in
Figure 14. The first step in designing the NAND gate is to choose
a model for the transistors. Based upon the work of Fraser [36]
we chose a four termnal nodel that includes the effect of substrate
bias. This model and its defining equations are presented in
Figure 15.

There are nmany possible sets of designable parameters that could
be used in designing the NAND gate, for exanple, the lengths and wi dths
of all the devices as well as the flat band voltages of the devices.

We choose (as do Director and Hachtel [48]) the flat band voltage, V_, the
Rf

: : 3 .
wi dth of the bottomtwo transistors, W-~, (constrained to be the same) and

the width of transistor T VA, as the designable parameters. Table 5 presents
the range of values of the designable paraneters as well as other constants

needed to analyze the NAND gate (these are the values used in [48]).




Paramater valuss, cons
used in the MOSFET N

PSI=.5771

k=5
GM=.006

A =12.7 microns

L =5.08 microns
23

VDD=-6.5 volts
VGG=-14.5 yq|ts

Vm=-6 volts (i, ON state)
AY =1.03657

C.=5 pF

1tents, and constraint:
AND gate exampls.

-2<VFB<-1
5<W <50
1

50w
- <250



The objectives in our design wll be: to nmininmze the area used
by the transistors, to minimze the switching tine of the gate, and to
require the ON voltage V, to be as close to zero as possible. The
desire to mninze area is obvious since we are considering that this
gate will be a part of a nore conplex integrated circuit ana thus
should take up as little chip a")a as possible. Because we would |ike
to include the NAND gate as part of a larger logic circuit, reducing
the switching time of the gate increases the potential speed of the
logic circuit. Finally, in order to have an adequate noise margin as
well as to be able to drive the stages connected to the NAND gate, we
would like the ON voltage to be as <close to =zero as possible.
Reducing the power dissipated by the gate would also seemto be a
reasonabl e objective, however, our own simulations as well as reports
in the literature [36]indicate that power dissipation tracks with the
area and thus it is only necessary to consider one of these an an

- obj ective.

W nust now consider the evaluation of these objectives. The
eval uation of the area of the gate is, of course, independent of the analysis
of the operation of the gate. To find the ON voltage of the gate we only
need a d.c. analysis of the NAND gate in the ON state. Thus the only
remai ni ng objective to evaluate is the switching time.

The switching time of the gate is a function of the time it takes
for the circuit to turn ON and the time it takes the circuit to turn
OFF, But the turn OFF tinme is much larger than the turn ON tinme and
thus we can consider mnimzation of the turn OFF time - turn OFF
propagation delay tpp - instead of the entire swtching cycle. In

general, the evaluation of tpp will require a transient analysis, but




fur tho class d" MJUSKET gates wo..ro concvMnod with an approximation

to tyg dons exi st.

tl
The approxi mation to t_p_n' is based upon the assunption that the
output » node is domnated by a single |load capacitance (independent of
voltage). This assunption is used in several analysis progranms [49,50],
was used by Fraser [36], and is adequate for static MOSFET | ogic.
Fraser devel ops this approxinmation assuning that the |lower transistors
are out of the circuit and the ON state value of the output voltage

was zero. The approxinmation is

L:
|

D= Fwr® C33)
wher e
1 m=2
& 2 =0 In 3=7 (34)
“y
and Ty (VT"V(:(:) (35a)
v
DD
mo= D2 (35b)

withAF a multiplicative constant,Used to match (33) with the delay
found wusing an accurate transient simulation. Using (33)-(35), the
turn OFF propagation delay can be approxinated (to first order) w thout

performng a circuit simulation (except once to estimte A—t')'

Therefore, in order to evaluate the objectives of our design we
sinmply need to perform a d.c. analysis of the NAND gate in the ON
state. The final form of our perfornmance objective functions for the

MCO design of the NAND gate is




1 (eqn. 1) (36)

*2=V\1 nLl +2L23| \/\23 Urea) (37)
4). = -V (ON output voltage) (38)
3 0

where the designable paraneters are W, V%a, and %q; (see Figure 15)
Besides the constraints on designable parameters given in Table 5
an upper linit of 2500 mi|~was placed upon the area, 110 nsec. was
the maxi num acceptabl e propagation delay, and -.7 volts the smallest

acceptabl e ON. output voltage (see [36]).

The gradients of <§_ and {% were found by considering the circuit
equations as equality constraints and adding them via Lagrange
multipliers to (36) and (37). Direct differentiation of the resulting
equations and proper definition of the nultipliers gave the gradients
of {i and Q% (this is essentially the approach taken by Hachtel,
Brayton and GCustavson [51] and is also equivalent to the adjoint

network [52]. method of cal culating gradients).




Tims, |iw MCO problem wo want U. @< . iy

subject to

*j <. 110 (nsec.)
%, -£7500 (nils?)
4>, .s, .7 (volts)

-2 £ Mg < -i (volts)
5sLW < 50 (microns)

50 £ Wo3 £ 250 (microns)
For notational convenience we will let ft be the feasible region in

i nput space defined by (39b), and x = (W, Wo, V...) .
VW will generate noninferior solutions to (39) using the

wei ght ed ”‘1 and wei ghted % technique. Thus we solve two probl ens:

Problem 1
- an (wl¢1+wz¢2+w3¢3)
s.t. xz @
Probl em 2
mn Y
(x,Y)
S. t X G O,
1Y
Wy 27
W3 j Y

A nunber of different constrained optim zation methods could be
used to sol ve probl ens 1 and 2. W wll use the constrained variabl e
nmetric nmethod of Powel | [43,44] (using the quadratic program of Canon,
Cullumand Pol ak [46]). In other experiments [20] we have conpared

Powel | s* method with an Augnented Lagrangi an techni que which used a

(39a)

(39b)

(4Q)

(41)

e -
R gAY




first-order update and dynam c stopping criteria [42,43,45]. In all our
experiments we found Powel | s' method to be narkedly superior. However, as
in the choice of which p-normto use, the choice of the best constrained

optinization nethod is likely to be probl em dependent. -
V.1' Problem1 . B

The first three optim zations were to find the m ni numof 1 <I? ¢3
separately. The weight for the next optim zation was the normal of the
pl ane passing through the three boundary points in output space.(zz)
The results of these runs as well as the initial starting point (from [48])
and initial objective function values are given in Table 6.

Notice that the noninferior solution found using the weight plane
generated from the boundary search is a reasonable trade-off between the
extreme points. It is quite possible that this would not be the case.

For the next run a weight normal to the plane through the first, second,

and fourth noninferior solution was chosen. This optim zation resulted

in an excellent trade-off between propagation delay and area but at the price
of output voltage. (A this point the designer night want to consider
alternate designs for later stages that woul d nake the val ue of output
vol t age accept abl e).

To test the effect of starting value on the optimzation we used the
wei ght plane fromthe fourth run but used the final solution of the fifth
optim zation as the starting point. Using these val ues of weight and
starting point we found a solution close to that of run four (the difference
could be due to the optimzation, or nore likely slight nonconvexities in
the noninferior surface) but with considerably fewer function eval uations.
Further conputational experience [20] has indicated that a starting point
in the plane defining the weights for a particular run tends to decrease
the conputational expense of generating new noninferior solutions.

Next we choose a wei ght based upon the results of runs one, three

and five. The results of this run showed good val ues for delay and vol tage

but a high value for area. Thus we experience the typical conplaint with




weighted sum minimization: the inability to choose weights to get new,
good trade-offs between all the objectives.

The last two optimizations carried out with the £, method used a

1
weight based upon rums two, four, and seven. Run eight terminated ab-

normally. Run nine using the same weight as run eight but starting from
(8.5, 165, -1) also terminated abnormally, although at a different stopping.
The results of these two runs (and others 20 ) have two possible explanations:
first, we have detected a nonconvexity on the noninferior surface and the
ambiguity of solution is a result of this nonconvexity. Second, we could
have found a region of the noninferior surface that is a plane segment
parallel to the weight plane thus admitting multiple solutions to the 11
minimization and causing computational difficulties. Either one of these
problems can be circumvented by going to a higher norm - as will be seen
below.
V.2 Problem 2

We now use a weighted £ method to generate noninferior solutions to
the NAND gate. First we generate boundary points using an £_ method. (Usually
we start with y = 0, however in run two we required y = 2258 = ¢2(§°). The
second boundary point was more expensive using £_ than 21 methods, but the
remaining boundary searches cost the same. The £ results are reported

in Table 7. The next optimization was performed using a weight that was

the inverse of the centroid of boundary solutions. The result of this rumn
was remarkably close to the result obtained using the ll method though the
£ _ method was less expensive. Comparing the fourth 21 and 2_ runs gives
insight into the convexity and shape of the feasible region iq the vicinity
of this noninferior solution.

Next in order to compare the computational expensive for finding a
particular noninferior solution using ll and £ we used the result of the

fifth 11 run (Table 6) to generate the weight for the fifth 2 _ run.




Table 6 Results of weighted sum
optim zation of NAND gate

VGHT E X | TER|NF | NG
1 1 0 0 56.18 2500 7 15.46  226.74 51 6| 6
2 0 1 0 110 1277.22 .7 7.896 115.84 517} 6
3 0 0 1 110 2500 .3536 | 7.825 236.28 15 (16} 16
41.0036  .00016 .5651| 88.55 1992.26 .5549 | 9.775 183.873 2 |25 5
51.004662 000205 .3217} 78.62 1786.99 .7 11.05  162.07 16 171 17
6|.0036  .00016 .5651| 88.43 1998.01 .5541 | 9.787 183.42 516f 6
71.00469 9.066 x .7283| 78.505 2500 .4979 111.008 232.3 19 120} 20
i0-°
8 |,00318 .000207 .5518 | 103.99 1599.57 .5891 | 8.33  147.02 23 |21 | 2
9 |.00318 .000207 .5518 | 98.787 1787.166 .5545 | 8.7618 164.95 6 {12] 5
x =106, 209 -1.47
¢, = 86.28 2258.06 56423




The result of the £ mininization was identical to the £. result at the
cost of one extra iteration thus indicating that the power of EQ
nmet hods does not require excessive conputational effort.

The sixth run is the sane as the fourth except the starting point
was the solution to the third run, i.e. Xo= 7.825, 236.28, -1. The
results of the sixth run again point out the inportance of using a reason-
able heuristic for starting point selection in order to reduce conputationa
expense. The seventh and last run uses a wei ght based upon the eighth and
ni nth El runs which ran intodifficulty. No conputational problens were en-

countered using the £m met hod, clearly indicating the practical value of £ou

techniques, in particular, and £p met hods, p > 1, in general, for the solu-
tion of MCO probl ens.

The overal|l conclusion of many | _ optinmzations is that the weight
sel ection heuristic, ease of use, and lack of conputational difficulties
and expense nake the weighted |, method a very attractive tool for the MO
design of electronic circuits. However verification and nodification of al

£p net hods await the use of MCO techniques on a variety of design problens.




x

x

RN WGHT . X | TER[\F | NG
1 1 0 0 156.97 8500 .7 |15.46 226.74 516] 6
2 0 1 0 | 110 1277.22 .7 | 7.899 115.837 -1 12 |13 |13
3 0 0 1 | 110 2500  .3536| 7.825 236.28 15 |16 |16
4 |.01086 .00048 1.7107 [87.87 1997.08 .5579| 9.85 184.25 17 {18 {18
5 |.01272 .000559 1.4286 |78.62 1786.995 .7  |11.05 162.07 17 {18 |18
6 |.01086 .0048  1.7107 [87.87 1997.08 .5579| 9.85 184.25 1|12 |
7 1.01017 .000558 1.8182 }98.656 1797.5 .552 | 8.77 165.95 18 {19 (19

Table 7 Results of mnimax optimzation of NAND gate.




VI . SUMVARY AND CONCLUSI ONS

In this paper we have discussed the concepts of Miultiple Criterion
Qptimzation. |In particular, noninferior solutions were defined and their
éignificance in engineering design situations discussed. Next the famly
of weighted p-norms was presented as a way of generating various noninferior
solutions to an MCO problem Based upon the weighted | _ nornms a canonic
wei ght for each noninferior solution was defined. The interpretation of
this canonic weight allowed reasonabl e weight selection heuristics to be
devel oped. Finally, the ideas of MCO were applied to .the design of an
MOSFET NAND gat e circuitf

Based upon the theoretical and conputational work reported in this
paper, we feel that the techniques of MCO are a natural and |ong overdue
extension to the traditional optimzation techniques applied in the design
of electronic circuits. Wth the ideas and concepts of MCO we feel optim -
zation can be nade a conputationally viable, user oriented, and powerful
partner in tﬁe desi gn process.

An aspect of circuit design which has not been nentioned is the yield
of the design. Many techniques [e.g. 48] have been devel oped for considering
the yield of a design. It would seemnatural based upon the ideas of MCO
to include yield (i.e. failure rate) as one of the conpeting design object[ves -
which it certainly is. Adding yield as an MCO objective has been discussed in
[20]. The conbi ned MCO yi el d probl em can be conputationally expensive, how
ever, because it is a natural statenent of the circuit design problem and
because of potential gain both in results and understanding we feel the

conbi nati on deserves further consideration.




Finally, and most importantly the development of user oriented heuristics
for weight selection and the meta-problem of choosing one particular design
from among many noninferior designs deserves continuing research. The work
done in economics, operations research, etc. should prove a fruitful source
of ideas and methods for the development of MCO as a tool for circuit and

system design.
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Fig.

1 j maps input space into output space.



1
Local noninferior Fa\
solutions
/
_/: Global noninferior
solutions
f

Fig. 2  Global and local noninferior solutions in output space.




Fig. 3 TWO NON NFERIOR SCLUTIONS FOUND BY CHANG NG
THE WEI GHTS IN THE WEI GHTED SUM METHOD.




FIG 4 THE CROSS HATCHED PCORTION OF THE NONI NFERI CR
SURFACE CANNOT BE FOUND USING A WAEI GHTED SUM APPROACH.




Fig. 5

Level sets of the I-,2-,and a,-norms
with unity weights.
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Fig. 6 Level sets of the 1- ,2- and w-norms

with nonunity and nonequal weights.




1-norm solution

' 2;norm
/ TR | /— solution

Fig. 7 Noninferior solutions found by minimizing

1- and 2- norms over the feasible region.




Fig. 8  Noninferior point on nonconvex portion of

noninferior surface found by minimizing max norm.




Fig. 9  Weight plane based upon two boundary points
and the new noninferior solution found using this weight .




Fig. 10 Noninferior solutions at the comer and at

the face of the max norm level set.




Fig. 11

-The angles associated with two different

max norm

level sets.
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Fig. 14 Two input MOSFET NAND gate used in

example.




2
JDS=GMWL{VG5-VT) above pinch-off

L oo

JOS=GM:WL«VDS«(VGS5-VT-VDS/2)  below pinch-off

Go oSUB 5
VT=V Fg +k+(VSSUB+PSI)
‘l where
e GM=Mormalized transconductance
S WL=Width-to-length ratio of the dzvice
VT=Gate threshoid voltagze
D VGS=Gate-to-substrate voitage
o VLBS=Lrain-to-source voltazs
VrB8=rlat band voltaze
k=constant
CGD —— PSI=Electrostatic potential on suriace at the onset of conduction
T VSSUB=Source-to-substrate voltaze
Go | (]. s '
Vv
CGS — CSS
| | —osuB
s | Fig. 15 Model of MOSFET device used
in example.



